1
|
Poolman JT, Torres VJ, Missiakas D, Welten SPM, Fernandez J, DuMont AL, O'Keeffe A, Konstantinov SR, Morrow B, Burghout P, Grijpstra J, van Beers MMC, Anish C, Beurret M, Geurtsen J, Rood PML, Koeberling O, Shi M, van den Dobbelsteen GPJM. A SpA+LukAB vaccine targeting Staphylococcus aureus evasion factors restricts infection in two minipig infection models. NPJ Vaccines 2025; 10:78. [PMID: 40254611 PMCID: PMC12009994 DOI: 10.1038/s41541-025-01119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Staphylococcus aureus is a major cause of bacterial infection-related deaths. Increasing antimicrobial resistance highlights the urgent need for effective preventative strategies. Antibody-mediated opsonophagocytosis, the key mechanism for protection against S. aureus, is disabled by critical virulence factors such as Staphylococcal protein A (SpA) and leukocidin AB (LukAB). In our study, we combined genetically detoxified vaccine candidates SpA* and LukAB RARPR-33 with a TH1 adjuvant aiming to restore host antibody functionality. To evaluate these vaccine candidates, we developed both surgical site infection (SSI) and superficial wound infection (SWI) models in minipigs. Our results showed a significant reduction in bacterial load and systemic dissemination in the SSI model, while skin infection severity was markedly decreased after intradermal immunization in the SWI model. This study introduces a novel S. aureus vaccine strategy by targeting immune evasion factors SpA and LukAB, utilizing potent TH1 adjuvants, and employing minipig challenge models.
Collapse
Affiliation(s)
- Jan T Poolman
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY, USA
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dominique Missiakas
- Howard T. Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL, USA
| | - Suzanne P M Welten
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Jeffrey Fernandez
- Bacterial Vaccines, Janssen Vaccines and Prevention B.V. Welsh & McKean Rds, Spring House, PA, USA
| | - Ashley L DuMont
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY, USA
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna O'Keeffe
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY, USA
| | - Sergey R Konstantinov
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Brian Morrow
- Bacterial Vaccines, Janssen Research and Development, Raritan, NJ, USA
| | - Peter Burghout
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Jan Grijpstra
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Miranda M C van Beers
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Chakkumkal Anish
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Jeroen Geurtsen
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Pauline M L Rood
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Oliver Koeberling
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands
| | - Miaomiao Shi
- Howard T. Ricketts Laboratory, Department of Microbiology, The University of Chicago, Lemont, IL, USA
| | - Germie P J M van den Dobbelsteen
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V Archimedesweg 4-6, Leiden, The Netherlands.
| |
Collapse
|
2
|
Piewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. THE LANCET. MICROBE 2024; 5:e606-e618. [PMID: 38518792 PMCID: PMC11162333 DOI: 10.1016/s2666-5247(24)00040-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/24/2024]
Abstract
Staphylococcus aureus is a leading cause of death by infectious diseases worldwide. Treatment of S aureus infections is difficult due to widespread antibiotic resistance, necessitating alternative approaches and measures for prevention of infection. Because S aureus infections commonly arise from asymptomatic colonisation, decolonisation is considered a key approach for their prevention. Current decolonisation procedures include antibiotic-based and antiseptic-based eradication of S aureus from the nose and skin. However, despite the widespread implementation and partial success of such measures, S aureus infection rates remain worrisome, and resistance to decolonisation agents is on the rise. In this Review we outline the epidemiology and mechanisms of S aureus colonisation, describe how colonisation underlies infection, and discuss current and novel approaches for S aureus decolonisation, with a focus on the latest findings on probiotic strategies and the intestinal S aureus colonisation site.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Dobrut A, Siemińska I, Sroka-Oleksiak A, Drożdż K, Sobońska J, Mroczkowska U, Brzychczy-Włoch M. Molecular and phenotypic identification of bacterial species isolated from cows with mastitis from three regions of Poland. BMC Vet Res 2024; 20:193. [PMID: 38734661 PMCID: PMC11088075 DOI: 10.1186/s12917-023-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland.
| | - Izabela Siemińska
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Sroka-Oleksiak
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamil Drożdż
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Sobońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Parsons JB, Westgeest AC, Conlon BP, Fowler VG. Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia: Host, Pathogen, and Treatment. Antibiotics (Basel) 2023; 12:455. [PMID: 36978320 PMCID: PMC10044482 DOI: 10.3390/antibiotics12030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a devastating pathogen responsible for a variety of life-threatening infections. A distinctive characteristic of this pathogen is its ability to persist in the bloodstream for several days despite seemingly appropriate antibiotics. Persistent MRSA bacteremia is common and is associated with poor clinical outcomes. The etiology of persistent MRSA bacteremia is a result of the complex interplay between the host, the pathogen, and the antibiotic used to treat the infection. In this review, we explore the factors related to each component of the host-pathogen interaction and discuss the clinical relevance of each element. Next, we discuss the treatment options and diagnostic approaches for the management of persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Joshua B. Parsons
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Annette C. Westgeest
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vance G. Fowler
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
- Duke Clinical Research Institute, Durham, NC 27710, USA
| |
Collapse
|
5
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Staphylococcus aureus from Subclinical Cases of Mastitis in Dairy Cattle in Poland, What Are They Hiding? Antibiotic Resistance and Virulence Profile. Pathogens 2022; 11:pathogens11121404. [PMID: 36558738 PMCID: PMC9781172 DOI: 10.3390/pathogens11121404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine mastitis is a common disease worldwide, and staphylococci are one of the most important etiological factors of this disease. Staphylococcus aureus show adaptability to new conditions, by which monitoring their virulence and antibiotic resistance mechanisms is extremely important, as it can lead to the development of new therapies and prevention programs. In this study, we analyzed Staphylococcus aureus (n = 28) obtained from dairy cattle with subclinical mastitis in Poland. The sensitivity of the isolated strains to antibiotics were confirmed by the disc diffusion method. Additionally, minimum inhibitory concentration values were determined for vancomycin, cefoxitin and oxacillin. Genotyping was performed by two methods: PCR melting profile and MLVF-PCR (multiple-locus variable-number tandem-repeat fingerprinting). Furthermore, the presence of antibiotic resistance and virulence genes were checked using PCR reactions. The analyzed strains showed the greatest resistance to penicillin (57%), oxytetracycline (25%) and tetracycline (18%). Among the analyzed staphylococci, the presence of 9 of 15 selected virulence-related genes was confirmed, of which the icaD, clfB and sea genes were confirmed in all staphylococci. Biofilm was observed in the great majority of the analyzed bacteria (at least 70%). In the case of genotyping among the analyzed staphylococci (combined analysis of results from two methods), 14 patterns were distinguished, of which type 2 was the dominant one (n = 10). This study provides new data that highlights the importance of the dominance of biofilm over antibiotic resistance among the analyzed strains.
Collapse
|
7
|
Murashkin NN, Epishev RV, Ivanov RA, Materikin AI, Opryatin LA, Savelova AA, Nezhvedilova RY, Ambarchian ET, Fedorov DV, Rusakova LL. Innovations in Therapeutic Improvement of the Cutaneous Microbiome in Children with Atopic Dermatitis. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i5.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biofilm is the dominant form of skin microbiota organization that provides adhesion and preservation of microorganisms in the skin micro-environment. It is necessary to ensure epidermal barrier function and local immunomodulation. Staphylococcus aureus becomes the major colonizer of skin lesions in case of atopic dermatitis exacerbation, and it also can form the biofilms. S. aureus growth and biofilm formation due to other microbial commensals on the skin of patients with atopic dermatitis leads to chronic output of pro-inflammatory cytokines and later to abnormalities in healthy skin microbiome. The role of microbial biofilm in human’s health makes the skin microbiota an attractive target for therapeutic intervention in various skin diseases.
Collapse
Affiliation(s)
- N. N. Murashkin
- National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs
| | - R. V. Epishev
- National Medical Research Center of Children’s Health
| | - R. A. Ivanov
- National Medical Research Center of Children’s Health
| | | | | | | | | | - E. T. Ambarchian
- Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery
| | - D. V. Fedorov
- National Medical Research Center of Children’s Health
| | | |
Collapse
|
8
|
Nadeau S, Thorball CW, Kouyos R, Günthard HF, Böni J, Yerly S, Perreau M, Klimkait T, Rauch A, Hirsch HH, Cavassini M, Vernazza P, Bernasconi E, Fellay J, Mitov V, Stadler T. A phylogeny-aware GWAS framework to correct for heritable pathogen effects on infectious disease traits. Mol Biol Evol 2022; 39:6654835. [PMID: 35921544 PMCID: PMC9366186 DOI: 10.1093/molbev/msac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases are particularly challenging for genome-wide association studies (GWAS) because genetic effects from two organisms (pathogen and host) can influence a trait. Traditional GWAS assume individual samples are independent observations. However, pathogen effects on a trait can be heritable from donor to recipient in transmission chains. Thus, residuals in GWAS association tests for host genetic effects may not be independent due to shared pathogen ancestry. We propose a new method to estimate and remove heritable pathogen effects on a trait based on the pathogen phylogeny prior to host GWAS, thus restoring independence of samples. In simulations, we show this additional step can increase GWAS power to detect truly associated host variants when pathogen effects are highly heritable, with strong phylogenetic correlations. We applied our framework to data from two different host-pathogen systems, HIV in humans and X. arboricola in A. thaliana. In both systems, the heritability and thus phylogenetic correlations turn out to be low enough such that qualitative results of GWAS do not change when accounting for the pathogen shared ancestry through a correction step. This means that previous GWAS results applied to these two systems should not be biased due to shared pathogen ancestry. In summary, our framework provides additional information on the evolutionary dynamics of traits in pathogen populations and may improve GWAS if pathogen effects are highly phylogenetically correlated amongst individuals in a cohort.
Collapse
Affiliation(s)
- Sarah Nadeau
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian W Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roger Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sabine Yerly
- Division of Infectious Diseases, Laboratory of Virology, Geneva University Hospital, Geneva, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Hans H Hirsch
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Clinical Virology, University Hospital Basel, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Pietro Vernazza
- Division of Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Jacques Fellay
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Global Health Institute, School of Life Sciences, École Polytechnique FÉdÉrale de Lausanne, Lausanne, Switzerland
| | - Venelin Mitov
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
9
|
Wong Fok Lung T, Chan LC, Prince A, Yeaman MR, Archer NK, Aman MJ, Proctor RA. Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front Cell Infect Microbiol 2022; 12:1060810. [PMID: 36636720 PMCID: PMC9831658 DOI: 10.3389/fcimb.2022.1060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.
Collapse
Affiliation(s)
| | - Liana C Chan
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Richard A Proctor
- Department of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
10
|
Young BC, Wu CH, Charlesworth J, Earle S, Price JR, Gordon NC, Cole K, Dunn L, Liu E, Oakley S, Godwin H, Fung R, Miller R, Knox K, Votintseva A, Quan TP, Tilley R, Scarborough M, Crook DW, Peto TE, Walker AS, Llewelyn MJ, Wilson DJ. Antimicrobial resistance determinants are associated with Staphylococcus aureus bacteraemia and adaptation to the healthcare environment: a bacterial genome-wide association study. Microb Genom 2021; 7:000700. [PMID: 34812717 PMCID: PMC8743558 DOI: 10.1099/mgen.0.000700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a major bacterial pathogen in humans, and a dominant cause of severe bloodstream infections. Globally, antimicrobial resistance (AMR) in S. aureus remains challenging. While human risk factors for infection have been defined, contradictory evidence exists for the role of bacterial genomic variation in S. aureus disease. To investigate the contribution of bacterial lineage and genomic variation to the development of bloodstream infection, we undertook a genome-wide association study comparing bacteria from 1017 individuals with bacteraemia to 984 adults with asymptomatic S. aureus nasal carriage. Within 984 carriage isolates, we also compared healthcare-associated (HA) carriage with community-associated (CA) carriage. All major global lineages were represented in both bacteraemia and carriage, with no evidence for different infection rates. However, kmers tagging trimethoprim resistance-conferring mutation F99Y in dfrB were significantly associated with bacteraemia-vs-carriage (P=10-8.9-10-9.3). Pooling variation within genes, bacteraemia-vs-carriage was associated with the presence of mecA (HMP=10-5.3) as well as the presence of SCCmec (HMP=10-4.4). Among S. aureus carriers, no lineages were associated with HA-vs-CA carriage. However, we found a novel signal of HA-vs-CA carriage in the foldase protein prsA, where kmers representing conserved sequence allele were associated with CA carriage (P=10-7.1-10-19.4), while in gyrA, a ciprofloxacin resistance-conferring mutation, L84S, was associated with HA carriage (P=10-7.2). In an extensive study of S. aureus bacteraemia and nasal carriage in the UK, we found strong evidence that all S. aureus lineages are equally capable of causing bloodstream infection, and of being carried in the healthcare environment. Genomic variation in the foldase protein prsA is a novel genomic marker of healthcare origin in S. aureus but was not associated with bacteraemia. AMR determinants were associated with both bacteraemia and healthcare-associated carriage, suggesting that AMR increases the propensity not only to survive in healthcare environments, but also to cause invasive disease.
Collapse
Affiliation(s)
- Bernadette C. Young
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Chieh-Hsi Wu
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jane Charlesworth
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Earle
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - James R. Price
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - N. Claire Gordon
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Cole
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - Laura Dunn
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elian Liu
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Sarah Oakley
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Heather Godwin
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rowena Fung
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruth Miller
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kyle Knox
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Antonina Votintseva
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - T. Phuong Quan
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Robert Tilley
- Department of Microbiology, University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Matthew Scarborough
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Derrick W. Crook
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Timothy E. Peto
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Microbiology and Infectious Diseases Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, UK
- NIHR Health Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - Martin J. Llewelyn
- Department of Infectious Diseases and Microbiology, Royal Sussex County Hospital, Brighton BN2 5BE, UK
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PS, UK
| | - Daniel J. Wilson
- Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
11
|
Raineri EJM, Altulea D, van Dijl JM. Staphylococcal trafficking and infection - from 'nose to gut' and back. FEMS Microbiol Rev 2021; 46:6321165. [PMID: 34259843 PMCID: PMC8767451 DOI: 10.1093/femsre/fuab041] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an opportunistic human pathogen, which is a leading cause of infections worldwide. The challenge in treating S. aureus infection is linked to the development of multidrug-resistant strains and the mechanisms employed by this pathogen to evade the human immune defenses. In addition, S. aureus can hide asymptomatically in particular ‘protective’ niches of the human body for prolonged periods of time. In the present review, we highlight recently gained insights in the role of the human gut as an endogenous S. aureus reservoir next to the nasopharynx and oral cavity. In addition, we address the contribution of these ecological niches to staphylococcal transmission, including the roles of particular triggers as modulators of the bacterial dissemination. In this context, we present recent advances concerning the interactions between S. aureus and immune cells to understand their possible roles as vehicles of dissemination from the gut to other body sites. Lastly, we discuss the factors that contribute to the switch from colonization to infection. Altogether, we conclude that an important key to uncovering the pathogenesis of S. aureus infection lies hidden in the endogenous staphylococcal reservoirs, the trafficking of this bacterium through the human body and the subsequent immune responses.
Collapse
Affiliation(s)
- Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Ogonowska P, Gilaberte Y, Barańska-Rybak W, Nakonieczna J. Colonization With Staphylococcus aureus in Atopic Dermatitis Patients: Attempts to Reveal the Unknown. Front Microbiol 2021; 11:567090. [PMID: 33505363 PMCID: PMC7830525 DOI: 10.3389/fmicb.2020.567090] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) patients are massively colonized with Staphylococcus aureus (S. aureus) in lesional and non-lesional skin. A skin infection may become systemic if left untreated. Of interest, the incidence of multi-drug resistant S. aureus (MRSA) in AD patients is higher as compared to a healthy population, which makes treatment even more challenging. Information on the specific genetic background of S. aureus accompanying and/or causing AD flares would be of great importance in terms of possible treatment option development. In this review, we summarized the data on the prevalence of S. aureus in general in AD skin, and the prevalence of specific clones that might be associated with flares of eczema. We put our special interest in the presence and role of staphylococcal enterotoxins as important virulence factors in the epidemiology of AD-derived S. aureus. Also, we summarize the present and potentially useful future anti-staphylococcal treatment.
Collapse
Affiliation(s)
- Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Yolanda Gilaberte
- Department of Dermatology, University Hospital Miguel Servet, Zaragoza, Spain
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
13
|
Association of variants in selected genes mediating host immune response with duration of Staphylococcus aureus bacteremia. Genes Immun 2020; 21:240-248. [PMID: 32507857 DOI: 10.1038/s41435-020-0101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Host genetic variation may be a contributing factor to variability in Staphylococcus aureus bacteremia duration. We assessed whether 28 single nucleotide polymorphisms (SNPs) in seven genes (TLR2, TLR4, TIRAP, IRAK4, TRAF6, NOD2, and CISH) that mediate host immune response were associated with S. aureus bacteremia duration. Subjects included 158 patients with short-term (≤4 days) and 44 with persistent (>4 days) S. aureus bacteremia from an academic medical center. In single SNP analyses, the minor allele frequencies of three TIRAP SNPs (rs655540, rs563011, and rs8177376) were higher in persistent bacteremia (P < 0.05). A haplotype with all three minor alleles was also associated with persistent bacteremia (P = 0.037). The minor allele frequencies of four other TIRAP SNPs (rs8177342, rs4937114, rs3802813, and rs4937115) were higher in short-term bacteremia (P < 0.05), and a haplotype containing the four minor alleles was associated with short-term bacteremia (P = 0.045). All seven SNPs are located in binding sites for proteins or noncoding RNAs that regulate transcription. None of the associations remained statistically significant after adjustment for multiple comparisons. Further investigation is needed to understand how genetic variation in TIRAP and other host immune genes may influence the duration of S. aureus bacteremia.
Collapse
|
14
|
Genetic variation of DNA methyltransferase-3A contributes to protection against persistent MRSA bacteremia in patients. Proc Natl Acad Sci U S A 2019; 116:20087-20096. [PMID: 31527248 PMCID: PMC6778225 DOI: 10.1073/pnas.1909849116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The severity and duration of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia varies widely between individuals. Host factors predisposing to persistent MRSA bacteremia are poorly understood, although genetic association studies are beginning to identify potentially influential variants. We found an association between the A/C heterozygous genotype in the DNMT3A correlating with shorter time to resolution of MRSA bacteremia. Using in vitro macrophage assays and murine sepsis models, we demonstrated that DNMT3A variants may alter host response to infection through increased methylation of key regulatory genes, resulting in reduced interleukin-10 production and in turn, allowing for a more protective immune response that clears infection. An improved understanding of the factors predisposing to persistent MRSA bacteremia may help to discover better treatment options. The role of the host in development of persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is not well understood. A cohort of prospectively enrolled patients with persistent methicillin-resistant S. aureus bacteremia (PB) and resolving methicillin-resistant S. aureus bacteremia (RB) matched by sex, age, race, hemodialysis status, diabetes mellitus, and presence of implantable medical device was studied to gain insights into this question. One heterozygous g.25498283A > C polymorphism located in the DNMT3A intronic region of chromosome 2p with no impact in messenger RNA (mRNA) expression was more common in RB (21 of 34, 61.8%) than PB (3 of 34, 8.8%) patients (P = 7.8 × 10−6). Patients with MRSA bacteremia and g.25498283A > C genotype exhibited significantly higher levels of methylation in gene-regulatory CpG island regions (Δmethylation = 4.1%, P < 0.0001) and significantly lower serum levels of interleukin-10 (IL-10) than patients with MRSA bacteremia without DNMT3A mutation (A/C: 9.7038 pg/mL vs. A/A: 52.9898 pg/mL; P = 0.0042). Expression of DNMT3A was significantly suppressed in patients with S. aureus bacteremia and in S. aureus-challenged primary human macrophages. Small interfering RNA (siRNA) silencing of DNMT3A expression in human macrophages caused increased IL-10 response upon S. aureus stimulation. Treating macrophages with methylation inhibitor 5-Aza-2′-deoxycytidine resulted in increased levels of IL-10 when challenged with S. aureus. In the murine sepsis model, methylation inhibition increased susceptibility to S. aureus. These findings indicate that g.25498283A > C genotype within DNMT3A contributes to increased capacity to resolve MRSA bacteremia, potentially through a mechanism involving increased methylation of gene-regulatory regions and reduced levels of antiinflammatory cytokine IL-10.
Collapse
|
15
|
Di Domenico EG, Cavallo I, Capitanio B, Ascenzioni F, Pimpinelli F, Morrone A, Ensoli F. Staphylococcus aureus and the Cutaneous Microbiota Biofilms in the Pathogenesis of Atopic Dermatitis. Microorganisms 2019; 7:E301. [PMID: 31470558 PMCID: PMC6780378 DOI: 10.3390/microorganisms7090301] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Biofilm is the dominant mode of growth of the skin microbiota, which promotes adhesion and persistence in the cutaneous microenvironment, thus contributing to the epidermal barrier function and local immune modulation. In turn, the local immune microenvironment plays a part in shaping the skin microbiota composition. Atopic dermatitis (AD) is an immune disorder characterized by a marked dysbiosis, with a sharp decline of microbial diversity. During AD flares biofilm-growing Staphylococcus aureus emerges as the major colonizer in the skin lesions, in strict association with disease severity. The chronic production of inflammatory cytokines in the skin of AD individuals concurs at supporting S. aureus biofilm overgrowth at the expense of other microbial commensals, subverting the composition of the healthy skin microbiome. The close relationship between the host and microbial biofilm resident in the skin has profound implications on human health, making skin microbiota an attractive target for the therapeutic management of different skin disorders.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Bruno Capitanio
- Division of Dermatology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, University of Rome Sapienza, 00161 Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Aldo Morrone
- Scientific Director San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
16
|
García-Betancur JC, Lopez D. Cell Heterogeneity in Staphylococcal Communities. J Mol Biol 2019; 431:4699-4711. [PMID: 31220460 DOI: 10.1016/j.jmb.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
The human pathogen Staphylococcus aureus is a gram-positive bacterium that causes difficult-to-treat infections. One of the reasons why S. aureus is such as successful pathogen is due to the cell-to-cell physiological variability that exists within microbial communities. Many laboratories around the world study the genetic mechanisms involved in S. aureus cell heterogeneity to better understand infection mechanism of this bacterium. It was recently shown that the Agr quorum-sensing system, which antagonistically regulates biofilm-associated or acute bacteremia infections, is expressed in a subpopulation of specialized cells. In this review, we discuss the different genetic mechanism for bacterial cell differentiation and the physiological properties of the distinct cell types that are already described in S. aureus communities, as well as the role that these cell types play during an infection process.
Collapse
Affiliation(s)
- Juan Carlos García-Betancur
- Research Center for Infectious Diseases ZINF, University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology IMIB, University of Würzburg, 97080 Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology IMIB, University of Würzburg, 97080 Würzburg, Germany; National Centre for Biotechnology (CNB-CSIC), 28050 Madrid, Spain.
| |
Collapse
|
17
|
|
18
|
Rasigade JP, Leclère A, Alla F, Tessier A, Bes M, Lechiche C, Vernet-Garnier V, Laouénan C, Vandenesch F, Leport C. Staphylococcus aureus CC30 Lineage and Absence of sed, j, r-Harboring Plasmid Predict Embolism in Infective Endocarditis. Front Cell Infect Microbiol 2018; 8:187. [PMID: 29938201 PMCID: PMC6003251 DOI: 10.3389/fcimb.2018.00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/14/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus induces severe infective endocarditis (IE) where embolic complications are a major cause of death. Risk factors for embolism have been reported such as a younger age or larger IE vegetations, while methicillin resistance conferred by the mecA gene appeared as a protective factor. It is unclear, however, whether embolism is influenced by other S. aureus characteristics such as clonal complex (CC) or virulence pattern. We examined clinical and microbiological predictors of embolism in a prospective multicentric cohort of 98 French patients with monomicrobial S. aureus IE. The genomic contents of causative isolates were characterized using DNA array. To preserve statistical power, genotypic predictors were restricted to CC, secreted virulence factors and virulence regulators. Multivariate regularized logistic regression identified three independent predictors of embolism. Patients at higher risk were younger than the cohort median age of 62.5 y (adjusted odds ratio [OR] 0.14; 95% confidence interval [CI] 0.05-0.36). S. aureus characteristics predicting embolism were a CC30 genetic background (adjusted OR 9.734; 95% CI 1.53-192.8) and the absence of pIB485-like plasmid-borne enterotoxin-encoding genes sed, sej, and ser (sedjr; adjusted OR 0.07; 95% CI 0.004-0.457). CC30 S. aureus has been repeatedly reported to exhibit enhanced fitness in bloodstream infections, which might impact its ability to cause embolism. sedjr-encoded enterotoxins, whose superantigenic activity is unlikely to protect against embolism, possibly acted as a proxy to others genes of the pIB485-like plasmid found in genetically unrelated isolates from mostly embolism-free patients. mecA did not independently predict embolism but was strongly associated with sedjr. This mecA-sedjr association might have driven previous reports of a negative association of mecA and embolism. Collectively, our results suggest that the influence of S. aureus genotypic features on the risk of embolism may be stronger than previously suspected and independent of clinical risk factors.
Collapse
Affiliation(s)
- Jean-Philippe Rasigade
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Amélie Leclère
- UMR-1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR-1137, Paris, France
| | - François Alla
- CIC-1433 Epidémiologie Clinique, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Nancy, Nancy, France.,EA4360, Apemac, Université de Lorraine, Nancy, France
| | - Adrien Tessier
- UMR-1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR-1137, Paris, France
| | - Michèle Bes
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Catherine Lechiche
- Service de Maladies Infectieuses et Tropicales Centre Hospitalier Universitaire de Nîmes Caremeau, Nîmes, France
| | - Véronique Vernet-Garnier
- Faculté de Médecine EA 4687 Université de Reims Champagne Ardenne, Reims, France.,Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Reims Robert Debré, Reims, France
| | - Cédric Laouénan
- UMR-1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR-1137, Paris, France.,Service de Biostatistiques, Hôpital Bichat, AP-HP, Paris, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Catherine Leport
- UMR-1137, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale, UMR-1137, Paris, France.,Unité de Coordination du Risque Épidémique et Biologique, AP-HP, Paris, France
| | | |
Collapse
|
19
|
Rasmussen G, Cajander S, Bäckman A, Källman J, Söderquist B, Strålin K. Expression of HLA-DRA and CD74 mRNA in whole blood during the course of complicated and uncomplicated Staphylococcus aureus bacteremia. Microbiol Immunol 2018; 61:442-451. [PMID: 28862321 DOI: 10.1111/1348-0421.12533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023]
Abstract
To improve management of Staphylococcus aureus bacteremia (SAB), better understanding of host-pathogen interactions is needed. In vitro studies have shown that S. aureus bacteria induce dose-dependent immunosuppression that is evidenced by reduced expression of major histocompatibility complex (MHC) class II on antigen presenting cells. Thus, the aim of this study was to determine whether expression of the MHC class II-related genes HLA-DRA and CD74 is more greatly reduced in complicated SAB, with its probable higher loads of S. aureus, than in uncomplicated SAB. Adult patients with SAB were prospectively included and blood samples taken on the day of confirmation of SAB (Day 1) and on Days 2, 3, 5 and 7. HLA-DRA and CD74 mRNA expression was determined by quantitative reverse transcription PCR. Sepsis was defined according to the Sepsis-3 classification and SAB was categorized as complicated in patients with deep-seated infection and/or hematogenous seeding. Twenty patients with SAB were enrolled and samples obtained on all assessment days. HLA-DRA and CD74 expression did not differ significantly between patients with SAB and sepsis (n = 13) and those without sepsis (n = 7) on any assessment day. However, patients with complicated SAB (n = 14) had significantly weaker HLA-DRA expression on all five assessment days than patients with uncomplicated SAB (n = 6). Additionally, they tended to have weaker CD74 expressions. Neutrophil, monocyte and leukocyte counts did not differ significantly between complicated and uncomplicated SAB. In conclusion, patients with complicated SAB show weaker HLA-DRA expression than those with uncomplicated SAB during the first week of bacteremia.
Collapse
Affiliation(s)
- Gunlög Rasmussen
- Department of Infectious Diseases, Örebro University Hospital, Örebro University, Örebro.,Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro
| | - Sara Cajander
- Department of Infectious Diseases, Örebro University Hospital, Örebro University, Örebro.,Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro
| | - Anders Bäckman
- Faculty of Medicine and Health, Department of Clinical Research Laboratory, Örebro University, Örebro
| | - Jan Källman
- Department of Infectious Diseases, Örebro University Hospital, Örebro University, Örebro.,Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro
| | - Bo Söderquist
- Department of Infectious Diseases, Örebro University Hospital, Örebro University, Örebro.,Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro
| | - Kristoffer Strålin
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Ajayi C, Åberg E, Askarian F, Sollid JUE, Johannessen M, Hanssen AM. Genetic variability in the sdrD gene in Staphylococcus aureus from healthy nasal carriers. BMC Microbiol 2018; 18:34. [PMID: 29661152 PMCID: PMC5902956 DOI: 10.1186/s12866-018-1179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Staphylococcus aureus cell wall anchored Serine Aspartate repeat containing protein D (SdrD) is a member of the microbial surface component recognising adhesive matrix molecules (MSCRAMMs). It is involved in the bacterial adhesion and virulence. However the extent of genetic variation in S. aureus sdrD gene within isolates from healthy carriers are not known. The aim of this study was to evaluate allelic variation of the sdrD gene among S. aureus from healthy nasal carriers. Results The sdrD A region from 48 S. aureus isolates from healthy carriers were analysed and classified into seven variants. Variations in the sdrD A region were concentrated in the N2 and N3 subdomains. Sequence analysis of the entire sdrD gene of representative isolates revealed variations in the SD repeat and the EF motifs of the B repeat. In silico structural modelling indicates that there are no differences in the SdrD structure of the 7 variants. Variable amino acid residues mapped onto the 3D structure revealed that the variations are surface located, exist within the groove between the N2-N3 subdomains and distributed mainly on the N3 subdomain. Comparison of adhesion to keratinocytes in an in vitro cell adhesion assay, using NCTC 8325–4∆sdrD strains expressing the various sdrD gene variants, indicated a significant difference between only two complements while others showed no major difference in their adhesion. Conclusions This study provides evidence of sequence variations across the different domains of SdrD from S. aureus isolated from healthy nasal carriers. Proper understanding of these variations is necessary in the study of S. aureus pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12866-018-1179-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clement Ajayi
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Espen Åberg
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Fatemeh Askarian
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Johanna U E Sollid
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Mona Johannessen
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Anne-Merethe Hanssen
- Research group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
21
|
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that causes superficial and invasive infections in the hospital and community. High mortality from infection emphasizes the need for improved methods for prevention and treatment. Although S. aureus possesses an arsenal of virulence factors that contribute to evasion of host defenses, few studies have examined long-term humoral and B-cell responses. Adults with acute-phase skin and soft tissue infections were recruited; blood samples were obtained; and S. aureus isolates, including methicillin-resistant strains, were subjected to genomic sequence analysis. In comparisons of acute-phase sera with convalescent-phase sera, a minority (37.5%) of patients displayed 2-fold or greater increases in antibody titers against three or more S. aureus antigens, whereas nearly half exhibited no changes, despite the presence of toxin genes in most infecting strains. Moreover, enhanced antibody responses waned over time, which could reflect a defect in B-cell memory or long-lived plasma cells. However, memory B cells reactive with a range of S. aureus antigens were prevalent at both acute-phase and convalescent-phase time points. While some memory B cells exhibited toxin-specific binding, those cross-reactive with structurally related leucocidin subunits were dominant across patients, suggesting the targeting of conserved epitopes. Memory B-cell reactivity correlated with serum antibody levels for selected S. aureus exotoxins, suggesting a relationship between the cellular and humoral compartments. Overall, although there was no global defect in the representation of anti-S. aureus memory B cells, there was evidence of restrictions in the range of epitopes recognized, which may suggest potential therapeutic approaches for augmenting host defenses. The contribution of B-cell memory and long-term antibody responses to host defenses against S. aureus exotoxins remains poorly understood. Our studies confirmed that infection did not commonly lead to enhanced long-term humoral responses. Whereas circulating memory B cells against S. aureus secreted exotoxins were prevalent, they were dominated by cross-reactivity with structurally related leucocidin subunits, consistent with recognition of conserved epitopes. These findings also provide the first evidence of a relationship between the reactivity of antistaphylococcal circulating memory B cells and serum antibody levels. In general, infection was not associated with a global defect in B-cell memory for S. aureus secreted factors, and responses were highly dominated by cross-reactivity to structurally related exotoxins, which arguably may alone be suboptimal in providing host defenses. Our studies illuminate aspects of the S. aureus-host relationship that may better inform strategies for the development of an effective protective vaccine.
Collapse
|
22
|
Mortimer TD, Annis DS, O’Neill MB, Bohr LL, Smith TM, Poinar HN, Mosher DF, Pepperell CS. Adaptation in a Fibronectin Binding Autolysin of Staphylococcus saprophyticus. mSphere 2017; 2:e00511-17. [PMID: 29202045 PMCID: PMC5705806 DOI: 10.1128/msphere.00511-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Human-pathogenic bacteria are found in a variety of niches, including free-living, zoonotic, and microbiome environments. Identifying bacterial adaptations that enable invasive disease is an important means of gaining insight into the molecular basis of pathogenesis and understanding pathogen emergence. Staphylococcus saprophyticus, a leading cause of urinary tract infections, can be found in the environment, food, animals, and the human microbiome. We identified a selective sweep in the gene encoding the Aas adhesin, a key virulence factor that binds host fibronectin. We hypothesize that the mutation under selection (aas_2206A>C) facilitates colonization of the urinary tract, an environment where bacteria are subject to strong shearing forces. The mutation appears to have enabled emergence and expansion of a human-pathogenic lineage of S. saprophyticus. These results demonstrate the power of evolutionary genomic approaches in discovering the genetic basis of virulence and emphasize the pleiotropy and adaptability of bacteria occupying diverse niches. IMPORTANCEStaphylococcus saprophyticus is an important cause of urinary tract infections (UTI) in women; such UTI are common, can be severe, and are associated with significant impacts to public health. In addition to being a cause of human UTI, S. saprophyticus can be found in the environment, in food, and associated with animals. After discovering that UTI strains of S. saprophyticus are for the most part closely related to each other, we sought to determine whether these strains are specially adapted to cause disease in humans. We found evidence suggesting that a mutation in the gene aas is advantageous in the context of human infection. We hypothesize that the mutation allows S. saprophyticus to survive better in the human urinary tract. These results show how bacteria found in the environment can evolve to cause disease.
Collapse
Affiliation(s)
- Tatum D. Mortimer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mary B. O’Neill
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lindsey L. Bohr
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Tracy M. Smith
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hendrik N. Poinar
- McMaster Ancient DNA Centre, Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Clausen M, Edslev S, Andersen P, Clemmensen K, Krogfelt K, Agner T. Staphylococcus aureus
colonization in atopic eczema and its association with filaggrin gene mutations. Br J Dermatol 2017; 177:1394-1400. [DOI: 10.1111/bjd.15470] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 12/29/2022]
Affiliation(s)
- M.‐L. Clausen
- Department of Dermatology Bispebjerg University Hospital Copenhagen Denmark
| | - S.M. Edslev
- Department of Microbiology and Infection Control Statens Serum Institut Copenhagen Denmark
| | - P.S. Andersen
- Department of Microbiology and Infection Control Statens Serum Institut Copenhagen Denmark
- Institute of Veterinary Disease Biology University of Copenhagen Copenhagen Denmark
| | - K. Clemmensen
- Department of Dermatology Bispebjerg University Hospital Copenhagen Denmark
| | - K.A. Krogfelt
- Department of Microbiology and Infection Control Statens Serum Institut Copenhagen Denmark
| | - T. Agner
- Department of Dermatology Bispebjerg University Hospital Copenhagen Denmark
| |
Collapse
|
24
|
Yan Q, Ahn SH, Medie FM, Sharma-Kuinkel BK, Park LP, Scott WK, Deshmukh H, Tsalik EL, Cyr DD, Woods CW, Yu CHA, Adams C, Qi R, Hansen B, Fowler VG. Candidate genes on murine chromosome 8 are associated with susceptibility to Staphylococcus aureus infection in mice and are involved with Staphylococcus aureus septicemia in humans. PLoS One 2017; 12:e0179033. [PMID: 28594911 PMCID: PMC5464679 DOI: 10.1371/journal.pone.0179033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
We previously showed that chromosome 8 of A/J mice was associated with susceptibility to S. aureus infection. However, the specific genes responsible for this susceptibility are unknown. Chromosome substitution strain 8 (CSS8) mice, which have chromosome 8 from A/J but an otherwise C57BL/6J genome, were used to identify the genetic determinants of susceptibility to S. aureus on chromosome 8. Quantitative trait loci (QTL) mapping of S. aureus-infected N2 backcross mice (F1 [C8A] × C57BL/6J) identified a locus 83180780–88103009 (GRCm38/mm10) on A/J chromosome 8 that was linked to S. aureus susceptibility. All genes on the QTL (n~ 102) were further analyzed by three different strategies: 1) different expression in susceptible (A/J) and resistant (C57BL/6J) mice only in response to S. aureus, 2) consistently different expression in both uninfected and infected states between the two strains, and 3) damaging non-synonymous SNPs in either strain. Eleven candidate genes from the QTL region were significantly differently expressed in patients with S. aureus infection vs healthy human subjects. Four of these 11 genes also exhibited significantly different expression in S. aureus-challenged human neutrophils: Ier2, Crif1, Cd97 and Lyl1. CD97 ligand binding was evaluated within peritoneal neutrophils from A/J and C57BL/6J. CD97 from A/J had stronger CD55 but weaker integrin α5β1 ligand binding as compared with C57BL/6J. Because CD55/CD97 binding regulates immune cell activation and cytokine production, and integrin α5β1 is a membrane receptor for fibronectin, which is also bound by S. aureus, strain-specific differences could contribute to susceptibility to S. aureus. Down-regulation of Crif1 with siRNA was associated with increased host cell apoptosis among both naïve and S. aureus-infected bone marrow-derived macrophages. Specific genes in A/J chromosome 8, including Cd97 and Crif1, may play important roles in host defense against S. aureus.
Collapse
Affiliation(s)
- Qin Yan
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sun Hee Ahn
- Department of Biochemistry School of Dentistry, Chonnam National University, Bukgu, Gwangju, Korea
| | - Felix Mba Medie
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Batu K. Sharma-Kuinkel
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lawrence P. Park
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - William K. Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ephraim L. Tsalik
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Emergency Medicine Service, Durham Veteran’s Affairs Medical Center, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- Section on Infectious Diseases, Durham Veteran’s Affairs Medical Center, Durham, North Carolina, United States of America
| | - Chen-Hsin Albert Yu
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carlton Adams
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert Qi
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Brenda Hansen
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Vance G. Fowler
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kao WCA, Pětrošová H, Ebady R, Lithgow KV, Rojas P, Zhang Y, Kim YE, Kim YR, Odisho T, Gupta N, Moter A, Cameron CE, Moriarty TJ. Identification of Tp0751 (Pallilysin) as a Treponema pallidum Vascular Adhesin by Heterologous Expression in the Lyme disease Spirochete. Sci Rep 2017; 7:1538. [PMID: 28484210 PMCID: PMC5431505 DOI: 10.1038/s41598-017-01589-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Treponema pallidum subsp. pallidum, the causative agent of syphilis, is a highly invasive spirochete pathogen that uses the vasculature to disseminate throughout the body. Identification of bacterial factors promoting dissemination is crucial for syphilis vaccine development. An important step in dissemination is bacterial adhesion to blood vessel surfaces, a process mediated by bacterial proteins that can withstand forces imposed on adhesive bonds by blood flow (vascular adhesins). The study of T. pallidum vascular adhesins is hindered by the uncultivable nature of this pathogen. We overcame these limitations by expressing T. pallidum adhesin Tp0751 (pallilysin) in an adhesion-attenuated strain of the cultivable spirochete Borrelia burgdorferi. Under fluid shear stress representative of conditions in postcapillary venules, Tp0751 restored bacterial-vascular interactions to levels similar to those observed for infectious B. burgdorferi and a gain-of-function strain expressing B. burgdorferi vascular adhesin BBK32. The strength and stability of Tp0751- and BBK32-dependent endothelial interactions under physiological shear stress were similar, although the mechanisms stabilizing these interactions were distinct. Tp0751 expression also permitted bacteria to interact with postcapillary venules in live mice as effectively as BBK32-expressing strains. These results demonstrate that Tp0751 can function as a vascular adhesin.
Collapse
Affiliation(s)
- Wei-Chien Andrew Kao
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Rhodaba Ebady
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Pablo Rojas
- Charité University Medicine Berlin, Berlin, Germany
| | - Yang Zhang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yae-Eun Kim
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yae-Ram Kim
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Tanya Odisho
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Nupur Gupta
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Annette Moter
- Biofilmcenter, German Heart Center Berlin, Berlin, Germany
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Tara J Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Plasma fibronectin stabilizes Borrelia burgdorferi-endothelial interactions under vascular shear stress by a catch-bond mechanism. Proc Natl Acad Sci U S A 2017; 114:E3490-E3498. [PMID: 28396443 DOI: 10.1073/pnas.1615007114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial dissemination via the cardiovascular system is the most common cause of infection mortality. A key step in dissemination is bacterial interaction with endothelia lining blood vessels, which is physically challenging because of the shear stress generated by blood flow. Association of host cells such as leukocytes and platelets with endothelia under vascular shear stress requires mechanically specialized interaction mechanisms, including force-strengthened catch bonds. However, the biomechanical mechanisms supporting vascular interactions of most bacterial pathogens are undefined. Fibronectin (Fn), a ubiquitous host molecule targeted by many pathogens, promotes vascular interactions of the Lyme disease spirochete Borrelia burgdorferi Here, we investigated how B. burgdorferi exploits Fn to interact with endothelia under physiological shear stress, using recently developed live cell imaging and particle-tracking methods for studying bacterial-endothelial interaction biomechanics. We found that B. burgdorferi does not primarily target insoluble matrix Fn deposited on endothelial surfaces but, instead, recruits and induces polymerization of soluble plasma Fn (pFn), an abundant protein in blood plasma that is normally soluble and nonadhesive. Under physiological shear stress, caps of polymerized pFn at bacterial poles formed part of mechanically loaded adhesion complexes, and pFn strengthened and stabilized interactions by a catch-bond mechanism. These results show that B. burgdorferi can transform a ubiquitous but normally nonadhesive blood constituent to increase the efficiency, strength, and stability of bacterial interactions with vascular surfaces. Similar mechanisms may promote dissemination of other Fn-binding pathogens.
Collapse
|
27
|
Cyr DD, Allen AS, Du GJ, Ruffin F, Adams C, Thaden JT, Maskarinec SA, Souli M, Guo S, Dykxhoorn DM, Scott WK, Fowler VG. Evaluating genetic susceptibility to Staphylococcus aureus bacteremia in African Americans using admixture mapping. Genes Immun 2017; 18:95-99. [PMID: 28332560 PMCID: PMC5435963 DOI: 10.1038/gene.2017.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/12/2022]
Abstract
The incidence of Staphylococcus aureus bacteremia (SAB) is significantly higher in African American (AA) than in European-descended populations. We used admixture mapping (AM) to test the hypothesis that genomic variations with different frequencies in European and African ancestral genomes influence susceptibility to SAB in AAs. A total of 565 adult AAs (390 cases with SAB; 175 age-matched controls) were genotyped for AM analysis. A case-only admixture score and a mixed χ2(1df) score (MIX) to jointly evaluate both single-nucleotide polymorphism (SNP) and admixture association (P<5.00e-08) were computed using MIXSCORE. In addition, a permutation scheme was implemented to derive multiplicity adjusted P-values (genome-wide 0.05 significance threshold: P<9.46e-05). After empirical multiplicity adjustment, one region on chromosome 6 (52 SNPs, P=4.56e-05) in the HLA class II region was found to exhibit a genome-wide statistically significant increase in European ancestry. This region encodes genes involved in HLA-mediated immune response and these results provide additional evidence for genetic variation influencing HLA-mediated immunity, modulating susceptibility to SAB.
Collapse
Affiliation(s)
- D D Cyr
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - A S Allen
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - G-J Du
- Duke Center for Genomic and Computational Biology, Durham, NC, USA
| | - F Ruffin
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - C Adams
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - J T Thaden
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - S A Maskarinec
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - M Souli
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA.,School of Medicine, National and Kapodistrian University of Athens, Chaidari, Greece
| | - S Guo
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - D M Dykxhoorn
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - W K Scott
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - V G Fowler
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA.,Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Zimmermann-Meisse G, Prévost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and γ-Hemolysin. Toxins (Basel) 2017; 9:toxins9010041. [PMID: 28117704 PMCID: PMC5308273 DOI: 10.3390/toxins9010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/03/2022] Open
Abstract
Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins.
Collapse
Affiliation(s)
- Gaëlle Zimmermann-Meisse
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| |
Collapse
|
29
|
Zorzoli A, Grayczyk JP, Alonzo F. Staphylococcus aureus Tissue Infection During Sepsis Is Supported by Differential Use of Bacterial or Host-Derived Lipoic Acid. PLoS Pathog 2016; 12:e1005933. [PMID: 27701474 PMCID: PMC5049849 DOI: 10.1371/journal.ppat.1005933] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023] Open
Abstract
To thrive in diverse environments, bacteria must shift their metabolic output in response to nutrient bioavailability. In many bacterial species, such changes in metabolic flux depend upon lipoic acid, a cofactor required for the activity of enzyme complexes involved in glycolysis, the citric acid cycle, glycine catabolism, and branched chain fatty acid biosynthesis. The requirement of lipoic acid for metabolic enzyme activity necessitates that bacteria synthesize the cofactor and/or scavenge it from environmental sources. Although use of lipoic acid is a conserved phenomenon, the mechanisms behind its biosynthesis and salvage can differ considerably between bacterial species. Furthermore, low levels of circulating free lipoic acid in mammals underscore the importance of lipoic acid acquisition for pathogenic microbes during infection. In this study, we used a genetic approach to characterize the mechanisms of lipoic acid biosynthesis and salvage in the bacterial pathogen Staphylococcus aureus and evaluated the requirements for both pathways during murine sepsis. We determined that S. aureus lipoic acid biosynthesis and salvage genes exist in an arrangement that directly links redox stress response and acetate biosynthesis genes. In addition, we found that lipoic acid salvage is dictated by two ligases that facilitate growth and lipoylation in distinct environmental conditions in vitro, but that are fully compensatory for survival in vivo. Upon infection of mice, we found that de novo biosynthesis or salvage promotes S. aureus survival in a manner that depends upon the infectious site. In addition, when both lipoic acid biosynthesis and salvage are blocked S. aureus is rendered avirulent, implying an inability to induce lipoic acid-independent metabolic programs to promote survival. Together, our results define the major pathways of lipoic acid biosynthesis and salvage in S. aureus and support the notion that bacterial nutrient acquisition schemes are instrumental in dictating pathogen proclivity for an infectious niche. Staphylococcus aureus is a predominant cause of infectious diseases ranging from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. A remarkable aspect of S. aureus pathobiology lies in the ability of the microorganism to infect a wide variety of host tissues. This infectious promiscuity implies S. aureus exhibits significant adaptability when faced with disparate environments and nutritional deficiencies. In this work, we examine the mechanisms by which S. aureus acquires lipoic acid, a key cofactor involved in maintaining metabolic flux. Our studies determine that S. aureus engages in both de novo biosynthesis and salvage of lipoic acid in a manner that is reminiscent of pathways used by both B. subtilis and L. monocytogenes combined. Further, our work suggests that the complex mechanisms of lipoic acid acquisition dictate the range of tissues S. aureus infects and identifies a lipoic acid salvage enzyme that is dispensable for growth in vitro, but required for S. aureus pathogenesis in vivo. In sum, our results highlight the adaptability of S. aureus in the face of nutrient paucity; the importance of complex nutrient acquisition/biosynthesis pathways in promoting infection; and identify potential novel therapeutic targets that may be effective against S. aureus.
Collapse
Affiliation(s)
- Azul Zorzoli
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, United States of America
| | - James P. Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago—Stritch School of Medicine, Maywood, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Giulieri SG, Holmes NE, Stinear TP, Howden BP. Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev Anti Infect Ther 2016; 14:1023-1036. [PMID: 27626511 DOI: 10.1080/14787210.2016.1233815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Management of invasive Staphylococcus aureus infections is complex. Dramatic improvements in bacterial whole genome sequencing (WGS) offer new opportunities for personalising the treatment of S. aureus infections. Areas covered: We address recent achievements in S. aureus genomics, describe genetic determinants of antibiotic resistance and summarise studies that have defined molecular characteristics associated with risk and outcome of S. aureus invasive infections. Potential clinical use of WGS for resistance prediction, infection outcome stratification and management of persistent /relapsing infections is critically discussed. Expert commentary: WGS is not only providing invaluable information to track the emergence and spread of important S. aureus clones, but also allows rapid determination of resistance genotypes in the clinical environment. An evolving opportunity is to infer clinically important outcomes and optimal therapeutic approaches from widely available S. aureus genome data, with the goal of individualizing management of invasive S. aureus infections.
Collapse
Affiliation(s)
- Stefano G Giulieri
- a Microbiological Diagnostic Unit Public Health Laboratory , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,b Infectious Diseases Service , Department of Medicine, Lausanne University Hospital , Lausanne , Switzerland
| | - Natasha E Holmes
- c Infectious Diseases Department , Austin Health , Heidelberg , Australia
| | - Timothy P Stinear
- d Doherty Applied Microbial Genomics , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,e Department of Microbiology and Immunology , The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Benjamin P Howden
- a Microbiological Diagnostic Unit Public Health Laboratory , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,c Infectious Diseases Department , Austin Health , Heidelberg , Australia.,e Department of Microbiology and Immunology , The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| |
Collapse
|
31
|
Khusainov I, Marenna A, Cerciat M, Fechter P, Hashem Y, Marzi S, Romby P, Yusupova G, Yusupov M. A glimpse on Staphylococcus aureus translation machinery and its control. Mol Biol 2016. [DOI: 10.1134/s002689331604004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P. Staphylococcus aureus RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annu Rev Microbiol 2016; 70:299-316. [PMID: 27482744 DOI: 10.1146/annurev-micro-102215-095708] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Staphylococcus aureus RNAIII is one of the main intracellular effectors of the quorum-sensing system. It is a multifunctional RNA that encodes a small peptide, and its noncoding parts act as antisense RNAs to regulate the translation and/or the stability of mRNAs encoding transcriptional regulators, major virulence factors, and cell wall metabolism enzymes. In this review, we explain how regulatory proteins and RNAIII are embedded in complex regulatory circuits to express virulence factors in a dynamic and timely manner in response to stress and environmental and metabolic changes.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Philippe Walter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Thomas Geissmann
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Karen Moreau
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - François Vandenesch
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| |
Collapse
|
33
|
Abstract
Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29-31 modules - 12 type I, two type II and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to "beads on a string". There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins.
Collapse
Affiliation(s)
- Lisa M Maurer
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Wenjiang Ma
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| |
Collapse
|