1
|
Hughes IK, Hood JB, Quiñones-Molina AA, Akiyama H, Gummuluru S. Evasion of CARD8 Activation During HIV-1 Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.19.654850. [PMID: 40475532 PMCID: PMC12139941 DOI: 10.1101/2025.05.19.654850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
As intracellular parasites, viruses must devise sophisticated mechanisms to produce and assemble viral components while suppressing activation of innate immune effectors. Here, we report that coordination of HIV-1 assembly by the viral polyprotein Gag suppresses inappropriately-timed protease (PR) activity to evade the PR activity sensor, CARD8. Employing mutants of Gag, we show that disruption of domains controlling viral assembly site (MA) or virus particle release (NC and p6) lead to premature activation of PR and the CARD8 inflammasome, resulting in IL-1β secretion and pyroptotic cell death. Further, we demonstrate that previously-observed host-adaptive mutations in HIV-1 MA (M30K) and p6 (PTAP duplication) associated with greater fitness in humans differentially modulate the process of viral assembly and budding to evade CARD8-mediated cell death. Altogether, this work reveals adaptation to human CARD8 by HIV-1 Gag upon zoonotic transmission from chimpanzees and suggests that assembly-regulated CARD8 activation influences the trajectory of HIV-1 evolution and fitness in humans.
Collapse
Affiliation(s)
- Ivy K. Hughes
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - James B. Hood
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Andrés A. Quiñones-Molina
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Hisashi Akiyama
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| | - Suryaram Gummuluru
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118
| |
Collapse
|
2
|
Wang H, Weissenhorn W, Boscheron C. Protocol for HIV-1 budding control by inducible inhibition of ESCRT-III. STAR Protoc 2025; 6:103808. [PMID: 40372921 DOI: 10.1016/j.xpro.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
We present a protocol for temporal inhibition of HIV-1 virus-like particle (VLP) release using ESCRT-III proteins fused to the Hepatitis C virus NS3 protease. These fusion proteins function like wild-type ESCRT-III but convert into dominant-negative inhibitors upon addition of the NS3 inhibitor Glecaprevir. The procedure involves co-transfection of Gag and CHMP-NS3-Green plasmids into HEK293 or HeLa cells, followed by drug treatment. Steps for protein expression analysis, VLP quantification by immunoblotting, and live-cell imaging of VLP release kinetics are included. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
3
|
Preece B, Peppel W, Gallegos R, Ysassi G, Clinger G, Bohn N, Adhikary B, Mendonça L, Belnap D, Vershinin M, Saffarian S. High-Yield and Quantitative Purification Method for HIV Which Minimizes Forces Applied to Virions Utilized to Investigate Maturation of HIV-1 via Cryo-Electron Tomography. Viruses 2025; 17:364. [PMID: 40143292 PMCID: PMC11945327 DOI: 10.3390/v17030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
HIV is a lentivirus characterized by its cone shaped mature core. Visualization and structural examination of HIV requires the purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses. In this study, we present a method for the purification of HIV virions which minimizes the forces applied to virions while maximizing the efficiency of collection. This method, which relies on virion sedimentation simulations, allows us to capture between 1000 and 5000 HIV virions released from individual HEK293 cells after transfection with the NL4.3 HIV backbone. We utilized this approach to investigate HIV core formation from several constructs: pNL4-3(RT:D185A&D186A) with an inactive reverse transcriptase, NL4.3(IN: V165A&R166A) with a type-II integrase mutation, and NL4.3(Ψ: Δ(105-278)&Δ(301-332)) featuring an edited Ψ packaging signal. Notably, virions from NL4.3(Ψ: Δ(105-278)&Δ(301-332)) displayed a mixed population, comprising immature virions, empty cores, and cores with detectable internal density. Conversely, virions derived from NL4.3(IN: V165A&R166A) exhibited a type II integrase mutant phenotype characterized by empty cores and RNP density localized around the cores, consistent with previous studies. In contrast, virions released from pNL4-3(RT:D185A&D186A) displayed mature cores containing detectable RNP density. We suggest that the sedimentation simulations developed in this study can facilitate the characterization of enveloped viruses.
Collapse
Affiliation(s)
- Benjamin Preece
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Wiley Peppel
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodrigo Gallegos
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Gillian Ysassi
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Gabriel Clinger
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole Bohn
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Broti Adhikary
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luiza Mendonça
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Vershinin
- Department of Chemistry and Physical Sciences, Nicholls State University, Thibodaux, LA 70301, USA
| | - Saveez Saffarian
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Preece B, Peppel W, Gallegos R, Yassasi G, Clinger G, Bohn N, Adhikary B, Mendonça L, Belnap D, Vershinin M, Saffarian S. Enhanced Yield and Gentle Purification of HIV for Cryo-Electron Tomography Analysis of Virion Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628087. [PMID: 39713316 PMCID: PMC11661225 DOI: 10.1101/2024.12.12.628087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
HIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses. In this study, we present a method for purification of HIV virions which minimizes forces applied to virions while maximizing the efficiency of collection. This method allows us to capture between 1,000 and 5,000 HIV virions released from individual HEK293 cells after transfection with the NL4.3 HIV backbone, a 10 fold advantage over other methods. We utilized this approach to investigate HIV core formation from several constructs: pNL4-3(RT:D 185 A&D 186 A) with an inactive reverse transcriptase, NL4.3(IN: V 165 A&R 166 A) with a type-II integrase mutation, and NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) featuring an edited Ѱ packaging signal. Notably, virions from NL4.3(Ѱ: Δ(105-278)&Δ(301-332)) displayed a mixed population, comprising immature virions, empty cores, and cores with detectable internal density. Conversely, virions derived from NL4.3(IN: V 165 A&R 166 A) exhibited a type II integrase mutant phenotype characterized by empty cores and RNP density localized around the cores, consistent with previous studies. In contrast, virions released from pNL4-3(RT:D 185 A&D 186 A) displayed mature cores containing detectable RNP density. We suggest that the purification methods developed in this study can significantly facilitate the characterization of enveloped viruses.
Collapse
|
5
|
Tabler CO, Tilton JC. Mechanism and Kinetics of HIV-1 Protease Activation. Viruses 2024; 16:1826. [PMID: 39772135 PMCID: PMC11680253 DOI: 10.3390/v16121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The HIV-1 protease is a critical enzyme for viral replication. Because protease activity is necessary to generate mature infectious virions, it is a primary target of antiretroviral treatment. Here, we provide an overview of the mechanisms regulating protease activation and the methods available to assess protease activity. Finally, we will highlight some of the key discoveries regarding the kinetics of protease activation from the last decade, including how the manipulation of activation kinetics may provide novel HIV-1 treatment strategies.
Collapse
Affiliation(s)
| | - John C. Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|
6
|
Tabler CO, Wegman SJ, Alhusaini N, Lee NF, Tilton JC. Premature Activation of the HIV-1 Protease Is Influenced by Polymorphisms in the Hinge Region. Viruses 2024; 16:849. [PMID: 38932142 PMCID: PMC11209583 DOI: 10.3390/v16060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
HIV-1 protease inhibitors are an essential component of antiretroviral therapy. However, drug resistance is a pervasive issue motivating a persistent search for novel therapies. Recent reports found that when protease activates within the host cell's cytosol, it facilitates the pyroptotic killing of infected cells. This has led to speculation that promoting protease activation, rather than inhibiting it, could help to eradicate infected cells and potentially cure HIV-1 infection. Here, we used a nanoscale flow cytometry-based assay to characterize protease resistance mutations and polymorphisms. We quantified protease activity, viral concentration, and premature protease activation and confirmed previous findings that major resistance mutations generally destabilize the protease structure. Intriguingly, we found evidence that common polymorphisms in the hinge domain of protease can influence its susceptibility to premature activation. This suggests that viral heterogeneity could pose a considerable challenge for therapeutic strategies aimed at inducing premature protease activation in the future.
Collapse
Affiliation(s)
| | | | | | | | - John C. Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (C.O.T.); (N.A.)
| |
Collapse
|
7
|
Spada SJ, Rose KM, Sette P, O'Connor SK, Dussupt V, Siddartha Yerramilli V, Nagashima K, Sjoelund VH, Cruz P, Kabat J, Ganesan S, Smelkinson M, Nita-Lazar A, Hoyt F, Scarlata S, Hirsch V, Best SM, Grigg ME, Bouamr F. Human ESCRT-I and ALIX function as scaffolding helical filaments in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592080. [PMID: 38903125 PMCID: PMC11188096 DOI: 10.1101/2024.05.01.592080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.
Collapse
|
8
|
Guo S, Saha I, Saffarian S, Johnson ME. Structure of the HIV immature lattice allows for essential lattice remodeling within budded virions. eLife 2023; 12:e84881. [PMID: 37435945 PMCID: PMC10361719 DOI: 10.7554/elife.84881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/12/2023] [Indexed: 07/13/2023] Open
Abstract
For HIV virions to become infectious, the immature lattice of Gag polyproteins attached to the virion membrane must be cleaved. Cleavage cannot initiate without the protease formed by the homo-dimerization of domains linked to Gag. However, only 5% of the Gag polyproteins, termed Gag-Pol, carry this protease domain, and they are embedded within the structured lattice. The mechanism of Gag-Pol dimerization is unknown. Here, we use spatial stochastic computer simulations of the immature Gag lattice as derived from experimental structures, showing that dynamics of the lattice on the membrane is unavoidable due to the missing 1/3 of the spherical protein coat. These dynamics allow for Gag-Pol molecules carrying the protease domains to detach and reattach at new places within the lattice. Surprisingly, dimerization timescales of minutes or less are achievable for realistic binding energies and rates despite retaining most of the large-scale lattice structure. We derive a formula allowing extrapolation of timescales as a function of interaction free energy and binding rate, thus predicting how additional stabilization of the lattice would impact dimerization times. We further show that during assembly, dimerization of Gag-Pol is highly likely and therefore must be actively suppressed to prevent early activation. By direct comparison to recent biochemical measurements within budded virions, we find that only moderately stable hexamer contacts (-12kBT<∆G<-8kBT) retain both the dynamics and lattice structures that are consistent with experiment. These dynamics are likely essential for proper maturation, and our models quantify and predict lattice dynamics and protease dimerization timescales that define a key step in understanding formation of infectious viruses.
Collapse
Affiliation(s)
- Sikao Guo
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of HealthFrederickUnited States
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of UtahSalt Lake CityUnited States
- Department of Physics and Astronomy, University of UtahSalt Lake CityUnited States
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Margaret E Johnson
- TC Jenkins Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
9
|
Pei Y, Xue J, Teng Q, Feng D, Huang M, Liang R, Li X, Zhao Y, Zhao J, Zhang G. Mutation of Phenylalanine 23 of Newcastle Disease Virus Matrix Protein Inhibits Virus Release by Disrupting the Interaction between the FPIV L-Domain and Charged Multivesicular Body Protein 4B. Microbiol Spectr 2023; 11:e0411622. [PMID: 36695580 PMCID: PMC9927168 DOI: 10.1128/spectrum.04116-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
The matrix (M) protein FPIV L-domain is conserved among multiple paramyxoviruses; however, its function and the associated mechanism remain unclear. In this study, the paramyxovirus Newcastle disease virus (NDV) was employed to study the FPIV L-domain. Two recombinant NDV strains, each carrying a single amino acid mutation at the Phe (F23) or Pro (P24) site of 23FPIV/I26 L-domain, were rescued. Growth defects were observed in only the recombinant SG10-F23A (rSG10-F23A) strain. Subsequent studies focused on rSG10-F23A revealed that the virulence, pathogenicity, and replication ability of this strain were all weaker than those of wild-type strain rSG10 and that a budding deficiency contributed to those weaknesses. To uncover the molecular mechanism underlying the rSG10-F23A budding deficiency, the bridging proteins between the FPIV L-domain and endosomal sorting complex required for transported (ESCRT) machinery were explored. Among 17 candidate proteins, only the charged multivesicular body protein 4 (CHMP4) paralogues were found to interact more strongly with the NDV wild-type M protein (M-WT) than with the mutated M protein (M-F23A). Overexpression of M-WT, but not of M-F23A, changed the CHMP4 subcellular location to the NDV budding site. Furthermore, a knockdown of CHMP4B, the most abundant CHMP4 protein, inhibited the release of rSG10 but not that of rSG10-F23A. From these findings, we can reasonably infer that the F23A mutation of the FPIV L-domain blocks the interaction between the NDV M protein and CHMP4B and that this contributes to the budding deficiency and consequent growth defects of rSG10-F23A. This work lays the foundation for further study of the FPIV L-domain in NDV and other paramyxoviruses. IMPORTANCE Multiple viruses utilize a conserved motif, termed the L-domain, to act as a cellular adaptor for recruiting host ESCRT machinery to their budding site. Despite the FPIV type L-domain having been identified in some paramyxoviruses 2 decades ago, its function in virus life cycles and its method of recruiting the ESCRT machinery are poorly understood. In this study, a single amino acid mutation at the F23 site of the 23FPIV26 L-domain was found to block NDV budding at the late stage. Furthermore, CHMP4B, a core component of the ESCRT-III complex, was identified as a main factor that links the FPIV L-domain and ESCRT machinery together. These results extend previous understanding of the FPIV L-domain and, therefore, not only provide a new approach for attenuating NDV and other paramyxoviruses but also lay the foundation for further study of the FPIV L-domain.
Collapse
Affiliation(s)
- Yu Pei
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia Xue
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingyuan Teng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Delan Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Liang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
The HIV-1 Viral Protease Is Activated during Assembly and Budding Prior to Particle Release. J Virol 2022; 96:e0219821. [PMID: 35438536 DOI: 10.1128/jvi.02198-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 encodes a viral protease that is essential for the maturation of infectious viral particles. While protease inhibitors are effective antiretroviral agents, recent studies have shown that prematurely activating, rather than inhibiting, protease function leads to the pyroptotic death of infected cells, with exciting implications for efforts to eradicate viral reservoirs. Despite 40 years of research into the kinetics of protease activation, it remains unclear exactly when protease becomes activated. Recent reports have estimated that protease activation occurs minutes to hours after viral release, suggesting that premature protease activation is challenging to induce efficiently. Here, monitoring viral protease activity with sensitive techniques, including nanoscale flow cytometry and instant structured illumination microscopy, we demonstrate that the viral protease is activated within cells prior to the release of free virions. Using genetic mutants that lock protease into a precursor conformation, we further show that both the precursor and mature protease have rapid activation kinetics and that the activity of the precursor protease is sufficient for viral fusion with target cells. Our finding that HIV-1 protease is activated within producer cells prior to release of free virions helps resolve a long-standing question of when protease is activated and suggests that only a modest acceleration of protease activation kinetics is required to induce potent and specific elimination of HIV-infected cells. IMPORTANCE HIV-1 protease inhibitors have been a mainstay of antiretroviral therapy for more than 2 decades. Although antiretroviral therapy is effective at controlling HIV-1 replication, persistent reservoirs of latently infected cells quickly reestablish replication if therapy is halted. A promising new strategy to eradicate the latent reservoir involves prematurely activating the viral protease, which leads to the pyroptotic killing of infected cells. Here, we use highly sensitive techniques to examine the kinetics of protease activation during and shortly after particle formation. We found that protease is fully activated before virus is released from the cell membrane, which is hours earlier than recent estimates. Our findings help resolve a long-standing debate as to when the viral protease is initially activated during viral assembly and confirm that prematurely activating HIV-1 protease is a viable strategy to eradicate infected cells following latency reversal.
Collapse
|
11
|
Benner BE, Bruce JW, Kentala JR, Murray M, Becker JT, Garcia-Miranda P, Ahlquist P, Butcher SE, Sherer NM. Perturbing HIV-1 Ribosomal Frameshifting Frequency Reveals a cis Preference for Gag-Pol Incorporation into Assembling Virions. J Virol 2022; 96:e0134921. [PMID: 34643428 PMCID: PMC8754204 DOI: 10.1128/jvi.01349-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding, while GP binds Gag to deliver the essential virion enzymes protease, reverse transcriptase, and integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (∼1:20), dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event occurring in gag-pol mRNAs. Here, we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ∼3-fold in virions relative to cells, with viral infectivity being better maintained at subphysiological levels of GP than when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in cis (i.e., from the same gag-pol mRNA) than in trans, suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to trans-delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taking these results together, we propose a "weighted Goldilocks" scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies. IMPORTANCE HIV-1 infectivity requires incorporation of the Gag-Pol (GP) precursor polyprotein into virions during the process of virus particle assembly. Mechanisms dictating GP incorporation into assembling virions are poorly defined, with GP levels in virions traditionally thought to solely reflect relative levels of Gag and GP expressed in cells, dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event that occurs in gag-pol mRNAs. Herein, we provide experimental support for a "weighted Goldilocks" scenario for GP incorporation, wherein the virus exploits both random and nonrandom mechanisms to buffer infectivity over a wide range of GP expression levels. These mechanistic data are relevant to ongoing efforts to develop antiviral strategies targeting PRF frequency and/or HIV-1 virion maturation.
Collapse
Affiliation(s)
- Bayleigh E. Benner
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- UW—Madison Microbiology Doctoral Training Program, Madison, Wisconsin, USA
| | - James W. Bruce
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Jacob R. Kentala
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Magdalena Murray
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jordan T. Becker
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Pablo Garcia-Miranda
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul Ahlquist
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Embedding of HIV Egress within Cortical F-Actin. Pathogens 2022; 11:pathogens11010056. [PMID: 35056004 PMCID: PMC8777837 DOI: 10.3390/pathogens11010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/07/2022] Open
Abstract
F-Actin remodeling is important for the spread of HIV via cell-cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.
Collapse
|
13
|
Lyonnais S, Sadiq SK, Lorca-Oró C, Dufau L, Nieto-Marquez S, Escribà T, Gabrielli N, Tan X, Ouizougun-Oubari M, Okoronkwo J, Reboud-Ravaux M, Gatell JM, Marquet R, Paillart JC, Meyerhans A, Tisné C, Gorelick RJ, Mirambeau G. The HIV-1 Nucleocapsid Regulates Its Own Condensation by Phase-Separated Activity-Enhancing Sequestration of the Viral Protease during Maturation. Viruses 2021; 13:v13112312. [PMID: 34835118 PMCID: PMC8625067 DOI: 10.3390/v13112312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak–strong–moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Centre d’Etudes des Maladies Infectieuses et Pharmacologie Anti-Infectieuse (CEMIPAI), CNRS UAR 3725, Université de Montpellier, 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - S. Kashif Sadiq
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| | - Cristina Lorca-Oró
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Laure Dufau
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Sara Nieto-Marquez
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Tuixent Escribà
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Natalia Gabrielli
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Xiao Tan
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - Mohamed Ouizougun-Oubari
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Josephine Okoronkwo
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
| | - Michèle Reboud-Ravaux
- Biological Adaptation and Ageing (B2A), CNRS UMR 8256 & INSERM ERL U1164, Institut de Biologie Paris-Seine (IBPS), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 7 Quai St Bernard, CEDEX 05, 75252 Paris, France; (L.D.); (M.R.-R.)
| | - José Maria Gatell
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Facultat de Medicina y Ciencias de la Salud, Universitat de Barcelona, Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Roland Marquet
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, CNRS UPR 9002, Université de Strasbourg, 2 Allée Conrad Roentgen, 67000 Strasbourg, France; (R.M.); (J.-C.P.)
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra, Carrer Doctor Aiguader 88, 08003 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Carine Tisné
- Expression Génétique Microbienne, CNRS UMR 8261, Institut de Biologie Physico-Chimique (IBPC), Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France;
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA;
| | - Gilles Mirambeau
- Infectious Disease & AIDS Research Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain; (C.L.-O.); (S.N.-M.); (T.E.); (N.G.); (X.T.); (M.O.-O.); (J.O.); (J.M.G.)
- Biologie Intégrative des Organismes Marins (BIOM), CNRS UMR 7232, Observatoire Océanologique de Banyuls (OOB), Faculté des Sciences et d’Ingénierie (FSI), Sorbonne Université, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
- Correspondence: (S.L.); (S.K.S.); (G.M.)
| |
Collapse
|
14
|
Rheinemann L, Downhour DM, Bredbenner K, Mercenne G, Davenport KA, Schmitt PT, Necessary CR, McCullough J, Schmitt AP, Simon SM, Sundquist WI, Elde NC. RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell 2021; 184:5419-5431.e16. [PMID: 34597582 PMCID: PMC8929533 DOI: 10.1016/j.cell.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kate Bredbenner
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Gaelle Mercenne
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christina R Necessary
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anthony P Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Saha I, Preece B, Peterson A, Durden H, MacArthur B, Lowe J, Belnap D, Vershinin M, Saffarian S. Gag-Gag Interactions Are Insufficient to Fully Stabilize and Order the Immature HIV Gag Lattice. Viruses 2021; 13:1946. [PMID: 34696376 PMCID: PMC8540168 DOI: 10.3390/v13101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Immature HIV virions harbor a lattice of Gag molecules with significant ordering in CA-NTD, CA-CTD and SP1 regions. This ordering plays a major role during HIV maturation. To test the condition in which the Gag lattice forms in vivo, we assembled virus like particles (VLPs) by expressing only HIV Gag in mammalian cells. Here we show that these VLPs incorporate a similar number of Gag molecules compared to immature HIV virions. However, within these VLPs, Gag molecules diffuse with a pseudo-diffusion rate of 10 nm2/s, this pseudo-diffusion is abrogated in the presence of melittin and is sensitive to mutations within the SP1 region. Using cryotomography, we show that unlike immature HIV virions, in the Gag lattice of VLPs the CA-CTD and SP1 regions are significantly less ordered. Our observations suggest that within immature HIV virions, other viral factors in addition to Gag, contribute to ordering in the CA-CTD and SP1 regions.
Collapse
Affiliation(s)
- Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Benjamin Preece
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Abby Peterson
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian MacArthur
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Jake Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| | - David Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Vershinin
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| |
Collapse
|
16
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
18
|
Application of Advanced Light Microscopy to the Study of HIV and Its Interactions with the Host. Viruses 2021; 13:v13020223. [PMID: 33535486 PMCID: PMC7912744 DOI: 10.3390/v13020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
This review highlights the significant observations of human immunodeficiency virus (HIV) assembly, release and maturation made possible with advanced light microscopy techniques. The advances in technology which now enables these light microscopy measurements are discussed with special emphasis on live imaging approaches including Total Internal Reflection Fluorescence (TIRF), high-resolution light microscopy techniques including PALM and STORM and single molecule measurements, including Fluorescence Resonance Energy Transfer (FRET). The review concludes with a discussion on what new insights and understanding can be expected from these measurements.
Collapse
|
19
|
Meusser B, Purfuerst B, Luft FC. HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region. J Biol Chem 2020; 295:17950-17972. [PMID: 32994219 PMCID: PMC7939435 DOI: 10.1074/jbc.ra120.014710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane-binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.
Collapse
Affiliation(s)
- Birgit Meusser
- Charité Medical Faculty, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Friedrich C Luft
- Charité Medical Faculty, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, Berlin, Germany.
| |
Collapse
|
20
|
Bonar MM, Tabler CO, Haqqani AA, Lapointe LE, Galiatsos JA, Joussef-Piña S, Quiñones-Mateu ME, Tilton JC. Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses. Sci Rep 2020; 10:18101. [PMID: 33093566 PMCID: PMC7583244 DOI: 10.1038/s41598-020-75118-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
HIV encodes an aspartyl protease that is activated during, or shortly after, budding of viral particles from the surface of infected cells. Protease-mediated cleavage of viral polyproteins is essential to generating infectious viruses, a process known as ‘maturation’ that is the target of FDA-approved antiretroviral drugs. Most assays to monitor protease activity rely on bulk analysis of millions of viruses and obscure potential heterogeneity of protease activation within individual particles. In this study we used nanoscale flow cytometry in conjunction with an engineered FRET reporter called VIral ProteasE Reporter (VIPER) to investigate heterogeneity of protease activation in individual, patient-derived viruses. We demonstrate previously unappreciated interpatient variation in HIV protease processing efficiency that impacts viral infectivity. Additionally, monitoring of protease activity in individual virions distinguishes between drug sensitivity or resistance to protease inhibitors in patient-derived samples. These findings demonstrate the feasibility of monitoring enzymatic processes using nanoscale flow cytometry and highlight the potential of this technology for translational clinical discovery, not only for viruses but also other submicron particles including exosomes, microvesicles, and bacteria.
Collapse
Affiliation(s)
- Michał M Bonar
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caroline O Tabler
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Aiman A Haqqani
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lauren E Lapointe
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jake A Galiatsos
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Samira Joussef-Piña
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Miguel E Quiñones-Mateu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - John C Tilton
- Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Budding of a Retrovirus: Some Assemblies Required. Viruses 2020; 12:v12101188. [PMID: 33092109 PMCID: PMC7589157 DOI: 10.3390/v12101188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important steps in any viral lifecycle is the production of progeny virions. For retroviruses as well as other viruses, this step is a highly organized process that occurs with exquisite spatial and temporal specificity on the cellular plasma membrane. To facilitate this process, retroviruses encode short peptide motifs, or L domains, that hijack host factors to ensure completion of this critical step. One such cellular machinery targeted by viruses is known as the Endosomal Sorting Complex Required for Transport (ESCRTs). Typically responsible for vesicular trafficking within the cell, ESCRTs are co-opted by the retroviral Gag polyprotein to assist in viral particle assembly and release of infectious virions. This review in the Viruses Special Issue “The 11th International Retroviral Nucleocapsid and Assembly Symposium”, details recent findings that shed light on the molecular details of how ESCRTs and the ESCRT adaptor protein ALIX, facilitate retroviral dissemination at sites of viral assembly.
Collapse
|
22
|
Mouhand A, Pasi M, Catala M, Zargarian L, Belfetmi A, Barraud P, Mauffret O, Tisné C. Overview of the Nucleic-Acid Binding Properties of the HIV-1 Nucleocapsid Protein in Its Different Maturation States. Viruses 2020; 12:v12101109. [PMID: 33003650 PMCID: PMC7601788 DOI: 10.3390/v12101109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.
Collapse
Affiliation(s)
- Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Marco Pasi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Marjorie Catala
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Loussiné Zargarian
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Anissa Belfetmi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Olivier Mauffret
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
- Correspondence: (O.M.); (C.T.)
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
- Correspondence: (O.M.); (C.T.)
| |
Collapse
|
23
|
Gupta S, Bendjennat M, Saffarian S. Abrogating ALIX Interactions Results in Stuttering of the ESCRT Machinery. Viruses 2020; 12:v12091032. [PMID: 32948012 PMCID: PMC7551432 DOI: 10.3390/v12091032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRT) proteins assemble on budding cellular membranes and catalyze their fission. Using live imaging of HIV virions budding from cells, we followed recruitment of ESCRT proteins ALIX, CHMP4B and VPS4. We report that the ESCRT proteins transiently co-localize with virions after completion of virion assembly for durations of 45 ± 30 s. We show that mutagenizing the YP domain of Gag which is the primary ALIX binding site or depleting ALIX from cells results in multiple recruitments of the full ESCRT machinery on the same virion (referred to as stuttering where the number of recruitments to the same virion >3). The stuttering recruitments are approximately 4 ± 3 min apart and have the same stoichiometry of ESCRTs and same residence time (45 ± 30 s) as the single recruitments in wild type interactions. Our observations suggest a role for ALIX during fission and question the linear model of ESCRT recruitment, suggesting instead a more complex co-assembly model.
Collapse
Affiliation(s)
- Shilpa Gupta
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA; (S.G.); (M.B.)
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mourad Bendjennat
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA; (S.G.); (M.B.)
- Radiation Oncology Department, University of Miami, Miami, FL 33136, USA
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Saveez Saffarian
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA; (S.G.); (M.B.)
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence:
| |
Collapse
|
24
|
Gupta S, Bromley J, Saffarian S. High-speed imaging of ESCRT recruitment and dynamics during HIV virus like particle budding. PLoS One 2020; 15:e0237268. [PMID: 32886660 PMCID: PMC7473513 DOI: 10.1371/journal.pone.0237268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Endosomal sorting complexes required for transport proteins (ESCRT) catalyze the fission of cellular membranes during budding of membrane away from the cytosol. Here we have used Total Internal Reflection Fluorescence (TIRF) microscopy to visualize the recruitment of ESCRTs specifically, ALIX, CHMP4b and VPS4 onto the budding HIV Gag virus-like particles (VLPs). We imaged the budding VLPs with 200 millisecond time resolution for 300 frames. Our data shows three phases for ESCRT dynamics: 1) recruitment in which subunits of ALIX, CHMP4b and VPS4 are recruited with constant proportions on the budding sites of HIV Gag virus like particles for nearly 10 seconds, followed by 2) disassembly of ALIX and CHMP4b while VPS4 signal remains constant for nearly 20 seconds followed by 3) disassembly of VPS4. We hypothesized that the disassembly observed in step 2 was catalyzed by VPS4 and powered by ATP hydrolysis. To test this hypothesis, we performed ATP depletion using (-) glucose medium, deoxyglucose and oligomycin. Imaging ATP depleted cells, we show that the disassembly of CHMP4b and ALIX observed in step 2 is ATP dependent. ATP depletion resulted in the recruitment of approximately 2-fold as many subunits of all ESCRTs. Resuming ATP production in cells, resulted in disassembly of the full ESCRT machinery which had been locked in place during ATP depletion. With some caveats, our experiments provide insight into the formation of the ESCRT machinery at the budding site of HIV during budding.
Collapse
Affiliation(s)
- Shilpa Gupta
- Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Josh Bromley
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
25
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
26
|
Dynamics of the HIV Gag Lattice Detected by Localization Correlation Analysis and Time-Lapse iPALM. Biophys J 2020; 119:581-592. [PMID: 32652060 PMCID: PMC7399489 DOI: 10.1016/j.bpj.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/09/2023] Open
Abstract
Immature human immunodeficiency virus (HIV) virions have a lattice of Gag and Gag-Pol proteins anchored to the lumen of their envelope. Using electron microscopy, we demonstrate that HIV virus-like particles (VLPs) assembled by the viral protein Gag and tagged at its C-terminus with the fluorescent protein Dendra2 have the same morphology and size as the VLPs assembled using only HIV Gag. We characterize the photophysical properties of Dendra2 and demonstrate that 60% of Dendra2 molecules can be photoswitched and reliably counted in our interferometric photoactivated localization microscopy (iPALM) setup. We further perform iPALM imaging on immobilized HIV Gag-Dendra2 VLPs and demonstrate that we can localize and count 900–1600 Dendra2 molecules within each immobilized VLP with a single-molecule localization precision better than (10 nm)3. Our molecular counts correspond to 1400–2400 Gag-Dendra2 proteins incorporated within each VLP. We further calculate temporal correlation functions of localization data, which we present as localization correlation analysis, and show dynamics within the lattice of immobilized VLPs in the timescale of 10–100 s. We further use our localization data to reconstruct time-lapse iPALM images of the Gag-Dendra2 lattice within the lumen of immobilized VLPs. The iPALM time-lapse images show significant lattice dynamics within the lumen of VLPs. Addition of disuccinimidyl suberate to the VLPs completely abrogated these dynamics as observed in both localization correlation analysis and time-lapse iPALM. In a complementary approach, we utilized HaXS8 cross-linking reactions between Halo and SNAP proteins and verified lattice dynamics in purified VLPs incorporating 10% Gag-SNAP, 10% Gag-Halo, and 80% Gag proteins. The HIV Gag lattice, along with the structural lattice of other enveloped viruses, has been mostly considered static. Our study provides an important tool to investigate the dynamics within these enveloped viruses.
Collapse
|
27
|
Meng B, Ip NCY, Abbink TEM, Kenyon JC, Lever AML. ESCRT-II functions by linking to ESCRT-I in human immunodeficiency virus-1 budding. Cell Microbiol 2020; 22:e13161. [PMID: 31922351 PMCID: PMC7187348 DOI: 10.1111/cmi.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus (HIV) uses the ESCRT (endosomal sorting complexes required for transport) protein pathway to bud from infected cells. Despite the roles of ESCRT-I and -III in HIV budding being firmly established, participation of ESCRT-II in this process has been controversial. EAP45 is a critical component of ESCRT-II. Previously, we utilised a CRISPR-Cas9 EAP45 knockout cell line to assess the involvement of ESCRT-II in HIV replication. We demonstrated that the absence of ESCRT-II impairs HIV budding. Here, we show that virus spread is also defective in physiologically relevant CRISPR/Cas9 EAP45 knockout T cells. We further show reappearance of efficient budding by re-introduction of EAP45 expression into EAP45 knockout cells. Using expression of selected mutants of EAP45, we dissect the domain requirement responsible for this function. Our data show at the steady state that rescue of budding is only observed in the context of a Gag/Pol, but not a Gag expressor, indicating that the size of cargo determines the usage of ESCRT-II. EAP45 acts through the YPXL-ALIX pathway as partial rescue is achieved in a PTAP but not a YPXL mutant virus. Our study clarifies the role of ESCRT-II in the late stages of HIV replication and reinforces the notion that ESCRT-II plays an integral part during this process as it does in sorting ubiquitinated cargos and in cytokinesis.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Natasha C Y Ip
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Truus E M Abbink
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Microbiology and Immunology, National University of Singapore, Singapore.,Homerton College, Cambridge, UK
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Medicine, National University of Singapore, Singapore
| |
Collapse
|
28
|
Fluorescent Protein Inserts in between NC and SP2 are Tolerated for Assembly, Release and Maturation of HIV with Limited Infectivity. Viruses 2019; 11:v11110973. [PMID: 31652757 PMCID: PMC6893430 DOI: 10.3390/v11110973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
We report the design of a fluorescent HIV construct that is labeled by insertion of fluorescent protein between the nucleocapsid (NC) and spacer peptide 2 (SP2) domains of Gag and further show that the fluorescent protein is released from its confines within Gag during maturation. This fluorescent HIV is capable of budding and maturation with similar efficiency to the parental virus. Virions generated using this design within the R8 HIV backbone pseudotyped with VSV-G were capable of delivering small RNA genomes encoding GFP to the target cells; however, the same design within the NL4-3 backbone has limited HIV infectivity. The virions generated by these constructs are approximately 165 ± 35 nm in size, which is significantly larger than wild type HIV. We suggest that this design has the potential to be a vehicle for protein and small guide RNA delivery.
Collapse
|
29
|
Dharmavaram S, She SB, Lázaro G, Hagan MF, Bruinsma R. Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput Biol 2019; 15:e1006602. [PMID: 31433804 PMCID: PMC6736314 DOI: 10.1371/journal.pcbi.1006602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 09/10/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
The formation of a membrane-enveloped virus starts with the assembly of a curved layer of capsid proteins lining the interior of the plasma membrane (PM) of the host cell. This layer develops into a spherical shell (capsid) enveloped by a lipid-rich membrane. In many cases, the budding process stalls prior to the release of the virus. Recently, Brownian dynamics simulations of a coarse-grained model system reproduced protracted pausing and stalling, which suggests that the origin of pausing/stalling is to be found in the physics of the budding process. Here, we propose that the pausing/stalling observed in the simulations can be understood as a purely kinetic phenomenon associated with the neck geometry. A geometrical potential energy barrier develops during the budding that must be overcome by capsid proteins diffusing along the membrane prior to incorporation into the capsid. The barrier is generated by a conflict between the positive Gauss curvature of the assembling capsid and the negative Gauss curvature of the neck region. A continuum theory description is proposed and is compared with the Brownian simulations of the budding of enveloped viruses. Despite intense study, the life-cycle of the HIV-1 virus continues to pose mysteries. One of these is the fact that the assembly of an HIV-1 virus along the plasma membrane (PM) of the host cell—the budding process—stalls prior to release of the virus. Many other important viral pathogens with a surrounding lipid membrane envelope display similar stalling. Combining numerical and analytical methods, we demonstrate that the neck-like shape of the membrane that forms prior to release of the virus creates a barrier that blocks the proteins required for the assembly process from reaching the budding virus. An improved understanding of the physics of the blocking process could enable new strategies to combat enveloped viruses.
Collapse
Affiliation(s)
- Sanjay Dharmavaram
- Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Selene Baochen She
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Guillermo Lázaro
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael Francis Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mouhand A, Belfetmi A, Catala M, Larue V, Zargarian L, Brachet F, Gorelick RJ, Van Heijenoort C, Mirambeau G, Barraud P, Mauffret O, Tisné C. Modulation of the HIV nucleocapsid dynamics finely tunes its RNA-binding properties during virion genesis. Nucleic Acids Res 2019; 46:9699-9710. [PMID: 29986076 PMCID: PMC6182130 DOI: 10.1093/nar/gky612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
During HIV-1 assembly and budding, Gag protein, in particular the C-terminal domain containing the nucleocapsid domain (NCd), p1 and p6, is the site of numerous interactions with viral and cellular factors. Most in vitro studies of Gag have used constructs lacking p1 and p6. Here, using NMR spectroscopy, we show that the p1-p6 region of Gag (NCp15) is largely disordered, but interacts transiently with the NCd. These interactions modify the dynamic properties of the NCd. Indeed, using isothermal titration calorimetry (ITC), we have measured a higher entropic penalty to RNA-binding for the NCd precursor, NCp15, than for the mature form, NCp7, which lacks p1 and p6. We propose that during assembly and budding of virions, concomitant with Gag oligomerization, transient interactions between NCd and p1-p6 become salient and responsible for (i) a higher level of structuration of p6, which favours recruitment of budding partners; and (ii) a higher entropic penalty to RNA-binding at specific sites that favours non-specific binding of NCd at multiple sites on the genomic RNA (gRNA). The contributions of p6 and p1 are sequentially removed via proteolysis during Gag maturation such that the RNA-binding specificity of the mature protein is governed by the properties of NCd.
Collapse
Affiliation(s)
- Assia Mouhand
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Anissa Belfetmi
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Marjorie Catala
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Valéry Larue
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Loussiné Zargarian
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, MD 21702-1201, USA
| | - Carine Van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Gilles Mirambeau
- Infectious disease & AIDS Research unit, IDIBAPS, Barcelona, Barcelona, Spain.,Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927 des Sciences de la Vie, Paris, France
| | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Mauffret
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
31
|
Pornillos O, Ganser-Pornillos BK. Maturation of retroviruses. Curr Opin Virol 2019; 36:47-55. [PMID: 31185449 PMCID: PMC6730672 DOI: 10.1016/j.coviro.2019.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023]
Abstract
During retrovirus maturation, cleavage of the precursor structural Gag polyprotein by the viral protease induces architectural rearrangement of the virus particle from an immature into a mature, infectious form. The structural rearrangement encapsidates the viral RNA genome in a fullerene capsid, producing a diffusible viral core that can initiate infection upon entry into the cytoplasm of a host cell. Maturation is an important therapeutic window against HIV-1. In this review, we highlight recent breakthroughs in understanding of the structures of retroviral immature and mature capsid lattices that define the boundary conditions of maturation and provide novel insights on capsid transformation. We also discuss emerging insights on encapsidation of the viral genome in the mature capsid, as well as remaining questions for further study.
Collapse
Affiliation(s)
- Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
32
|
Hurley JH, Cada AK. Inside job: how the ESCRTs release HIV-1 from infected cells. Biochem Soc Trans 2018; 46:1029-1036. [PMID: 30154094 PMCID: PMC6277019 DOI: 10.1042/bst20180019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) hijacks the host endosomal sorting complex required for transport (ESCRT) proteins in order to release infectious viral particles from the cell. ESCRT recruitment is virtually essential for the production of infectious virus, despite that the main structural protein of HIV-1, Gag, is capable of self-assembling and eventually budding from membranes on its own. Recent data have reinforced the paradigm of ESCRT-dependent particle release while clarifying why this rapid release is so critical. The ESCRTs were originally discovered as integral players in endosome maturation and are now implicated in many important cellular processes beyond viral and endosomal budding. Nearly all of these roles have in common that membrane scission occurs from the inward face of the membrane neck, which we refer to as 'reverse topology' scission. A satisfactory mechanistic description of reverse-topology membrane scission by ESCRTs remains a major challenge both in general and in the context of HIV-1 release. New observations concerning the fundamental scission mechanism for ESCRTs in general, and the process of HIV-1 release specifically, have generated new insights in both directions, bringing us closer to a mechanistic understanding.
Collapse
Affiliation(s)
- James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - A King Cada
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
33
|
Pedersen M, Jamali S, Saha I, Daum R, Bendjennat M, Saffarian S. Correlative iPALM and SEM resolves virus cavity and Gag lattice defects in HIV virions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:15-23. [PMID: 30043246 PMCID: PMC6330563 DOI: 10.1007/s00249-018-1324-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/27/2018] [Accepted: 07/16/2018] [Indexed: 11/15/2022]
Abstract
Interferometric Photo-Activation-Localization-Microscopy (iPALM) localizes single fluorescent molecules with 20 nm lateral and 10 nm axial resolution. We present a method utilizing glass coverslip lithography for correlative imaging between iPALM and scanning electron microscopy (SEM). Using iPALM on HIV Gag-Dendra virus-like particles (VLPs) we localized the position of HIV Gag proteins. Based on these localizations we reconstructed the central cavity of the VLPs along with imperfections within the HIV Gag lattice. The SEM images and iPALM images overlap and show imaging from single VLPs immobilized on glass coverslips. The localization of many HIV proteins including accessory proteins and Gag-Pol remains unknown, we discuss how the specificity of iPALM coupled with SEM has the potential for resolving more of HIV proteins.
Collapse
Affiliation(s)
| | - Shirin Jamali
- Dept. of Physics and Astronomy, University of Utah, Salt Lake City, USA
| | - Ipsita Saha
- Dept. of Physics and Astronomy, University of Utah, Salt Lake City, USA.,Center for Cell and Genome Science, University of Utah, Salt Lake City, USA
| | | | - Mourad Bendjennat
- Dept. of Physics and Astronomy, University of Utah, Salt Lake City, USA.,Center for Cell and Genome Science, University of Utah, Salt Lake City, USA
| | - Saveez Saffarian
- Dept. of Physics and Astronomy, University of Utah, Salt Lake City, USA. .,Center for Cell and Genome Science, University of Utah, Salt Lake City, USA. .,Dept. of Biology, University of Utah, Salt Lake City, USA.
| |
Collapse
|
34
|
Johnson DS, Bleck M, Simon SM. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife 2018; 7:36221. [PMID: 29972351 PMCID: PMC6080951 DOI: 10.7554/elife.36221] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022] Open
Abstract
The Endosomal Sorting Complexes Required for Transport III (ESCRT-III) proteins are critical for cellular membrane scission processes with topologies inverted relative to clathrin-mediated endocytosis. Some viruses appropriate ESCRT-IIIs for their release. By imaging single assembling viral-like particles of HIV-1, we observed that ESCRT-IIIs and the ATPase VPS4 arrive after most of the virion membrane is bent, linger for tens of seconds, and depart ~20 s before scission. These observations suggest that ESCRT-IIIs are recruited by a combination of membrane curvature and the late domains of the HIV-1 Gag protein. ESCRT-IIIs may pull the neck into a narrower form but must leave to allow scission. If scission does not occur within minutes of ESCRT departure, ESCRT-IIIs and VPS4 are recruited again. This mechanistic insight is likely relevant for other ESCRT-dependent scission processes including cell division, endosome tubulation, multivesicular body and nuclear envelope formation, and secretion of exosomes and ectosomes.
Collapse
Affiliation(s)
- Daniel S Johnson
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, United States.,Department of Physics and Astronomy, Hofstra University, Hempstead, United States
| | - Marina Bleck
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, United States
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
35
|
Hellmund C, Lever AML. Coordination of Genomic RNA Packaging with Viral Assembly in HIV-1. Viruses 2016; 8:E192. [PMID: 27428992 PMCID: PMC4974527 DOI: 10.3390/v8070192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
The tremendous progress made in unraveling the complexities of human immunodeficiency virus (HIV) replication has resulted in a library of drugs to target key aspects of the replication cycle of the virus. Yet, despite this accumulated wealth of knowledge, we still have much to learn about certain viral processes. One of these is virus assembly, where the viral genome and proteins come together to form infectious progeny. Here we review this topic from the perspective of how the route to production of an infectious virion is orchestrated by the viral genome, and we compare and contrast aspects of the assembly mechanisms employed by HIV-1 with those of other RNA viruses.
Collapse
Affiliation(s)
- Chris Hellmund
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|