1
|
Lin TH, Lee CCD, Fernández-Quintero ML, Ferguson JA, Han J, Zhu X, Yu W, Guthmiller JJ, Krammer F, Wilson PC, Ward AB, Wilson IA. Structurally convergent antibodies derived from different vaccine strategies target the influenza virus HA anchor epitope with a subset of V H3 and V K3 genes. Nat Commun 2025; 16:1268. [PMID: 39894881 PMCID: PMC11788443 DOI: 10.1038/s41467-025-56496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
H1N1 influenza viruses are responsible for both seasonal and pandemic influenza. The continual antigenic shift and drift of these viruses highlight the urgent need for a universal influenza vaccine to elicit broadly neutralizing antibodies (bnAbs). Identification and characterization of bnAbs elicited in natural infection and immunization to influenza virus hemagglutinin (HA) can provide insights for development of a universal influenza vaccine. Here, we structurally and biophysically characterize four antibodies that bind to a conserved region on the HA membrane-proximal region known as the anchor epitope. Despite some diversity in their VH and VK genes, the antibodies interact with the HA through germline-encoded residues in HCDR2 and LCDR3. Somatic mutations on HCDR3 also contribute hydrophobic interactions with the conserved HA epitope. This convergent binding mode provides extensive neutralization breadth against H1N1 viruses and suggests possible countermeasures against H1N1 viruses.
Collapse
MESH Headings
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Epitopes/immunology
- Epitopes/genetics
- Influenza Vaccines/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Humans
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Animals
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
Collapse
Affiliation(s)
- Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chang-Chun David Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Monica L Fernández-Quintero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Florian Krammer
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ignaz Semmelweis Institute, Medical University of Vienna, Vienna, Austria
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Steventon R, Stolle L, Thompson CP. How Broadly Neutralising Antibodies Are Redefining Immunity to Influenza. Antibodies (Basel) 2025; 14:4. [PMID: 39846612 PMCID: PMC11755579 DOI: 10.3390/antib14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Recent avian influenza outbreaks have heightened global concern over viral threats with the potential to significantly impact human health. Influenza is particularly alarming due to its history of causing pandemics and zoonotic reservoirs. In response, significant progress has been made toward the development of universal influenza vaccines, largely driven by the discovery of broadly neutralising antibodies (bnAbs), which have the potential to neutralise a broad range of influenza viruses, extending beyond the traditional strain-specific response. This could lead to longer-lasting immunity, reducing the need for seasonal vaccinations, and improve preparedness for future pandemics. This review offers a comprehensive analysis of these antibodies, their application in clinical studies, and both their potential and possible shortcomings in managing future influenza outbreaks.
Collapse
Affiliation(s)
| | | | - Craig Peter Thompson
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (R.S.); (L.S.)
| |
Collapse
|
3
|
Suryadevara N, Kose N, Bangaru S, Binshtein E, Munt J, Martinez DR, Schäfer A, Myers L, Scobey TD, Carnahan RH, Ward AB, Baric RS, Crowe JE. Structural characterization of human monoclonal antibodies targeting uncommon antigenic sites on spike glycoprotein of SARS-CoV. J Clin Invest 2024; 135:e178880. [PMID: 39589795 PMCID: PMC11785922 DOI: 10.1172/jci178880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
The function of the spike protein N terminal domain (NTD) in coronavirus (CoV) infections is poorly understood. However, some rare antibodies that target the SARS-CoV-2 NTD potently neutralize the virus. This finding suggests the NTD may contribute, in part, to protective immunity. Pansarbecovirus antibodies are desirable for broad protection, but the NTD region of SARS-CoV and SARS-CoV-2 exhibit a high level of sequence divergence; therefore, cross-reactive NTD-specific antibodies are unexpected, and there is no structure of a SARS-CoV NTD-specific antibody in complex with NTD. Here, we report a monoclonal antibody COV1-65, encoded by the IGHV1-69 gene, that recognizes the NTD of SARS-CoV S protein. A prophylaxis study showed the mAb COV1-65 prevented disease when administered before SARS-CoV challenge of BALB/c mice, an effect that requires intact fragment crystallizable region (Fc) effector functions for optimal protection in vivo. The footprint on the S protein of COV1-65 is near to functional components of the S2 fusion machinery, and the selection of COV1-65 escape mutant viruses identified critical residues Y886H and Q974H, which likely affect the epitope through allosteric effects. Structural features of the mAb COV1-65-SARS-CoV antigen interaction suggest critical antigenic determinants that should be considered in the rational design of sarbecovirus vaccine candidates.
Collapse
MESH Headings
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- SARS-CoV-2/immunology
- Mice
- Mice, Inbred BALB C
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- COVID-19/immunology
- COVID-19/prevention & control
- Female
- Protein Domains
- Epitopes/immunology
- Epitopes/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antigens, Viral/immunology
- Antigens, Viral/chemistry
Collapse
Affiliation(s)
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Munt
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David R. Martinez
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Trevor D. Scobey
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Moirangthem R, Cordela S, Khateeb D, Shor B, Kosik I, Schneidman-Duhovny D, Mandelboim M, Jönsson F, Yewdell JW, Bruel T, Bar-On Y. Dual neutralization of influenza virus hemagglutinin and neuraminidase by a bispecific antibody leads to improved antiviral activity. Mol Ther 2024; 32:3712-3728. [PMID: 39086132 PMCID: PMC11489563 DOI: 10.1016/j.ymthe.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Targeting multiple viral proteins is pivotal for sustained suppression of highly mutable viruses. In recent years, broadly neutralizing antibodies that target the influenza virus hemagglutinin and neuraminidase glycoproteins have been developed, and antibody monotherapy has been tested in preclinical and clinical studies to treat or prevent influenza virus infection. However, the impact of dual neutralization of the hemagglutinin and neuraminidase on the course of infection, as well as its therapeutic potential, has not been thoroughly tested. For this purpose, we generated a bispecific antibody that neutralizes both the hemagglutinin and the neuraminidase of influenza viruses. We demonstrated that this bispecific antibody has a dual-antiviral activity as it blocks infection and prevents the release of progeny viruses from the infected cells. We show that dual neutralization of the hemagglutinin and the neuraminidase by a bispecific antibody is advantageous over monoclonal antibody combination as it resulted an improved neutralization capacity and augmented the antibody effector functions. Notably, the bispecific antibody showed enhanced antiviral activity in influenza virus-infected mice, reduced mice mortality, and limited the virus mutation profile upon antibody administration. Thus, dual neutralization of the hemagglutinin and neuraminidase could be effective in controlling influenza virus infection.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Mice
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/virology
- Neutralization Tests
- Dogs
- Disease Models, Animal
- Madin Darby Canine Kidney Cells
- Influenza, Human/immunology
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Female
Collapse
Affiliation(s)
- Romila Moirangthem
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Sapir Cordela
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Dina Khateeb
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel
| | - Ben Shor
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Friederike Jönsson
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology; Inserm UMR1222, Paris 75015, France; CNRS, Paris 75015, France
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892, USA
| | - Timothée Bruel
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité; CNRS UMR3569, Paris, France; Vaccine Research Institute, Créteil, France
| | - Yotam Bar-On
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
5
|
Forna A, Weedop KB, Damodaran L, Hassell N, Kondor R, Bahl J, Drake JM, Rohani P. Sequence-based detection of emerging antigenically novel influenza A viruses. Proc Biol Sci 2024; 291:20240790. [PMID: 39140324 PMCID: PMC11323087 DOI: 10.1098/rspb.2024.0790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The detection of evolutionary transitions in influenza A (H3N2) viruses' antigenicity is a major obstacle to effective vaccine design and development. In this study, we describe Novel Influenza Virus A Detector (NIAViD), an unsupervised machine learning tool, adept at identifying these transitions, using the HA1 sequence and associated physico-chemical properties. NIAViD performed with 88.9% (95% CI, 56.5-98.0%) and 72.7% (95% CI, 43.4-90.3%) sensitivity in training and validation, respectively, outperforming the uncalibrated null model-33.3% (95% CI, 12.1-64.6%) and does not require potentially biased, time-consuming and costly laboratory assays. The pivotal role of the Boman's index, indicative of the virus's cell surface binding potential, is underscored, enhancing the precision of detecting antigenic transitions. NIAViD's efficacy is not only in identifying influenza isolates that belong to novel antigenic clusters, but also in pinpointing potential sites driving significant antigenic changes, without the reliance on explicit modelling of haemagglutinin inhibition titres. We believe this approach holds promise to augment existing surveillance networks, offering timely insights for the development of updated, effective influenza vaccines. Consequently, NIAViD, in conjunction with other resources, could be used to support surveillance efforts and inform the development of updated influenza vaccines.
Collapse
Affiliation(s)
- Alpha Forna
- Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA30602, USA
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA30606, USA
| | - K. Bodie Weedop
- Odum School of Ecology, University of Georgia, Athens, GA30602, USA
| | - Lambodhar Damodaran
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA30606, USA
| | - Norman Hassell
- Centers for Disease Control and Prevention, Atlanta, GA30329, USA
| | - Rebecca Kondor
- Centers for Disease Control and Prevention, Atlanta, GA30329, USA
| | - Justin Bahl
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA30602, USA
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA30606, USA
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA30602, USA
- Center for Influenza Disease & Emergence Research (CIDER), Athens, GA30602, USA
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA30602, USA
- Center for Influenza Disease & Emergence Research (CIDER), Athens, GA30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
6
|
Anoma S, Bhattarakosol P, Kowitdamrong E. Characteristics and evolution of hemagglutinin and neuraminidase genes of Influenza A(H3N2) viruses in Thailand during 2015 to 2018. PeerJ 2024; 12:e17523. [PMID: 38846750 PMCID: PMC11155671 DOI: 10.7717/peerj.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background Influenza A(H3N2) virus evolves continuously. Its hemagglutinin (HA) and neuraminidase (NA) genes have high genetic variation due to the antigenic drift. This study aimed to investigate the characteristics and evolution of HA and NA genes of the influenza A(H3N2) virus in Thailand. Methods Influenza A positive respiratory samples from 2015 to 2018 were subtyped by multiplex real-time RT-PCR. Full-length HA and NA genes from the positive samples of influenza A(H3N2) were amplified and sequenced. Phylogenetic analysis with the maximum likelihood method was used to investigate the evolution of the virus compared with the WHO-recommended influenza vaccine strain. Homology modeling and N-glycosylation site prediction were also performed. Results Out of 443 samples, 147 (33.18%) were A(H1N1)pdm09 and 296 (66.82%) were A(H3N2). The A(H3N2) viruses circulating in 2015 were clade 3C.2a whereas sub-clade 3C.2a1 and 3C.2a2 dominated in 2016-2017 and 2018, respectively. Amino acid substitutions were found in all antigenic sites A, B, C, D, and E of HA but the majority of the substitutions were located at antigenic sites A and B. The S245N and N329S substitutions in the NA gene affect the N-glycosylation. None of the mutations associated with resistance to NA inhibitors were observed. Mean evolutionary rates of the HA and NA genes were 3.47 × 10 -3 and 2.98 × 10-3 substitutions per site per year. Conclusion The influenza A(H3N2) virus is very genetically diverse and is always evolving to evade host defenses. The HA and NA gene features including the evolutionary rate of the influenza A(H3N2) viruses that were circulating in Thailand between 2015 and 2018 are described. This information is useful for monitoring the genetic characteristics and evolution in HA and NA genes of influenza A(H3N2) virus in Thailand which is crucial for predicting the influenza vaccine strains resulting in high vaccine effectiveness.
Collapse
Affiliation(s)
- Sasiprapa Anoma
- Interdisciplinary Program in Medical Microbiology, Graduated School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ekasit Kowitdamrong
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Nie J, Wang Q, Li C, Zhou Y, Yao X, Xu L, Chang Y, Ding F, Sun L, Zhan L, Zhu L, Xie K, Wang X, Shi Y, Zhao Q, Shan Y. Self-Assembled Multiepitope Nanovaccine Provides Long-Lasting Cross-Protection against Influenza Virus. Adv Healthc Mater 2024; 13:e2303531. [PMID: 37983728 DOI: 10.1002/adhm.202303531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Seasonal influenza vaccines typically provide strain-specific protection and are reformulated annually, which is a complex and time-consuming process. Multiepitope vaccines, combining multiple conserved antigenic epitopes from a pathogen, can trigger more robust, diverse, and effective immune responses, providing a potential solution. However, their practical application is hindered by low immunogenicity and short-term effectiveness. In this study, multiple linear epitopes from the conserved stem domain of hemagglutinin and the ectodomain of matrix protein 2 are combined with the Helicobacter pylori ferritin, a stable self-assembled nanoplatform, to develop an influenza multiepitope nanovaccine, named MHF. MHF is prokaryotically expressed in a soluble form and self-assembles into uniform nanoparticles. The subcutaneous immunization of mice with adjuvanted MHF induces cross-reactive neutralizing antibodies, antibody-dependent cell-mediated cytotoxicity, and cellular immunity, offering complete protection against H3N2 as well as partial protection against H1N1. Importantly, the vaccine cargo delivered by ferritin triggers epitope-specific memory B-cell responses, with antibody level persisting for over 6 months post-immunization. These findings indicate that self-assembled multiepitope nanovaccines elicit potent and long-lasting immune responses while significantly reducing the risk of vaccine escape mutants, and offer greater practicality in terms of scalable manufacturing and genetic manipulability, presenting a promising and effective strategy for future vaccine development.
Collapse
Affiliation(s)
- Jiaojiao Nie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, 519000, China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Chenxi Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yongfei Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xin Yao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lipeng Xu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yaotian Chang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fan Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lulu Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Li Zhan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lvzhou Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kunpeng Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, 519000, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 519000, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
8
|
Kosik I, Da Silva Santos J, Angel M, Hu Z, Holly J, Gibbs JS, Gill T, Kosikova M, Li T, Bakhache W, Dolan PT, Xie H, Andrews SF, Gillespie RA, Kanekiyo M, McDermott AB, Pierson TC, Yewdell JW. C1q enables influenza hemagglutinin stem binding antibodies to block viral attachment and broadens the antibody escape repertoire. Sci Immunol 2024; 9:eadj9534. [PMID: 38517951 DOI: 10.1126/sciimmunol.adj9534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 03/24/2024]
Abstract
Antigenic drift, the gradual accumulation of amino acid substitutions in the influenza virus hemagglutinin (HA) receptor protein, enables viral immune evasion. Antibodies (Abs) specific for the drift-resistant HA stem region are a promising universal influenza vaccine target. Although anti-stem Abs are not believed to block viral attachment, here we show that complement component 1q (C1q), a 460-kilodalton protein with six Ab Fc-binding domains, confers attachment inhibition to anti-stem Abs and enhances their fusion and neuraminidase inhibition. As a result, virus neutralization activity in vitro is boosted up to 30-fold, and in vivo protection from influenza PR8 infection in mice is enhanced. These effects reflect increased steric hindrance and not increased Ab avidity. C1q greatly expands the anti-stem Ab viral escape repertoire to include residues throughout the HA, some of which cause antigenic alterations in the globular region or modulate HA receptor avidity. We also show that C1q enhances the neutralization activity of non-receptor binding domain anti-SARS-CoV-2 spike Abs, an effect dependent on spike density on the virion surface. These findings demonstrate that C1q can greatly expand Ab function and thereby contribute to viral evolution and immune escape.
Collapse
Affiliation(s)
- Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jefferson Da Silva Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Mathew Angel
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James S Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tanner Gill
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tiansheng Li
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - William Bakhache
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Patrick T Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sarah F Andrews
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Molecular Immunoengineering Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Molecular Immunoengineering Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
9
|
Robert PA, Arulraj T, Meyer-Hermann M. Germinal centers are permissive to subdominant antibody responses. Front Immunol 2024; 14:1238046. [PMID: 38274834 PMCID: PMC10808553 DOI: 10.3389/fimmu.2023.1238046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction A protective humoral response to pathogens requires the development of high affinity antibodies in germinal centers (GC). The combination of antigens available during immunization has a strong impact on the strength and breadth of the antibody response. Antigens can display various levels of immunogenicity, and a hierarchy of immunodominance arises when the GC response to an antigen dampens the response to other antigens. Immunodominance is a challenge for the development of vaccines to mutating viruses, and for the development of broadly neutralizing antibodies. The extent by which antigens with different levels of immunogenicity compete for the induction of high affinity antibodies and therefore contribute to immunodominance is not known. Methods Here, we perform in silico simulations of the GC response, using a structural representation of antigens with complex surface amino acid composition and topology. We generate antigens with complex domains of different levels of immunogenicity and perform simulations with combinations of these domains. Results We found that GC dynamics were driven by the most immunogenic domain and immunodominance arose as affinity maturation to less immunogenic domain was inhibited. However, this inhibition was moderate since the less immunogenic domain exhibited a weak GC response in the absence of the most immunogenic domain. Less immunogenic domains reduced the dominance of GC responses to more immunogenic domains, albeit at a later time point. Discussion The simulations suggest that increased vaccine valency may decrease immunodominance of the GC response to strongly immunogenic domains and therefore, act as a potential strategy for the natural induction of broadly neutralizing antibodies in GC reactions.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Shin SY, Lee JH, Kim JW, Im WR, Damodar K, Woo HR, Kim WK, Lee JT, Jeon SH. Evaluation of the Antiviral Activity of Tabamide A and Its Structural Derivatives against Influenza Virus. Int J Mol Sci 2023; 24:17296. [PMID: 38139128 PMCID: PMC10744247 DOI: 10.3390/ijms242417296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza viruses cause severe endemic respiratory infections in both humans and animals worldwide. The emergence of drug-resistant viral strains requires the development of new influenza therapeutics. Tabamide A (TA0), a phenolic compound isolated from tobacco leaves, is known to have antiviral activity. We investigated whether synthetic TA0 and its derivatives exhibit anti-influenza virus activity. Analysis of structure-activity relationship revealed that two hydroxyl groups and a double bond between C7 and C8 in TA0 are crucial for maintaining its antiviral action. Among its derivatives, TA25 showed seven-fold higher activity than TA0. Administration of TA0 or TA25 effectively increased survival rate and reduced weight loss of virus-infected mice. TA25 appears to act early in the viral infection cycle by inhibiting viral mRNA synthesis on the template-negative strand. Thus, the anti-influenza virus activity of TA0 can be expanded by application of its synthetic derivatives, which may aid in the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Soo Yong Shin
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Joo Hee Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Jin Woo Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Wonkyun Ronny Im
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Kongara Damodar
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Republic of Korea; (K.D.); (H.R.W.)
| | - Hyung Ryeol Woo
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Republic of Korea; (K.D.); (H.R.W.)
| | - Won-Keun Kim
- Department of Microbiology and Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Jeong Tae Lee
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Republic of Korea; (K.D.); (H.R.W.)
| | - Sung Ho Jeon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| |
Collapse
|
11
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Zhang J, Li Q, Zhu R, Xu S, Wang S, Shi H, Liu X. Loss of amino acids 67-76 in the neuraminidase protein under antibody selection pressure alters the tropism, transmissibility and innate immune response of H9N2 avian influenza virus in chickens. Vet Microbiol 2023; 284:109832. [PMID: 37473515 DOI: 10.1016/j.vetmic.2023.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
H9N2 virus has become the most widespread subtype of avian influenza in Chinese poultry. Although many studies have been published on this disease, the pathogenesis of the H9N2 virus remains to be fully understood. In our previous work, we identified 44 viral strains with 67-76 amino acid deletions in the neuraminidase protein (NA∆67-76) from trachea and lung tissues after 20 successive generations in vaccinated chickens. Interestingly, these 10 amino acid deletions are located in the stalk of the NA protein, and all mutations were unique to the viruses under the selection pressure of vaccine antibodies. To investigate the effect of NA∆67-76 on the H9N2 virus, the NA∆67-76 deletion mutant (rF/NAΔ67-76) was constructed in the H9N2 virus A/Chicken/Shanghai/F/98 (F/98) to assess the phenotypic changes between the parental and mutant strains. The results showed that the recombinant virus rF/NAΔ67-76 had no significantly effect on the antigenicity of the virus or on the infectivity of the host cells, but it significantly inhibited the release of virions from host cells. In addition, rF/NAΔ67-76 efficiently enhanced the neuraminidase activity and improved the receptor binding ability of the virus, indicating that the influence of receptor binding ability on the rF/NAΔ67-76 virus is much greater than that of neuraminidase activity. Furthermore, this study revealed that rF/NAΔ67-76 reduced the viral replication ability at 6 and 12 h post-infection, but improved it at 24, 48, and 72 h post-infection. Chicken experiments showed that rF/NAΔ67-76 exhibits a much higher tissue tropism for the trachea rather than lung tissue. rF/NAΔ67-76 still had the ability to infect the upper respiratory tract through aerosol, but its cloaca replication capacity was significantly reduced. Both in vivo and in vitro experiments confirmed that rF/NAΔ67-76 could produce a stronger innate immune response after infecting cells and chickens, especially significantly enhancing the transcription levels of TLR3, TLR4, TLR7, TLR21, MDA5, and NLRP3. Altogether, the results of this study propose that antibody selection pressure plays an important role in the evolution of H9N2 avian influenza virus.
Collapse
Affiliation(s)
- Jianjun Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rui Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety (JIRLAAPS), Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
13
|
Lee CY, Raghunathan V, Caceres C, Geiger G, Seibert B, Cargnin Faccin F, Gay L, Ferreri L, Kaul D, Wrammert J, Tan G, Perez D, Lowen A. Epistasis reduces fitness costs of influenza A virus escape from stem-binding antibodies. Proc Natl Acad Sci U S A 2023; 120:e2208718120. [PMID: 37068231 PMCID: PMC10151473 DOI: 10.1073/pnas.2208718120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/15/2023] [Indexed: 04/19/2023] Open
Abstract
The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, The Republic of Korea
| | - Vedhika Raghunathan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Jens Wrammert
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, CA 92037
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Emory-University of Georgia Center of Excellence for Influenza Research and Surveillance, Atlanta, GA 30322
| |
Collapse
|
14
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Chu JT, Gu H, Sun W, Fan RL, Nicholls JM, Valkenburg SA, Poon LL. Heterosubtypic immune pressure accelerates emergence of influenza A virus escape phenotypes in mice. Virus Res 2023; 323:198991. [PMID: 36302472 PMCID: PMC10194115 DOI: 10.1016/j.virusres.2022.198991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022]
Abstract
Rapid antigenic evolution of the influenza A virus surface antigen hemagglutinin undermines protection conferred by seasonal vaccines. Protective correlates targeted by universal vaccines such as cytotoxic T cells or HA stem directed broadly neutralizing antibodies have been shown to select for immune escape mutants during infection. We developed an in vivo serial passage mouse model for viral adaptation and used next generation sequencing to evaluate full genome viral evolution in the context of broadly protective immunity. Heterosubtypic immune pressure increased the incidence of genome-wide single nucleotide variants, though mutations found in early adapted populations were predominantly stochastic in nature. Prolonged adaptation under heterosubtypic immune selection resulted in the manifestation of highly virulent phenotypes that ablated vaccine mediated protection from mortality. High frequency mutations unique to escape phenotypes were identified within the polymerase encoding segments. These findings suggest that a suboptimial usage of population-wide universal influenza vaccine may drive formation of escape variants attributed to polygenic changes.
Collapse
Affiliation(s)
- Julie Ts Chu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wanying Sun
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Rebecca Ly Fan
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John M Nicholls
- Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Leo Lm Poon
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Zhao H, Meng X, Peng Z, Lam H, Zhang C, Zhou X, Chan JFW, Kao RYT, To KKW, Yuen KY. Fusion-inhibition peptide broadly inhibits influenza virus and SARS-CoV-2, including Delta and Omicron variants. Emerg Microbes Infect 2022; 11:926-937. [PMID: 35259078 PMCID: PMC8973381 DOI: 10.1080/22221751.2022.2051753] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pandemic influenza virus and SARS-CoV-2 vaiants have posed major global threats to public health. Broad-spectrum antivirals blocking viral entry can be an effective strategy for combating these viruses. Here, we demonstrate a frog-defensin-derived basic peptide (FBP), which broadly inhibits the influenza virus by binding to haemagglutinin so as to block low pH-induced HA-mediated fusion and antagonizes endosomal acidification to inhibit the influenza virus. Moreover, FBP can bind to the SARS-CoV-2 spike to block spike-mediated cell–cell fusion in 293T/ACE2 cells endocytosis. Omicron spike shows a weak cell–cell fusion mediated by TMPRSS2 in Calu3 cells, making the Omicron variant sensitive to endosomal inhibitors. In vivo studies show that FBP broadly inhibits the A(H1N1)pdm09 virus in mice and SARS-CoV-2 (HKU001a and Delta)in hamsters. Notably, FBP shows significant inhibition of Omicron variant replication even though it has a high number of mutations in spike. In conclusion, these results suggest that virus-targeting FBP with a high barrier to drug resistance can be an effective entry-fusion inhibitor against influenza virus and SARS-CoV-2 in vivo.
Collapse
Affiliation(s)
- Hanjun Zhao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Peng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hoiyan Lam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xinxin Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| | - Richard Yi Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Guangzhou Laboratory, Guangzhou Province, China
| |
Collapse
|
17
|
Li Z, Li T, Liu M, Ivanovic T. Hemagglutinin Stability Determines Influenza A Virus Susceptibility to a Broad-Spectrum Fusion Inhibitor Arbidol. ACS Infect Dis 2022; 8:1543-1552. [PMID: 35819162 PMCID: PMC9810120 DOI: 10.1021/acsinfecdis.2c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Understanding mechanisms of resistance to antiviral inhibitors can reveal nuanced features of targeted viral mechanisms and, in turn, lead to improved strategies for inhibitor design. Arbidol is a broad-spectrum antiviral that binds to and prevents the fusion-associated conformational changes in the trimeric influenza A virus (IAV) hemagglutinin (HA). The rate-limiting step during the HA-mediated membrane fusion is the release of the hydrophobic fusion peptides from a conserved pocket on HA. Here, we investigated how destabilizing or stabilizing mutations in or near the fusion peptide affect viral sensitivity to Arbidol. The degree of sensitivity was proportional to the extent of fusion-peptide stability on the prefusion HA: stabilized mutants were more sensitive, and destabilized ones were resistant to Arbidol. Single-virion membrane fusion experiments for representative wild-type (WT) and mutant viruses demonstrated that resistance is a direct consequence of fusion-peptide destabilization not requiring reduced Arbidol binding to HA. Our results support the model whereby the probability of individual HAs extending to engage the target membrane is determined by the composite of two critical forces: a "tug" on the fusion peptide by HA rearrangements near the Arbidol binding site and the key interactions stabilizing the fusion peptide in the prefusion pocket. Arbidol increases and destabilizing mutations decrease the free-energy cost for fusion-peptide release, accounting for the observed resistance. Our findings have broad implications for fusion inhibitor design, viral mechanisms of resistance, and our basic understanding of HA-mediated membrane fusion.
Collapse
|
18
|
Lim JJ, Dar S, Venter D, Horcajada JP, Kulkarni P, Nguyen A, McBride JM, Deng R, Galanter J, Chu T, Newton EM, Tavel JA, Peck MC. A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of the Monoclonal Antibody MHAA4549A in Patients With Acute Uncomplicated Influenza A Infection. Open Forum Infect Dis 2021; 9:ofab630. [PMID: 35106315 PMCID: PMC8801227 DOI: 10.1093/ofid/ofab630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background MHAA4549A, a human monoclonal antibody targeting the influenza A hemagglutinin stalk, neutralizes influenza A virus in animal and human volunteer challenge studies. We investigated the safety and tolerability, efficacy, and pharmacokinetics of MHAA4549A in outpatients with acute, uncomplicated influenza A infection. Methods This was a phase 2, randomized, double-blind, placebo-controlled trial of single intravenous (IV) doses of 3600 mg or 8400 mg of MHAA4549A or IV placebo in adult outpatients testing positive for influenza A. Patients were enrolled across 35 sites in 6 countries. Randomization and dosing occurred within ≤72 hours of symptom onset; the study duration was 14 weeks. The primary end point was the nature and frequency of adverse events (AEs). Secondary end points included median time to alleviation of all influenza symptoms, effects on nasopharyngeal viral load and duration of viral shedding, and MHAA4549A serum pharmacokinetics. Results Of 125 randomized patients, 124 received study treatment, with 99 confirmed positive for influenza A by central testing. The frequency of AEs between the MHAA4549A and placebo groups was similar; nausea was most common (8 patients; 6.5%). MHAA4549A serum exposure was confirmed in all MHAA4549A-treated patients and was dose-proportional. No hospitalizations or deaths occurred. Between the MHAA4549A and placebo groups, no statistically significant differences occurred in the median time to alleviation of all symptoms, nasopharyngeal viral load, or duration of viral shedding. Conclusions While MHAA4549A was safe and well tolerated with confirmed exposure, the antibody did not improve clinical outcomes in patients with acute uncomplicated influenza A infection.
Collapse
Affiliation(s)
- Jeremy J Lim
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Sadia Dar
- Clinical Research Solutions, LLC, Smryna, Tennessee, USA
| | - Dirk Venter
- Henderson Medical Centre, Auckland, New Zealand
| | - Juan P Horcajada
- Department of Infectious Diseases, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques, Universitat Autònoma, Universitat Pompeu Fabra, Barcelona, Spain
| | - Priya Kulkarni
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Allen Nguyen
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Jacqueline M McBride
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Rong Deng
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Joshua Galanter
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Tom Chu
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Elizabeth M Newton
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Jorge A Tavel
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Melicent C Peck
- Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
19
|
Characterization of Novel Cross-Reactive Influenza B Virus Hemagglutinin Head Specific Antibodies That Lack Hemagglutination Inhibition Activity. J Virol 2020; 94:JVI.01185-20. [PMID: 32907980 DOI: 10.1128/jvi.01185-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Humoral immune responses to influenza virus vaccines in elderly individuals are poorly adapted toward new antigenically drifted influenza virus strains. Instead, older individuals respond in an original antigenic sin fashion and produce much more cross-reactive but less potent antibodies. Here, we investigated four influenza B virus hemagglutinin (HA) head specific, hemagglutination inhibition-inactive monoclonal antibodies (MAbs) from elderly individuals. We found that they were broadly reactive within the B/Victoria/2/1987-like lineage, and two were highly cross-reactive with B/Yamagata/16/1988-like lineage viruses. The MAbs were found to be neutralizing, to utilize Fc effector functions, and to be protective against lethal viral challenge in a mouse model. In order to identify residues on the influenza B virus hemagglutinin interacting with the MAbs, we generated escape mutant viruses. Interestingly, escape from these MAbs led to numerous HA mutations within the head domain, including in the defined antigenic sites. We observed that each individual escape mutant virus was able to avoid neutralization by its respective MAb along with other MAbs in the panel, although in many cases binding activity was maintained. Point mutant viruses indicated that K90 is critical for the neutralization of two MAbs, while escape from the other two MAbs required a combination of mutations in the hemagglutinin. Three of four escape mutant viruses had increased lethality in the DBA2/J mouse model. Our work indicates that these cross-reactive antibodies have the potential to cause antigenic drift in the viral population by driving mutations that increase virus fitness. However, binding activity and cross-neutralization were maintained by a majority of antibodies in the panel, suggesting that this drift may not lead to escape from antibody-mediated protection.IMPORTANCE Understanding the immune response that older individuals mount to influenza virus vaccination and infection is critical in order to design better vaccines for this age group. Here, we show that older individuals make broadly neutralizing antibodies that have no hemagglutination-inhibiting activity and are less potent than strain-specific antibodies. These antibodies could drive viral escape from neutralization but did not result in escape from binding. Given their different mechanisms of action, they might retain protective activity even against escape variants.
Collapse
|
20
|
Human Monoclonal Antibody Derived from Transchromosomic Cattle Neutralizes Multiple H1 Clades of Influenza A Virus by Recognizing a Novel Conformational Epitope in the Hemagglutinin Head Domain. J Virol 2020; 94:JVI.00945-20. [PMID: 32847862 DOI: 10.1128/jvi.00945-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Influenza remains a global health risk and challenge. Currently, neuraminidase (NA) inhibitors are extensively used to treat influenza, but their efficacy is compromised by the emergence of drug-resistant variants. Neutralizing antibodies targeting influenza A virus surface glycoproteins are critical components of influenza therapeutic agents and may provide alternative strategies to the existing countermeasures. However, the major hurdle for the extensive application of antibody therapies lies in the difficulty of generating nonimmunogenic antibodies in large quantities rapidly. Here, we report that one human monoclonal antibody (MAb), 53C10, isolated from transchromosomic (Tc) cattle exhibits potent neutralization and hemagglutination inhibition titers against different clades of H1N1 subtype influenza A viruses. In vitro selection of antibody escape mutants revealed that 53C10 recognizes a novel noncontinuous epitope in the hemagglutinin (HA) head domain involving three amino acid residues, glycine (G), serine (S), and glutamic acid (E) at positions 172, 207, and 212, respectively. The results of our experiments supported a critical role for substitution of arginine at position 207 (S207R) in mediating resistance to 53C10, while substitutions at either G172E or E212A did not alter antibody recognition and neutralization. The E212A mutation may provide structural stability for the epitope, while the substitution G172E probably compensates for loss of fitness introduced by S207R. Our results offer novel insights into the mechanism of action of MAb 53C10 and indicate its potential role in therapeutic treatment of H1 influenza virus infection in humans.IMPORTANCE Respiratory diseases caused by influenza viruses still pose a serious concern to global health, and neutralizing antibodies constitute a promising area of antiviral therapeutics. However, the potential application of antibodies is often hampered by the challenge in generating nonimmunogenic antibodies in large scale. In the present study, transchromosomic (Tc) cattle were used for the generation of nonimmunogenic monoclonal antibodies (MAbs), and characterization of such MAbs revealed one monoclonal antibody, 53C10, exhibiting a potent neutralization activity against H1N1 influenza viruses. Further characterization of the neutralization escape mutant generated using this MAb showed that three amino acid substitutions in the HA head domain contributed to the resistance. These findings emphasize the importance of Tc cattle in the production of nonimmunogenic MAbs and highlight the potential of MAb 53C10 in the therapeutic application against H1 influenza virus infection in humans.
Collapse
|
21
|
Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses 2020; 12:v12091053. [PMID: 32971825 PMCID: PMC7551194 DOI: 10.3390/v12091053] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Hemagglutinin (HA) glycoprotein is an important focus of influenza research due to its role in antigenic drift and shift, as well as its receptor binding and membrane fusion functions, which are indispensable for viral entry. Over the past four decades, X-ray crystallography has greatly facilitated our understanding of HA receptor binding, membrane fusion, and antigenicity. The recent advances in cryo-EM have further deepened our comprehension of HA biology. Since influenza HA constantly evolves in natural circulating strains, there are always new questions to be answered. The incessant accumulation of knowledge on the structural biology of HA over several decades has also facilitated the design and development of novel therapeutics and vaccines. This review describes the current status of the field of HA structural biology, how we got here, and what the next steps might be.
Collapse
|
22
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
23
|
Yao Y, Kadam RU, Lee CCD, Woehl JL, Wu NC, Zhu X, Kitamura S, Wilson IA, Wolan DW. An influenza A hemagglutinin small-molecule fusion inhibitor identified by a new high-throughput fluorescence polarization screen. Proc Natl Acad Sci U S A 2020; 117:18431-18438. [PMID: 32690700 PMCID: PMC7414093 DOI: 10.1073/pnas.2006893117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza hemagglutinin (HA) glycoprotein is the primary surface antigen targeted by the host immune response and a focus for development of novel vaccines, broadly neutralizing antibodies (bnAbs), and therapeutics. HA enables viral entry into host cells via receptor binding and membrane fusion and is a validated target for drug discovery. However, to date, only a very few bona fide small molecules have been reported against the HA. To identity new antiviral lead candidates against the highly conserved fusion machinery in the HA stem, we synthesized a fluorescence-polarization probe based on a recently described neutralizing cyclic peptide P7 derived from the complementarity-determining region loops of human bnAbs FI6v3 and CR9114 against the HA stem. We then designed a robust binding assay compatible with high-throughput screening to identify molecules with low micromolar to nanomolar affinity to influenza A group 1 HAs. Our simple, low-cost, and efficient in vitro assay was used to screen H1/Puerto Rico/8/1934 (H1/PR8) HA trimer against ∼72,000 compounds. The crystal structure of H1/PR8 HA in complex with our best hit compound F0045(S) confirmed that it binds to pockets in the HA stem similar to bnAbs FI6v3 and CR9114, cyclic peptide P7, and small-molecule inhibitor JNJ4796. F0045 is enantioselective against a panel of group 1 HAs and F0045(S) exhibits in vitro neutralization activity against multiple H1N1 and H5N1 strains. Our assay, compound characterization, and small-molecule candidate should further stimulate the discovery and development of new compounds with unique chemical scaffolds and enhanced influenza antiviral capabilities.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Drug Evaluation, Preclinical/methods
- Fluorescence Polarization/methods
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/metabolism
- Influenza, Human/virology
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
Collapse
Affiliation(s)
- Yao Yao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Rameshwar U Kadam
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Chang-Chun David Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jordan L Woehl
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037;
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037;
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
24
|
Nath Neerukonda S, Vassell R, Weiss CD. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Vaccines (Basel) 2020; 8:E382. [PMID: 32664628 PMCID: PMC7563823 DOI: 10.3390/vaccines8030382] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza continues to be a public health threat despite the availability of annual vaccines. While vaccines are generally effective at inducing strain-specific immunity, they are sub-optimal or ineffective when drifted or novel pandemic strains arise due to sequence changes in the major surface glycoprotein hemagglutinin (HA). The discovery of a large number of antibodies targeting the highly conserved stem region of HAs that are capable of potently neutralizing a broad range of virus strains and subtypes suggests new ways to protect against influenza. The structural characterization of HA stem epitopes and broadly neutralizing antibody paratopes has enabled the design of novel proteins, mini-proteins, and peptides targeting the HA stem, thus providing a foundation for the design of new vaccines. In this narrative, we comprehensively review the current knowledge about stem-directed broadly neutralizing antibodies and the structural features contributing to virus neutralization.
Collapse
Affiliation(s)
| | | | - Carol D. Weiss
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.N.N.); (R.V.)
| |
Collapse
|
25
|
Deng R, She G, Maia M, Lim JJ, Peck MC, McBride JM, Kulkarni P, Horn P, Castro A, Newton E, Tavel JA, Hanley WD. Pharmacokinetics of the Monoclonal Antibody MHAA4549A Administered in Combination With Oseltamivir in Patients Hospitalized With Severe Influenza A Infection. J Clin Pharmacol 2020; 60:1509-1518. [PMID: 32621543 PMCID: PMC7586956 DOI: 10.1002/jcph.1652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
MHAA4549A is a human anti‐influenza A monoclonal antibody developed to treat influenza A. We report MHAA4549A serum, nasopharyngeal, and tracheal aspirate pharmacokinetics from a phase 2b study in hospitalized patients with severe influenza A. Patients were randomized 1:1:1 into 3 groups receiving single intravenous doses of 3600 mg (n = 55) or 8400 mg (n = 47) MHAA4549A or placebo (n = 56). Patients also received oral oseltamivir twice daily for ≥5 days. Serum, nasopharyngeal, and tracheal aspirate pharmacokinetic samples were collected on days 1‐60 from MHAA4549A‐treated groups. Day 5 plasma samples from all groups were collected for assessing the pharmacokinetics of oseltamivir and its active metabolite, oseltamivir carboxylate. Noncompartmental pharmacokinetic analysis was performed using Phoenix WinNonlin. Data were collected during a preplanned interim analysis that became final when the trial terminated because of a lack of efficacy. Serum MHAA4549A concentrations were dose‐proportional and biphasic. Mean MHAA4549A clearance was 288‐350 mL/day, and mean half‐life was 17.8‐19.0 days. Nasopharyngeal MHAA4549A concentrations were non‐dose‐proportional. We detected MHAA4549A in tracheal aspirate samples, but intersubject variability was high. MHAA4549A serum and nasopharyngeal exposures were confirmed in all MHAA4549A‐treated patients. Serum MHAA4549A had faster clearance and a shorter half‐life in influenza A‐infected patients compared with healthy subjects. MHAA4549A detection in tracheal aspirate samples indicated exposure in the lower respiratory tract. Oseltamivir and oseltamivir carboxylate exposures were similar between MHAA4549A‐treated and placebo groups, suggesting a lack of MHAA4549A interference with oseltamivir pharmacokinetics.
Collapse
Affiliation(s)
- Rong Deng
- Genentech, Inc, South San Francisco, California, USA
| | - Gaohong She
- Genentech, Inc, South San Francisco, California, USA
| | - Mauricio Maia
- Genentech, Inc, South San Francisco, California, USA
| | - Jeremy J Lim
- Genentech, Inc, South San Francisco, California, USA
| | | | | | | | | | - Aide Castro
- Genentech, Inc, South San Francisco, California, USA.,Present affiliation: Calico Life Sciences, LLC, South San Francisco, California, USA
| | | | - Jorge A Tavel
- Genentech, Inc, South San Francisco, California, USA
| | - William D Hanley
- Genentech, Inc, South San Francisco, California, USA.,Present affiliation: Seattle Genetics, Bothell, Washington, USA
| |
Collapse
|
26
|
Park JK, Xiao Y, Ramuta MD, Rosas LA, Fong S, Matthews AM, Freeman AD, Gouzoulis MA, Batchenkova NA, Yang X, Scherler K, Qi L, Reed S, Athota R, Czajkowski L, Han A, Morens DM, Walters KA, Memoli MJ, Kash JC, Taubenberger JK. Pre-existing immunity to influenza virus hemagglutinin stalk might drive selection for antibody-escape mutant viruses in a human challenge model. Nat Med 2020; 26:1240-1246. [PMID: 32601336 DOI: 10.1038/s41591-020-0937-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/08/2020] [Indexed: 01/07/2023]
Abstract
The conserved region of influenza hemagglutinin (HA) stalk (or stem) has gained attention as a potent target for universal influenza vaccines1-5. Although the HA stalk region is relatively well conserved, the evolutionarily dynamic nature of influenza viruses6 raises concerns about the possible emergence of viruses carrying stalk escape mutation(s) under sufficient immune pressure. Here we show that immune pressure on the HA stalk can lead to expansion of escape mutant viruses in study participants challenged with a 2009 H1N1 pandemic influenza virus inoculum containing an A388V polymorphism in the HA stalk (45% wild type and 55% mutant). High level of stalk antibody titers was associated with the selection of the mutant virus both in humans and in vitro. Although the mutant virus showed slightly decreased replication in mice, it was not observed in cell culture, ferrets or human challenge participants. The A388V mutation conferred resistance to some of the potent HA stalk broadly neutralizing monoclonal antibodies (bNAbs). Co-culture of wild-type and mutant viruses in the presence of either a bNAb or human serum resulted in rapid expansion of the mutant. These data shed light on a potential obstacle for the success of HA-stalk-targeting universal influenza vaccines-viral escape from vaccine-induced stalk immunity.
Collapse
Affiliation(s)
- Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell D Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Luz Angela Rosas
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sharon Fong
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexis M Matthews
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ashley D Freeman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Monica A Gouzoulis
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Natalia A Batchenkova
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xingdong Yang
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Li Qi
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Susan Reed
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rani Athota
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Czajkowski
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Han
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of MHAA4549A, a Monoclonal Antibody, plus Oseltamivir in Patients Hospitalized with Severe Influenza A Virus Infection. Antimicrob Agents Chemother 2020; 64:AAC.00352-20. [PMID: 32393496 PMCID: PMC7318030 DOI: 10.1128/aac.00352-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
For patients hospitalized with severe influenza A virus infection, morbidity and mortality remain high. MHAA4549A, a human monoclonal antibody targeting the influenza A virus hemagglutinin stalk, has demonstrated pharmacological activity in animal studies and in a human influenza A challenge study. We evaluated the safety and efficacy of MHAA4549A plus oseltamivir against influenza A virus infection in hospitalized patients. The CRANE trial was a phase 2b randomized, double-blind, placebo-controlled study of single intravenous (i. For patients hospitalized with severe influenza A virus infection, morbidity and mortality remain high. MHAA4549A, a human monoclonal antibody targeting the influenza A virus hemagglutinin stalk, has demonstrated pharmacological activity in animal studies and in a human influenza A challenge study. We evaluated the safety and efficacy of MHAA4549A plus oseltamivir against influenza A virus infection in hospitalized patients. The CRANE trial was a phase 2b randomized, double-blind, placebo-controlled study of single intravenous (i.v.) doses of placebo, 3,600 mg MHAA4549A, or 8,400 mg MHAA4549A each combined with oral oseltamivir (+OTV) in patients hospitalized with severe influenza A virus infection. Patients, enrolled across 68 clinical sites in 18 countries, were randomized 1:1:1. The primary outcome was the median time to normalization of respiratory function, defined as the time to removal of supplemental oxygen support to maintain a stable oxygen saturation (SpO2) of ≥95%. Safety, pharmacokinetics, and effects on influenza viral load were also assessed. One hundred sixty-six patients were randomized and analyzed during a preplanned interim analysis. Compared to placebo+OTV, MHAA4549A+OTV did not significantly reduce the time to normalization of respiratory function (placebo+OTV, 4.28 days; 3,600 mg MHAA4549A+OTV, 2.78 days; 8,400 mg MHAA4549A+OTV, 2.65 days), nor did it improve other secondary clinical outcomes. Adverse event frequency was balanced across cohorts. MHAA4549A+OTV did not further reduce viral load versus placebo+OTV. In hospitalized patients with influenza A virus infection, MHAA4549A did not improve clinical outcomes over OTV alone. Variability in patient removal from oxygen supplementation limited the utility of the primary endpoint. Validated endpoints are needed to assess novel treatments for severe influenza A virus infection. (This study has been registered at ClinicalTrials.gov under registration no. NCT02293863.)
Collapse
|
28
|
Wu NC, Thompson AJ, Lee JM, Su W, Arlian BM, Xie J, Lerner RA, Yen HL, Bloom JD, Wilson IA. Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses. Science 2020; 368:1335-1340. [PMID: 32554590 PMCID: PMC7412937 DOI: 10.1126/science.aaz5143] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
The discovery and characterization of broadly neutralizing human antibodies (bnAbs) to the highly conserved stem region of influenza hemagglutinin (HA) have contributed to considerations of a universal influenza vaccine. However, the potential for resistance to stem bnAbs also needs to be more thoroughly evaluated. Using deep mutational scanning, with a focus on epitope residues, we found that the genetic barrier to resistance to stem bnAbs is low for the H3 subtype but substantially higher for the H1 subtype owing to structural differences in the HA stem. Several strong resistance mutations in H3 can be observed in naturally circulating strains and do not reduce in vitro viral fitness and in vivo pathogenicity. This study highlights a potential challenge for development of a truly universal influenza vaccine.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew J Thompson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Juhye M Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Wen Su
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020; 220:33-42. [PMID: 32088166 PMCID: PMC7102518 DOI: 10.1016/j.trsl.2020.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Influenza viruses are a major threat to human health globally. In addition to further improving vaccine prophylaxis, disease management through antiviral therapeutics constitutes an important component of the current intervention strategy to prevent advance to complicated disease and reduce case-fatality rates. Standard-of-care is treatment with neuraminidase inhibitors that prevent viral dissemination. In 2018, the first mechanistically new influenza drug class for the treatment of uncomplicated seasonal influenza in 2 decades was approved for human use. Targeting the PA endonuclease subunit of the viral polymerase complex, this class suppresses viral replication. However, the genetic barrier against viral resistance to both drug classes is low, pre-existing resistance is observed in circulating strains, and resistant viruses are pathogenic and transmit efficiently. Addressing the resistance problem has emerged as an important objective for the development of next-generation influenza virus therapeutics. This review will discuss the status of influenza therapeutics including the endonuclease inhibitor baloxavir marboxil after its first year of clinical use and evaluate a subset of direct-acting antiviral candidates in different stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
30
|
Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis 2020; 219:S38-S45. [PMID: 30535315 DOI: 10.1093/infdis/jiy696] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza viruses routinely acquire mutations in their hemagglutinin (HA) and neuraminidase (NA) glycoproteins that abrogate binding of pre-existing antibodies in a process known as antigenic drift. Most human antibodies against HA and NA are directed against epitopes that are hypervariable and not against epitopes that are conserved among different influenza virus strains. Universal influenza vaccines are currently being developed to elicit protective responses against functionally conserved sites on influenza proteins where viral escape mutations can result in large fitness costs [1]. Universal vaccine targets include the highly conserved HA stem domain [2-12], the less conserved HA receptor-binding site (RBS) [13-16], as well as conserved sites on NA [17-19]. One central challenge of universal vaccine efforts is to steer human antibody responses away from immunodominant, variable epitopes and towards subdominant, functionally conserved sites. Overcoming this challenge will require further understanding of the structural basis of broadly neutralizing HA and NA antibody binding epitopes and factors that influence immunodominance hierarchies of human antibody responses.
Collapse
Affiliation(s)
- Seth J Zost
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
31
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
32
|
Chen JR, Liu YM, Tseng YC, Ma C. Better influenza vaccines: an industry perspective. J Biomed Sci 2020; 27:33. [PMID: 32059697 PMCID: PMC7023813 DOI: 10.1186/s12929-020-0626-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/10/2023] Open
Abstract
Vaccination is the most effective measure at preventing influenza virus infections. However, current seasonal influenza vaccines are only protective against closely matched circulating strains. Even with extensive monitoring and annual reformulation our efforts remain one step behind the rapidly evolving virus, often resulting in mismatches and low vaccine effectiveness. Fortunately, many next-generation influenza vaccines are currently in development, utilizing an array of innovative techniques to shorten production time and increase the breadth of protection. This review summarizes the production methods of current vaccines, recent advances that have been made in influenza vaccine research, and highlights potential challenges that are yet to be overcome. Special emphasis is put on the potential role of glycoengineering in influenza vaccine development, and the advantages of removing the glycan shield on influenza surface antigens to increase vaccine immunogenicity. The potential for future development of these novel influenza vaccine candidates is discussed from an industry perspective.
Collapse
Affiliation(s)
| | - Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei, 112, Taiwan
| | | | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
33
|
Chromikova V, Tan J, Aslam S, Rajabhathor A, Bermudez-Gonzalez M, Ayllon J, Simon V, García-Sastre A, Salaun B, Nachbagauer R, Krammer F. Activity of human serum antibodies in an influenza virus hemagglutinin stalk-based ADCC reporter assay correlates with activity in a CD107a degranulation assay. Vaccine 2020; 38:1953-1961. [PMID: 31959425 DOI: 10.1016/j.vaccine.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/28/2019] [Accepted: 01/05/2020] [Indexed: 01/12/2023]
Abstract
The stalk of the influenza virus hemagglutinin (HA) is an attractive target for antibody-based universal influenza virus vaccine development. While antibodies that target this part of the virus can be neutralizing, it has been shown in recent years that Fc receptor-mediated effector functions are of significant importance for the protective effect of anti-stalk antibodies. Several assays to measure Fc-Fc receptor interaction-based effector functions like antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis exist, but they suffer from limitations such as low throughput and high run-to-run variability. Reporter assays for antibody-dependent cellular cytotoxicity based on reporter cells that express luciferase upon engagement of human FcγRIIIa with the Fc of antigen-bound antibodies have been developed as well. These reporter assays can be used in a higher throughput setting with limited run-to-run assay variability but since they express only one Fc receptor, their biological relevance is unclear. Here we optimized an antibody-dependent cellular cytotoxicity reporter assay to measure the activity of antibodies to the conserved stalk domain of H1 hemagglutinin. The assay was then correlated to a CD107a-based degranulation assay, and a strong and significant correlation could be observed. This data suggests that the FcγRIIIa-based reporter assay is a good substitute for functional assays, especially in settings where larger sample numbers need to be analyzed.
Collapse
Affiliation(s)
- Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Tan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arvind Rajabhathor
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
Quasispecies dynamics in disease prevention and control. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153035 DOI: 10.1016/b978-0-12-816331-3.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Medical interventions to prevent and treat viral disease constitute evolutionary forces that may modify the genetic composition of viral populations that replicate in an infected host and influence the genomic composition of those viruses that are transmitted and progress at the epidemiological level. Given the adaptive potential of viruses in general and the RNA viruses in particular, the selection of viral mutants that display some degree of resistance to inhibitors or vaccines is a tangible challenge. Mutant selection may jeopardize control of the viral disease. Strategies intended to minimize vaccination and treatment failures are proposed and justified based on fundamental features of viral dynamics explained in the preceding chapters. The recommended use of complex, multiepitopic vaccines, and combination therapies as early as possible after initiation of infection falls under the general concept that complexity cannot be combated with simplicity. It also follows that sociopolitical action to interrupt virus replication and spread as soon as possible is as important as scientifically sound treatment designs to control viral disease on a global scale.
Collapse
|
35
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
36
|
Generation of a protective murine monoclonal antibody against the stem of influenza hemagglutinins from group 1 viruses and identification of resistance mutations against it. PLoS One 2019; 14:e0222436. [PMID: 31513662 PMCID: PMC6742228 DOI: 10.1371/journal.pone.0222436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/30/2019] [Indexed: 01/03/2023] Open
Abstract
Vaccines that elicit broadly cross-neutralizing antibodies, including antibodies that target the conserved stem of hemagglutinin (HA), are being developed as a strategy for next-generation influenza vaccines that protect against influenza across multiple years. However, efficient induction of cross-neutralizing antibodies remains a challenge, and potential escape mutations have not been well characterized. Here we elicited cross-neutralizing antibodies by immunizing animals with the hemagglutinins from H5 and H9 subtype influenza A viruses that are sensitive to neutralization by stem antibodies. We further isolated and characterized an HA stem monoclonal antibody 4C2 that broadly neutralizes group 1 influenza viruses and identified HA mutations that reduced sensitivity to stem antibodies. Our results offer insights for next-generation influenza vaccine strategies for inducing cross-neutralizing antibodies.
Collapse
|
37
|
Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. J Virol 2019; 93:JVI.00058-19. [PMID: 31189708 PMCID: PMC6694820 DOI: 10.1128/jvi.00058-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023] Open
Abstract
The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle. Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.
Collapse
|
38
|
Padilla-Quirarte HO, Lopez-Guerrero DV, Gutierrez-Xicotencatl L, Esquivel-Guadarrama F. Protective Antibodies Against Influenza Proteins. Front Immunol 2019; 10:1677. [PMID: 31379866 PMCID: PMC6657620 DOI: 10.3389/fimmu.2019.01677] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
The influenza A virus infection continues to be a threat to the human population. The seasonal variation of the virus and the likelihood of periodical pandemics caused by completely new virus strains make it difficult to produce vaccines that efficiently protect against this infection. Antibodies (Abs) are very important in preventing the infection and in blocking virus propagation once the infection has taken place. However, the precise protection mechanism provided by these Abs still needs to be established. Furthermore, most research has focused on Abs directed to the globular head domain of hemagglutinin (HA). However, other domains of HA (like the stem) and other proteins are also able to elicit protective Ab responses. In this article, we review the current knowledge about the role of both neutralizing and non-neutralizing anti-influenza proteins Abs that play a protective role during infection or vaccination.
Collapse
Affiliation(s)
- Herbey O Padilla-Quirarte
- LIV, Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico.,Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | | | | | | |
Collapse
|
39
|
Sedeyn K, Saelens X. New antibody-based prevention and treatment options for influenza. Antiviral Res 2019; 170:104562. [PMID: 31323236 DOI: 10.1016/j.antiviral.2019.104562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The antigenic diversity of human influenza viruses represents a challenge to the development of vaccines with durable immune protection. In addition, small molecule anti-influenza viral drugs can bring clinical relief to influenza patients but the emergence of drug resistant viruses can rapidly limit the effectiveness of such drugs. In the past decade, a number of human monoclonal antibodies have been described that can bind to and neutralize a broad range of influenza A and B viruses. Most of these monoclonal antibodies are directed against the viral hemagglutinin (HA) stalk and some have now been evaluated in early to mid-stage clinical trials. An important conclusion from these clinical studies is that hemagglutinin stalk-specific antibodies are safe and can reduce influenza symptoms. In addition, examples of bi- and multi-specific anti-influenza antibodies are discussed, although such antibodies have not yet progressed into clinical testing. In the future, antibody-based therapies might become part of our arsenal to prevent and treat influenza.
Collapse
Affiliation(s)
- Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biochemistry and Microbiology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biochemistry and Microbiology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
40
|
Wu NC, Yamayoshi S, Ito M, Uraki R, Kawaoka Y, Wilson IA. Recurring and Adaptable Binding Motifs in Broadly Neutralizing Antibodies to Influenza Virus Are Encoded on the D3-9 Segment of the Ig Gene. Cell Host Microbe 2019; 24:569-578.e4. [PMID: 30308159 PMCID: PMC6327842 DOI: 10.1016/j.chom.2018.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Abstract
Discovery and characterization of broadly neutralizing antibodies (bnAbs) to the influenza hemagglutinin (HA) stem have provided insights for the development of a universal flu vaccine. Identification of signature features common to bnAbs from different individuals will be key to guiding immunogen design. S9-3-37 is a bnAb isolated from a healthy H5N1 vaccinee. Here, structural characterization reveals that the D3-9 gene segment of S9-3-37 contributes most of the interaction surface with the highly conserved stem epitope on HA. Comparison with other influenza bnAb crystal structures indicates that the D3-9 segment provides a general mechanism for targeting HA stem. Interestingly, such bnAbs can approach the HA stem with vastly different angles and orientations. Moreover, D3-9 can be translated in different reading frames in different bnAbs yet still target the same HA stem pocket. Thus, the D3-9 gene segment in the human immune repertoire can provide a robust defense against influenza virus.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Pharmacokinetics of MHAA4549A, an Anti-Influenza A Monoclonal Antibody, in Healthy Subjects Challenged with Influenza A Virus in a Phase IIa Randomized Trial. Clin Pharmacokinet 2019. [PMID: 28639229 DOI: 10.1007/s40262-017-0564-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVES MHAA4549A, a human anti-influenza immunoglobulin (Ig) G1 monoclonal antibody, is being developed to treat patients hospitalized for influenza A infection. This study examined the pharmacokinetics (PKs) of MHAA4549A in a phase IIa, randomized, double-blind, dose-ranging trial in healthy volunteers challenged with influenza A virus. METHODS Serum PK data were collected from 60 subjects in three single-dose groups (400, 1200, or 3600 mg) who received MHAA4549A intravenously 24-36 h after inoculation with the influenza A virus. Nasopharyngeal swab MHAA4549A concentration data were collected on days 1-8, and all subjects, including the placebo group, received 75 mg oseltamivir twice daily from days 7 to 11. Plasma samples were collected 4 h postdose on day 8 for oseltamivir and its active metabolite oseltamivir carboxylate (OC) (all subjects, n = 100), including subjects treated with oseltamivir alone and placebo. Noncompartmental analysis was performed for both nasal and serum PKs. RESULTS MHAA4549A showed dose-proportional serum PKs with a long terminal half-life (approximately 21.9-24.6 days) and slow clearance (approximately 152-240 mL/day); however, nasopharyngeal swab PKs were not dose proportional. No differences in mean plasma concentrations of oseltamivir and OC at 4 h postdose on day 8 were observed between the MHAA4549A treatment and placebo groups. No subjects who received MHAA4549A developed anti-drug antibodies. CONCLUSION MHAA4549A serum PKs were consistent with that of a human IgG1antibody without known endogenous targets. MHAA4549A showed nonlinear PKs in nasopharyngeal swab samples, which will guide future dose selection to achieve the high drug concentrations needed at the site of action for efficacy. These data demonstrate no PK interactions between MHAA4549A and oseltamivir, and support flat dosing. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT01980966.
Collapse
|
42
|
Kosik I, Yewdell JW. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019; 11:E346. [PMID: 31014029 PMCID: PMC6520700 DOI: 10.3390/v11040346] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza A virions possess two surface glycoproteins-the hemagglutinin (HA) and neuraminidase (NA)-which exert opposite functions. HA attaches virions to cells by binding to terminal sialic acid residues on glycoproteins/glycolipids to initiate the infectious cycle, while NA cleaves terminal sialic acids, releasing virions to complete the infectious cycle. Antibodies specific for HA or NA can protect experimental animals from IAV pathogenesis and drive antigenic variation in their target epitopes that impairs vaccine effectiveness in humans. Here, we review progress in understanding HA/NA co-evolution as each acquires epistatic mutations to restore viral fitness to mutants selected in the other protein by host innate or adaptive immune pressure. We also discuss recent exciting findings that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent nascent virion release and enhance Fc receptor-based activation of innate immune cells.
Collapse
Affiliation(s)
- Ivan Kosik
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
V H1-69 antiviral broadly neutralizing antibodies: genetics, structures, and relevance to rational vaccine design. Curr Opin Virol 2019; 34:149-159. [PMID: 30884330 DOI: 10.1016/j.coviro.2019.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) are potential therapeutic molecules and valuable tools for studying conserved viral targets for vaccine and drug design. Interestingly, antibody responses to conserved epitopes can be highly convergent at the molecular level. Human antibodies targeting a number of viral antigens have often been found to utilize a restricted set of immunoglobulin germline genes in different individuals. Here we review recent knowledge on VH1-69-encoded antibodies in antiviral responses to influenza virus, HCV, and HIV-1. These antibodies share common genetic and structural features, and often develop neutralizing activity against a broad spectrum of viral strains. Understanding the genetic and structural characteristics of such antibodies and the target epitopes should help advance novel strategies to elicit bnAbs through vaccination.
Collapse
|
44
|
GII.4 Human Norovirus: Surveying the Antigenic Landscape. Viruses 2019; 11:v11020177. [PMID: 30791623 PMCID: PMC6410000 DOI: 10.3390/v11020177] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Human norovirus is the leading cause of viral acute onset gastroenteritis disease burden, with 685 million infections reported annually. Vulnerable populations, such as children under the age of 5 years, the immunocompromised, and the elderly show a need for inducible immunity, as symptomatic dehydration and malnutrition can be lethal. Extensive antigenic diversity between genotypes and within the GII.4 genotype present major challenges for the development of a broadly protective vaccine. Efforts have been devoted to characterizing antibody-binding interactions with dynamic human norovirus viral-like particles, which recognize distinct antigenic sites on the capsid. Neutralizing antibody functions recognizing these sites have been validated in both surrogate (ligand blockade of binding) and in vitro virus propagation systems. In this review, we focus on GII.4 capsid protein epitopes as defined by monoclonal antibody binding. As additional antibody epitopes are defined, antigenic sites emerge on the human norovirus capsid, revealing the antigenic landscape of GII.4 viruses. These data may provide a road map for the design of candidate vaccine immunogens that induce cross-protective immunity and the development of therapeutic antibodies and drugs.
Collapse
|
45
|
Mutations in Influenza A Virus Neuraminidase and Hemagglutinin Confer Resistance against a Broadly Neutralizing Hemagglutinin Stem Antibody. J Virol 2019; 93:JVI.01639-18. [PMID: 30381484 DOI: 10.1128/jvi.01639-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV), a major cause of human morbidity and mortality, continuously evolves in response to selective pressures. Stem-directed, broadly neutralizing antibodies (sBnAbs) targeting the influenza virus hemagglutinin (HA) are a promising therapeutic strategy, but neutralization escape mutants can develop. We used an integrated approach combining viral passaging, deep sequencing, and protein structural analyses to define escape mutations and mechanisms of neutralization escape in vitro for the F10 sBnAb. IAV was propagated with escalating concentrations of F10 over serial passages in cultured cells to select for escape mutations. Viral sequence analysis revealed three mutations in HA and one in neuraminidase (NA). Introduction of these specific mutations into IAV through reverse genetics confirmed their roles in resistance to F10. Structural analyses revealed that the selected HA mutations (S123G, N460S, and N203V) are away from the F10 epitope but may indirectly impact influenza virus receptor binding, endosomal fusion, or budding. The NA mutation E329K, which was previously identified to be associated with antibody escape, affects the active site of NA, highlighting the importance of the balance between HA and NA function for viral survival. Thus, whole-genome population sequencing enables the identification of viral resistance mutations responding to antibody-induced selective pressure.IMPORTANCE Influenza A virus is a public health threat for which currently available vaccines are not always effective. Broadly neutralizing antibodies that bind to the highly conserved stem region of the influenza virus hemagglutinin (HA) can neutralize many influenza virus strains. To understand how influenza virus can become resistant or escape such antibodies, we propagated influenza A virus in vitro with escalating concentrations of antibody and analyzed viral populations by whole-genome sequencing. We identified HA mutations near and distal to the antibody binding epitope that conferred resistance to antibody neutralization. Additionally, we identified a neuraminidase (NA) mutation that allowed the virus to grow in the presence of high concentrations of the antibody. Virus carrying dual mutations in HA and NA also grew under high antibody concentrations. We show that NA mutations mediate the escape of neutralization by antibodies against HA, highlighting the importance of a balance between HA and NA for optimal virus function.
Collapse
|
46
|
Epstein SL. Universal Influenza Vaccines: Progress in Achieving Broad Cross-Protection In Vivo. Am J Epidemiol 2018; 187:2603-2614. [PMID: 30084906 DOI: 10.1093/aje/kwy145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Despite all we have learned since 1918 about influenza virus and immunity, available influenza vaccines remain inadequate to control outbreaks of unexpected strains. Universal vaccines not requiring strain matching would be a major improvement. Their composition would be independent of predicting circulating viruses and thus potentially effective against unexpected drift or pandemic strains. This commentary explores progress with candidate universal vaccines based on various target antigens. Candidates include vaccines based on conserved viral proteins such as nucleoprotein and matrix, on the conserved hemagglutinin (HA) stem, and various combinations. Discussion covers the differing evidence for each candidate vaccine demonstrating protection in animals against influenza viruses of widely divergent HA subtypes and groups; durability of protection; routes of administration, including mucosal, providing local immunity; and reduction of transmission. Human trials of some candidate universal vaccines have been completed or are underway. Interestingly, the HA stem, like nucleoprotein and matrix, induces immunity that permits some virus replication and emergence of escape mutants fit enough to cause disease. Vaccination with multiple target antigens will thus have advantages over use of single antigens. Ultimately, a universal vaccine providing long-term protection against all influenza virus strains might contribute to pandemic control and routine vaccination.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
47
|
Yamayoshi S, Yasuhara A, Ito M, Uraki R, Kawaoka Y. Differences in the ease with which mutant viruses escape from human monoclonal antibodies against the HA stem of influenza A virus. J Clin Virol 2018; 108:105-111. [PMID: 30292135 DOI: 10.1016/j.jcv.2018.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Broadly protective human monoclonal antibodies that recognize the conserved epitopes in the HA of influenza A virus are being developed as therapeutic agents. Emergence of resistant viruses must always be considered when developing therapeutic agents against influenza. OBJECTIVES We examined human hetero-reactive mAbs against the HA stem of influenza A virus for the ease with which escape mutant viruses emerged. STUDY DESIGN We attempted to generate the mutant viruses escaped from the hetero-reactive anti-HA stem antibodies. We also evaluated their protective efficacy, binding affinity, and epitopes. RESULTS We obtained several human monoclonal antibodies (mAbs) that react with the HA of different HA subtypes of influenza A virus belonging to group 1. Upon attempting to generate escape mutant viruses, we found that the ease with which such viruses emerged differed among the mAbs; viruses barely escaped from two of the mAbs (clones S9-3-37 and F20C77), whereas escape from the third mAb (clone F5B7) occurred readily. Comparisons of the mAbs revealed that the HA stem epitopes, in vitro neutralization potency, binding affinity to H1-HA, and protective efficacy against lethal challenge with H1N1pdm09 virus were all comparable. CONCLUSIONS These results demonstrate the importance of determining the ease with which escape mutant viruses emerge when evaluating anti-HA stem antibodies as antiviral agents during preclinical testing.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan; Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA.
| |
Collapse
|
48
|
Sicca F, Neppelenbroek S, Huckriede A. Effector mechanisms of influenza-specific antibodies: neutralization and beyond. Expert Rev Vaccines 2018; 17:785-795. [PMID: 30145912 DOI: 10.1080/14760584.2018.1516553] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Antibodies directed against influenza virus execute their protective function by exploiting a variety of effector mechanisms. Neutralizing antibodies have been thoroughly studied because of their pivotal role in preventing influenza virus infection and their presence in host serum is correlated with protection. Influenza antibodies can also exploit non-neutralizing effector mechanisms, which until recently have been largely overlooked. AREAS COVERED Here, we discuss the antibody response to influenza virus in its entire breadth. Neutralizing antibodies mostly target variable epitopes on influenza surface proteins and interfere with virus binding, fusion, or egress. Non-neutralizing antibodies instead usually target conserved epitopes which can be located on surface as well as internal proteins. They drive viral clearance via interaction of their Fc region with components of the innate immune system such as immune effector cells (e.g. NK cells, macrophages) or the complement system. EXPERT COMMENTARY Recent research has unraveled that influenza-specific antibodies target multiple proteins and make use of diverse effector mechanisms. Often these antibodies are cross-reactive among virus strains of the same subtype or even between subtypes. As such they are induced early in life and are boosted by regular encounters with virus or vaccine. Designing strategies to optimally exploit these pre-existing antibodies may represent the key for the development of new broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Federica Sicca
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Sam Neppelenbroek
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Anke Huckriede
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
49
|
Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc Natl Acad Sci U S A 2018; 115:E8276-E8285. [PMID: 30104379 PMCID: PMC6126756 DOI: 10.1073/pnas.1806133115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A key goal in the study of influenza virus evolution is to forecast which viral strains will persist and which ones will die out. Here we experimentally measure the effects of all amino acid mutations to the hemagglutinin protein from a human H3N2 influenza strain on viral growth in cell culture. We show that these measurements have utility for distinguishing among viral strains that do and do not succeed in nature. Overall, our work suggests that new high-throughput experimental approaches may be useful for understanding virus evolution in nature. Human influenza virus rapidly accumulates mutations in its major surface protein hemagglutinin (HA). The evolutionary success of influenza virus lineages depends on how these mutations affect HA’s functionality and antigenicity. Here we experimentally measure the effects on viral growth in cell culture of all single amino acid mutations to the HA from a recent human H3N2 influenza virus strain. We show that mutations that are measured to be more favorable for viral growth are enriched in evolutionarily successful H3N2 viral lineages relative to mutations that are measured to be less favorable for viral growth. Therefore, despite the well-known caveats about cell-culture measurements of viral fitness, such measurements can still be informative for understanding evolution in nature. We also compare our measurements for H3 HA to similar data previously generated for a distantly related H1 HA and find substantial differences in which amino acids are preferred at many sites. For instance, the H3 HA has less disparity in mutational tolerance between the head and stalk domains than the H1 HA. Overall, our work suggests that experimental measurements of mutational effects can be leveraged to help understand the evolutionary fates of viral lineages in nature—but only when the measurements are made on a viral strain similar to the ones being studied in nature.
Collapse
|
50
|
Kirkpatrick E, Qiu X, Wilson PC, Bahl J, Krammer F. The influenza virus hemagglutinin head evolves faster than the stalk domain. Sci Rep 2018; 8:10432. [PMID: 29992986 PMCID: PMC6041311 DOI: 10.1038/s41598-018-28706-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023] Open
Abstract
The limited ability of current influenza virus vaccines to protect from antigenically drifted or shifted viruses creates a public health problem that has led to the need to develop effective, broadly protective vaccines. While current influenza virus vaccines mostly induce an immune response against the immunodominant and variable head domain of the hemagglutinin, the major surface glycoprotein of the virus, the hemagglutinin stalk domain has been identified to harbor neutralizing B-cell epitopes that are conserved among and even between influenza A virus subtypes. A complete understanding of the differences in evolution between the main target of current vaccines and this more conserved stalk region are missing. Here, we performed an evolutionary analysis of the stalk domains of the hemagglutinin of pre-pandemic seasonal H1N1, pandemic H1N1, seasonal H3N2, and influenza B viruses and show quantitatively for the first time that the stalk domain is evolving at a rate that is significantly slower than that of the head domain. Additionally, we found that the cross-reactive epitopes in the stalk domain targeted by broadly neutralizing monoclonal antibodies are evolving at an even slower rate compared to the full head and stalk regions of the protein. Finally, a fixed-effects likelihood selection analysis was performed for these virus groups in both the head and stalk domains. While several positive selection sites were found in the head domain, only a single site in the stalk domain of pre-pandemic seasonal H1 hemagglutinin was identified at amino acid position 468 (H1 numbering from methionine). This site is not located in or close to the epitopes of cross-reactive anti-stalk monoclonal antibodies. Furthermore, we found that changes in this site do not significantly impact virus binding or neutralization by human anti-stalk antibodies, suggesting that some positive selection in the stalk domain is independent of immune pressures. We conclude that, while the stalk domain does evolve over time, this evolution is slow and, historically, is not directed to aid in evading neutralizing antibody responses.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Epitopes/immunology
- Evolution, Molecular
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinins/chemistry
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Kinetics
- Protein Domains/genetics
- Protein Domains/immunology
Collapse
Affiliation(s)
- Ericka Kirkpatrick
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xueting Qiu
- University of Texas School of Public Health, Houston, TX, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Justin Bahl
- University of Texas School of Public Health, Houston, TX, USA.
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|