1
|
Li Y, Tang J, Tang W, Liu C, Li Z. Host factors influencing sexual differentiation and transmission of Plasmodium: A comprehensive review. Acta Trop 2025; 266:107634. [PMID: 40288552 DOI: 10.1016/j.actatropica.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Malaria, a severe parasitic disease caused by Plasmodium infections, remains a major global health challenge. Efforts to eradicate malaria are complicated by the parasite's intricate life cycle, which alternates between vertebrate hosts and mosquito vectors. Host-derived factors and parasite-sourced components exert crucial roles in regulating this biological process. This review explores the critical role of host-derived factors in shaping Plasmodium sexual differentiation and transmission. We examine how vertebrate and mosquito host-specific factors either promote or restrict parasite development, influencing the transition from vertebrates to mosquitoes. Understanding these host-mediated mechanisms is crucial for developing novel transmission-blocking strategies to reduce malaria prevalence. By highlighting key interactions between hosts and parasites, this review provides insights into potential interventions that could disrupt Plasmodium transmission and contribute to malaria control efforts.
Collapse
Affiliation(s)
- Yanlin Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Herreros-Moya E, Sinka M, Harris AF, Entwistle J, Martin AC, Willis KJ. The food of life: which nectar do mosquitoes feed on?-An evidence-based meta-analysis. ENVIRONMENTAL ENTOMOLOGY 2025; 54:352-366. [PMID: 39899382 PMCID: PMC12005952 DOI: 10.1093/ee/nvaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/13/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
Nectar is an important source of food for adult mosquitoes, influencing their biological characteristics including longevity, fecundity, and flight range. Consequently, it can impact mosquitoes' survival and efficiency in transmitting disease. Different mosquito species are known to show preferences for flower nectar from certain plants, yet despite the importance of these plant-mosquito associations, knowledge of such biotic interactions is sparse. Here, we present a systematic map to address the question: "Which nectar do mosquitoes feed on?." The mapping process identified 49 articles (comprising 51 studies) meeting inclusion criteria, detailing 397 records of 74 mosquito species feeding on nectar from 145 plant species and 109 genera. Data extracted from the map were then analyzed to better understand if mosquitoes showed preferences for specific plant nectar. A key finding from this study is clear evidence supporting the hypothesis that mosquitoes exhibit preferences for nectar from particular plant species, including 77 species of plants and 58 genera for Aedes species, 18 species of plants and 17 genera for Anopheles species, and 16 species of plants and 16 genera for Culex species (all 3 genera belong in Diptera: Culicidae). Our study also highlighted the need for further field and laboratory work in time and space and using methods that randomly selects plant species for investigation. This would facilitate a better understanding of the relationship between mosquito feeding behavior and nectar seasonality and abundance; data that are critical for the development and improvement of new mosquito control methods to tackle vector-borne diseases.
Collapse
Affiliation(s)
| | | | - Angela F Harris
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julian Entwistle
- Innovative Vector Control Consortium, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew C Martin
- Scott Polar Research Institute, Department of Geography, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
3
|
Cooper AN, Malmgren L, Hawkes FM, Farrell IW, Hien DFDS, Hopkins RJ, Lefèvre T, Stevenson PC. Identifying mosquito plant hosts from ingested nectar secondary metabolites. Sci Rep 2025; 15:6488. [PMID: 39987345 PMCID: PMC11846922 DOI: 10.1038/s41598-025-88933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Establishing how plants contribute food and refuge to insects can be challenging for small species that are difficult to observe in their natural habitat, such as disease vectoring mosquitoes. Currently indirect methods of plant-host identification rely on DNA sequencing of ingested plant material but are often unsuccessful for small insects that feed primarily on plant sugars or have little contact with plant cells. Here we developed an innovative approach to determine species-specific phytophagy by detecting taxon-specific plant secondary metabolites (PSMs) in nectar. Two mosquito species were exposed to three PSMs, each present in the nectar of a known plant host, firstly from dosed sucrose solutions and secondly from flowers. Both experiments yielded high rates of PSM detection in mosquitoes using liquid chromatography-mass spectrometry (LC-MS). PSMs were consistently detected in mosquitoes up to 8 h post-ingestion. In experiments consisting of two or three plant species, multiple PSMs from different host plants could be detected. These positive results demonstrate that PSMs could be useful indicators of insect plant-hosts selection in the wild. With expanded knowledge of nectar-based PSMs across a landscape, improved knowledge of plant-host relationships could be achieved where direct observations in their natural habitat are lacking. Increasing understanding of vector insect ecology will have an important role in tackling vector-borne disease.
Collapse
Affiliation(s)
- Amanda N Cooper
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK.
| | - Louise Malmgren
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Frances M Hawkes
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Iain W Farrell
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International Maladies à Vecteurs en Afrique de l'Ouest (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Richard J Hopkins
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Thierry Lefèvre
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Philip C Stevenson
- Royal Botanic Gardens Kew, Kew Road, Richmond, Surrey, TW9 3AE, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
4
|
Isaïa J, Baur M, Wassef J, Monod S, Glaizot O, Christe P, Pigeault R. Impact of the intensity of infection in birds on Plasmodium development within Culex pipiens mosquitoes. Parasit Vectors 2025; 18:54. [PMID: 39953558 PMCID: PMC11827324 DOI: 10.1186/s13071-024-06652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/27/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND In vector-borne diseases, invertebrate hosts are exposed to highly variable quantities of parasites during their blood meal. This heterogeneity may partly explain the overdispersed distribution of parasites within the vector population and the variability in the extrinsic incubation period (EIP) of the parasite. Indeed, the quantity of parasites ingested is often considered as a good predictor of the quantity of parasites that will develop within the vectors, as well as the speed at which they will develop (i.e. EIP). However, density-dependent processes can influence the relationship between parasite burden in the vertebrate host and in vectors, making this relationship unclear at times. METHODS Here, we used an avian malaria system to investigate whether the proportion of red blood cells infected by sexual and/or asexual stages of Plasmodium relictum influences the intensity of infection and the EIP within vectors. For this purpose, we experimentally infected 12 birds in order to generate a range of infection intensity. More than 1000 mosquitoes took a blood meal on these hosts, and the development of Plasmodium within the vectors was followed for more than 20 days. RESULTS Our study reveals a negative relationship between the intensity of infection in birds and the time until 10% of mosquitoes become infectious (EIP10). A period of only 4 days was sufficient to detect sporozoites in at least 10% of mosquitoes fed on the most infected hosts. However, the number of sporozoites did not vary significantly according to the vertebrate host intensity of infection, but was positively correlated to the oocyst burden (parasitic stage preceding the sporozoite stage). CONCLUSIONS While the quantity of ingested parasites had no impact on oocyst and sporozoite burden in infectious mosquitoes, the EIP10 was affected. Studies have demonstrated that small changes in the EIP can have a significant effect on the number of mosquitoes living long enough to transmit parasites. Here, we observed a difference of 4-6 days in the detection of the first sporozoites, depending on the intensity of infection of the bitten vertebrate host. Considering that a gonotrophic cycle lasts 3-4 days, the shortened EIP may have significant effects on Plasmodium transmission.
Collapse
Affiliation(s)
- Julie Isaïa
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Molly Baur
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Wassef
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sarah Monod
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Zoology, State Museum of Natural Sciences, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Romain Pigeault
- Ecologie & Biologie Des Interactions (UMR 7267), EBI, Université de Poitiers, Poitiers, France
| |
Collapse
|
5
|
Karan M, Paul S, Nath S, Das B, Ghosh S, Karmakar S, Mandal P, Bhowmik B, Singh PK, Dixit R, Pal C. One-Step Multiplex Polymerase Chain Reaction Assay for the Detection of Major Disease-Transmitting Mosquito Vectors in India. Am J Trop Med Hyg 2025; 112:296-303. [PMID: 39591645 PMCID: PMC11803654 DOI: 10.4269/ajtmh.24-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/12/2024] [Indexed: 11/28/2024] Open
Abstract
Mosquitoes are important vectors that transmit viral, protozoan, and helminthic diseases across the world. Climate change and unplanned urbanization are accelerating the spread of these diseases. Controlling vector-borne diseases can be performed most effectively through vector control. Inadequate knowledge of vector bionomics is an impediment and can lead to inappropriate vector control efforts. However, the conventional methods of vector identification are based on morphological differences, demand a significant amount of time and specific skills, and are often misleading. An efficient and affordable solution is needed to quickly and accurately identify pooled samples from vast geographical territories. To ensure the correct identification of distorted or pooled samples in India, a set of definitive steps is required, including the construction of unique primers and the standardization of a one-step assay based on the second internal transcribed spacer gene of the ribosomal DNA. We have successfully developed and confirmed a highly efficient one-step multiplex reverse transcriptase polymerase chain reaction assay for the accurate identification of major mosquito vectors, especially in the cases of both the adult and larval forms of Anopheles sp., Aedes sp., and Culex sp. Hence, the specificity, universality, and uniqueness of these primers could serve as a critical tool for the rapid one-step and one-reaction identification of mosquitoes to control mosquito-borne disease outbreaks and public health emergencies.
Collapse
Affiliation(s)
- Mintu Karan
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Sharmistha Paul
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Supriya Nath
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Bedanta Das
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Sanhita Ghosh
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Suman Karmakar
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Pritam Mandal
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Biplab Bhowmik
- Department of Zoology, Diamond Harbour Women´s University, Diamond Harbour, India
| | | | | | - Chiranjib Pal
- Cellular Immunology and Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| |
Collapse
|
6
|
Rezende FO, da Silva DA, Comini S, de Mendonça S, Santos E, Baldon L, Marçal B, de Freitas AC, Moreira R, Sousa V, Lima M, Rocha M, Moreira LA, Ferreira A. Dietary Influences on the Longevity and Reproductive Success of Anopheles aquasalis in Laboratory Studies: Sucrose vs. Honey. INSECTS 2024; 15:978. [PMID: 39769580 PMCID: PMC11677520 DOI: 10.3390/insects15120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Malaria continues to be a major public health challenge in tropical and subtropical regions. Anopheles aquasalis, a key laboratory model for malaria research, plays a critical role in the study of vector-parasite interactions. Although vector life traits and environmental factors such as age and resource availability can influence the transmission potential of mosquitoes for Plasmodium parasites, the impact of different adult diets on their survival and reproductive fitness remains underexplored. This study investigates the effects of sucrose and honey diets on the longevity, fertility, and fecundity of Anopheles aquasalis under controlled laboratory conditions. Our results demonstrate that the type of diet significantly affects mosquito survival and reproductive output. Specifically, mosquitoes consuming honey exhibited a substantially longer lifespan and higher fecundity compared to those fed on sucrose. Additionally, eggs laid by honey-fed females had notably higher hatching success rates than those from sucrose-fed females. These findings underscore the profound impact of dietary choices on the reproductive fitness of Anopheles aquasalis, with important implications for laboratory studies focusing on vector-parasite interactions. This study highlights the need for a careful consideration of diet in vector research to ensure accurate assessment of vector competence and disease transmission.
Collapse
Affiliation(s)
- Fernanda Oliveira Rezende
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Dimas Augusto da Silva
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Sara Comini
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Silvana de Mendonça
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Ellen Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil;
| | - Lívia Baldon
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Bruno Marçal
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Amanda Cupertino de Freitas
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Rafaela Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
- Laboratório de Ecologia do Adoecimento & Florestas NUPEB/ICEB, Universidade Federal de Ouro Preto, Ouro Preto 35402-163, Brazil
| | - Viviane Sousa
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Mariana Lima
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Marcele Rocha
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Luciano A. Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| | - Alvaro Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (F.O.R.); (D.A.d.S.); (S.C.); (S.d.M.); (L.B.); (B.M.); (A.C.d.F.); (R.M.); (V.S.); (M.L.); (M.R.); (L.A.M.)
| |
Collapse
|
7
|
Tchouassi DP, Milugo TK, Torto B. Feasibility of sand fly control based on knowledge of sensory ecology. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101274. [PMID: 39341456 DOI: 10.1016/j.cois.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/11/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Phlebotomine sand flies are vectors of multiple human pathogens but are well known for enabling transmission of Leishmania parasites, which cause leishmaniasis, the visceral form constituting a serious public health disease and a second parasitic killer in the world after malaria. Sensory ecology shapes sand fly behavior, including host seeking for a blood meal, nectar foraging, oviposition, and reproduction, which directly impacts on disease transmission. As such, knowledge of sand fly sensory ecology, including olfactory and physical (visual, tactile, thermal, and acoustic) cues, is essential to enable their exploitation in the development of novel tools for sand fly surveillance and control. A previous review discussed the chemical ecology of sand flies with a focus on plant feeding (nectar foraging) behavior. Here, we contribute to the existing literature by providing an analysis of the feasibility of using knowledge gained from studies on sand fly sensory ecology for control of the vector.
Collapse
Affiliation(s)
- David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, 00100 Nairobi, Kenya
| | - Trizah K Milugo
- Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, 00100 Nairobi, Kenya; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa.
| |
Collapse
|
8
|
Kinya F, Milugo TK, Mutero CM, Wondji CS, Torto B, Tchouassi DP. Insights into malaria vectors-plant interaction in a dryland ecosystem. Sci Rep 2024; 14:20625. [PMID: 39232051 PMCID: PMC11375087 DOI: 10.1038/s41598-024-71205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Improved understanding of mosquito-plant feeding interactions can reveal insights into the ecological dynamics of pathogen transmission. In wild malaria vectors Anopheles gambiae s.l. and An. funestus group surveyed in selected dryland ecosystems of Kenya, we found a low level of plant feeding (2.8%) using biochemical cold anthrone test but uncovered 14-fold (41%) higher rate via DNA barcoding targeting the chloroplast rbcL gene. Plasmodium falciparum positivity was associated with either reduced or increased total sugar levels and varied by mosquito species. Gut analysis revealed the mosquitoes to frequently feed on acacia plants (~ 89%) (mainly Vachellia tortilis) in the family Fabaceae. Chemical analysis revealed 1-octen-3-ol (29.9%) as the dominant mosquito attractant, and the sugars glucose, sucrose, fructose, talose and inositol enriched in the vegetative parts, of acacia plants. Nutritional analysis of An. longipalpis C with high plant feeding rates detected fewer sugars (glucose, talose, fructose) compared to acacia plants. These results demonstrate (i) the sensitivity of DNA barcoding to detect plant feeding in malaria vectors, (ii) Plasmodium infection status affects energetic reserves of wild anopheline vectors and (iii) nutrient content and olfactory cues likely represent potent correlates of acacia preferred as a host plant by diverse malaria vectors. The results have relevance in the development of odor-bait control strategies including attractive targeted sugar-baits.
Collapse
Affiliation(s)
- Fiona Kinya
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Trizah K Milugo
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Technical University of Kenya, P. O. Box 52428-00200, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 1359, Yaoundé, Cameroon
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X323, Pretoria, 0001, South Africa
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
9
|
Ouattara SB, Hien DFDS, Nao ET, Paré PSL, Guissou E, Cohuet A, Morlais I, Yerbanga RS, Dabiré KR, Ouédraogo JB, Mouline K, Lefèvre T. A simple, field-applicable method to increase the infectivity of wild isolates of Plasmodium falciparum to mosquito vectors. Malar J 2024; 23:135. [PMID: 38711028 PMCID: PMC11075210 DOI: 10.1186/s12936-024-04969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing. This poses a limitation to studies relying on the experimental infection of large numbers of mosquitoes with natural isolates of Plasmodium. A simple, field-applicable method is presented for improving parasite infectivity by concentrating Plasmodium falciparum gametocytes. METHODS Anopheles gambiae received one of the following 5 blood treatments through DMFA: (i) whole blood (WB) samples from naturally-infected donors; (ii) donor blood whose plasma was replaced with the same volume of Plasmodium-naive AB + serum (1:1 control); (iii) plasma replaced with a volume of malaria-naïve AB + serum equivalent to half (1:1/2), or to a quarter (1:1/4), of the initial plasma volume; and (v) donor blood whose plasma was fully removed (RBC). The experiment was repeated 4 times using 4 distinct wild parasite isolates. Seven days post-infection, a total of 1,095 midguts were examined for oocyst presence. RESULTS Substituting plasma with reduced amounts (1:1/2 and 1:1/4) of Plasmodium-naive AB + serum led to a 31% and 17% increase of the mosquito infection rate and to a 85% and 308% increase in infection intensity compared to the 1:1 control, respectively. The full removal of plasma (RBC) reduced the infection rate by 58% and the intensity by 64% compared to the 1:1 control. Reducing serum volumes (1:1/2; 1:1/4 and RBC) had no impact on mosquito feeding rate and survival when compared to the 1:1 control. CONCLUSIONS Concentrating gametocytic blood by replacing natural plasma by lower amount of naive serum can enhance the success of mosquito infection. In an area with low gametocyte density, this simple and practical method of parasite concentration can facilitate studies on human-to-mosquito transmission such as the evaluation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Seydou Bienvenu Ouattara
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso.
- Institut Des Sciences Et Techniques (INSTech Bobo), Bobo-Dioulasso, Burkina Faso.
- Centre Hospitalier Régional de Gaoua (CHRG), Gaoua, Burkina Faso.
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Ekôbié T Nao
- Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso
| | - Prisca S L Paré
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Edwige Guissou
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
- Ecole Normale Supérieure, BP 376, Koudougou, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Isabelle Morlais
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- Institut Des Sciences Et Techniques (INSTech Bobo), Bobo-Dioulasso, Burkina Faso
| | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- Institut Des Sciences Et Techniques (INSTech Bobo), Bobo-Dioulasso, Burkina Faso
| | - Karine Mouline
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de La Santé, Direction Régionale de L'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso.
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Paré PSL, Hien DFDS, Youba M, Yerbanga RS, Cohuet A, Gouagna L, Diabaté A, Ignell R, Dabiré RK, Gnankiné O, Lefèvre T. The paradox of plant preference: The malaria vectors Anopheles gambiae and Anopheles coluzzii select suboptimal food sources for their survival and reproduction. Ecol Evol 2024; 14:e11187. [PMID: 38533352 PMCID: PMC10963300 DOI: 10.1002/ece3.11187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Anopheles gambiae and Anopheles coluzzii mosquitoes, two major malaria vectors in sub-Saharan Africa, exhibit selectivity among plant species as potential food sources. However, it remains unclear if their preference aligns with optimal nutrient intake and survival. Following an extensive screening of the effects of 31 plant species on An. coluzzii in Burkina Faso, we selected three species for their contrasting effects on mosquito survival, namely Ixora coccinea, Caesalpinia pulcherrima, and Combretum indicum. We assessed the sugar content of these plants and their impact on mosquito fructose positivity, survival, and insemination rate, using Anopheles coluzzii and Anopheles gambiae, with glucose 5% and water as controls. Plants displayed varying sugar content and differentially affected the survival, sugar intake, and insemination rate of mosquitoes. All three plants were more attractive to mosquitoes than controls, with An. gambiae being more responsive than An. coluzzii. Notably, C. indicum was the most attractive but had the lowest sugar content and offered the lowest survival, insemination rate, and fructose positivity. Our findings unveil a performance-preference mismatch in An. coluzzii and An. gambiae regarding plant food sources. Several possible reasons for this negative correlation between performance and preference are discussed.
Collapse
Affiliation(s)
- Prisca S. L. Paré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- MIVEGEC, Université de Montpellier, IRD, CNRSMontpellierFrance
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche—Sciences de la Vie et de la Terre (UFR‐SVT)Université Joseph KI‐ZERBO (UJKZ)OuagadougouBurkina Faso
| | - Domonbabele F. D. S. Hien
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- MIVEGEC, Université de Montpellier, IRD, CNRSMontpellierFrance
- Laboratoire Mixte International Sur les Vecteurs (LAMIVECT)Bobo‐DioulassoBurkina Faso
| | - Mariam Youba
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- MIVEGEC, Université de Montpellier, IRD, CNRSMontpellierFrance
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche—Sciences de la Vie et de la Terre (UFR‐SVT)Université Joseph KI‐ZERBO (UJKZ)OuagadougouBurkina Faso
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- Laboratoire Mixte International Sur les Vecteurs (LAMIVECT)Bobo‐DioulassoBurkina Faso
- Institut Des Sciences et Techniques (INSTech—BOBO)Bobo‐DioulassoBurkina Faso
| | - Anna Cohuet
- MIVEGEC, Université de Montpellier, IRD, CNRSMontpellierFrance
- Laboratoire Mixte International Sur les Vecteurs (LAMIVECT)Bobo‐DioulassoBurkina Faso
| | | | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- Laboratoire Mixte International Sur les Vecteurs (LAMIVECT)Bobo‐DioulassoBurkina Faso
| | - Rickard Ignell
- Unit of Chemical Ecology, Department of Plant Protection Biology, Disease Vector GroupSwedish University of Agricultural SciencesUppsalaSweden
| | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- Laboratoire Mixte International Sur les Vecteurs (LAMIVECT)Bobo‐DioulassoBurkina Faso
| | - Olivier Gnankiné
- Laboratoire d'Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche—Sciences de la Vie et de la Terre (UFR‐SVT)Université Joseph KI‐ZERBO (UJKZ)OuagadougouBurkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo‐DioulassoBurkina Faso
- MIVEGEC, Université de Montpellier, IRD, CNRSMontpellierFrance
- Laboratoire Mixte International Sur les Vecteurs (LAMIVECT)Bobo‐DioulassoBurkina Faso
| |
Collapse
|
11
|
Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, Hien DF, Yerbanga RS, Ouedraogo GA, Dabiré KR, Djidjou-Demasse R, Cohuet A, Lefèvre T. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc Biol Sci 2024; 291:20232097. [PMID: 38166422 PMCID: PMC10762442 DOI: 10.1098/rspb.2023.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2024] Open
Abstract
Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission.
Collapse
Affiliation(s)
- Bernard M. Somé
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Edwige Guissou
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
- Ecole Normale Supérieure, BP 376 Koudougou, Burkina Faso
| | - Dari F. Da
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
| | - Quentin Richard
- IMAG, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 700000, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Koudraogo B. Yameogo
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele FdS. Hien
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S. Yerbanga
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Georges A. Ouedraogo
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Kounbobr R. Dabiré
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| | - Thierry Lefèvre
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| |
Collapse
|
12
|
Werling K, Itoe MA, Shaw WR, Hien RD, Bazié BJ, Aminata F, Adams KL, Ouattara BS, Sanou M, Peng D, Dabiré RK, Da DF, Yerbanga RS, Diabaté A, Lefèvre T, Catteruccia F. Development of circulating isolates of Plasmodium falciparum is accelerated in Anopheles vectors with reduced reproductive output. PLoS Negl Trop Dis 2024; 18:e0011890. [PMID: 38206958 PMCID: PMC10807765 DOI: 10.1371/journal.pntd.0011890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/24/2024] [Accepted: 12/28/2023] [Indexed: 01/13/2024] Open
Abstract
Anopheles gambiae and its sibling species Anopheles coluzzii are the most efficient vectors of the malaria parasite Plasmodium falciparum. When females of these species feed on an infected human host, oogenesis and parasite development proceed concurrently, but interactions between these processes are not fully understood. Using multiple natural P. falciparum isolates from Burkina Faso, we show that in both vectors, impairing steroid hormone signaling to disrupt oogenesis leads to accelerated oocyst growth and in a manner that appears to depend on both parasite and mosquito genotype. Consistently, we find that egg numbers are negatively linked to oocyst size, a metric for the rate of oocyst development. Oocyst growth rates are also strongly accelerated in females that are in a pre-gravid state, i.e. that fail to develop eggs after an initial blood meal. Overall, these findings advance our understanding of mosquito-parasite interactions that influence P. falciparum development in malaria-endemic regions.
Collapse
Affiliation(s)
- Kristine Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | | | - Bali Jean Bazié
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Fofana Aminata
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Kelsey L. Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | | | - Mathias Sanou
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Dari F. Da
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
13
|
Buyel JF. Product safety aspects of plant molecular farming. Front Bioeng Biotechnol 2023; 11:1238917. [PMID: 37614627 PMCID: PMC10442644 DOI: 10.3389/fbioe.2023.1238917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Plant molecular farming (PMF) has been promoted since the 1990s as a rapid, cost-effective and (most of all) safe alternative to the cultivation of bacteria or animal cells for the production of biopharmaceutical proteins. Numerous plant species have been investigated for the production of a broad range of protein-based drug candidates. The inherent safety of these products is frequently highlighted as an advantage of PMF because plant viruses do not replicate in humans and vice versa. However, a more nuanced analysis of this principle is required when considering other pathogens because toxic compounds pose a risk even in the absence of replication. Similarly, it is necessary to assess the risks associated with the host system (e.g., the presence of toxic secondary metabolites) and the production approach (e.g., transient expression based on bacterial infiltration substantially increases the endotoxin load). This review considers the most relevant host systems in terms of their toxicity profile, including the presence of secondary metabolites, and the risks arising from the persistence of these substances after downstream processing and product purification. Similarly, we discuss a range of plant pathogens and disease vectors that can influence product safety, for example, due to the release of toxins. The ability of downstream unit operations to remove contaminants and process-related toxic impurities such as endotoxins is also addressed. This overview of plant-based production, focusing on product safety aspects, provides recommendations that will allow stakeholders to choose the most appropriate strategies for process development.
Collapse
Affiliation(s)
- J. F. Buyel
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
14
|
Huang W, Rodrigues J, Bilgo E, Tormo JR, Challenger JD, De Cozar-Gallardo C, Pérez-Victoria I, Reyes F, Castañeda-Casado P, Gnambani EJ, Hien DFDS, Konkobo M, Urones B, Coppens I, Mendoza-Losana A, Ballell L, Diabate A, Churcher TS, Jacobs-Lorena M. Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes. Science 2023; 381:533-540. [PMID: 37535741 DOI: 10.1126/science.adf8141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP: 545, Burkina Faso
| | | | - Joseph D Challenger
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | | | | | | | - Pablo Castañeda-Casado
- Drug Metabolism and Pharmacokinetics (DMPK) Discovery, In Vitro/In Vivo Translation (IVIVT), GSK, 28760 Tres Cantos, Madrid, Spain
| | | | | | - Maurice Konkobo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP: 545, Burkina Faso
| | - Beatriz Urones
- Global Health Medicines R&D, GSK, Tres Cantos, 28760 Madrid, Spain
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Lluís Ballell
- Global Health Medicines R&D, GSK, Tres Cantos, 28760 Madrid, Spain
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso BP: 545, Burkina Faso
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Guissou E, Da DF, Hien DFDS, Yameogo KB, Yerbanga SR, Ouédraogo GA, Dabiré KR, Lefèvre T, Cohuet A. Intervention reducing malaria parasite load in vector mosquitoes: No impact on Plasmodium falciparum extrinsic incubation period and the survival of Anopheles gambiae. PLoS Pathog 2023; 19:e1011084. [PMID: 37195964 PMCID: PMC10191285 DOI: 10.1371/journal.ppat.1011084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In the fight against malaria, transmission blocking interventions (TBIs) such as transmission blocking vaccines or drugs, are promising approaches to complement conventional tools. They aim to prevent the infection of vectors and thereby reduce the subsequent exposure of a human population to infectious mosquitoes. The effectiveness of these approaches has been shown to depend on the initial intensity of infection in mosquitoes, often measured as the mean number of oocysts resulting from an infectious blood meal in absence of intervention. In mosquitoes exposed to a high intensity of infection, current TBI candidates are expected to be ineffective at completely blocking infection but will decrease parasite load and therefore, potentially also affect key parameters of vector transmission. The present study investigated the consequences of changes in oocyst intensity on subsequent parasite development and mosquito survival. To address this, we experimentally produced different intensities of infection for Anopheles gambiae females from Burkina Faso by diluting gametocytes from three natural Plasmodium falciparum local isolates and used a newly developed non-destructive method based on the exploitation of mosquito sugar feeding to track parasite and mosquito life history traits throughout sporogonic development. Our results indicate the extrinsic incubation period (EIP) of P. falciparum and mosquito survival did not vary with parasite density but differed significantly between parasite isolates with estimated EIP50 of 16 (95% CI: 15-18), 14 (95% CI: 12-16) and 12 (95% CI: 12-13) days and median longevity of 25 (95% CI: 22-29), 15 (95% CI: 13-15) and 18 (95% CI: 17-19) days for the three isolates respectively. Our results here do not identify unintended consequences of the decrease of parasite loads in mosquitoes on the parasite incubation period or on mosquito survival, two key parameters of vectorial capacity, and hence support the use of transmission blocking strategies to control malaria.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
- Ecole Normale Supérieure, Koudougou, Burkina Faso
| | - Dari Frédéric Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | | | | | | | | | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| |
Collapse
|
16
|
Paré PSL, Hien DFDS, Bayili K, Yerbanga RS, Cohuet A, Carrasco D, Guissou E, Gouagna LC, Yaméogo KB, Diabaté A, Ignell R, Dabiré RK, Lefèvre T, Gnankiné O. Natural plant diet impacts phenotypic expression of pyrethroid resistance in Anopheles mosquitoes. Sci Rep 2022; 12:21431. [PMID: 36509797 PMCID: PMC9744732 DOI: 10.1038/s41598-022-25681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Success in reducing malaria transmission through vector control is threatened by insecticide resistance in mosquitoes. Although the proximal molecular mechanisms and genetic determinants involved are well documented, little is known about the influence of the environment on mosquito resistance to insecticides. The aim of this study was to assess the effect of plant sugar feeding on the response of Anopheles gambiae sensu lato to insecticides. Adults were fed with one of four treatments, namely a 5% glucose control solution, nectariferous flowers of Barleria lupulina, of Cascabela thevetia and a combination of both B. lupulina + C. thevetia. WHO tube tests were performed with 0.05% and 0.5% deltamethrin, and knockdown rate (KD) and the 24 h mosquito mortality were measured. Plant diet significantly influenced mosquito KD rate at both concentrations of deltamethrin. Following exposure to 0.05% deltamethrin, the B. lupulina diet induced a 2.5 fold-increase in mosquito mortality compared to 5% glucose. Species molecular identification confirmed the predominance of An. gambiae (60% of the samples) over An. coluzzii and An. arabiensis in our study area. The kdr mutation L1014F displayed an allelic frequency of 0.75 and was positively associated with increased phenotypic resistance to deltamethrin. Plant diet, particularly B. lupulina, increased the susceptibility of mosquitoes to insecticides. The finding that B. lupulina-fed control individuals (i.e. not exposed to deltamethrin) also displayed increased 24 h mortality suggests that plant-mediated effects may be driven by a direct effect of plant diet on mosquito survival rather than indirect effects through interference with insecticide-resistance mechanisms. Thus, some plant species may weaken mosquitoes, making them less vigorous and more vulnerable to the insecticide. There is a need for further investigation, using a wider range of plant species and insecticides, in combination with other relevant environmental factors, to better understand the expression and evolution of insecticide resistance.
Collapse
Affiliation(s)
- Prisca S. L. Paré
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche - Sciences de la Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO (UJKZ), Ouagadougou, Burkina Faso
| | - Domonbabele F. D. S. Hien
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Koama Bayili
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé S. Yerbanga
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso ,Institut des Sciences et Techniques (INSTech - BOBO), Bobo‑Dioulasso, Burkina Faso
| | - Anna Cohuet
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - David Carrasco
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Edwige Guissou
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Louis-Clément Gouagna
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Koudraogo B. Yaméogo
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Rickard Ignell
- grid.6341.00000 0000 8578 2742Department of Plant Protection Biology, Unit of Chemical Ecology, Disease Vector Group, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roch K. Dabiré
- grid.457337.10000 0004 0564 0509Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- grid.462603.50000 0004 0382 3424MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France ,Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo-Dioulasso, Burkina Faso
| | - Olivier Gnankiné
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Unité de Formation et de Recherche - Sciences de la Vie et de la Terre (UFR-SVT), Université Joseph KI-ZERBO (UJKZ), Ouagadougou, Burkina Faso
| |
Collapse
|
17
|
Muema JM, Bargul JL, Obonyo MA, Njeru SN, Matoke-Muhia D, Mutunga JM. Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions. Parasit Vectors 2022; 15:298. [PMID: 36002857 PMCID: PMC9404607 DOI: 10.1186/s13071-022-05367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
An integrated approach to innovatively counter the transmission of various arthropod-borne diseases to humans would benefit from strategies that sustainably limit onward passage of infective life cycle stages of pathogens and parasites to the insect vectors and vice versa. Aiming to accelerate the impetus towards a disease-free world amid the challenges posed by climate change, discovery, mindful exploitation and integration of active natural products in design of pathogen transmission-blocking interventions is of high priority. Herein, we provide a review of natural compounds endowed with blockade potential against transmissible forms of human pathogens reported in the last 2 decades from 2000 to 2021. Finally, we propose various translational strategies that can exploit these pathogen transmission-blocking natural products into design of novel and sustainable disease control interventions. In summary, tapping these compounds will potentially aid in integrated combat mission to reduce disease transmission trends.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.,International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - James M Mutunga
- Department of Biological Sciences, Mount Kenya University (MKU), P.O. Box 54, Thika, 01000, Kenya.,School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
18
|
Oke CE, Ingham VA, Walling CA, Reece SE. Vector control: agents of selection on malaria parasites? Trends Parasitol 2022; 38:890-903. [PMID: 35981937 DOI: 10.1016/j.pt.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Insect vectors are responsible for spreading many infectious diseases, yet interactions between pathogens/parasites and insect vectors remain poorly understood. Filling this knowledge gap matters because vectors are evolving in response to the deployment of vector control tools (VCTs). Yet, whilst the evolutionary responses of vectors to VCTs are being carefully monitored, the knock-on consequences for parasite evolution have been overlooked. By examining how mosquito responses to VCTs impact upon malaria parasite ecology, we derive a framework for predicting parasite responses. Understanding how VCTs affect the selection pressures imposed on parasites could help to mitigate against parasite evolution that leads to unfavourable epidemiological outcomes. Furthermore, anticipating parasite evolution will inform monitoring strategies for VCT programmes as well as uncovering novel VCT strategies.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Victoria A Ingham
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69210 Heidelberg, Germany
| | - Craig A Walling
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
19
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Can floral nectars reduce transmission of Leishmania? PLoS Negl Trop Dis 2022; 16:e0010373. [PMID: 35551517 PMCID: PMC9098005 DOI: 10.1371/journal.pntd.0010373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background Insect-vectored Leishmania are responsible for loss of more disability-adjusted life years than any parasite besides malaria. Elucidation of the environmental factors that affect parasite transmission by vectors is essential to develop sustainable methods of parasite control that do not have off-target effects on beneficial insects or environmental health. Many phytochemicals that inhibit growth of sand fly-vectored Leishmania—which have been exhaustively studied in the search for phytochemical-based drugs—are abundant in nectars, which provide sugar-based meals to infected sand flies. Principle findings In a quantitative meta-analysis, we compare inhibitory phytochemical concentrations for Leishmania to concentrations present in floral nectar and pollen. We show that nectar concentrations of several flowering plant species exceed those that inhibit growth of Leishmania cell cultures, suggesting an unexplored, landscape ecology-based approach to reduce Leishmania transmission. Significance If nectar compounds are as effective against parasites in the sand fly gut as predicted from experiments in vitro, strategic planting of antiparasitic phytochemical-rich floral resources or phytochemically enriched baits could reduce Leishmania loads in vectors. Such interventions could provide an environmentally friendly complement to existing means of disease control. Leishmania parasites infect over a million people each year—including over 200,000 infections with deadly visceral leishmaniasis—resulting in a greater health burden than any human parasite besides malaria. Leishmania infections of humans are transmitted by blood-feeding sand flies, which also consume floral nectar. Nectar contains many chemicals that inhibit Leishmania growth and are candidate treatments for infection of humans. However, these same compounds could also reduce infection in nectar-consuming sand flies. By combining existing data on the chemistry of nectar and sensitivity of Leishmania to plant compounds, we show that some floral nectars contain sufficient chemical concentrations to inhibit growth of insect-stage Leishmania. Our results suggest that consumption of these nectars could reduce parasite loads in sand flies and transmission of parasites to new human hosts. In contrast to insecticide-based methods of sand fly control, incorporation of antiparasitic nectar sources into landscapes and domestic settings could benefit public health without threatening beneficial insects. These findings suggest an unexplored, landscape-based approach to reduce transmission of a major neglected tropical disease worldwide.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail: ,
| | - Ryan S. Schwarz
- Department of Biology, Fort Lewis College, Durango, Colorado, United States of America
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
20
|
Palmer-Young EC, Schwarz RS, Chen Y, Evans JD. Punch in the gut: Parasite tolerance of phytochemicals reflects host diet. Environ Microbiol 2022; 24:1805-1817. [PMID: 35315572 DOI: 10.1111/1462-2920.15981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
Gut parasites of plant-eating insects are exposed to antimicrobial phytochemicals that can reduce infection. Trypanosomatid gut parasites infect insects of diverse nutritional ecologies as well as mammals and plants, raising the question of how host diet-associated phytochemicals shape parasite evolution and host specificity. To test the hypothesis that phytochemical tolerance of trypanosomatids reflects the chemical ecology of their hosts, we compared related parasites from honey bees and mosquitoes-hosts that differ in phytochemical consumption-and contrasted our results with previous studies on phylogenetically related, human-parasitic Leishmania. We identified one bacterial and ten plant-derived substances with known antileishmanial activity that also inhibited honey bee parasites associated with colony collapse. Bee parasites exhibited greater tolerance of chrysin-a flavonoid found in nectar, pollen, and plant resin-derived propolis. In contrast, mosquito parasites were more tolerant of cinnamic acid-a product of lignin decomposition present in woody debris-rich larval habitats. Parasites from both hosts tolerated many compounds that inhibit Leishmania, hinting at possible trade-offs between phytochemical tolerance and mammalian infection. Our results implicate the phytochemistry of host diets as a potential driver of insect-trypanosomatid associations, and identify compounds that could be incorporated into colony diets or floral landscapes to ameliorate infection in bees. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Ryan S Schwarz
- Department of Biology, Fort Lewis College, Durango, CO, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| |
Collapse
|
21
|
Shah HA, Carrasco LR, Hamlet A, Murray KA. Exploring agricultural land-use and childhood malaria associations in sub-Saharan Africa. Sci Rep 2022; 12:4124. [PMID: 35260722 PMCID: PMC8904834 DOI: 10.1038/s41598-022-07837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Agriculture in Africa is rapidly expanding but with this comes potential disbenefits for the environment and human health. Here, we retrospectively assess whether childhood malaria in sub-Saharan Africa varies across differing agricultural land uses after controlling for socio-economic and environmental confounders. Using a multi-model inference hierarchical modelling framework, we found that rainfed cropland was associated with increased malaria in rural (OR 1.10, CI 1.03-1.18) but not urban areas, while irrigated or post flooding cropland was associated with malaria in urban (OR 1.09, CI 1.00-1.18) but not rural areas. In contrast, although malaria was associated with complete forest cover (OR 1.35, CI 1.24-1.47), the presence of natural vegetation in agricultural lands potentially reduces the odds of malaria depending on rural-urban context. In contrast, no associations with malaria were observed for natural vegetation interspersed with cropland (veg-dominant mosaic). Agricultural expansion through rainfed or irrigated cropland may increase childhood malaria in rural or urban contexts in sub-Saharan Africa but retaining some natural vegetation within croplands could help mitigate this risk and provide environmental co-benefits.
Collapse
Affiliation(s)
- Hiral Anil Shah
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
- Grantham Institute - Climate Change and the Environment - Imperial College London, London, UK.
| | - Luis Roman Carrasco
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Kris A Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- MRC Unit The Gambia at London, School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
22
|
Hien DFDS, Paré PSL, Cooper A, Koama BK, Guissou E, Yaméogo KB, Yerbanga RS, Farrell IW, Ouédraogo JB, Gnankiné O, Ignell R, Cohuet A, Dabiré RK, Stevenson PC, Lefèvre T. Contrasting effects of the alkaloid ricinine on the capacity of Anopheles gambiae and Anopheles coluzzii to transmit Plasmodium falciparum. Parasit Vectors 2021; 14:479. [PMID: 34526119 PMCID: PMC8444468 DOI: 10.1186/s13071-021-04992-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Besides feeding on blood, females of the malaria vector Anopheles gambiae sensu lato readily feed on natural sources of plant sugars. The impact of toxic secondary phytochemicals contained in plant-derived sugars on mosquito physiology and the development of Plasmodium parasites remains elusive. The focus of this study was to explore the influence of the alkaloid ricinine, found in the nectar of the castor bean Ricinus communis, on the ability of mosquitoes to transmit Plasmodium falciparum. Methods Females of Anopheles gambiae and its sibling species Anopheles coluzzii were exposed to ricinine through sugar feeding assays to assess the effect of this phytochemical on mosquito survival, level of P. falciparum infection and growth rate of the parasite. Results Ricinine induced a significant reduction in the longevity of both Anopheles species. Ricinine caused acceleration in the parasite growth rate with an earlier invasion of the salivary glands in both species. At a concentration of 0.04 g l−1 in An. coluzzii, ricinine had no effect on mosquito infection, while 0.08 g l−1 ricinine-5% glucose solution induced a 14% increase in An. gambiae infection rate. Conclusions Overall, our findings reveal that consumption of certain nectar phytochemicals can have unexpected and contrasting effects on key phenotypic traits that govern the intensity of malaria transmission. Further studies will be required before concluding on the putative role of ricinine as a novel control agent, including the development of ricinine-based toxic and transmission-blocking sugar baits. Testing other secondary phytochemicals in plant nectar will provide a broader understanding of the impact which plants can have on the transmission of vector-borne diseases. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04992-z.
Collapse
Affiliation(s)
- Domonbabele F D S Hien
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso. .,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso. .,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
| | - Prisca S L Paré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Université Joseph KI-ZERBO, Ougadougou, Burkina Faso
| | - Amanda Cooper
- Royal Botanic Gardens, Kew, Surrey, Richmond, TW9 3AE, UK
| | - Benjamin K Koama
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Institut Des Sciences Et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Edwige Guissou
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Koudraogo B Yaméogo
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswendé S Yerbanga
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Iain W Farrell
- Royal Botanic Gardens, Kew, Surrey, Richmond, TW9 3AE, UK
| | - Jean B Ouédraogo
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | | | - Rickard Ignell
- Department of Plant Protection Biology, Unit of Chemical Ecology, Disease Vector Group, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Cohuet
- Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS), Bobo Dioulasso, Burkina Faso.,Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Surrey, Richmond, TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Thierry Lefèvre
- Laboratoire Mixte International Sur Les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.,MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.,Centre de Recherche en Écologie Et Évolution de La Santé (CREES), Montpellier, France
| |
Collapse
|
23
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Njoroge TM, Calla B, Berenbaum MR, Stone CM. Specific phytochemicals in floral nectar up-regulate genes involved in longevity regulation and xenobiotic metabolism, extending mosquito life span. Ecol Evol 2021; 11:8363-8380. [PMID: 34188892 PMCID: PMC8216986 DOI: 10.1002/ece3.7665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/06/2022] Open
Abstract
During nectar feeding, mosquitoes ingest a plethora of phytochemicals present in nectar. The ecological and physiological impacts of these ingested phytochemicals on the disease vectors are poorly understood. In this study, we evaluated the effects of three nectar phytochemicals-- caffeine, p-coumaric acid, and quercetin--on longevity, fecundity, and sugar-feeding behavior of the Asian tiger mosquito (Aedes albopictus). Adult females of Ae. albopictus were provided continuous access to 10% sucrose supplemented with one of the three phytochemicals and their fecundity, longevity, and the amount of sucrose consumed determined. Transcriptome response of Ae. albopictus females to p-coumaric acid and quercetin was also evaluated. Dietary quercetin and p-coumaric acid enhanced the longevity of female Ae. albopictus, while caffeine resulted in reduced sugar consumption and enhanced fecundity of gravid females. RNA-seq analyses identified 237 genes that were differentially expressed (DE) in mosquitoes consuming p-coumaric acid or quercetin relative to mosquitoes consuming an unamended sucrose solution diet. Among the DE genes, several encoding antioxidant enzymes, cytochrome P450s, and heat shock proteins were upregulated, whereas histones were downregulated. Overall, our findings show that consuming certain nectar phytochemicals can enhance adult longevity of female Asian tiger mosquitoes, apparently by differentially regulating the expression level of genes involved in longevity and xenobiotic metabolism; this has potential impacts not only on life span but also on vectorial capacity and insecticide resistance.
Collapse
Affiliation(s)
- Teresia M. Njoroge
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Bernarda Calla
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - May R. Berenbaum
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Christopher M. Stone
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Illinois Natural History SurveyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| |
Collapse
|
25
|
Guissou E, Waite JL, Jones M, Bell AS, Suh E, Yameogo KB, Djègbè N, Da DF, Hien DFDS, Yerbanga RS, Ouedraogo AG, Dabiré KR, Cohuet A, Thomas MB, Lefèvre T. A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors. Sci Rep 2021; 11:9344. [PMID: 33927245 PMCID: PMC8085177 DOI: 10.1038/s41598-021-88659-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, infected with Plasmodium falciparum (six field isolates from gametocyte-infected patients in Burkina Faso and the NF54 strain) and across a range of temperatures relevant to malaria transmission in field conditions. Monitoring individual infectious mosquitoes was feasible. The estimated median EIP of P. falciparum at 27 °C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking revealed that sporozoites transfer onto cotton wool can occur at least until day 40 post-infection. Short individual EIP were associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France.
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso.
- Université Nazi Boni, Bobo Dioulasso, Burkina Faso.
| | - Jessica L Waite
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
- Green Mountain Antibodies, Inc. 1 Mill St. Suites 1-7, Burlington, VT, 05401, USA
| | - Matthew Jones
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew S Bell
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Eunho Suh
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Nicaise Djègbè
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Domonbabele F D S Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
- York Environmental Sustainability Institute and Department of Biology, University of York, York, UK
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
26
|
Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021; 35:108992. [PMID: 33882310 PMCID: PMC8116483 DOI: 10.1016/j.celrep.2021.108992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/06/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.
Collapse
Affiliation(s)
- Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xiaofeng Zhou
- Human Phenome Institute, Fudan University, Shanghai 200433, PRC
| | - Yuebiao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC.
| |
Collapse
|
27
|
Carvajal-Lago L, Ruiz-López MJ, Figuerola J, Martínez-de la Puente J. Implications of diet on mosquito life history traits and pathogen transmission. ENVIRONMENTAL RESEARCH 2021; 195:110893. [PMID: 33607093 DOI: 10.1016/j.envres.2021.110893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The environment, directly and indirectly, affects many mosquito traits in both the larval and adult stages. The availability of food resources is one of the key factors influencing these traits, although its role in mosquito fitness and pathogen transmission remains unclear. Larvae nutritional status determines their survivorship and growth, having also an impact on adult characteristics like longevity, body size, flight capacity or vector competence. During the adult stage, mosquito diet affects their survival rate, fecundity and host-seeking behaviour. It also affects mosquito susceptibility to infection, which may determine the vectorial capacity of mosquito populations. The aim of this review is to critically revise the current knowledge on the effects that both larval and adult quantity and quality of the diet have on mosquito life history traits, identifying the critical knowledge gaps and proposing future research lines. The quantity and quality of food available through their lifetime greatly determine adult body size, longevity or biting frequency, therefore affecting their competence for pathogen transmission. In addition, natural sugar sources for adult mosquitoes, i.e., specific plants providing high metabolic energy, might affect their host-seeking and vertebrate biting behaviour. However, most of the studies are carried out under laboratory conditions, highlighting the need for studies of feeding behaviour of mosquitoes under field conditions. This kind of studies will increase our knowledge of the impact of diets on pathogen transmission, helping to develop successful control plans for vector-borne diseases.
Collapse
Affiliation(s)
- Laura Carvajal-Lago
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - María José Ruiz-López
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - Jordi Figuerola
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Josué Martínez-de la Puente
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; Departamento de Parasitología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
28
|
Stopard IJ, Churcher TS, Lambert B. Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony. PLoS Comput Biol 2021; 17:e1008658. [PMID: 33591963 PMCID: PMC7909686 DOI: 10.1371/journal.pcbi.1008658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/26/2021] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
During sporogony, malaria-causing parasites infect a mosquito, reproduce and migrate to the mosquito salivary glands where they can be transmitted the next time blood feeding occurs. The time required for sporogony, known as the extrinsic incubation period (EIP), is an important determinant of malaria transmission intensity. The EIP is typically estimated as the time for a given percentile, x, of infected mosquitoes to develop salivary gland sporozoites (the infectious parasite life stage), which is denoted by EIPx. Many mechanisms, however, affect the observed sporozoite prevalence including the human-to-mosquito transmission probability and possibly differences in mosquito mortality according to infection status. To account for these various mechanisms, we present a mechanistic mathematical model, which explicitly models key processes at the parasite, mosquito and observational scales. Fitting this model to experimental data, we find greater variation in the EIP than previously thought: we estimated the range between EIP10 and EIP90 (at 27°C) as 4.5 days compared to 0.9 days using existing statistical methods. This pattern holds over the range of study temperatures included in the dataset. Increasing temperature from 21°C to 34°C decreased the EIP50 from 16.1 to 8.8 days. Our work highlights the importance of mechanistic modelling of sporogony to (1) improve estimates of malaria transmission under different environmental conditions or disease control programs and (2) evaluate novel interventions that target the mosquito life stages of the parasite.
Collapse
Affiliation(s)
- Isaac J. Stopard
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. PLoS Pathog 2020; 16:e1008908. [PMID: 33347501 PMCID: PMC7785212 DOI: 10.1371/journal.ppat.1008908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors. Plasmodium falciparum, the deadliest form of human malaria, is transmitted when female Anopheles mosquitoes bite people and take a blood meal in order to develop eggs. To date, it is still poorly understood whether Anopheles mosquitoes that get infected with P. falciparum suffer fitness costs. Here, we find that the number of eggs produced by Anopheles gambiae and Anopheles stephensi females is not affected by P. falciparum infection, and that the mating status of the mosquitoes does not impact the parasite. However, in field experiments infecting a related species, Anopheles coluzzii, with P. falciparum using blood from donors in Burkina Faso, we find that interfering with the expression of a gene normally triggered by the sexual transfer of the steroid hormone 20-hydroxyecdysone induces increasing costs to egg development as females become more infected with P. falciparum, with no impacts on the parasite. The results of our study suggest that pathways triggered by mating may help Anopheles prevent reproductive costs associated with P. falciparum infection, providing new insights into evolutionary strategies adopted by anophelines in the face of a longstanding association with Plasmodium parasites.
Collapse
|
30
|
Wang M, Wang J. Glucose transporter GLUT1 influences Plasmodium berghei infection in Anopheles stephensi. Parasit Vectors 2020; 13:285. [PMID: 32503601 PMCID: PMC7275331 DOI: 10.1186/s13071-020-04155-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022] Open
Abstract
Background Sugar-feeding provides energy for mosquitoes. Facilitated glucose transporters (GLUTs) are responsible for the uptake of glucose in animals. However, knowledge of GLUTs function in Anopheles spp. is limited. Methods Phylogenetic analysis of GLUTs in Anopheles stephensi was performed by the maximum likelihood and Bayesian inference methods. The spatial and temporal expression patterns of four Asteglut genes were analyzed by qPCR. The function of Asteglut1 was examined using a dsRNA-mediated RNA interference method. Transcriptome analysis was used to investigate the global influence of Asteglut1 on mosquito physiology. Results We identified 4 glut genes, Asteglut1, Asteglutx, Asteglut3 and Asteglut4 in An. stephensi. Asteglut1, Asteglut3 and Asteglut4 were mainly expressed in the midgut. Plasmodium berghei infection differentially regulated the expression of Asteglut genes with significant downregulation of Asteglut1 and Asteglut4, while upregulation of Asteglutx. Only knocking-down Asteglut1 facilitated Plasmodium berghei infection in An. stephensi. This might be due to the accumulation of glucose prior to blood-feeding in dsAsteglut1-treated mosquitoes. Our transcriptome analysis revealed that knockdown of Asteglut1 differentially regulated expression of genes associated with multiple functional clusters, especially those related to detoxification and immunity. The dysregulation of multiple pathways might contribute to the increased P. berghei infection. Conclusions Our study shows that Asteglut1 participates in defense against P. berghei in An. stephensi. The regulation of Asteglut1 on vector competence might through modulating multiple biological processes, such as detoxification and immunity.![]()
Collapse
|
31
|
Moyo P, Mugumbate G, Eloff JN, Louw AI, Maharaj VJ, Birkholtz LM. Natural Products: A Potential Source of Malaria Transmission Blocking Drugs? Pharmaceuticals (Basel) 2020; 13:E251. [PMID: 32957668 PMCID: PMC7558993 DOI: 10.3390/ph13090251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The ability to block human-to-mosquito and mosquito-to-human transmission of Plasmodium parasites is fundamental to accomplish the ambitious goal of malaria elimination. The WHO currently recommends only primaquine as a transmission-blocking drug but its use is severely restricted by toxicity in some populations. New, safe and clinically effective transmission-blocking drugs therefore need to be discovered. While natural products have been extensively investigated for the development of chemotherapeutic antimalarial agents, their potential use as transmission-blocking drugs is comparatively poorly explored. Here, we provide a comprehensive summary of the activities of natural products (and their derivatives) of plant and microbial origins against sexual stages of Plasmodium parasites and the Anopheles mosquito vector. We identify the prevailing challenges and opportunities and suggest how these can be mitigated and/or exploited in an endeavor to expedite transmission-blocking drug discovery efforts from natural products.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Grace Mugumbate
- Department of Chemistry, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, Private Bag, 7724 Chinhoyi, Zimbabwe;
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag x04, Onderstepoort 0110 Pretoria, South Africa;
| | - Abraham I. Louw
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Vinesh J. Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| | - Lyn-Marié Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028 Pretoria, South Africa;
| |
Collapse
|
32
|
Siya A, Kalule BJ, Ssentongo B, Lukwa AT, Egeru A. Malaria patterns across altitudinal zones of Mount Elgon following intensified control and prevention programs in Uganda. BMC Infect Dis 2020; 20:425. [PMID: 32552870 PMCID: PMC7301530 DOI: 10.1186/s12879-020-05158-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background Malaria remains a major tropical vector-borne disease of immense public health concern owing to its debilitating effects in sub-Saharan Africa. Over the past 30 years, the high altitude areas in Eastern Africa have been reported to experience increased cases of malaria. Governments including that of the Republic of Uganda have responded through intensifying programs that can potentially minimize malaria transmission while reducing associated fatalities. However, malaria patterns following these intensified control and prevention interventions in the changing climate remains widely unexplored in East African highland regions. This study thus analyzed malaria patterns across altitudinal zones of Mount Elgon, Uganda. Methods Times-series data on malaria cases (2011–2017) from five level III local health centers occurring across three altitudinal zones; low, mid and high altitude was utilized. Inverse Distance Weighted (IDW) interpolation regression and Mann Kendall trend test were used to analyze malaria patterns. Vegetation attributes from the three altitudinal zones were analyzed using Normalized Difference Vegetation Index (NDVI) was used to determine the Autoregressive Integrated Moving Average (ARIMA) model was used to project malaria patterns for a 7 year period. Results Malaria across the three zones declined over the study period. The hotspots for malaria were highly variable over time in all the three zones. Rainfall played a significant role in influencing malaria burdens across the three zones. Vegetation had a significant influence on malaria in the higher altitudes. Meanwhile, in the lower altitude, human population had a significant positive correlation with malaria cases. Conclusions Despite observed decline in malaria cases across the three altitudinal zones, the high altitude zone became a malaria hotspot as cases variably occurred in the zone. Rainfall played the biggest role in malaria trends. Human population appeared to influence malaria incidences in the low altitude areas partly due to population concentration in this zone. Malaria control interventions ought to be strengthened and strategically designed to achieve no malaria cases across all the altitudinal zones. Integration of climate information within malaria interventions can also strengthen eradication strategies of malaria in such differentiated altitudinal zones.
Collapse
Affiliation(s)
- Aggrey Siya
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda. .,Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| | - Bosco John Kalule
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Benard Ssentongo
- College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Akim Tafadzwa Lukwa
- Faculty of Health Sciences, School of Public Health and Family Medicine, Health Economics Unit, University of Cape Town, Cape Town, South Africa
| | - Anthony Egeru
- College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
33
|
Guissou E, Poda S, de Sales Hien DF, Yerbanga SR, Da DF, Cohuet A, Fournet F, Roux O, Maiga H, Diabaté A, Gilles J, Bouyer J, Ouédraogo AG, Rayaissé JB, Lefèvre T, Dabiré KR. Effect of irradiation on the survival and susceptibility of female Anopheles arabiensis to natural isolates of Plasmodium falciparum. Parasit Vectors 2020; 13:266. [PMID: 32434542 PMCID: PMC7238563 DOI: 10.1186/s13071-020-04135-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released females to transmit pathogens. This study aimed to assess the effect of irradiation on the survival and competence of Anopheles arabiensis females for Plasmodium falciparum in laboratory conditions. METHODS Pupae were irradiated at 95 Gy of gamma-rays, and emerging females were challenged with one of 14 natural isolates of P. falciparum. Seven days post-blood meal (dpbm), irradiated and unirradiated-control females were dissected to assess the presence of oocysts, using 8 parasite isolates. On 14 dpbm, sporozoite dissemination in the head/thorax was also examined, using 10 parasites isolates including 4 in common with the 7 dpbm dissection (oocyst data). The survivorship of irradiated and unirradiated-control mosquitoes was monitored. RESULTS Overall, irradiation reduced the proportion of mosquitoes infected with the oocyst stages by 17% but this effect was highly inconsistent among parasite isolates. Secondly, there was no significant effect of irradiation on the number of developing oocysts. Thirdly, there was no significant difference in both the sporozoite infection rate and load between the irradiated and unirradiated-control mosquitoes. Fourthly, irradiation had varying effects on female survival with either a negative effect or no effect. CONCLUSIONS The effect of irradiation on mosquito competence strongly varied among parasite isolates. Because of such isolate variability and, the fact that different parasite isolates were used to collect oocyst and sporozoite data, the irradiation-mediated reduction of oocyst prevalence was not confirmed for the sporozoite stages. Our data indicate that irradiated female An. arabiensis could contribute to malaria transmission, and highlight the need for perfect sexing tools, which would prevent the release of females as part of SIT programmes.
Collapse
Affiliation(s)
- Edwige Guissou
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Université Nazi Boni, Bobo Dioulasso, Burkina Faso
| | - Serge Poda
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Serge Rakiswende Yerbanga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Dari Frédéric Da
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Anna Cohuet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Florence Fournet
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Olivier Roux
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Hamidou Maiga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Jeremie Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | - Jean-Baptiste Rayaissé
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| |
Collapse
|
34
|
Nignan C, Niang A, Maïga H, Sawadogo SP, Poda BS, Gnankine O, Dabiré KR, Tripet F, Diabaté A. Comparison of swarming, mating performance and longevity of males Anopheles coluzzii between individuals fed with different natural fruit juices in laboratory and semi-field conditions. Malar J 2020; 19:173. [PMID: 32375825 PMCID: PMC7201624 DOI: 10.1186/s12936-020-03248-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/26/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is assumed that malaria vectors feed on locally available nectar sources to obtain energy. Sugar feeding is energetically critical for the Anopheles male swarming and mating activities. However, little is known about the impact of local nectar feeding on male physiological development and its consequences on male mosquito life traits in the malaria control context. This study aimed to evaluate the influence of local fruit juices on the life traits of males Anopheles coluzzii. Methods Swarming characteristics (number of males in swarm, number of mating pairs, and swarm duration) in semi-field conditions; mating rate and longevity in a laboratory setting were compared between males An. coluzzii fed exclusively with mango, papaya or banana juices. The trophic preference was investigated in semi-field conditions. Results The results of this study showed that in the laboratory, mosquitoes fed with papaya juices lived on average longer (10 days) than those fed with banana or mango juices (5 days) and had higher a mating rate (53%) than those fed with banana juice (40%). In the semi-field, the swarm size of mosquitoes fed with banana juice (85 males) was larger than that of mosquitoes fed with mango juice (60 males). The number of mating pairs formed from banana-fed male swarms (17 mating pairs) was higher than that formed from mango-fed male swarm (8 mating pairs). There was no difference in swarming duration between male treatments. Male mosquitoes had a preference for papaya and banana juices. Conclusions The results indicate that the origin of plant-derived feeding is an important factor in the survival and reproduction of mosquitoes. This calls for further investigations of chemical contents of nectars and their impact on the physiological development of mosquitoes.
Collapse
Affiliation(s)
- Charles Nignan
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. .,Laboratoire d'Entomologie Fondamentale et Appliqué/UFR‑SVT/Université Joseph KI - ZERBO, Ouagadougou, Burkina Faso.
| | - Abdoulaye Niang
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Hamidou Maïga
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Bèwadéyir Serge Poda
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Laboratoire d'Entomologie Fondamentale et Appliqué/UFR‑SVT/Université Joseph KI - ZERBO, Ouagadougou, Burkina Faso
| | - Olivier Gnankine
- Laboratoire d'Entomologie Fondamentale et Appliqué/UFR‑SVT/Université Joseph KI - ZERBO, Ouagadougou, Burkina Faso
| | | | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|
35
|
Meza FC, Roberts JM, Sobhy IS, Okumu FO, Tripet F, Bruce TJA. Behavioural and Electrophysiological Responses of Female Anopheles gambiae Mosquitoes to Volatiles from a Mango Bait. J Chem Ecol 2020; 46:387-396. [PMID: 32274623 PMCID: PMC7205772 DOI: 10.1007/s10886-020-01172-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
Attractive Toxic Sugar Baits (ATSB) are used in a “lure-and-kill” approach for management of the malaria vector Anopheles gambiae, but the active chemicals were previously unknown. Here we collected volatiles from a mango, Mangifera indica, juice bait which is used in ATSBs in Tanzania and tested mosquito responses. In a Y-tube olfactometer, female mosquitoes were attracted to the mango volatiles collected 24–48 h, 48–72 h and 72–96 h after preparing the bait but volatiles collected at 96–120 h were no longer attractive. Volatile analysis revealed emission of 23 compounds in different chemical classes including alcohols, aldehydes, alkanes, benzenoids, monoterpenes, sesquiterpenes and oxygenated terpenes. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of An. gambiae showed robust responses to 4 compounds: humulene, (E)-caryophyllene, terpinolene and myrcene. In olfactometer bioassays, mosquitoes were attracted to humulene and terpinolene. (E)-caryophyllene was marginally attractive while myrcene elicited an avoidance response with female mosquitoes. A blend of humulene, (E)-caryophyllene and terpinolene was highly attractive to females (P < 0.001) when tested against a solvent blank. Furthermore, there was no preference when this synthetic blend was offered as a choice against the natural sample. Our study has identified the key compounds from mango juice baits that attract An. gambiae and this information may help to improve the ATSBs currently used against malaria vectors.
Collapse
Affiliation(s)
- Felician C Meza
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Of Mlabani Passage, P.O. Box 53, Ifakara, Tanzania
| | - Joe M Roberts
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Centre for Integrated Pest Management, Department of Crop and Environment Sciences, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Islam S Sobhy
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Plant Protection, Faculty of Agriculture, Suez Canal university, 41522, Ismailia, Egypt
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Of Mlabani Passage, P.O. Box 53, Ifakara, Tanzania
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Toby J A Bruce
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
36
|
King JG. Developmental and comparative perspectives on mosquito immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103458. [PMID: 31377103 DOI: 10.1016/j.dci.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diseases spread by mosquitoes have killed more people than those spread by any other group of arthropod vectors and remain an important factor in determining global health and economic stability. The mosquito innate immune system can act to either modulate infection with human pathogens or fight off entomopathogens and increase the fitness and longevity of infected mosquitoes. While work remains towards understanding the larval immune system and the development of the mosquito immune system, it has recently become clearer that environmental factors heavily shape the developing mosquito immune system and continue to influence the adult immune system as well. The adult immune system has been well-studied and is known to involve multiple tissues and diverse molecular mechanisms. This review summarizes and synthesizes what is currently understood about the development of the mosquito immune system and includes comparisons of immune components unique to mosquitoes among the blood-feeding arthropods as well as important distinguishing factors between the anopheline and culicine mosquitoes. An explanation is included for how mosquito immunity factors into vector competence and vectorial capacity is presented along with a model for the interrelationships between nutrition, microbiome, pathogen interactions and behavior as they relate to mosquito development, immune status, adult female fitness and ultimately, vectorial capacity. Novel discoveries in the fields of mosquito ecoimmunology, neuroimmunology, and intracellular antiviral responses are highlighted.
Collapse
Affiliation(s)
- Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Dorman 402, Mississippi State, MS 39762, USA.
| |
Collapse
|
37
|
Barreaux AMG, Oumbouke WA, Tia IZ, Brou N, Koffi AA, N'guessan R, Thomas MB. Semi-field evaluation of the cumulative effects of a "Lethal House Lure" on malaria mosquito mortality. Malar J 2019; 18:298. [PMID: 31470873 PMCID: PMC6716835 DOI: 10.1186/s12936-019-2936-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is growing interest in the potential to modify houses to target mosquitoes with insecticides or repellents as they search for human hosts. One version of this 'Lethal House Lure' approach is the In2Care® EaveTube, which consists of a section of polyvinyl chloride (PVC) pipe fitted into a closed eave, with an insert comprising electrostatic netting treated with insecticide powder placed inside the tube. Preliminary evidence suggests that when combined with screening of doors and windows, there is a reduction in entry of mosquitoes and an increase in mortality. However, the rate of overnight mortality remains unclear. The current study used a field enclosure built around experimental huts to investigate the mortality of cohorts of mosquitoes over multiple nights. METHODS Anopheles gambiae sensu lato mosquitoes were collected from the field as larvae and reared through to adult. Three-to-five days old adult females were released inside an enclosure housing two modified West African style experimental huts at a field site in M'be, Côte d'Ivoire. Huts were either equipped with insecticide-treated tubes at eave height and had closed windows (treatment) or had open windows and open tubes (controls). The number of host-seeking mosquitoes entering the huts and cumulative mortality were monitored over 2 or 4 days. RESULTS Very few (0-0.4%) mosquitoes were able to enter huts fitted with insecticide-treated tubes and closed windows. In contrast, mosquitoes continually entered the control huts, with a cumulative mean of 50-80% over 2 to 4 days. Baseline mortality with control huts was approximately 2-4% per day, but the addition of insecticide-treated tubes increased mortality to around 25% per day. Overall cumulative mortality was estimated to be up to 87% over 4 days when huts were fitted with tubes. CONCLUSION Only 20-25% of mosquitoes contacted insecticide-treated tubes or entered control huts in a given night. However, mosquitoes continue to host search over sequential nights, and this can lead to high cumulative mortality over 2 to 4 days. This mortality should contribute to community-level reduction in transmission assuming sufficient coverage of the intervention.
Collapse
Affiliation(s)
- Antoine M G Barreaux
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA.
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Welbeck A Oumbouke
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Innocent Zran Tia
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - N'guessan Brou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Raphaël N'guessan
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
38
|
Mafra-Neto A, Dekker T. Novel odor-based strategies for integrated management of vectors of disease. CURRENT OPINION IN INSECT SCIENCE 2019; 34:105-111. [PMID: 31247410 PMCID: PMC6717672 DOI: 10.1016/j.cois.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 05/26/2023]
Abstract
The proven ability of vector mosquitoes to adapt to various strategies developed to control them has enabled mosquito-borne diseases such as malaria, dengue, and lymphatic filariasis to remain entrenched as public health threats all over the world. Rather than continuing to seek a miracle cure for all mosquito vector problems among the ranks of single mode-of-action chemical pesticides, today's developers of vector control strategies are increasingly turning to more integrated, varied techniques, relying on pheromones and other semiochemicals to effect vector control through behavioral manipulation of the vector. Examples of this focus include attract-and-kill technologies utilizing floral odors and vertebrate host-associated scent cues to achieve control of adult mosquitoes, and selective oviposition attractants and larval phagostimulants to improve the efficacy of bacterial larvicides.
Collapse
Affiliation(s)
| | - Teun Dekker
- Department of Plant Protection Biology, Division of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
39
|
Airs PM, Kudrna KE, Bartholomay LC. Impact of sugar composition on meal distribution, longevity, and insecticide toxicity in Aedes aegypti. Acta Trop 2019; 191:221-227. [PMID: 30633897 DOI: 10.1016/j.actatropica.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Toxic Sugar Baits (TSBs) are an inexpensive and field-applicable approach to deliver a variety of insecticides to sugar-seeking mosquitoes. We reasoned that carbohydrate chemistry could alter the performance and efficacy of TSBs. In this study, the uptake, distribution, and survival of female Aedes aegypti provided with twelve different aqueous sugar meals was recorded. Sucrose, a standard control sugar used in mosquito rearing, is always diverted to the ventral diverticulum upon ingestion; but other sugars that might be found in nectar (e.g., maltose, mannose, and raffinose) dispersed to both the diverticulum and midgut. Sugar meals composed of arabinose, lactose, or cellobiose significantly reduced survival of Ae. aegypti compared to sucrose controls, with or without the addition of boric acid insecticide. The addition of arabinose to a TSB comprised of sucrose and boric acid reduced the survival of Ae. aegypti even when non-toxic sugar meals were readily available. In choice assays, Ae. aegypti were equally likely to feed on TSBs containing arabinose despite the toxicity associated with arabinose ingestion. TSBs typically contain broad spectrum insecticides; insecticidal RNA species that induce species-specific gene silencing are a potential alternative. To assess the potential of RNA delivery in a TSB, biodistribution of double-stranded RNA (dsRNA), was tracked after per os delivery in different sugar meals. None of the sugars tested facilitated uptake of dsRNA into midgut epithelia or other tissues. Overall, sourcing sugar baits from sources containing sugars with toxic properties may improve TSB efficacy in the field.
Collapse
Affiliation(s)
- Paul M Airs
- Department of Pathobiological Sciences University of Wisconsin- Madison, Madison, WI, 53706, United States
| | - Katherine E Kudrna
- Department of Pathobiological Sciences University of Wisconsin- Madison, Madison, WI, 53706, United States
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences University of Wisconsin- Madison, Madison, WI, 53706, United States.
| |
Collapse
|
40
|
Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): Monthly swarming and mating frequency and their relation to environmental factors. PLoS One 2018; 13:e0205966. [PMID: 30403762 PMCID: PMC6221289 DOI: 10.1371/journal.pone.0205966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/04/2018] [Indexed: 12/04/2022] Open
Abstract
Swarming is a key part of the natural system of reproduction of anopheline mosquito populations, and a better understanding of swarming and mating systems in a targeted species in its natural habitat would contribute to better design control strategies with a greater chance of success. Our study investigated the monthly occurrence of swarming and the mating frequency (within swarms) of Anopheles arabiensis in Dioulassoba, Burkina Faso and their relationship with local environmental factors. Mosquitoes collected from swarms were described in terms of body size, recent sugar meal intake, and female repletion, insemination, and Plasmodium falciparum infection status. Swarms of An. arabiensis were found in each month of the year. Both start and end times of swarming varied significantly between months, correlating with the time of sunset. Swarming mostly started after or coincided with sunset from late July to early October but occurred before sunset from late October to early July. Swarming duration, the number of mosquitoes and mating pairs per swarm, and time to first mating were significantly different between months in an inverse relationship with the monthly rainfall. The number of mating pairs was strongly and positively correlated with swarm size. Almost all the females caught in copula were inseminated but a very few were blood fed; no P. falciparum infection was observed. Males caught in copula and in solo were similar in body size and in the proportion which had taken a recent sugar meal. Our investigations showed that An. arabiensis reproductive activities are most frequent during the dry season, suggesting either the species’ preference for dry climatic conditions or a lack of available breeding sites during the rainy season due to the seasonal flooding in this area. Targeting interventions to kill mosquitoes in swarms or to achieve an over-flooding ratio of sterile males during the rainy season would increase their efficiency in reducing the population density of this vector.
Collapse
|
41
|
Bernardo MA, Singer MS. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers. ACTA ACUST UNITED AC 2018; 220:2848-2857. [PMID: 28814608 DOI: 10.1242/jeb.143800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health.
Collapse
Affiliation(s)
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06105, USA
| |
Collapse
|
42
|
Lefevre T, Ohm J, Dabiré KR, Cohuet A, Choisy M, Thomas MB, Cator L. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol Appl 2018; 11:456-469. [PMID: 29636799 PMCID: PMC5891056 DOI: 10.1111/eva.12571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.
Collapse
Affiliation(s)
- Thierry Lefevre
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Johanna Ohm
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Anna Cohuet
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Choisy
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Oxford University Clinical Research UnitHanoiVietnam
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Lauren Cator
- Grand Challenges in Ecosystems and EnvironmentImperial College LondonAscotUK
| |
Collapse
|
43
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
44
|
Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, Whitehead SA, Thomas MB. Rethinking the extrinsic incubation period of malaria parasites. Parasit Vectors 2018; 11:178. [PMID: 29530073 PMCID: PMC5848458 DOI: 10.1186/s13071-018-2761-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.
Collapse
Affiliation(s)
- Johanna R. Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Francesco Baldini
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland UK
| | - Priscille Barreaux
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Thierry Lefevre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Penelope A. Lynch
- College of Life and Environmental Sciences, Penryn Campus, University of Exeter, Cornwall, UK
| | - Eunho Suh
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Shelley A. Whitehead
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Matthew B. Thomas
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
45
|
Stone CM, Witt AB, Walsh GC, Foster WA, Murphy ST. Would the control of invasive alien plants reduce malaria transmission? A review. Parasit Vectors 2018; 11:76. [PMID: 29391041 PMCID: PMC5793375 DOI: 10.1186/s13071-018-2644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 12/31/2022] Open
Abstract
Vector control has been the most effective preventive measure against malaria and other vector-borne diseases. However, due to concerns such as insecticide resistance and budget shortfalls, an integrated control approach will be required to ensure sustainable, long-term effectiveness. An integrated management strategy should entail some aspects of environmental management, relying on coordination between various scientific disciplines. Here, we review one such environmental control tactic: invasive alien plant management. This covers salient plant-mosquito interactions for both terrestrial and aquatic invasive plants and how these affect a vector's ability to transmit malaria. Invasive plants tend to have longer flowering durations, more vigorous growth, and their spread can result in an increase in biomass, particularly in areas where previously little vegetation existed. Some invasive alien plants provide shelter or resting sites for adult mosquitoes and are also attractive nectar-producing hosts, enhancing their vectorial capacity. We conclude that these plants may increase malaria transmission rates in certain environments, though many questions still need to be answered, to determine how often this conclusion holds. However, in the case of aquatic invasive plants, available evidence suggests that the management of these plants would contribute to malaria control. We also examine and review the opportunities for large-scale invasive alien plant management, including options for biological control. Finally, we highlight the research priorities that must be addressed in order to ensure that integrated vector and invasive alien plant management operate in a synergistic fashion.
Collapse
Affiliation(s)
- Christopher M. Stone
- Illinois Natural History Survey, University of Illinois, Urbana, Champaign, IL 61820 USA
| | - Arne B.R. Witt
- CABI Africa, 673 Limuru Road, Muthaiga, PO Box 633-00621, Nairobi, Kenya
| | - Guillermo Cabrera Walsh
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Bolivar 1559, Hurlingham, Buenos Aires, Argentina
| | - Woodbridge A. Foster
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210 USA
| | | |
Collapse
|
46
|
Mechanisms of Plasmodium-Enhanced Attraction of Mosquito Vectors. Trends Parasitol 2017; 33:961-973. [DOI: 10.1016/j.pt.2017.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
|
47
|
Ebrahimi B, Jackson BT, Guseman JL, Przybylowicz CM, Stone CM, Foster WA. Alteration of plant species assemblages can decrease the transmission potential of malaria mosquitoes. J Appl Ecol 2017; 55:841-851. [PMID: 29551835 DOI: 10.1111/1365-2664.13001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Knowledge of the link between a vector population's pathogen-transmission potential and its biotic environment can generate more realistic forecasts of disease risk due to environmental change. It also can promote more effective vector control by both conventional and novel means.This study assessed the effect of particular plant species assemblages differing in nectar production on components of the vectorial capacity of the mosquito Anopheles gambiae s.s., an important vector of African malaria.We followed cohorts of mosquitoes for three weeks in greenhouse mesocosms holding nectar-poor and nectar-rich plant species by tracking daily mortalities and estimating daily biting rates and fecundities. At death, a mosquito's insemination status and wing length were determined. These life history traits allowed incorporation of larval dynamics into a vectorial capacity estimate. This new study provided both novel assemblages of putative host plants and a human blood host within a nocturnal period of maximum biting.Survivorship was significantly greater in nectar-rich environments than nectar-poor ones, resulting in greater total fecundity. Daily biting rate and fecundity per female between treatments was not detected. These results translated to greater estimated vectorial capacities in the nectar-rich environment in all four replicates of the experiment (means: 1,089.5 ± 125.2 vs. 518.3 ± 60.6). When mosquito density was made a function of survival and fecundity, rather than held constant, the difference between plant treatments was more pronounced, but so was the variance, so differences were not statistically significant. In the nectar-poor environment, females' survival suffered severely when a blood host was not provided. A sugar-accessibility experiment confirmed that Parthenium hysterophorus is a nectar-poor plant for these mosquitoes.Synthesis and applications. This study, assessing the effect of particular plant species assemblages on the vectorial capacity of malaria mosquitoes, highlights the likelihood that changes in plant communities (e.g. due to introduction of exotic or nectar-rich species) can increase malaria transmission and that a reduction of favourable nectar sources can reduce it. Also, plant communities' data can be used to identify potential high risk areas. Further studies are warranted to explore how and when management of plant species assemblages should be considered as an option in an integrated vector management strategy.
Collapse
Affiliation(s)
- Babak Ebrahimi
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bryan T Jackson
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Julie L Guseman
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Colin M Przybylowicz
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Christopher M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Woodbridge A Foster
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Nguyen PL, Vantaux A, Hien DF, Dabiré KR, Yameogo BK, Gouagna LC, Fontenille D, Renaud F, Simard F, Costantini C, Thomas F, Cohuet A, Lefèvre T. No evidence for manipulation of Anopheles gambiae, An. coluzzii and An. arabiensis host preference by Plasmodium falciparum. Sci Rep 2017; 7:9415. [PMID: 28842622 PMCID: PMC5572726 DOI: 10.1038/s41598-017-09821-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Whether malaria parasites can manipulate mosquito host choice in ways that enhance parasite transmission toward suitable hosts and/or reduce mosquito attraction to unsuitable hosts (i.e. specific manipulation) is unknown. To address this question, we experimentally infected three species of mosquito vectors with wild isolates of the human malaria parasite Plasmodium falciparum, and examined the effects of immature and mature infections on mosquito behavioural responses to combinations of calf odour, human odour and outdoor air using a dual-port olfactometer. Regardless of parasite developmental stage and mosquito species, P. falciparum infection did not alter mosquito activation rate or their choice for human odours. The overall expression pattern of host choice of all three mosquito species was consistent with a high degree of anthropophily, with infected and uninfected individuals showing higher attraction toward human odour over calf odour, human odour over outdoor air, and outdoor air over calf odour. Our results suggest that, in this system, the parasite may not be able to manipulate the early long-range behavioural steps involved in the mosquito host-feeding process. Future studies are required to test whether malaria parasites can modify their mosquito host choice at a shorter range to enhance transmission.
Collapse
Affiliation(s)
- Phuong L Nguyen
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
- Institut de Biologie, École Normale Supérieur, 46 rue d'Ulm, 75012, Paris, France
| | - Amélie Vantaux
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France.
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso.
- Malaria Molecular Epidemiology Unit, Institut Pasteur of Cambodia, 5 Bd Monivong, PO Box 983, Phnom Penh, 12 201, Cambodia.
| | - Domonbabele FdS Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Kounbobr R Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Bienvenue K Yameogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Louis-Clément Gouagna
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
| | - Didier Fontenille
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - François Renaud
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
| | - Frédéric Simard
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
| | - Carlo Costantini
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
| | - Fréderic Thomas
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
| | - Anna Cohuet
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
| | - Thierry Lefèvre
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS, 5290-UM, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| |
Collapse
|
49
|
Muema JM, Bargul JL, Njeru SN, Onyango JO, Imbahale SS. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds. Parasit Vectors 2017; 10:184. [PMID: 28412962 PMCID: PMC5392979 DOI: 10.1186/s13071-017-2122-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
Malaria presents an overwhelming public health challenge, particularly in sub-Saharan Africa where vector favourable conditions and poverty prevail, potentiating the disease burden. Behavioural variability of malaria vectors poses a great challenge to existing vector control programmes with insecticide resistance already acquired to nearly all available chemical compounds. Thus, approaches incorporating plant-derived compounds to manipulate semiochemical-mediated behaviours through disruption of mosquito olfactory sensory system have considerably gained interests to interrupt malaria transmission cycle. The combination of push-pull methods and larval control have the potential to reduce malaria vector populations, thus minimising the risk of contracting malaria especially in resource-constrained communities where access to synthetic insecticides is a challenge. In this review, we have compiled information regarding the current status of knowledge on manipulation of larval ecology and chemical-mediated behaviour of adult mosquitoes with plant-derived compounds for controlling mosquito populations. Further, an update on the current advancements in technologies to improve longevity and efficiency of these compounds for field applications has been provided.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.,Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sospeter N Njeru
- Department of Medicine, Faculty of Health Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya.,Present Address: Fritz Lipmann Institute (FLI) - Leibniz Institute of Aging Research, D-07745, Jena, Germany
| | - Joab O Onyango
- Department of Chemical Science and Technology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Susan S Imbahale
- Department of Applied and Technical Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|