1
|
Guo Y, Dall'Ara M, Baldo D, Gilmer D, Ratti C. Relative frequency dynamics and loading of beet necrotic yellow vein virus genomic RNAs during the acquisition by its vector Polymyxa betae. J Virol 2025; 99:e0141024. [PMID: 39679720 PMCID: PMC11784302 DOI: 10.1128/jvi.01410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
The beet necrotic yellow vein virus (BNYVV) is a multipartite virus with the highest number (up to five) of genomic segments among RNA viruses. Classified as a soil-borne virus, it is persistently transmitted by the protozoan Polymyxa betae. Previous studies have demonstrated that the relative frequency of the BNYVV genomic RNAs was modified depending on the host plant as well as the infected organ, resulting in distinct stoichiometric ratios between the viral RNAs. In this study, we investigate whether infection by the vector P. betae influences the relative abundance of BNYVV RNAs within the roots of the host plant Beta vulgaris. Furthermore, we examine the relative frequency of BNYVV genomic segments and the viral load of BNYVV at two different stages of P. betae's biological cycle: zoospore and resting spore. Our finding offers new insights into understanding the biology of this soil-borne virus and its vector. Notably, the variations in the relative accumulation of BNYVV RNAs observed in zoospores and resting spores, along with a higher viral load in zoospores compared to resting spores, invite consideration of the virus's replicative capacity within the vector. IMPORTANCE Our understanding of the transmission of plant viruses by protozoan vectors remains poor and fragmented. The fate of viral elements in the living stages of the vector is unknown. Here, we first established a protocol allowing the purification of two forms of the vector free of cellular contaminants. This permitted the examination of the relative frequencies of beet necrotic yellow vein virus RNAs in the roots of its natural host and in two forms of its protozoan vector, Polymyxa betae, responsible for virus transmission. Our findings provide new insights into virus behavior during vector transmission, allowing us to analyze how the virus regulates its RNA frequencies and load within the vector. By focusing on the early stages of viral transmission and separating virus acquisition from transmission to new hosts, we pave the way for experiments aimed at elucidating the molecular mechanisms behind viral acquisition and the maintenance of viral genome integrity by P. betae.
Collapse
Affiliation(s)
- Yi Guo
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Mattia Dall'Ara
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
- Ri.NOVA Società Cooperativa, Cesena, Italy
| | - David Baldo
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Claudio Ratti
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Turina M, Nerva L, Vallino M, Miotti N, Forgia M, Ciuffo M, Falk BW, Ferriol I. Evolution of a novel engineered tripartite viral genome of a torradovirus. Virus Evol 2024; 10:0. [PMID: 39678354 PMCID: PMC11646122 DOI: 10.1093/ve/veae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Viruses in the Secoviridae include monopartite and bipartite genomes, suggesting the possibility to study members of this family to experimentally address evolutionary transitions resulting in multipartitism. Torradoviruses are bipartite members of the family Secoviridae characterized by a genus-specific 5' open reading frame, named P21, encoded by RNA2. Here, in a study originally intended to verify if P21 can function in trans, we attempted to provide P21 from a third P21-expressing construct under control of the 35S promoter and containing the 5'- and 3'-untranslated regions (UTRs) of wild-type (WT) RNA2. When this construct was combined with an RNA2 with a complete deletion of the P21 coding region we verified that the P21 provided in trans cannot immediately complement the mutant, but occasional systemic infections in a limited number of the inoculated plants display the presence of a tripartite virus with an actively replicating P21-expressing RNA3. Furthermore, in all the systemically infected plants investigated in six distinct experiments, this replicating RNA3 accumulates deletions in a small region inside the original 3'-UTR provided by the cDNA clone. Such tripartite virus, which we obtained through deconstructing the coding potential of the RNA2 in two distinct RNAs, can be transmitted mechanically and by whiteflies, is competent for virion formation, and its RNA3 is encapsidated. It can be mechanically transferred for 11 serial passages without losing its infectivity or showing major genomic rearrangements. Furthermore, mixing equal amounts of WT and tripartite virus inocula in the same leaf resulted in plants systemically infected only with the WT virus, showing that the tripartite virus has lower fitness than the WT. To our knowledge, this is the first example of an engineered tripartite viral genome becoming stable through artificial evolution in vivo, in plants. This tripartite system was also used to derive a stable viral vector to express green fluorescence protein (GFP) systemically in the context of viral infection.
Collapse
Affiliation(s)
- Massimo Turina
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Luca Nerva
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Marta Vallino
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Niccolò Miotti
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Marco Forgia
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Marina Ciuffo
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, Turin 10135, Italy
| | - Bryce W Falk
- Department of Plant Pathology, UC-DAVIS, 1 Shields Ave, Davis, CA, 95616, United States
| | - Inmaculada Ferriol
- Department of Plant Protection, Instituto de Ciencias Agrarias, ICA-CSIC,Calle Serrano 115 DPDO, Madrid, 28006, Spain
| |
Collapse
|
3
|
Lai HC, Neoh ZY, Tsai WS. Genetic Diversity and Pathogenicity Characterization of Tomato-Infecting Begomoviruses in Taiwan. PLANT DISEASE 2024; 108:2688-2700. [PMID: 38587795 DOI: 10.1094/pdis-12-22-2937-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The tomato yellow leaf curl disease (TYLCD) caused by whitefly (Bemisia tabaci)-transmitted begomoviruses (Geminiviridae) has constrained tomato production in Taiwan since 1981. Lisianthus enation leaf curl virus (LELCV), tomato leaf curl Taiwan virus (ToLCTV), and tomato yellow leaf curl Thailand virus (TYLCTHV) were the major viruses associated with TYLCD. In 2019 to 2020, we investigated TYLCD throughout Taiwan, with a 10 to 100% incidence on tomato fields. Begomovirus sequences were detected in 321 out of 506 collected samples by PCR with primers PAL1v1978B and PAR1c715H. In 2015 to 2016, 59 out of 99 samples collected in Hualien-Taitung areas were also found to have begomovirus sequences. Based on the analysis of 68 viral genomic sequences, six begomoviruses were identified, including LELCV, ToLCTV, TYLCTHV, tomato leaf curl Hsinchu virus, and two new begomoviruses, tentatively named tomato leaf curl Chiayi virus (ToLCCYV) and tomato leaf curl Nantou virus (ToLCNTV). Various isolates of LELCV and TYLCTHV were grouped into four and two strains, respectively. Recombinants were detected in LELCV-A, -C, and -D, ToLCCYV, ToLCNTV, and TYLCTHV-F. Based on virus-specific detection, the majority of TYLCD-associated viruses were mixed-infected by TYLCTHV-B with TYLCTHV-F, LELCV-A, -B, or -D, and/or ToLCTV. Meanwhile, viral DNA-B was mostly associated with TYLCTHV, and all identified DNA-Bs were highly homologous with previous TYLCTHV DNA-B. The pathogenicity of selected begomoviruses was confirmed through agroinfection and whitefly transmission. All tomato plants carrying Ty-1/3 and Ty-2 resistant genes were infected by all LELCV strains and ToLCCYV, although they appeared symptomless, suggesting these viruses could be managed through the use of the resistance pyramid.
Collapse
Affiliation(s)
- Hsuan-Chun Lai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| | - Zhuan Yi Neoh
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan
| |
Collapse
|
4
|
Zhao H, Qin L, Deng X, Wang Z, Jiang R, Reitz SR, Wu S, He Z. Nucleotide and dinucleotide preference of segmented viruses are shaped more by segment: In case study of tomato spotted wilt virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105608. [PMID: 38796047 DOI: 10.1016/j.meegid.2024.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Several studies have showed that the nucleotide and dinucleotide composition of viruses possibly follows their host species or protein coding region. Nevertheless, the influence of viral segment on viral nucleotide and dinucleotide composition is still unknown. Here, we explored through tomato spotted wilt virus (TSWV), a segmented virus that seriously threatens the production of tomatoes all over the world. Through nucleotide composition analysis, we found the same over-representation of A across all viral segments at the first and second codon position, but it exhibited distinct in segments at the third codon position. Interestingly, the protein coding regions which encoded by the same or different segments exhibit obvious distinct nucleotide preference. Then, we found that the dinucleotides UpG and CpU were overrepresented and the dinucleotides UpA, CpG and GpU were underrepresented, not only in the complete genomic sequences, but also in different segments, protein coding regions and host species. Notably, 100% of the data investigated here were predicted to the correct viral segment and protein coding region, despite the fact that only 67% of the data analyzed here were predicted to the correct viral host species. In conclusion, in case study of TSWV, nucleotide composition and dinucleotide preference of segment viruses are more strongly dependent on segment and protein coding region than on host species. This research provides a novel perspective on the molecular evolutionary mechanisms of TSWV and provides reference for future research on genetic diversity of segmented viruses.
Collapse
Affiliation(s)
- Haiting Zhao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lang Qin
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Deng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhilei Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Runzhou Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Stuart R Reitz
- Malheur Experiment Station, Oregon State University, Ontario, OR, USA
| | - Shengyong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhen He
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Michalakis Y, Blanc S. Aspects of the lifestyle of multipartite viruses apply to monopartite segmented and perhaps nonsegmented viruses. NPJ VIRUSES 2024; 2:31. [PMID: 40295805 PMCID: PMC11721093 DOI: 10.1038/s44298-024-00045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 04/30/2025]
Abstract
Recent research on faba bean necrotic stunt virus, aiming to understand how multipartite viruses function and potentially their existence, revealed three surprising features: a non-uniform segment frequency distribution (genome formula), a multicellular functioning, and the non-concomitant transmission of genomic segments. We review the occurrence of these features in other multipartite viruses and discuss their potential operation in monopartite viruses with segmented genomes and perhaps even in viruses with nonsegmented genomes.
Collapse
Affiliation(s)
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
6
|
Johnson ML, Zwart MP. Robust Approaches to the Quantitative Analysis of Genome Formula Variation in Multipartite and Segmented Viruses. Viruses 2024; 16:270. [PMID: 38400045 PMCID: PMC10892338 DOI: 10.3390/v16020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
When viruses have segmented genomes, the set of frequencies describing the abundance of segments is called the genome formula. The genome formula is often unbalanced and highly variable for both segmented and multipartite viruses. A growing number of studies are quantifying the genome formula to measure its effects on infection and to consider its ecological and evolutionary implications. Different approaches have been reported for analyzing genome formula data, including qualitative description, applying standard statistical tests such as ANOVA, and customized analyses. However, these approaches have different shortcomings, and test assumptions are often unmet, potentially leading to erroneous conclusions. Here, we address these challenges, leading to a threefold contribution. First, we propose a simple metric for analyzing genome formula variation: the genome formula distance. We describe the properties of this metric and provide a framework for understanding metric values. Second, we explain how this metric can be applied for different purposes, including testing for genome-formula differences and comparing observations to a reference genome formula value. Third, we re-analyze published data to illustrate the applications and weigh the evidence for previous conclusions. Our re-analysis of published datasets confirms many previous results but also provides evidence that the genome formula can be carried over from the inoculum to the virus population in a host. The simple procedures we propose contribute to the robust and accessible analysis of genome-formula data.
Collapse
|
7
|
Zhang S, Yang C, Qiu Y, Liao R, Xuan Z, Ren F, Dong Y, Xie X, Han Y, Wu D, Ramos-González PL, Freitas-Astúa J, Yang H, Zhou C, Cao M. Conserved untranslated regions of multipartite viruses: Natural markers of novel viral genomic components and tags of viral evolution. Virus Evol 2024; 10:veae004. [PMID: 38361819 PMCID: PMC10868557 DOI: 10.1093/ve/veae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Viruses with split genomes are classified as being either segmented or multipartite based on whether their genomic segments occur within a single virion or across different virions. Despite variations in number and sequence during evolution, the genomic segments of many viruses are conserved within the untranslated regions (UTRs). In this study, we present a methodology that combines RNA sequencing with iterative BLASTn of UTRs (https://github.com/qq371260/Iterative-blast-v.1.0) to identify new viral genomic segments. Some novel multipartite-like viruses related to the phylum Kitrinoviricota were annotated using sequencing data from field plant samples and public databases. We identified potentially plant-infecting jingmen-related viruses (order Amarillovirales) and jivi-related viruses (order Martellivirales) with at least six genomic components. The number of RNA molecules associated with a genome of the novel viruses in the families Closteroviridae, Kitaviridae, and Virgaviridae within the order Martellivirales reached five. Several of these viruses seem to represent new taxa at the subgenus, genus, and family levels. The diversity of novel genomic components and the multiple duplication of proteins or protein domains within single or multiple genomic components emphasize the evolutionary roles of genetic recombination (horizontal gene transfer), reassortment, and deletion. The relatively conserved UTRs at the genome level might explain the relationships between monopartite and multipartite viruses, as well as how subviral agents such as defective RNAs and satellite viruses can coexist with their helper viruses.
Collapse
Affiliation(s)
| | - Caixia Yang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, 21 Huanan Street, Shenyang, Liaoning 110044, China
| | - Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Ruiling Liao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Fang Ren
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Yafeng Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, 98 Xinghainan Street, Xingcheng, Liaoning 125100, China
| | - Xiaoying Xie
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou, Fujian 350002, China
| | - Di Wu
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| | - Pedro Luis Ramos-González
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, Av. Cons. Rodrigues Alves 1252, São Paulo SP, 04014-002, Brazil
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, CEP, Cruz das Almas BA, 44380-000, Brazil
| | - Huadong Yang
- Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410125, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
- Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, 40 Putuo Road, Guilin, Guangxi 541010, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400712, China
| |
Collapse
|
8
|
Bonnamy M, Brousse A, Pirolles E, Michalakis Y, Blanc S. The genome formula of a multipartite virus is regulated both at the individual segment and the segment group levels. PLoS Pathog 2024; 20:e1011973. [PMID: 38271470 PMCID: PMC10846721 DOI: 10.1371/journal.ppat.1011973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Differential accumulation of the distinct genome segments is a common feature of viruses with segmented genomes. The reproducible and specific pattern of genome segment accumulation within the host is referred to as the "genome formula". There is speculation and some experimental support for a functional role of the genome formula by modulating gene expression through copy number variations. However, the mechanisms of genome formula regulation have not yet been identified. In this study, we investigated whether the genome formula of the octopartite nanovirus faba bean necrotic stunt virus (FBNSV) is regulated by processes acting at the individual segment vs. viral population levels. We used a leaf infiltration system to show that the two most accumulated genome segments of the FBNSV possess a greater intrinsic accumulation capacity in Vicia faba tissues than the other segments. Nevertheless, processes acting at the individual segment level are insufficient to generate the genome formula, suggesting the involvement of additional mechanisms acting at the supra-segment level. Indeed, the absence of segments with important functions during systemic infection strongly modifies the relative frequency of the others, indicating that the genome formula is a property of the segment group. Together, these results demonstrate that the FBNSV genome formula is shaped by a complex process acting at both the individual segment and the segment group levels.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Andy Brousse
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Elodie Pirolles
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
9
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
10
|
Yvon M, German TL, Ullman DE, Dasgupta R, Parker MH, Ben-Mahmoud S, Verdin E, Gognalons P, Ancelin A, Laï Kee Him J, Girard J, Vernerey MS, Fernandez E, Filloux D, Roumagnac P, Bron P, Michalakis Y, Blanc S. The genome of a bunyavirus cannot be defined at the level of the viral particle but only at the scale of the viral population. Proc Natl Acad Sci U S A 2023; 120:e2309412120. [PMID: 37983500 PMCID: PMC10691328 DOI: 10.1073/pnas.2309412120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023] Open
Abstract
Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.
Collapse
Affiliation(s)
- Michel Yvon
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Thomas L. German
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Diane E. Ullman
- Department of Entomology and Nematology, University of California, California95616, Davis
| | - Ranjit Dasgupta
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Maxwell H. Parker
- Department of Entomology, University of Wisconsin, Wisconsin53706, Madison
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, California95616, Davis
| | - Eric Verdin
- Pathologie végétale, INRAE, Avignon84143, France
| | | | - Aurélie Ancelin
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Justine Girard
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Emmanuel Fernandez
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Denis Filloux
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Philippe Roumagnac
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| | - Patrick Bron
- CBS, Univ Montpellier, CNRS, INSERM, Montpellier34090, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier34398, France
| |
Collapse
|
11
|
Bonnamy M, Blanc S, Michalakis Y. Replication mechanisms of circular ssDNA plant viruses and their potential implication in viral gene expression regulation. mBio 2023; 14:e0169223. [PMID: 37695133 PMCID: PMC10653810 DOI: 10.1128/mbio.01692-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The replication of members of the two circular single-stranded DNA (ssDNA) virus families Geminiviridae and Nanoviridae, the only ssDNA viruses infecting plants, is believed to be processed by rolling-circle replication (RCR) and recombination-dependent replication (RDR) mechanisms. RCR is a ubiquitous replication mode for circular ssDNA viruses and involves a virus-encoded Replication-associated protein (Rep) which fulfills multiple functions in the replication mechanism. Two key genomic elements have been identified for RCR in Geminiviridae and Nanoviridae: (i) short iterative sequences called iterons which determine the specific recognition of the viral DNA by the Rep and (ii) a sequence enabling the formation of a stem-loop structure which contains a conserved motif and constitutes the origin of replication. In addition, studies in Geminiviridae provided evidence for a second replication mode, RDR, which has also been documented in some double-stranded DNA viruses. Here, we provide a synthesis of the current understanding of the two presumed replication modes of Geminiviridae and Nanoviridae, and we identify knowledge gaps and discuss the possibility that these replication mechanisms could regulate viral gene expression through modulation of gene copy number.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
12
|
Xiao YX, Li D, Wu YJ, Liu SS, Pan LL. Constant ratio between the genomic components of bipartite begomoviruses during infection and transmission. Virol J 2023; 20:186. [PMID: 37605144 PMCID: PMC10464424 DOI: 10.1186/s12985-023-02148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023] Open
Abstract
The genomic components of multipartite viruses are encapsidated in separate virus particles, and the frequencies of genomic components represent one of the key genetic features. Many begomoviruses of economic significance are bipartite, and the details of the association between their genomic components remain largely unexplored. We first analyzed the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of the squash leaf curl China virus (SLCCNV) in plants and found that while the quantities of DNA-A and DNA-B varied significantly during infection, the B/A ratio remained constant. We then found that changes in the B/A ratio in agrobacteria inoculum may significantly alter the B/A ratio in plants at 6 days post inoculation, but the differences disappeared shortly thereafter. We next showed that while the quantities of DNA-A and DNA-B among plants infected by agrobacteria, sap transmission and whitefly-mediated transmission differed significantly, the B/A ratios were similar. Further analysis of gene expression revealed that the ratio of the expression of genes encoded by DNA-A and DNA-B varied significantly during infection. Finally, we monitored the temporal dynamics of the quantities of DNA-A and DNA-B and the B/A ratio of another bipartite begomovirus, and a constant B/A ratio was similarly observed. Our findings highlight the maintenance of a constant ratio between the two genomic components of bipartite begomoviruses during infection and transmission, and provide new insights into the biology of begomoviruses.
Collapse
Affiliation(s)
- Yu-Xin Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Di Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yi-Jie Wu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
- The Rural Development Academy, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
13
|
Lal A, Shamim A, Kil EJ, Vo TTB, Qureshi MA, Bupi N, Tabassum M, Lee S. Insights into the Differential Composition of Stem-Loop Structures of Nanoviruses and Their Impacts. Microbiol Spectr 2023; 11:e0479822. [PMID: 37367433 PMCID: PMC10434203 DOI: 10.1128/spectrum.04798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few of them target animals. Nanoviridae is a family of multipartite single-stranded DNA (ssDNA) plant viruses that individually encapsidate ssDNAs of ~1 kb and transmit them through aphids without replication in aphid vectors, thereby causing important diseases in host plants, mainly leguminous crops. All of these components constitute an open reading frame to perform a specific role in nanovirus infection. All segments contain conserved inverted repeat sequences, potentially forming a stem-loop structure and a conserved nonanucleotide, TAGTATTAC, within a common region. This study investigated the variations in the stem-loop structure of nanovirus segments and their impact using molecular dynamics (MD) simulations and wet lab approaches. Although the accuracy of MD simulations is limited by force field approximations and simulation time scale, explicit solvent MD simulations were successfully used to analyze the important aspects of the stem-loop structure. This study involves the mutants' design, based on the variations in the stem-loop region and construction of infectious clones, followed by their inoculation and expression analysis, based on nanosecond dynamics of the stem-loop structure. The original stem-loop structures showed more conformational stability than mutant stem-loop structures. The mutant structures were expected to alter the neck region of the stem-loop by adding and switching nucleotides. Changes in conformational stability are suggested expression variations of the stem-loop structures found in host plants with nanovirus infection. However, our results can be a starting point for further structural and functional analysis of nanovirus infection. IMPORTANCE Nanoviruses comprise multiple segments, each with a single open reading frame to perform a specific function and an intergenic region with a conserved stem-loop region. The genome expression of a nanovirus has been an intriguing area but is still poorly understood. We attempted to investigate the variations in the stem-loop structure of nanovirus segments and their impact on viral expression. Our results show that the stem-loop composition is essential in controlling the virus segments' expression level.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong, South Korea
| | - Amen Shamim
- Department of Computer Science, University of Agriculture, Faisalabad, Pakistan
| | - Eui-Joon Kil
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, South Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong, South Korea
| | - Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Nattanong Bupi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
14
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
15
|
Pénzes JJ, Pham HT, Chipman P, Smith EW, McKenna R, Tijssen P. Bipartite genome and structural organization of the parvovirus Acheta domesticus segmented densovirus. Nat Commun 2023; 14:3515. [PMID: 37316488 DOI: 10.1038/s41467-023-38875-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Parvoviruses (family Parvoviridae) are currently defined by a linear monopartite ssDNA genome, T = 1 icosahedral capsids, and distinct structural (VP) and non-structural (NS) protein expression cassettes within their genome. We report the discovery of a parvovirus with a bipartite genome, Acheta domesticus segmented densovirus (AdSDV), isolated from house crickets (Acheta domesticus), in which it is pathogenic. We found that the AdSDV harbors its NS and VP cassettes on two separate genome segments. Its vp segment acquired a phospholipase A2-encoding gene, vpORF3, via inter-subfamily recombination, coding for a non-structural protein. We showed that the AdSDV evolved a highly complex transcription profile in response to its multipartite replication strategy compared to its monopartite ancestors. Our structural and molecular examinations revealed that the AdSDV packages one genome segment per particle. The cryo-EM structures of two empty- and one full-capsid population (3.3, 3.1 and 2.3 Å resolution) reveal a genome packaging mechanism, which involves an elongated C-terminal tail of the VP, "pinning" the ssDNA genome to the capsid interior at the twofold symmetry axis. This mechanism fundamentally differs from the capsid-DNA interactions previously seen in parvoviruses. This study provides new insights on the mechanism behind ssDNA genome segmentation and on the plasticity of parvovirus biology.
Collapse
Affiliation(s)
- Judit J Pénzes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada.
- The McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Institute for Quantitative Biomedicine, Rutgers, the Sate University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Hanh T Pham
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada
- HTG Molecular Diagnostics, 3430 E Global Loop, Tucson, AZ, 85706, USA
| | - Paul Chipman
- The McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Emmanuel W Smith
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
- JEOL USA Inc., Peabody, MA, 01960, USA
| | - Robert McKenna
- The McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Peter Tijssen
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
16
|
Nigam D, Muthukrishnan E, Flores-López LF, Nigam M, Wamaitha MJ. Comparative Genome Analysis of Old World and New World TYLCV Reveals a Biasness toward Highly Variable Amino Acids in Coat Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:1995. [PMID: 37653912 PMCID: PMC10223811 DOI: 10.3390/plants12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Begomoviruses, belonging to the family Geminiviridae and the genus Begomovirus, are DNA viruses that are transmitted by whitefly Bemisia tabaci (Gennadius) in a circulative persistent manner. They can easily adapt to new hosts and environments due to their wide host range and global distribution. However, the factors responsible for their adaptability and coevolutionary forces are yet to be explored. Among BGVs, TYLCV exhibits the broadest range of hosts. In this study, we have identified variable and coevolving amino acid sites in the proteins of Tomato yellow leaf curl virus (TYLCV) isolates from Old World (African, Indian, Japanese, and Oceania) and New World (Central and Southern America). We focused on mutations in the coat protein (CP), as it is highly variable and interacts with both vectors and host plants. Our observations indicate that some mutations were accumulating in Old World TYLCV isolates due to positive selection, with the S149N mutation being of particular interest. This mutation is associated with TYLCV isolates that have spread in Europe and Asia and is dominant in 78% of TYLCV isolates. On the other hand, the S149T mutation is restricted to isolates from Saudi Arabia. We further explored the implications of these amino acid changes through structural modeling. The results presented in this study suggest that certain hypervariable regions in the genome of TYLCV are conserved and may be important for adapting to different host environments. These regions could contribute to the mutational robustness of the virus, allowing it to persist in different host populations.
Collapse
Affiliation(s)
- Deepti Nigam
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Luis Fernando Flores-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigacióny de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, Mexico
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi P.O. Box 14733-00800, Kenya
| |
Collapse
|
17
|
Park H, Denha S, Higgs PG. Evolution of Bipartite and Segmented Viruses from Monopartite Viruses. Viruses 2023; 15:v15051135. [PMID: 37243221 DOI: 10.3390/v15051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
RNA viruses may be monopartite (all genes on one strand), multipartite (two or more strands packaged separately) or segmented (two or more strands packaged together). In this article, we consider competition between a complete monopartite virus, A, and two defective viruses, D and E, that have complementary genes. We use stochastic models that follow gene translation, RNA replication, virus assembly, and transmission between cells. D and E multiply faster than A when stored in the same host as A or when together in the same host, but they cannot multiply alone. D and E strands are packaged as separate particles unless a mechanism evolves that allows assembly of D + E segmented particles. We show that if defective viruses assemble rapidly into separate particles, the formation of segmented particles is selected against. In this case, D and E spread as parasites of A, and the bipartite D + E combination eliminates A if the transmissibility is high. Alternatively, if defective strands do not assemble rapidly into separate particles, then a mechanism for assembly of segmented particles is selected for. In this case, the segmented virus can eliminate A if transmissibility is high. Conditions of excess protein resources favor bipartite viruses, while conditions of excess RNA resources favor segmented viruses. We study the error threshold behavior that arises when deleterious mutations are introduced. Relative to bipartite and segmented viruses, deleterious mutations favor monopartite viruses. A monopartite virus can give rise to either a bipartite or a segmented virus, but it is unlikely that both will originate from the same virus.
Collapse
Affiliation(s)
- Hyunjin Park
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Saven Denha
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Paul G Higgs
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| |
Collapse
|
18
|
Crespo-Bellido A, Duffy S. The how of counter-defense: viral evolution to combat host immunity. Curr Opin Microbiol 2023; 74:102320. [PMID: 37075547 DOI: 10.1016/j.mib.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Wu YJ, Liu YM, Li HY, Liu SS, Pan LL. Temporal Dynamic of the Ratio between Monopartite Begomoviruses and Their Associated Betasatellites in Plants, and Its Modulation by the Viral Gene βC1. Viruses 2023; 15:v15040954. [PMID: 37112934 PMCID: PMC10144043 DOI: 10.3390/v15040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The begomovirus-betasatellite complex constantly threatens crops in Asia. However, the quantitative relationship between begomoviruses and betasatellites remains largely unknown. The quantities of tobacco curly shoot virus (TbCSV) and its betasatellite (TbCSB) and their ratio varied significantly in initial infection, and thereafter, the ratio tended to become constant. The TbCSB/TbCSV ratio in agrobacteria inoculum significantly affected that in plants in the initial infection but not thereafter. Null-mutation of βC1 that encodes a multifunctional protein important for pathogenesis in TbCSB significantly reduced the TbCSB/TbCSV ratio in plants. Viral inoculum plants with higher TbCSB/TbCSV ratios promoted whitefly transmission of the virus. The expression of AV1 encoded by TbCSV, βC1 encoded by TbCSB and the βC1/AV1 ratio varied significantly in the initial infection and thereafter the ratio tended to become constant. Additionally, the temporal dynamics of the ratio between another begomovirus and its betasatellite was similar to that of TbCSV and was positively regulated by βC1. These results indicate that the ratio between monopartite begomoviruses and betasatellites tend to become constant as infection progresses, and is modulated by βC1, but a higher betasatellite/begomovirus ratio in virally inoculated plants promotes virus transmission by whiteflies. Our findings provide novel insights into the association between begomoviruses and betasatellites.
Collapse
Affiliation(s)
- Yi-Jie Wu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Ming Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Boezen D, Johnson ML, Grum-Grzhimaylo AA, van der Vlugt RA, Zwart MP. Evaluation of sequencing and PCR-based methods for the quantification of the viral genome formula. Virus Res 2023; 326:199064. [PMID: 36746340 DOI: 10.1016/j.virusres.2023.199064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Viruses show great diversity in their genome organization. Multipartite viruses package their genome segments into separate particles, most or all of which are required to initiate infection in the host cell. The benefits of such seemingly inefficient genome organization are not well understood. One hypothesised benefit of multipartition is that it allows for flexible changes in gene expression by altering the frequency of each genome segment in different environments, such as encountering different host species. The ratio of the frequency of segments is termed the genome formula (GF). Thus far, formal studies quantifying the GF have been performed for well-characterised virus-host systems in experimental settings using RT-qPCR. However, to understand GF variation in natural populations or novel virus-host systems, a comparison of several methods for GF estimation including high-throughput sequencing (HTS) based methods is needed. Currently, it is unclear how HTS-methods compare a golden standard, such as RT-qPCR. Here we show a comparison of multiple GF quantification methods (RT-qPCR, RT-digital PCR, Illumina RNAseq and Nanopore direct RNA sequencing) using three host plants (Nicotiana tabacum, Nicotiana benthamiana, and Chenopodium quinoa) infected with cucumber mosaic virus (CMV), a tripartite RNA virus. Our results show that all methods give roughly similar results, though there is a significant method effect on genome formula estimates. While the RT-qPCR and RT-dPCR GF estimates are congruent, the GF estimates from HTS methods deviate from those found with PCR. Our findings emphasize the need to tailor the GF quantification method to the experimental aim, and highlight that it may not be possible to compare HTS and PCR-based methods directly. The difference in results between PCR-based methods and HTS highlights that the choice of quantification technique is not trivial.
Collapse
Affiliation(s)
- Dieke Boezen
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands; Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands.
| | - Marcelle L Johnson
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands; Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Alexey A Grum-Grzhimaylo
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht 3584CT, The Netherlands
| | - René Aa van der Vlugt
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Mark P Zwart
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708PB, The Netherlands
| |
Collapse
|
21
|
A New Perspective on the Co-Transmission of Plant Pathogens by Hemipterans. Microorganisms 2023; 11:microorganisms11010156. [PMID: 36677448 PMCID: PMC9865879 DOI: 10.3390/microorganisms11010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Co-infection of plants by pathogens is common in nature, and the interaction of the pathogens can affect the infection outcome. There are diverse ways in which viruses and bacteria are transmitted from infected to healthy plants, but insects are common vectors. The present review aims to highlight key findings of studies evaluating the co-transmission of plant pathogens by insects and identify challenges encountered in these studies. In this review, we evaluated whether similar pathogens might compete during co-transmission; whether the changes in the pathogen titer in the host, in particular associated with the co-infection, could influence its transmission; and finally, we discussed the pros and cons of the different approaches used to study co-transmission. At the end of the review, we highlighted areas of study that need to be addressed. This review shows that despite the recent development of techniques and methods to study the interactions between pathogens and their insect vectors, there are still gaps in the knowledge of pathogen transmission. Additional laboratory and field studies using different pathosystems will help elucidate the role of host co-infection and pathogen co-transmission in the ecology and evolution of infectious diseases.
Collapse
|
22
|
Dubey D, Hoyer JS, Duffy S. Limited role of recombination in the global diversification of begomovirus DNA-B proteins. Virus Res 2023; 323:198959. [PMID: 36209920 PMCID: PMC10194223 DOI: 10.1016/j.virusres.2022.198959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Approximately half of the characterized begomoviruses have bipartite genomes, but the second genomic segment, the DNA-B, is understudied relative to the DNA-A, which is homologous to the entire genome of monopartite begomoviruses. We examined the evolutionary history of the two proteins encoded by the DNA-B, the genes of which make up ∼60% of the DNA-B segment, from all bipartite begomovirus species. Our dataset of 131 movement protein (MP) and nuclear shuttle protein (NSP) sequences confirmed the deep split between Old World (OW) and New World (NW) species, and showed strong support for deep, congruent branches among the OW sequences of the MP and NSP. NW sequences were much less diverse and had poor phylogenetic resolution; over half of nodes in both the NSP and MP NW clades were supported by <50% bootstrap support. This poor resolution hampered our ability to detect incongruent phylogenies between the MP and NSP datasets, and we found no statistical evidence for recombination within our MP and NSP datasets. Finally, we quantified the sequence diversity between the NW and OW proteins, showing that the NW MP has particularly low diversity, suggesting it has been subject to different evolutionary pressures than the NW NSP.
Collapse
Affiliation(s)
- Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - J Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
23
|
Bermúdez-Méndez E, Bronsvoort KF, Zwart MP, van de Water S, Cárdenas-Rey I, Vloet RPM, Koenraadt CJM, Pijlman GP, Kortekaas J, Wichgers Schreur PJ. Incomplete bunyavirus particles can cooperatively support virus infection and spread. PLoS Biol 2022; 20:e3001870. [PMID: 36378688 PMCID: PMC9665397 DOI: 10.1371/journal.pbio.3001870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bunyaviruses lack a specific mechanism to ensure the incorporation of a complete set of genome segments into each virion, explaining the generation of incomplete virus particles lacking one or more genome segments. Such incomplete virus particles, which may represent the majority of particles produced, are generally considered to interfere with virus infection and spread. Using the three-segmented arthropod-borne Rift Valley fever virus as a model bunyavirus, we here show that two distinct incomplete virus particle populations unable to spread autonomously are able to efficiently complement each other in both mammalian and insect cells following co-infection. We further show that complementing incomplete virus particles can co-infect mosquitoes, resulting in the reconstitution of infectious virus that is able to disseminate to the mosquito salivary glands. Computational models of infection dynamics predict that incomplete virus particles can positively impact virus spread over a wide range of conditions, with the strongest effect at intermediate multiplicities of infection. Our findings suggest that incomplete particles may play a significant role in within-host spread and between-host transmission, reminiscent of the infection cycle of multipartite viruses.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kirsten F. Bronsvoort
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ingrid Cárdenas-Rey
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rianka P. M. Vloet
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
25
|
Nonconcomitant host-to-host transmission of multipartite virus genome segments may lead to complete genome reconstitution. Proc Natl Acad Sci U S A 2022; 119:e2201453119. [PMID: 35914138 PMCID: PMC9371732 DOI: 10.1073/pnas.2201453119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.
Collapse
|
26
|
Manrubia S. The simple emergence of complex molecular function. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200422. [PMID: 35599566 DOI: 10.1098/rsta.2020.0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
At odds with a traditional view of molecular evolution that seeks a descent-with-modification relationship between functional sequences, new functions can emerge de novo with relative ease. At early times of molecular evolution, random polymers could have sufficed for the appearance of incipient chemical activity, while the cellular environment harbours a myriad of proto-functional molecules. The emergence of function is facilitated by several mechanisms intrinsic to molecular organization, such as redundant mapping of sequences into structures, phenotypic plasticity, modularity or cooperative associations between genomic sequences. It is the availability of niches in the molecular ecology that filters new potentially functional proposals. New phenotypes and subsequent levels of molecular complexity could be attained through combinatorial explorations of currently available molecular variants. Natural selection does the rest. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Systems Biology Department, National Biotechnology Centre (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
27
|
Gallet R, Di Mattia J, Ravel S, Zeddam JL, Vitalis R, Michalakis Y, Blanc S. Gene copy number variations at the within-host population level modulate gene expression in a multipartite virus. Virus Evol 2022; 8:veac058. [PMID: 35799884 PMCID: PMC9255600 DOI: 10.1093/ve/veac058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Multipartite viruses have a segmented genome, with each segment encapsidated separately. In all multipartite virus species for which the question has been addressed, the distinct segments reproducibly accumulate at a specific and host-dependent relative frequency, defined as the 'genome formula'. Here, we test the hypothesis that the multipartite genome organization facilitates the regulation of gene expression via changes of the genome formula and thus via gene copy number variations. In a first experiment, the faba bean necrotic stunt virus (FBNSV), whose genome is composed of eight DNA segments each encoding a single gene, was inoculated into faba bean or alfalfa host plants, and the relative concentrations of the DNA segments and their corresponding messenger RNAs (mRNAs) were monitored. In each of the two host species, our analysis consistently showed that the genome formula variations modulate gene expression, the concentration of each genome segment linearly and positively correlating to that of its cognate mRNA but not of the others. In a second experiment, twenty parallel FBNSV lines were transferred from faba bean to alfalfa plants. Upon host switching, the transcription rate of some genome segments changes, but the genome formula is modified in a way that compensates for these changes and maintains a similar ratio between the various viral mRNAs. Interestingly, a deep-sequencing analysis of these twenty FBNSV lineages demonstrated that the host-related genome formula shift operates independently of DNA-segment sequence mutation. Together, our results indicate that nanoviruses are plastic genetic systems, able to transiently adjust gene expression at the population level in changing environments, by modulating the copy number but not the sequence of each of their genes.
Collapse
Affiliation(s)
- Romain Gallet
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
- CBGP, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Jérémy Di Mattia
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Sébastien Ravel
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Jean-Louis Zeddam
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Renaud Vitalis
- CBGP, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | | | - Stéphane Blanc
- PHIM, Univ Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
28
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
29
|
Ouattara A, Tiendrébéogo F, Becker N, Urbino C, Thébaud G, Hoareau M, Allibert A, Chiroleu F, Vernerey MS, Traoré EV, Barro N, Traoré O, Lefeuvre P, Lett JM. Synergy between an emerging monopartite begomovirus and a DNA-B component. Sci Rep 2022; 12:695. [PMID: 35027584 PMCID: PMC8758689 DOI: 10.1038/s41598-021-03957-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
In recent decades, a legion of monopartite begomoviruses transmitted by the whitefly Bemisia tabaci has emerged as serious threats to vegetable crops in Africa. Recent studies in Burkina Faso (West Africa) reported the predominance of pepper yellow vein Mali virus (PepYVMLV) and its frequent association with a previously unknown DNA-B component. To understand the role of this DNA-B component in the emergence of PepYVMLV, we assessed biological traits related to virulence, virus accumulation, location in the tissue and transmission. We demonstrate that the DNA-B component is not required for systemic movement and symptom development of PepYVMLV (non-strict association), but that its association produces more severe symptoms including growth arrest and plant death. The increased virulence is associated with a higher viral DNA accumulation in plant tissues, an increase in the number of contaminated nuclei of the phloem parenchyma and in the transmission rate by B. tabaci. Our results suggest that the association of a DNA-B component with the otherwise monopartite PepYVMLV is a key factor of its emergence.
Collapse
Affiliation(s)
- Alassane Ouattara
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
- Université de La Réunion, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France
- Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nathalie Becker
- UMR Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Cica Urbino
- CIRAD, UMR PHIM, 34090, Montpellier, France
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | | | | | | | - Marie-Stéphanie Vernerey
- PHIM Plant Health Institute, INRAE, Univ Montpellier, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Edgar Valentin Traoré
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nicolas Barro
- Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Oumar Traoré
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
- Laboratoire National de Biosécurité (LNB), 06 BP 10798, Ouagadougou 06, Burkina Faso
| | | | | |
Collapse
|
30
|
Knobler CM, Gelbart WM. How and why RNA genomes are (partially) ordered in viral capsids. Curr Opin Virol 2021; 52:203-210. [PMID: 34959081 DOI: 10.1016/j.coviro.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
There is a long and productive progression of X-ray crystallographic and electron microscopy studies establishing the structures of the spherical/icosahedral and cylindrical/helical capsids of a wide range of virus particles. This is because of the high degree of order - down to the Angstrom scale - in the secondary/tertiary/quaternary structure of the proteins making up the capsids. In stark contradistinction, very little is known about the structure of DNA or RNA genomes inside these capsids. This is because of the relatively large extent of disorder in the confined DNA or RNA, due to several fundamental reasons: topological defects in the DNA case, and secondary/tertiary structural disorder in the RNA case. In this article we discuss the range of partial order associated with the encapsidated genomes of single-stranded RNA viruses, focusing on the contrast between mono-partite and multi-partite viruses and on the effects of sequence-specific and non-specific interactions between RNA and capsid proteins.
Collapse
Affiliation(s)
- Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, UCLA, United States; California NanoSystems Institute, UCLA, United States.
| |
Collapse
|
31
|
Solé R, Sardanyés J, Elena SF. Phase transitions in virology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:115901. [PMID: 34584031 DOI: 10.1088/1361-6633/ac2ab0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Viruses have established relationships with almost every other living organism on Earth and at all levels of biological organization: from other viruses up to entire ecosystems. In most cases, they peacefully coexist with their hosts, but in most relevant cases, they parasitize them and induce diseases and pandemics, such as the AIDS and the most recent avian influenza and COVID-19 pandemic events, causing a huge impact on health, society, and economy. Viruses play an essential role in shaping the eco-evolutionary dynamics of their hosts, and have been also involved in some of the major evolutionary innovations either by working as vectors of genetic information or by being themselves coopted by the host into their genomes. Viruses can be studied at different levels of biological organization, from the molecular mechanisms of genome replication, gene expression and encapsidation, to global pandemics. All these levels are different and yet connected through the presence of threshold conditions allowing for the formation of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as occurs with temperature separating phases in a liquid, define sharp qualitative types of behaviour. Thesephase transitionsare very well known in physics. They have been studied by means of simple, but powerful models able to capture their essential properties, allowing us to better understand them. Can the physics of phase transitions be an inspiration for our understanding of viral dynamics at different scales? Here we review well-known mathematical models of transition phenomena in virology. We suggest that the advantages of abstract, simplified pictures used in physics are also the key to properly understanding the origins and evolution of complexity in viruses. By means of several examples, we explore this multilevel landscape and how minimal models provide deep insights into a diverse array of problems. The relevance of these transitions in connecting dynamical patterns across scales and their evolutionary and clinical implications are outlined.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra-PRBB, Dr Aiguader 80, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit, Institute for Integrative Systems Biology (I2SysBio)-CRM, Spain
| | - Santiago F Elena
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
- Evolutionary Systems Virology Lab (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, 46980 València, Spain
| |
Collapse
|
32
|
Chen YJ, Lai HC, Lin CC, Neoh ZY, Tsai WS. Genetic Diversity, Pathogenicity and Pseudorecombination of Cucurbit-Infecting Begomoviruses in Malaysia. PLANTS (BASEL, SWITZERLAND) 2021; 10:2396. [PMID: 34834759 PMCID: PMC8624487 DOI: 10.3390/plants10112396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Cucurbits are important crops in the world. However, leaf curl disease constrains their production. Here, begomovirus diversity and pathogenicity associated with the disease in Malaysia were studied based on 49 begomovirus-detected out of 69 symptomatic plants from seven cucurbit crops in 15 locations during 2016 and 2017. The presence of Squash leaf curl China virus (SLCCNV) and Tomato leaf curl New Delhi virus (ToLCNDV) were confirmed by virus detection by polymerase chain reaction, viral DNA sequence analysis and specific detection of the viral components. ToLCNDV Malaysian isolates were further distinguished into strains A, B, C and D. Virus co-infection was detected in bitter gourd, bottle gourd and squash. Among them, eight bitter gourd samples were detected without SLCCNV DNA-A. However, one bottle gourd and five squash samples were without ToLCNDV DNA-B. Pseudorecombination of ToLCNDV DNA-A and SLCCNV DNA-B was detected in two bitter gourd samples. The pathogenic viruses and pseudorecombinants were confirmed by agroinoculation. The viral DNA-B influencing on symptomology and host range was also confirmed. The results strengthen the epidemic of cucurbit-infecting begomovirus in Malaysia as well as Southeast Asia. Especially, the natural pseudorecombinant of begomovirus that extends host range and causes severe symptom implies a threat to crops.
Collapse
Affiliation(s)
- Yu-Jeng Chen
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| | - Hsuan-Chun Lai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| | | | - Zhuan Yi Neoh
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| | - Wen-Shi Tsai
- Department of Plant Medicine, National Chiayi University, Chiayi City 600355, Taiwan; (Y.-J.C.); (H.-C.L.); (Z.Y.N.)
| |
Collapse
|
33
|
Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). ANNALS OF BOTANY 2021; 128:281-299. [PMID: 33729490 PMCID: PMC8389469 DOI: 10.1093/aob/mcab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, PR China
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
34
|
Mu F, Li B, Cheng S, Jia J, Jiang D, Fu Y, Cheng J, Lin Y, Chen T, Xie J. Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. PLoS Pathog 2021; 17:e1009823. [PMID: 34428260 PMCID: PMC8415603 DOI: 10.1371/journal.ppat.1009823] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/03/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation. Identification of mycoviruses in phytopathogenic fungi is necessary for understanding the origin of viruses and developing virocontrol strategies to protect plants. Nine mycoviruses with RNA genomes were identified in a hypovirulent strain of Sclerotinia sclerotiorum and were classified into eight potential viral families, suggesting that the composition of mycoviral communities was complex in this single fungal strain. They included four previously characterized mycoviruses and three distant relatives of known mycoviruses, as well as the first reports of a deltaflexivirus with a tripartite genome, and a fungal rhabdovirus. In addition, we found an endornavirus associated with hypovirulence in a phytopathogenic fungus. Our study makes a significant contribution because it not only expands the diversity-related knowledge of mycoviruses and potential virocontrol agents, but also provides new insights into mycovirus evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
35
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
36
|
Abstract
Despite their simplicity, viruses exhibit certain types of social interactions. Situations in which a given virus achieves higher fitness in combination with other members of the viral population have been described at the level of transmission, replication, suppression of host immune responses, and host killing, enabling the evolution of viral cooperation. Although cellular coinfection with multiple viral particles is the typical playground for these interactions, cooperation between viruses infecting different cells is also established through cellular and viral-encoded communication systems. In general, the stability of cooperation is compromised by cheater genotypes, as best exemplified by defective interfering particles. As predicted by social evolution theory, cheater invasion can be avoided when cooperators interact preferentially with other cooperators, a situation that is promoted in spatially structured populations. Processes such as transmission bottlenecks, organ compartmentalization, localized spread of infection foci, superinfection exclusion, and even discrete intracellular replication centers promote multilevel spatial structuring in viruses. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas and Universitat de València, 46980 Paterna, València, Spain;
| |
Collapse
|
37
|
Xavier CAD, Godinho MT, Mar TB, Ferro CG, Sande OFL, Silva JC, Ramos-Sobrinho R, Nascimento RN, Assunção I, Lima GSA, Lima ATM, Murilo Zerbini F. Evolutionary dynamics of bipartite begomoviruses revealed by complete genome analysis. Mol Ecol 2021; 30:3747-3767. [PMID: 34021651 DOI: 10.1111/mec.15997] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Several key evolutionary events marked the evolution of geminiviruses, culminating with the emergence of divided (bipartite) genomes represented by viruses classified in the genus Begomovirus. This genus represents the most abundant group of multipartite viruses, contributing significantly to the observed abundance of multipartite species in the virosphere. Although aspects related to virus-host interactions and evolutionary dynamics have been extensively studied, the bipartite nature of these viruses has been little explored in evolutionary studies. Here, we performed a parallel evolutionary analysis of the DNA-A and DNA-B segments of New World begomoviruses. A total of 239 full-length DNA-B sequences obtained in this study, combined with 292 DNA-A and 76 DNA-B sequences retrieved from GenBank, were analysed. The results indicate that the DNA-A and DNA-B respond differentially to evolutionary processes, with the DNA-B being more permissive to variation and more prone to recombination than the DNA-A. Although a clear geographic segregation was observed for both segments, differences in the genetic structure between DNA-A and DNA-B were also observed, with cognate segments belonging to distinct genetic clusters. DNA-B coding regions evolve under the same selection pressures than DNA-A coding regions. Together, our results indicate an interplay between reassortment and recombination acting at different levels across distinct subpopulations and segments.
Collapse
Affiliation(s)
- César A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Talita B Mar
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Osvaldo F L Sande
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José C Silva
- Dep. de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Roberto Ramos-Sobrinho
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renato N Nascimento
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Iraildes Assunção
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Gaus S A Lima
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, Alagoas, Brazil
| | - Alison T M Lima
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
38
|
Kormelink R, Verchot J, Tao X, Desbiez C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021; 13:842. [PMID: 34066457 PMCID: PMC8148189 DOI: 10.3390/v13050842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.
Collapse
Affiliation(s)
- Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
39
|
Vinodhini J, Rajendran L, Abirami R, Karthikeyan G. Co-existence of chlorosis inducing strain of Cucumber mosaic virus with tospoviruses on hot pepper (Capsicum annuum) in India. Sci Rep 2021; 11:8796. [PMID: 33888846 PMCID: PMC8062535 DOI: 10.1038/s41598-021-88282-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Cucumo- and tospoviruses are the most destructive viruses infecting hot pepper (chilli). A diagnostic survey was conducted to assess the prevalence of cucumo and tospoviruses in chilli growing tracts of Tamil Nadu. Infected plants showing mosaic with chlorotic and necrotic rings, veinal necrosis, mosaic mottling, leaf filiformity and malformation were collected. Molecular indexing carried out through reverse transcription polymerase chain reaction (RT-PCR) with coat protein gene specific primer of Cucumber mosaic virus (CMV) and tospovirus degenerate primer corresponding to the L segment (RdRp). Ostensibly, amplifications were observed for both CMV and tospoviruses as sole as well for mixed infections. The sequence analysis indicated that the Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) to be involved with CMV in causing combined infections. The co-infection of CMV with CaCV was detected in 10.41% of the symptomatic plant samples and combined infection of CMV with GBNV was recorded in around 6.25% of the symptomatic plants surveyed. The amino acid substitution of Ser129 over conserved Pro129 in coat protein of CMV implies that CMV strain involved in mixed infection as chlorosis inducing strain. Further, the electron microscopy of symptomatic plant samples explicated the presence of isometric particles of CMV and quasi spherical particles of tospoviruses. This is the first molecular evidence for the natural co-existence of chlorosis inducing CMV strain with CaCV and GBNV on hot pepper in India.
Collapse
Affiliation(s)
- J. Vinodhini
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - L. Rajendran
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - R. Abirami
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - G. Karthikeyan
- grid.412906.80000 0001 2155 9899Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
40
|
Bermúdez-Méndez E, Katrukha EA, Spruit CM, Kortekaas J, Wichgers Schreur PJ. Visualizing the ribonucleoprotein content of single bunyavirus virions reveals more efficient genome packaging in the arthropod host. Commun Biol 2021; 4:345. [PMID: 33753850 PMCID: PMC7985392 DOI: 10.1038/s42003-021-01821-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Bunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cindy M Spruit
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
41
|
Goh CJ, Hahn Y. Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of NIa-Pro protease in each of seven cleavage sites. PLoS One 2021; 16:e0245853. [PMID: 33493199 PMCID: PMC7833154 DOI: 10.1371/journal.pone.0245853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Potyviruses encode a large polyprotein that undergoes proteolytic processing, producing 10 mature proteins: P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb-RdRp, and CP. While P1/HC-Pro and HC-Pro/P3 junctions are cleaved by P1 and HC-Pro, respectively, the remaining seven are processed by NIa-Pro. In this study, we analyzed 135 polyprotein sequences from approved potyvirus species and deduced the consensus amino acid residues at five positions (from −4 to +1, where a protease cleaves between −1 and +1) in each of nine cleavage sites. In general, the newly deduced consensus sequences were consistent with the previous ones. However, seven NIa-Pro cleavage sites showed distinct amino acid preferences despite being processed by the same protease. At position −2, histidine was the dominant amino acid residue in most cleavage sites (57.8–60.7% of analyzed sequences), except for the NIa-Pro/NIb-RdRp junction where it was absent. At position −1, glutamine was highly dominant in most sites (88.2–97.8%), except for the VPg/NIa-Pro junction where glutamic acid was found in all the analyzed proteins (100%). At position +1, serine was the most abundant residue (47.4–86.7%) in five out of seven sites, while alanine (52.6%) and glycine (82.2%) were the most abundant in the P3/6K1 and 6K2/VPg junctions, respectively. These findings suggest that each NIa-Pro cleavage site is finely tuned for differential characteristics of proteolytic reactions. The newly deduced consensus sequences may be useful resources for the development of models and methods to accurately predict potyvirus polyprotein processing sites.
Collapse
Affiliation(s)
- Chul Jun Goh
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
42
|
Zwart MP, Blanc S, Johnson M, Manrubia S, Michalakis Y, Sofonea MT. Unresolved advantages of multipartitism in spatially structured environments. Virus Evol 2021; 7:veab004. [PMID: 33614160 PMCID: PMC7882214 DOI: 10.1093/ve/veab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multipartite viruses have segmented genomes and package each of their genome segments individually into distinct virus particles. Multipartitism is common among plant viruses, but why this apparently costly genome organization and packaging has evolved remains unclear. Recently Zhang and colleagues developed network epidemiology models to study the epidemic spread of multipartite viruses and their distribution over plant and animal hosts (Phys. Rev. Lett. 2019, 123, 138101). In this short commentary, we call into question the relevance of these results because of key model assumptions. First, the model of plant hosts assumes virus transmission only occurs between adjacent plants. This assumption overlooks the basic but imperative fact that most multipartite viruses are transmitted over variable distances by mobile animal vectors, rendering the model results irrelevant to differences between plant and animal hosts. Second, when not all genome segments of a multipartite virus are transmitted to a host, the model assumes an incessant latent infection occurs. This is a bold assumption for which there is no evidence to date, making the relevance of these results to understanding multipartitism questionable.
Collapse
Affiliation(s)
- Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, Wageningen 6700 AB, The Netherlands
| | - Stéphane Blanc
- BGPI, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier 34398, France
| | - Marcelle Johnson
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, Wageningen 6700 AB, The Netherlands
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), C/Darwin no 3, Campus de Cantoblanco, Madrid 28049, Spain
| | - Yannis Michalakis
- UMR MIVEGEC 5290, Université de Montpellier-CNRS-IRD, Montpellier 34394, France.,Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier 34394, France
| | - Mircea T Sofonea
- UMR MIVEGEC 5290, Université de Montpellier-CNRS-IRD, Montpellier 34394, France.,Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier 34394, France
| |
Collapse
|
43
|
The Genome Segments of Bluetongue Virus Differ in Copy Number in a Host-Specific Manner. J Virol 2020; 95:JVI.01834-20. [PMID: 33028716 PMCID: PMC7737730 DOI: 10.1128/jvi.01834-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023] Open
Abstract
The variation in viral gene frequencies remains a largely unexplored aspect of within-host genetics. This phenomenon is often considered to be specific to multipartite viruses. Multipartite viruses have segmented genomes, but in contrast to segmented viruses, their segments are each encapsidated alone in a virion. A main hypothesis explaining the evolution of multipartism is that, compared to segmented viruses, it facilitates the regulation of segment abundancy, and the genes the segments carry, within a host. These differences in gene frequencies could allow for expression regulation. Here, we show that wild populations of a segmented virus, bluetongue virus (BTV), also present unequal segment frequencies. BTV cycles between ruminants and Culicoides biting midges. As expected from a role in expression regulation, segment frequencies tended to show specific values that differed between ruminants and midges. Our results expand previous knowledge on gene frequency variation and call for studies on its role and conservation beyond multipartite viruses. Genome segmentation is mainly thought to facilitate reassortment. Here, we show that segmentation can also allow differences in segment abundance in populations of bluetongue virus (BTV). BTV has a genome consisting in 10 segments, and its cycle primarily involves periodic alternation between ruminants and Culicoides biting midges. We have developed a reverse transcription-quantitative PCR (RT-qPCR) approach to quantify each segment in wild BTV populations sampled in both ruminants and midges during an epizootic. Segment frequencies deviated from equimolarity in all hosts. Interestingly, segment frequencies were reproducible and distinct between ruminants and biting midges. Beyond a putative regulatory role in virus expression, this phenomenon could lead to different evolution rates between segments. IMPORTANCE The variation in viral gene frequencies remains a largely unexplored aspect of within-host genetics. This phenomenon is often considered to be specific to multipartite viruses. Multipartite viruses have segmented genomes, but in contrast to segmented viruses, their segments are each encapsidated alone in a virion. A main hypothesis explaining the evolution of multipartism is that, compared to segmented viruses, it facilitates the regulation of segment abundancy, and the genes the segments carry, within a host. These differences in gene frequencies could allow for expression regulation. Here, we show that wild populations of a segmented virus, bluetongue virus (BTV), also present unequal segment frequencies. BTV cycles between ruminants and Culicoides biting midges. As expected from a role in expression regulation, segment frequencies tended to show specific values that differed between ruminants and midges. Our results expand previous knowledge on gene frequency variation and call for studies on its role and conservation beyond multipartite viruses.
Collapse
|
44
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
45
|
Abstract
Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability. The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae. The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.
Collapse
|
46
|
Rūmnieks J, Liekniņa I, Kalniņš G, Šišovs M, Akopjana I, Bogans J, Tārs K. Three-dimensional structure of 22 uncultured ssRNA bacteriophages: Flexibility of the coat protein fold and variations in particle shapes. SCIENCE ADVANCES 2020; 6:6/36/eabc0023. [PMID: 32917600 PMCID: PMC7467689 DOI: 10.1126/sciadv.abc0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The single-stranded RNA (ssRNA) bacteriophages are among the simplest known viruses with small genomes and exceptionally high mutation rates. The number of ssRNA phage isolates has remained very low, but recent metagenomic studies have uncovered an immense variety of distinct uncultured ssRNA phages. The coat proteins (CPs) in these genomes are particularly diverse, with notable variation in length and often no recognizable similarity to previously known viruses. We recombinantly expressed metagenome-derived ssRNA phage CPs to produce virus-like particles and determined the three-dimensional structure of 22 previously uncharacterized ssRNA phage capsids covering nine distinct CP types. The structures revealed substantial deviations from the previously known ssRNA phage CP fold, uncovered an unusual prolate particle shape, and revealed a previously unseen dsRNA binding mode. These data expand our knowledge of the evolution of viral structural proteins and are of relevance for applications such as ssRNA phage-based vaccine design.
Collapse
Affiliation(s)
- Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Mihails Šišovs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Ināra Akopjana
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Jānis Bogans
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Rātsupītes 1, LV1067, Riga, Latvia.
| |
Collapse
|
47
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
48
|
Beren C, Cui Y, Chakravarty A, Yang X, Rao ALN, Knobler CM, Zhou ZH, Gelbart WM. Genome organization and interaction with capsid protein in a multipartite RNA virus. Proc Natl Acad Sci U S A 2020; 117:10673-10680. [PMID: 32358197 PMCID: PMC7245085 DOI: 10.1073/pnas.1915078117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the asymmetric reconstruction of the single-stranded RNA (ssRNA) content in one of the three otherwise identical virions of a multipartite RNA virus, brome mosaic virus (BMV). We exploit a sample consisting exclusively of particles with the same RNA content-specifically, RNAs 3 and 4-assembled in planta by agrobacterium-mediated transient expression. We find that the interior of the particle is nearly empty, with most of the RNA genome situated at the capsid shell. However, this density is disordered in the sense that the RNA is not associated with any particular structure but rather, with an ensemble of secondary/tertiary structures that interact with the capsid protein. Our results illustrate a fundamental difference between the ssRNA organization in the multipartite BMV viral capsid and the monopartite bacteriophages MS2 and Qβ for which a dominant RNA conformation is found inside the assembled viral capsids, with RNA density conserved even at the center of the particle. This can be understood in the context of the differing demands on their respective lifecycles: BMV must package separately each of several different RNA molecules and has been shown to replicate and package them in isolated, membrane-bound, cytoplasmic complexes, whereas the bacteriophages exploit sequence-specific "packaging signals" throughout the viral RNA to package their monopartite genomes.
Collapse
Affiliation(s)
- Christian Beren
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Antara Chakravarty
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Xue Yang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521;
| | - Charles M Knobler
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, CA 90095;
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - William M Gelbart
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095;
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
49
|
Zwart MP, Elena SF. Modeling multipartite virus evolution: the genome formula facilitates rapid adaptation to heterogeneous environments †. Virus Evol 2020; 6:veaa022. [PMID: 32405432 PMCID: PMC7206449 DOI: 10.1093/ve/veaa022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multipartite viruses have two or more genome segments, and package different segments into different particle types. Although multipartition is thought to have a cost for virus transmission, its benefits are not clear. Recent experimental work has shown that the equilibrium frequency of viral genome segments, the setpoint genome formula (SGF), can be unbalanced and host-species dependent. These observations have reinvigorated the hypothesis that changes in genome-segment frequencies can lead to changes in virus-gene expression that might be adaptive. Here we explore this hypothesis by developing models of bipartite virus infection, leading to a threefold contribution. First, we show that the SGF depends on the cellular multiplicity of infection (MOI), when the requirements for infection clash with optimizing the SGF for virus-particle yield per cell. Second, we find that convergence on the SGF is very rapid, often occurring within a few cellular rounds of infection. Low and intermediate MOIs lead to faster convergence on the SGF. For low MOIs, this effect occurs because of the requirements for infection, whereas for intermediate MOIs this effect is also due to the high levels of variation generated in the genome formula (GF). Third, we explored the conditions under which a bipartite virus could outcompete a monopartite one. As the heterogeneity between environments and specificity of gene-expression requirements for each environment increased, the bipartite virus was more likely to outcompete the monopartite virus. Under some conditions, changes in the GF helped to exclude the monopartite competitor, highlighting the versatility of the GF. Our results show the inextricable relationship between MOI and the SGF, and suggest that under some conditions, the cost of multipartition can be outweighed by its benefits for the rapid tuning of viral gene expression.
Collapse
Affiliation(s)
- Mark P Zwart
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Postbus 50, 6700 AB, Wageningen, The Netherlands
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, Valéncia 46980, Spain.,The Santa Fe Institute, Santa Fe, 1399 Hyde Park Road, NM 87501, USA
| |
Collapse
|
50
|
Katsiani A, Stainton D, Lamour K, Tzanetakis IE. The population structure of Rose rosette virus in the USA. J Gen Virol 2020; 101:676-684. [PMID: 32375952 DOI: 10.1099/jgv.0.001418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rose rosette virus (RRV) (genus Emaravirus) is the causal agent of the homonymous disease, the most destructive malady of roses in the USA. Although the importance of the disease is recognized, little sequence information and no full genomes are available for RRV, a multi-segmented RNA virus. To better understand the population structure of the virus we implemented a Hi-Plex PCR amplicon high-throughput sequencing approach to sequence all 7 segments and to quantify polymorphisms in 91 RRV isolates collected from 16 states in the USA. Analysis revealed insertion/deletion (indel) polymorphisms primarily in the 5' and 3' non-coding, but also within coding regions, including some resulting in changes of protein length. Phylogenetic analysis showed little geographical structuring, suggesting that topography does not have a strong influence on virus evolution. Overall, the virus populations were homogeneous, possibly because of regular movement of plants, the recent emergence of RRV and/or because the virus is under strong purification selection to preserve its integrity and biological functions.
Collapse
Affiliation(s)
- Asimina Katsiani
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| | - Daisy Stainton
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville AR 72701, USA
| |
Collapse
|