1
|
Li S, Xie Y, Yu C, Zheng C, Xu Z. The battle between host antiviral innate immunity and immune evasion by cytomegalovirus. Cell Mol Life Sci 2024; 81:341. [PMID: 39120730 PMCID: PMC11335264 DOI: 10.1007/s00018-024-05369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Cytomegalovirus (CMV) has successfully established a long-lasting latent infection in humans due to its ability to counteract the host antiviral innate immune response. During coevolution with the host, the virus has evolved various evasion techniques to evade the host's innate immune surveillance. At present, there is still no vaccine available for the prevention and treatment of CMV infection, and the interaction between CMV infection and host antiviral innate immunity is still not well understood. However, ongoing studies will offer new insights into how to treat and prevent CMV infection and its related diseases. Here, we update recent studies on how CMV evades antiviral innate immunity, with a focus on how CMV proteins target and disrupt critical adaptors of antiviral innate immune signaling pathways. This review also discusses some classic intrinsic cellular defences that are crucial to the fight against viral invasion. A comprehensive review of the evasion mechanisms of antiviral innate immunity by CMV will help investigators identify new therapeutic targets and develop vaccines against CMV infection.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanyang Xie
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Megawati D, Stroup JN, Park C, Clarkson T, Tazi L, Brennan G, Rothenburg S. Tanapox Virus and Yaba Monkey Tumor Virus K3 Orthologs Inhibit Primate Protein Kinase R in a Species-Specific Fashion. Viruses 2024; 16:1095. [PMID: 39066257 PMCID: PMC11281682 DOI: 10.3390/v16071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Yaba monkey tumor virus (YMTV) and Tanapox virus (TPV) are members of the Yatapoxvirus genus and can infect humans and other primates. Despite the threat posed by yatapoxviruses, the factors determining their host range are poorly understood. In this study, we analyzed the ability of YMTV and TPV orthologs of vaccinia virus K3 (called 012 in YMTV and TPV), which share 75% amino acid identity with one another, to inhibit PKR from 15 different primate species. We first used a luciferase-based reporter, and found that YMTV and TPV K3 orthologs inhibited PKR in a species-specific manner and showed distinct PKR inhibition profiles. TPV 012 inhibited PKR from 11 primates, including humans, substantially better than YMTV 012. In contrast, both K3 orthologs inhibited the other four primate PKRs comparably well. Using YMTV 012 and TPV 012 hybrids, we mapped the region responsible for the differential PKR inhibition to the C- terminus of the K3 orthologs. Next, we generated chimeric vaccinia virus strains to investigate whether TPV K3 and YMTV K3 orthologs could rescue the replication of a vaccinia virus strain that lacks PKR inhibitors K3L and E3L. Virus replication in primate-derived cells generally correlated with the patterns observed in the luciferase-based assay. Together, these observations demonstrate that yatapoxvirus K3 orthologs have distinct PKR inhibition profiles and inhibit PKR in a species-specific manner, which may contribute to the differential susceptibility of primate species to yatapoxvirus infections.
Collapse
Affiliation(s)
- Dewi Megawati
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar 80239, Bali, Indonesia
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Taylor Clarkson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA; (D.M.); (J.N.S.); (C.P.); (L.T.)
| |
Collapse
|
3
|
Bayer A, Child SJ, Malik HS, Geballe AP. A single polymorphic residue in humans underlies species-specific restriction of HSV-1 by the antiviral protein MxB. J Virol 2023; 97:e0083023. [PMID: 37796130 PMCID: PMC10617587 DOI: 10.1128/jvi.00830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Herpesviruses present a major global disease burden. Understanding the host cell mechanisms that block viral infections, as well as how viruses can evolve to counteract these host defenses, is critically important for understanding viral disease pathogenesis. This study reveals that the major human variant of the antiviral protein myxovirus resistance protein B (MxB) inhibits the human pathogen herpes simplex virus (HSV-1), whereas a minor human variant and orthologous MxB genes from even closely related primates do not. Thus, in contrast to the many antagonistic virus-host interactions in which the virus is successful in thwarting the host's defense systems, here the human gene appears to be at least temporarily winning at this interface of the primate-herpesvirus evolutionary arms race. Our findings further show that a polymorphism at amino acid 83 in a small fraction of the human population is sufficient to abrogate MxB's ability to inhibit HSV-1, which could have important implications for human susceptibility to HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Avraham Bayer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephanie J. Child
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Bayer A, Child SJ, Malik HS, Geballe AP. A single polymorphic residue in humans underlies species-specific restriction of HSV-1 by the antiviral protein MxB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542951. [PMID: 37398298 PMCID: PMC10312577 DOI: 10.1101/2023.05.30.542951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myxovirus resistance proteins (MxA and MxB) are interferon-induced proteins that exert antiviral activity against a diverse range of RNA and DNA viruses. In primates, MxA has been shown to inhibit myxoviruses, bunyaviruses, and hepatitis B virus, whereas MxB restricts retroviruses and herpesviruses. As a result of their conflicts with viruses, both genes have been undergoing diversifying selection during primate evolution. Here, we investigate how MxB evolution in primates has affected its restriction of herpesviruses. In contrast to human MxB, we find that most primate orthologs, including the closely related chimpanzee MxB, do not inhibit HSV-1 replication. However, all primate MxB orthologs tested restrict human cytomegalovirus. Through the generation of human and chimpanzee MxB chimeras we show that a single residue, M83, is the key determinant of restriction of HSV-1 replication. Humans are the only primate species known to encode a methionine at this position, whereas most other primate species encode a lysine. Residue 83 is also the most polymorphic residue in MxB in human populations, with M83 being the most common variant. However, ∼2.5% of human MxB alleles encode a threonine at this position, which does not restrict HSV-1. Thus, a single amino acid variant in MxB, which has recently risen to high frequency in humans, has endowed humans with HSV-1 antiviral activity. Importance Herpesviruses present a major global disease burden. Understanding the host cell mechanisms that block viral infections as well as how viruses can evolve to counteract these host defenses is critically important for understanding viral disease pathogenesis, and for developing therapeutic tools aimed at treating or preventing viral infections. Additionally, understanding how these host and viral mechanisms adapt to counter one another can aid in identifying the risks of, and barriers to, cross-species transmission events. As highlighted by the recent SARS-CoV-2 pandemic, episodic transmission events can have severe consequences for human health. This study reveals that the major human variant of the antiviral protein MxB inhibits the human pathogen HSV-1, whereas human minor variants and orthologous MxB genes from even closely related primates do not. Thus, in contrast to the many antagonistic virus-host interactions in which the virus is successful in thwarting the defense systems of their native hosts, in this case the human gene appears to be at least temporarily winning at this interface of the primate-herpesviral evolutionary arms race. Our findings further show that a polymorphism at amino acid 83 in a small fraction of the human population is sufficient to abrogate MxB's ability to inhibit HSV-1, which could have important implications for human susceptibility to HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Avraham Bayer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephanie J. Child
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Departments of Medicine and Microbiology, University of Washington, Seattle WA, USA
| |
Collapse
|
5
|
Olson AT, Child SJ, Geballe AP. Antagonism of Protein Kinase R by Large DNA Viruses. Pathogens 2022; 11:pathogens11070790. [PMID: 35890034 PMCID: PMC9319463 DOI: 10.3390/pathogens11070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
Decades of research on vaccinia virus (VACV) have provided a wealth of insights and tools that have proven to be invaluable in a broad range of studies of molecular virology and pathogenesis. Among the challenges that viruses face are intrinsic host cellular defenses, such as the protein kinase R pathway, which shuts off protein synthesis in response to the dsRNA that accumulates during replication of many viruses. Activation of PKR results in phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α), inhibition of protein synthesis, and limited viral replication. VACV encodes two well-characterized antagonists, E3L and K3L, that can block the PKR pathway and thus enable the virus to replicate efficiently. The use of VACV with a deletion of the dominant factor, E3L, enabled the initial identification of PKR antagonists encoded by human cytomegalovirus (HCMV), a prevalent and medically important virus. Understanding the molecular mechanisms of E3L and K3L function facilitated the dissection of the domains, species-specificity, and evolutionary potential of PKR antagonists encoded by human and nonhuman CMVs. While remaining cognizant of the substantial differences in the molecular virology and replication strategies of VACV and CMVs, this review illustrates how VACV can provide a valuable guide for the study of other experimentally less tractable viruses.
Collapse
Affiliation(s)
- Annabel T. Olson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, 1100 Fairview Ave N Seattle, P.O. Box 19024, Seattle, WA 98109, USA; (A.T.O.); (S.J.C.)
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Stephanie J. Child
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, 1100 Fairview Ave N Seattle, P.O. Box 19024, Seattle, WA 98109, USA; (A.T.O.); (S.J.C.)
| | - Adam P. Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, 1100 Fairview Ave N Seattle, P.O. Box 19024, Seattle, WA 98109, USA; (A.T.O.); (S.J.C.)
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
6
|
Maladaptation after a virus host switch leads to increased activation of the pro-inflammatory NF-κB pathway. Proc Natl Acad Sci U S A 2022; 119:e2115354119. [PMID: 35549551 PMCID: PMC9171774 DOI: 10.1073/pnas.2115354119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myxoma virus (MYXV) is benign in the natural brush rabbit host but causes a fatal disease in European rabbits. Here, we demonstrate that MYXV M156 inhibited brush rabbit protein kinase R (bPKR) more efficiently than European rabbit PKR (ePKR). Because ePKR was not completely inhibited by M156, there was a depletion of short–half-life proteins like the nuclear factor kappa B (NF-κB) inhibitor IκBα, concomitant NF-κB activation and NF-κB target protein expression in ePKR-expressing cells. NF-κB pathway activation was blocked by either hypoactive or hyperactive M156 mutants. This demonstrates that maladaptation of viral immune antagonists can result in substantially different immune responses in aberrant hosts. These different host responses may contribute to altered viral dissemination and may influence viral pathogenesis. Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB–dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short–half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.
Collapse
|
7
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
8
|
Liu X, Ma Y, Voss K, van Gent M, Chan YK, Gack MU, Gale M, He B. The herpesvirus accessory protein γ134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathog 2021; 17:e1009446. [PMID: 33770145 PMCID: PMC7996975 DOI: 10.1371/journal.ppat.1009446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yijie Ma
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Bin He
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Park C, Peng C, Rahman MJ, Haller SL, Tazi L, Brennan G, Rothenburg S. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog 2021; 17:e1009183. [PMID: 33444388 PMCID: PMC7840043 DOI: 10.1371/journal.ppat.1009183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/27/2021] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined. Most virus families are composed of large numbers of virus species. However, in general, only a few prototypic viruses are experimentally studied in-depth, and it is often assumed that the obtained results are representative of other viruses in the same family. In order to test this assumption, we compared the sensitivity of the antiviral protein kinase PKR from various mammals to inhibition by multiple orthologs of K3, a PKR inhibitor expressed by several closely related orthopoxviruses. We found strong differences in PKR inhibition by the K3 orthologs, demonstrating that sensitivity to a specific inhibitor was not indicative of broad sensitivity to orthologs of these inhibitors from closely related viruses. We also show that PKR from even closely related species displayed markedly different sensitivities to these poxvirus inhibitors. Furthermore, we identified amino acid residues in these K3 orthologs that are critical for enhanced or decreased PKR inhibition and found that distinct amino acid combinations affected PKRs from various species differently. Our study shows that even closely related inhibitors of an antiviral protein can vary dramatically in their inhibitory potential, and cautions that results from host-virus interaction studies of a prototypic virus genus member cannot necessarily be extrapolated to other viruses in the same genus without experimental verification.
Collapse
Affiliation(s)
- Chorong Park
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Chen Peng
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Viral Diseases, Bethesda, Maryland, United States of America
| | - M. Julhasur Rahman
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Sherry L. Haller
- University of Texas Medical Branch at Galveston, Department of Microbiology and Immunology, Galveston, Texas, United States of America
| | - Loubna Tazi
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Greg Brennan
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Stefan Rothenburg
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Yalçin A, Şarkici G, Kolaç UK. PKR inhibitors suppress endoplasmic reticulum stress and subdue glucolipotoxicity-mediated impairment of insulin secretion in pancreatic beta cells. ACTA ACUST UNITED AC 2020; 44:93-102. [PMID: 32256145 PMCID: PMC7129068 DOI: 10.3906/biy-1909-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is characterized by insulin resistance and hypersecretion of insulin from the pancreas to compensate for decreased insulin sensitivity in the peripheral tissues. In later stages of the disease insulin-secreting beta cell degeneration commences and patients require insulin replacement therapy in order to accomplish proper regulation of their blood glucose. Endoplasmic reticulum (ER) stress in the beta cells is one of the factors contributing to this detrimental effect. Protein kinase R (PKR) is a cellular stress kinase activated by ER stress and contributing to degeneration of pancreatic islets. In order to determine whether inhibition of PKR activation by specific small molecule inhibitors of PKR ameliorates pancreatic insulin secretion capacity, we treated beta cells with two imidazole/oxindole-derived inhibitors of PKR kinase, imoxin (C16) and 2-aminopurine (2-AP), in the presence of ER stress. Our results demonstrate that PKR inhibition suppresses tunicamycin-mediated ER stress without altering the insulin production capacity of the cells. Palmitic acid-mediated suppression of insulin secretion, however, was subdued significantly by PKR inhibitor treatment through an ER stress-related mechanism. We suggest that PKR inhibitor treatment may be used to increase the insulin secretion capacity of the pancreas in later stages of diabetes.
Collapse
Affiliation(s)
- Abdullah Yalçin
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University AYDIN TURKEY
| | - Gülçin Şarkici
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University AYDIN TURKEY
| | - Umut Kerem Kolaç
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University AYDIN TURKEY
| |
Collapse
|
11
|
Species-Specific Host-Virus Interactions: Implications for Viral Host Range and Virulence. Trends Microbiol 2019; 28:46-56. [PMID: 31597598 DOI: 10.1016/j.tim.2019.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
A growing number of studies indicate that host species-specific and virus strain-specific interactions of viral molecules with the host innate immune system play a pivotal role in determining virus host range and virulence. Because interacting proteins are likely constrained in their evolution, mutations that are selected to improve virus replication in one species may, by chance, alter the ability of a viral antagonist to inhibit immune responses in hosts the virus has not yet encountered. Based on recent findings of host-species interactions of poxvirus, herpesvirus, and influenza virus proteins, we propose a model for viral fitness and host range which considers the full interactome between a specific host species and a virus, resulting from the combination of all interactions, positive and negative, that influence whether a virus can productively infect a cell and cause disease in different hosts.
Collapse
|
12
|
Stern-Ginossar N, Thompson SR, Mathews MB, Mohr I. Translational Control in Virus-Infected Cells. Cold Spring Harb Perspect Biol 2019; 11:a033001. [PMID: 29891561 PMCID: PMC6396331 DOI: 10.1101/cshperspect.a033001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As obligate intracellular parasites, virus reproduction requires host cell functions. Despite variations in genome size and configuration, nucleic acid composition, and their repertoire of encoded functions, all viruses remain unconditionally dependent on the protein synthesis machinery resident within their cellular hosts to translate viral messenger RNAs (mRNAs). A complex signaling network responsive to physiological stress, including infection, regulates host translation factors and ribosome availability. Furthermore, access to the translation apparatus is patrolled by powerful host immune defenses programmed to restrict viral invaders. Here, we review the tactics and mechanisms used by viruses to appropriate control over host ribosomes, subvert host defenses, and dominate the infected cell translational landscape. These not only define aspects of infection biology paramount for virus reproduction, but continue to drive fundamental discoveries into how cellular protein synthesis is controlled in health and disease.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
13
|
Park C, Peng C, Brennan G, Rothenburg S. Species-specific inhibition of antiviral protein kinase R by capripoxviruses and vaccinia virus. Ann N Y Acad Sci 2019; 1438:18-29. [PMID: 30644558 DOI: 10.1111/nyas.14000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Double-stranded RNA-activated protein kinase R (PKR) is an important and rapidly evolving antiviral kinase. Most poxviruses contain two distinct PKR inhibitors, called E3 and K3 in vaccinia virus (VACV), the prototypic orthopoxvirus. E3 prevents PKR homodimerization by binding double-stranded RNA, while K3 acts as a pseudosubstrate inhibitor by binding directly to activated PKR and thereby inhibiting interaction with its substrate eIF2α. In our study here, we analyzed E3 and K3 orthologs from the phylogenetically distinct capripoxviruses (CaPVs), which include lumpy skin disease virus, sheeppox virus, and goatpox virus. Whereas the sheeppox virus E3 ortholog did not substantially inhibit PKR, all three CaPV K3 orthologs showed species-specific inhibition of PKR, with strong inhibition of sheep, goat, and human PKR but only weak inhibition of cow and mouse PKR. In contrast, VACV K3 strongly inhibited cow and mouse PKR but not sheep, goat, or human PKR. Infection of cell lines from the respective species with engineered VACV strains that contained different K3 orthologs showed a good correlation of PKR inhibition with virus replication and eIF2α phosphorylation. Our results show that K3 orthologs can have dramatically different effects on PKR of different species and indicate that effective PKR inhibition by K3 orthologs is crucial for virus replication.
Collapse
Affiliation(s)
- Chorong Park
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, California
| | - Chen Peng
- Division of Biology, Kansas State University, Manhattan, Kansas
| | - Greg Brennan
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, California
| | - Stefan Rothenburg
- School of Medicine, Department of Medial Microbiology and Immunology, University of California Davis, Davis, California
| |
Collapse
|
14
|
Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: A Kinase to Remember. Front Mol Neurosci 2019; 11:480. [PMID: 30686999 PMCID: PMC6333748 DOI: 10.3389/fnmol.2018.00480] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Marcelo Ehrlich
- Laboratory of Intracellular Trafficking and Signaling, School of Molecular Cell Biology & Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kobi Rosenblum
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Meade N, DiGiuseppe S, Walsh D. Translational control during poxvirus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1515. [PMID: 30381906 DOI: 10.1002/wrna.1515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Poxviruses are an unusual family of large double-stranded (ds) DNA viruses that exhibit an incredible degree of self-sufficiency and complexity in their replication and immune evasion strategies. Indeed, amongst their approximately 200 open reading frames (ORFs), poxviruses encode approximately 100 immunomodulatory proteins to counter host responses along with complete DNA synthesis, transcription, mRNA processing and cytoplasmic redox systems that enable them to replicate exclusively in the cytoplasm of infected cells. However, like all other viruses poxviruses do not encode ribosomes and therefore remain completely dependent on gaining access to the host translational machinery in order to synthesize viral proteins. Early studies of these intriguing viruses helped discover the mRNA cap and polyadenylated (polyA) tail that we now know to be present on most eukaryotic messages and which play fundamental roles in mRNA translation, while more recent studies have begun to reveal the remarkable lengths poxviruses go to in order to control both host and viral protein synthesis. Here, we discuss some of the central strategies used by poxviruses and the broader battle that ensues with the host cell to control the translation system, the outcome of which ultimately dictates the fate of infection. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
16
|
Hickson SE, Margineantu D, Hockenbery DM, Simon JA, Geballe AP. Inhibition of vaccinia virus replication by nitazoxanide. Virology 2018; 518:398-405. [PMID: 29625403 DOI: 10.1016/j.virol.2018.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/27/2022]
Abstract
Nitazoxanide (NTZ) is an FDA-approved anti-protozoal drug that inhibits several bacteria and viruses as well. However, its effect on poxviruses is unknown. Therefore, we investigated the impact of NTZ on vaccinia virus (VACV). We found that NTZ inhibits VACV production with an EC50 of ~2 μM, a potency comparable to that reported for several other viruses. The inhibitory block occurs early during the viral life cycle, prior to viral DNA replication. The mechanism of viral inhibition is likely not due to activation of intracellular innate immune pathways, such as protein kinase R (PKR) or interferon signaling, contrary to what has been suggested to mediate the effects of NTZ against some other viruses. Rather, our finding that addition of exogenous palmitate partially rescues VACV production from the inhibitory effect of NTZ suggests that NTZ impedes adaptations in cellular metabolism that are needed for efficient completion of the VACV replication cycle.
Collapse
Affiliation(s)
- Sarah E Hickson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Microbiology, University of Washington, Seattle, WA 98115, United States
| | - Daciana Margineantu
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - David M Hockenbery
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States
| | - Julian A Simon
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Adam P Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Microbiology, University of Washington, Seattle, WA 98115, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States.
| |
Collapse
|
17
|
Antagonism of the Protein Kinase R Pathway in Human Cells by Rhesus Cytomegalovirus. J Virol 2018; 92:JVI.01793-17. [PMID: 29263260 DOI: 10.1128/jvi.01793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
While cytomegalovirus (CMV) infections are often limited in host range by lengthy coevolution with a single host species, a few CMVs are known to deviate from this rule. For example, rhesus macaque CMV (RhCMV), a model for human CMV (HCMV) pathogenesis and vaccine development, can replicate in human cells, as well as in rhesus cells. Both HCMV and RhCMV encode species-specific antagonists of the broadly acting host cell restriction factor protein kinase R (PKR). Although the RhCMV antagonist of PKR, rTRS1, has very limited activity against human PKR, here, we show it is essential for RhCMV replication in human cells because it prevents human PKR from phosphorylating the translation initiation factor eIF2α, thereby allowing continued translation and viral replication. Although rTRS1 is necessary for RhCMV replication, it is not sufficient to rescue replication of HCMV lacking its own PKR antagonists in human fibroblasts. However, overexpression of rTRS1 in human fibroblasts enabled HCMV expressing rTRS1 to replicate, indicating that elevated levels or early expression of a weak antagonist can counteract a resistant restriction factor like human PKR. Exploring potential mechanisms that might allow RhCMV to replicate in human cells revealed that RhCMV makes no less double-stranded RNA than HCMV. Rather, in human cells, RhCMV expresses rTRS1 at levels 2 to 3 times higher than those of the HCMV-encoded PKR antagonists during HCMV infection. These data suggest that even a modest increase in expression of this weak PKR antagonist is sufficient to enable RhCMV replication in human cells.IMPORTANCE Rhesus macaque cytomegalovirus (RhCMV) offers a valuable model for studying congenital human cytomegalovirus (HCMV) pathogenesis and vaccine development. Therefore, it is critical to understand variations in how each virus infects and affects its host species to be able to apply insights gained from the RhCMV model to HCMV. While HCMV is capable only of infecting cells from humans and very closely related species, RhCMV displays a wider host range, including human as well as rhesus cells. RhCMV expresses an antagonist of a broadly acting antiviral factor present in all mammalian cells, and its ability to counter both the rhesus and human versions of this host factor is a key component of RhCMV's ability to cross species barriers. Here, we examine the molecular mechanisms that allow this RhCMV antagonist to function against a human restriction factor.
Collapse
|