1
|
Wolter DJ, Hoffman LR. Sticky Staph: A New Story About Mucoidy and Cystic Fibrosis. Am J Respir Crit Care Med 2025; 211:693-695. [PMID: 40126387 DOI: 10.1164/rccm.202502-0338ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Affiliation(s)
- Daniel J Wolter
- Univ. of Washington School of Medicine, Seattle, Washington, United States
| | - Lucas R Hoffman
- Children's Hospital and Regional Medical Center, Pediatrics, Seattle, Washington, United States;
| |
Collapse
|
2
|
Alexander AM, Loo HQ, Askew L, Raghuram V, Read TD, Goldberg JB. Intraspecific Diversity of Staphylococcus aureus Populations Isolated from Cystic Fibrosis Respiratory Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623925. [PMID: 39605409 PMCID: PMC11601312 DOI: 10.1101/2024.11.16.623925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic bacterial infections are often polymicrobial, comprising multiple bacterial species or variants of the same species. Because chronic infections may last for decades, they have the potential to generate high levels of intraspecific variation through within-host diversification over time, and the potential for superinfections to occur through the introduction of multiple pathogen populations to the ongoing infection. Traditional methods for identifying infective agents generally involve isolating one single colony from a given sample, usually after selecting for a specific pathogen or antibiotic resistance profile. Isolating a recognized virulent or difficult to treat pathogen is an important part of informing clinical treatment and correlative research; however, these reductive methods alone, do not provide researchers or healthcare providers with the potentially important perspective on the true pathogen population structure and dynamics over time. To begin to address this limitation, in this study, we compare findings on Staphylococcus aureus single colonies versus and pools of colonies taken from fresh sputum samples from three patients with cystic fibrosis to isolates collected from the same sputum samples and processed by the clinical microbiology laboratory. Phenotypic and genotypic analysis of isolated S. aureus populations revealed coexisting lineages in two of three sputum samples as well as population structures that were not reflected in the single colony isolates. Altogether, our observations presented here demonstrate that clinically relevant diversity can be missed with standard sampling methods when assessing chronic infections. More broadly, this work outlines the potential impact that comprehensive population-level sampling may have for both research efforts and more effective treatment practices.
Collapse
Affiliation(s)
- Ashley M Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Hui Qi Loo
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Lauren Askew
- Biochemistry, Cell and Developmental Biology Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
4
|
Tian LL, Li Y, Yang R, Jiang Y, He JJ, Wang H, Chen LQ, Zhu WY, Xue T, Li BB. Low concentrations of tetrabromobisphenol A promote the biofilm formation of methicillin-resistant Staphylococcus aureus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116853. [PMID: 39137468 DOI: 10.1016/j.ecoenv.2024.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The effect and underlying mechanism of tetrabromobisphenol A (TBBPA), a plastic additive, on biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA USA300) remain unknown. This study first investigated the impact of different concentrations of TBBPA on the growth and biofilm formation of USA300. The results indicated that a low concentration (0.5 mg/L) of TBBPA promoted the growth and biofilm formation of USA300, whereas high concentrations (5 mg/L and 10 mg/L) of TBBPA had inhibitory effects. Further exploration revealed that the low concentration of TBBPA enhance biofilm formation by promoting the synthesis of extracellular proteins, release of extracellular DNA (eDNA), and production of staphyloxanthin. RTqPCR analysis demonstrated that the low concentration of TBBPA upregulated genes associated with extracellular protein synthesis (sarA, fnbA, fnbB, aur) and eDNA formation (atlA) and increased the expression of genes involved in staphyloxanthin biosynthesis (crtM), suggesting a potential mechanism for enhanced resistance of USA300 to adverse conditions. These findings shed light on how low concentrations of TBBPA facilitate biofilm formation in USA300 and highlight the indirect impact of plastic additives on pathogenic bacteria in terms of human health. In the future, in-depth studies about effects of plastic additives on pathogenicity of pathogenic bacteria should be conducted. CAPSULE: The protein and eDNA contents in biofilms of methicillin-resistant Staphylococcus aureus are increased by low concentrations of TBBPA.
Collapse
Affiliation(s)
- Lin-Lin Tian
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yun Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ying Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiao-Jiao He
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Qi Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wen-Ya Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institute, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Bing-Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Schwartbeck B, Rumpf CH, Hait RJ, Janssen T, Deiwick S, Schwierzeck V, Mellmann A, Kahl BC. Various mutations in icaR, the repressor of the icaADBC locus, occur in mucoid Staphylococcus aureus isolates recovered from the airways of people with cystic fibrosis. Microbes Infect 2024; 26:105306. [PMID: 38316375 DOI: 10.1016/j.micinf.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Staphylococcus aureus is one of the major pathogens isolated from the airways of people with cystic fibrosis (pwCF). Recently, we described a mucoid S. aureus phenotype from respiratory specimens of pwCF, which constitutively overproduced biofilm that consisted of polysaccharide intercellular adhesin (PIA) due to a 5bp-deletion (5bp-del) in the intergenic region of the intercellular adhesin (ica) locus. Since we were not able to identify the 5bp-del in mucoid isolates of two pwCF with long-term S. aureus persistence and in a number of mucoid isolates of pwCF from a prospective multicenter study, these strains were (i) characterized phenotypically, (ii) investigated for biofilm formation, and (iii) molecular typed by spa-sequence typing. To screen for mutations responsible for mucoidy, the ica operon of all mucoid isolates was analyzed by Sanger sequencing. Whole genome sequencing was performed for selected isolates. For all mucoid isolates without the 5 bp-del, various mutations in icaR, which is the transcriptional repressor of the icaADBC operon. Mucoid and non-mucoid strains belonged to the same spa-type. Transformation of PIA-overproducing S. aureus with a vector expressing the intact icaR gene restored the non-mucoid phenotype. Altogether, we demonstrated a new mechanism for the emergence of mucoid S. aureus isolates of pwCF.
Collapse
Affiliation(s)
- Bianca Schwartbeck
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Christine H Rumpf
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | - Timo Janssen
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | - Susanne Deiwick
- Institute of Medical Microbiology, University Hospital Muenster, Germany
| | | | | | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Muenster, Germany.
| |
Collapse
|
6
|
Capri FC, Di Leto Y, Presentato A, Mancuso I, Scatassa ML, Alduina R. Characterization of Staphylococcus Species Isolates from Sheep Milk with Subclinical Mastitis: Antibiotic Resistance, Enterotoxins, and Biofilm Production. Foodborne Pathog Dis 2024; 21:10-18. [PMID: 37922428 DOI: 10.1089/fpd.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Subclinical mastitis represents one of the most contagious diseases affecting animals involved in dairy production systems. Although coagulase-negative staphylococci (CoNSs) have been considered minor pathogens for many years, they have recently emerged as opportunistic pathogens in mastitis disorders. The objectives of this work were to assess the antimicrobial resistance profile and the ability to produce a biofilm in comparison with a reference strain and to search for genes related to biofilm production, antimicrobial resistance, and enterotoxins in 18 isolates of Staphylococcus species from the milk of sheep with subclinical mastitis, collected from different Sicilian farms. This knowledge is essential to provide basic information on the pathogenicity and virulence of staphylococcal species and their impact on animal health. All isolates were resistant to ampicillin, 88.8% to streptomycin, 77.7% to gentamicin, 44.4% to chloramphenicol, 27.7% to erythromycin, and 11.1% to tetracycline, and two isolates were strong biofilm producers. Antibiotic resistance gene profiling showed that 16.6% of isolates possess the blaZ gene, whereas the search of biofilm-associated genes revealed the occurrence of the sasC gene in 33.3% of isolates, the ica gene in 27.7%, and bap and agr (accessory gene regulator) genes in 16.6% of isolates. Altogether, the results of this study indicate that CoNSs can acquire virulence genes and could have a role as pathogens in subclinical mastitis.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Ylenia Di Leto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Isabella Mancuso
- Istituto Zooprofilattico Sperimentale della Sicilia "Adelmo Mirri," Palermo, Italy
| | - Maria Luisa Scatassa
- Istituto Zooprofilattico Sperimentale della Sicilia "Adelmo Mirri," Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
7
|
Ding X, Robbe-Masselot C, Fu X, Léonard R, Marsac B, Dauriat CJG, Lepissier A, Rytter H, Ramond E, Dupuis M, Euphrasie D, Dubail I, Schimmich C, Qin X, Parraga J, Leite-de-Moraes M, Ferroni A, Chassaing B, Sermet-Gaudelus I, Charbit A, Coureuil M, Jamet A. Airway environment drives the selection of quorum sensing mutants and promote Staphylococcus aureus chronic lifestyle. Nat Commun 2023; 14:8135. [PMID: 38065959 PMCID: PMC10709412 DOI: 10.1038/s41467-023-43863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.
Collapse
Affiliation(s)
- Xiongqi Ding
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Catherine Robbe-Masselot
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Xiali Fu
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Renaud Léonard
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Benjamin Marsac
- Université Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Charlene J G Dauriat
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Agathe Lepissier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Héloïse Rytter
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Elodie Ramond
- Genoscope, UMR8030, Laboratory of Systems & Synthetic Biology (LISSB), Xenome team, F91057, Evry, France
| | - Marion Dupuis
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Daniel Euphrasie
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Iharilalao Dubail
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Cécile Schimmich
- Anses, Laboratory of Animal Health in Normandy, Physiopathology and epidemiology of equine diseases (PhEED), RD 675, F14430, Goustranville, France
| | - Xiaoquan Qin
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F75005, Paris, France
| | - Jessica Parraga
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Agnes Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France
| | - Benoit Chassaing
- INSERM U1016, CNRS UMR8104, Université Paris Cité, Team «Mucosal Microbiota in Chronic Inflammatory Diseases», F75014, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Alain Charbit
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France
| | - Mathieu Coureuil
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
| | - Anne Jamet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F75015, Paris, France.
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris Cité, F75015, Paris, France.
| |
Collapse
|
8
|
Lo HY, Long DR, Holmes EA, Penewit K, Hodgson T, Lewis JD, Waalkes A, Salipante SJ. Transposon sequencing identifies genes impacting Staphylococcus aureus invasion in a human macrophage model. Infect Immun 2023; 91:e0022823. [PMID: 37676013 PMCID: PMC10580828 DOI: 10.1128/iai.00228-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.
Collapse
Affiliation(s)
- Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizbeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
9
|
Peng Q, Tang X, Dong W, Zhi Z, Zhong T, Lin S, Ye J, Qian X, Chen F, Yuan W. Carvacrol inhibits bacterial polysaccharide intracellular adhesin synthesis and biofilm formation of mucoid Staphylococcus aureus: an in vitro and in vivo study. RSC Adv 2023; 13:28743-28752. [PMID: 37807974 PMCID: PMC10552078 DOI: 10.1039/d3ra02711b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the important human pathogens and causes both superficial and systemic infections. More importantly, the formation of S. aureus biofilms, a main cause of its pathogenicity and drug resistance, has been a critical challenge in clinical treatment. Carvacrol, a plant-based natural product, has gained great interest for therapeutic purposes due to its effective biological activity with low cytotoxicity. The present study aimed to investigate the effect of carvacrol on anti-biofilm activity. Growth curve analysis showed that applying a sub-inhibitory concentration of carvacrol (4 μg mL-1) was not lethal to S. aureus SYN; however, the inhibition rate of biofilm formation was as high as 63.6%, and the clearance rate of mature biofilms was as high as 30.7%. In addition, carvacrol effectively reduced the production of biofilm-associated extracellular polysaccharides and showed no effect on eDNA release. Furthermore, qPCR analysis revealed that carvacrol significantly down-regulated the expression of icaA, icaB, icaC, agrA, and sarA (P < 0.05). The in vivo efficacy of carvacrol against biofilm infection was further verified with a biological model of G. mellonella larvae. The results showed that carvacrol was non-toxic to the larvae and can effectively increase the survival rate of the larvae infected with S. aureus strain SYN.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University Guangzhou 510150 PR China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Tian Zhong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Shunan Lin
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Jingyi Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiping Qian
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Fu Chen
- Panyu District Health Management Center Guangzhou 511450 PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| |
Collapse
|
10
|
Long DR, Penewit K, Lo HY, Almazan J, Holmes EA, Bryan AB, Wolter DJ, Lewis JD, Waalkes A, Salipante SJ. In Vitro Selection Identifies Staphylococcus aureus Genes Influencing Biofilm Formation. Infect Immun 2023; 91:e0053822. [PMID: 36847490 PMCID: PMC10016075 DOI: 10.1128/iai.00538-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Staphylococcus aureus generates biofilms during many chronic human infections, which contributes to its growth and persistence in the host. Multiple genes and pathways necessary for S. aureus biofilm production have been identified, but knowledge is incomplete, and little is known about spontaneous mutations that increase biofilm formation as infection progresses. Here, we performed in vitro selection of four S. aureus laboratory strains (ATCC 29213, JE2, N315, and Newman) to identify mutations associated with enhanced biofilm production. Biofilm formation increased in passaged isolates from all strains, exhibiting from 1.2- to 5-fold the capacity of parental lines. Whole-genome sequencing identified nonsynonymous mutations affecting 23 candidate genes and a genomic duplication encompassing sigB. Six candidate genes significantly impacted biofilm formation as isogenic transposon knockouts: three were previously reported to impact S. aureus biofilm formation (icaR, spdC, and codY), while the remaining three (manA, narH, and fruB) were newly implicated by this study. Plasmid-mediated genetic complementation of manA, narH, and fruB transposon mutants corrected biofilm deficiencies, with high-level expression of manA and fruB further enhancing biofilm formation over basal levels. This work recognizes genes not previously identified as contributing to biofilm formation in S. aureus and reveals genetic changes able to augment biofilm production by that organism.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew B. Bryan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
11
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
12
|
Yu L, Hisatsune J, Kutsuno S, Sugai M. New Molecular Mechanism of Superbiofilm Elaboration in a Staphylococcus aureus Clinical Strain. Microbiol Spectr 2023; 11:e0442522. [PMID: 36719203 PMCID: PMC10100805 DOI: 10.1128/spectrum.04425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
Previously, we reported a novel regulator of biofilm (rob) with a nonsense mutation in the superbiofilm-elaborating strain JP080. Intriguingly, the complementation of JP080 with wild-type rob did not completely abolish its superbiofilm-elaborating phenotype. Therefore, we searched for other possible mutation(s) using complete genome sequence data and found a missense mutation in the gene icaR, which altered its 35th amino acid (Ala35Thr). To further study the mechanism of superbiofilm elaboration in JP080, we reconstructed the same mutations of rob and icaR in the strain FK300 and analyzed the phenotypes. The mutation of rob (A331T) increased biofilm elaboration, as previously demonstrated; similarly, an icaR mutation increased poly-N-acetylglucosamine and biofilm production in strain FK300. Furthermore, our analyses indicated that the double mutant of rob and icaR produced significantly more biofilms than the single mutants. Additionally, gel shift analysis revealed that the icaR from JP080 lost its ability to bind to the ica promoter region. These findings suggest that the icaR mutation in JP080 may result in a nonfunctional protein. We compared ica operon expression in an icaR single mutant, rob single mutant, and rob and icaR double mutant to the wild type. The rob and icaR mutants showed increased ica operon transcription by approximately 19- and 79-fold, respectively. However, the rob and icaR double mutant showed an approximately 350-fold increase, indicating the synergistic effects of icaR and rob on JP080 biofilm elaboration. Consequently, we concluded that the double mutations rob and icaR synergistically increased ica operon transcription, resulting in a superbiofilm phenotype in Staphylococcus aureus. IMPORTANCE Poly-N-acetylglucosamine (PNAG) is a major component of S. aureus biofilm. PNAG production is mediated by the products of four genes, icaADBC encoded in the ica operon, and the major negative regulator of this operon is IcaR encoded just upstream of icaADBC. Previously, we reported another negative regulator, Rob, through gene expression analysis of clinically isolated superbiofilm-elaborating strain JP080. The rob gene is encoded at different loci distant from the ica operon. Here, we report that JP080 also carried a mutation in icaR and demonstrated that IcaR and Rob synergistically regulate PNAG production. We successfully reconstructed these mutations in a wild type, and the double mutant resulted in superbiofilm-elaborating phenotype. We clearly show that loss of function of both IcaR and Rob is the very reason that JP080 is showing the superbiofilm-elaborating phenotype. This study clearly demonstrated there are at least two independent regulators synergistically fine-tuning PNAG production and suggested the complex regulatory mechanism of biofilm production.
Collapse
Affiliation(s)
- Liansheng Yu
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoko Kutsuno
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Jean-Pierre V, Boudet A, Sorlin P, Menetrey Q, Chiron R, Lavigne JP, Marchandin H. Biofilm Formation by Staphylococcus aureus in the Specific Context of Cystic Fibrosis. Int J Mol Sci 2022; 24:ijms24010597. [PMID: 36614040 PMCID: PMC9820612 DOI: 10.3390/ijms24010597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen whose characteristics support its success in various clinical settings including Cystic Fibrosis (CF). In CF, S. aureus is indeed the most commonly identified opportunistic pathogen in children and the overall population. S. aureus colonization/infection, either by methicillin-susceptible or methicillin-resistant strains, will become chronic in about one third of CF patients. The persistence of S. aureus in CF patients' lungs, despite various eradication strategies, is favored by several traits in both host and pathogen. Among the latter, living in biofilm is a highly protective way to survive despite deleterious environmental conditions, and is a common characteristic shared by the main pathogens identified in CF. This is why CF has earned the status of a biofilm-associated disease for several years now. Biofilm formation by S. aureus, and the molecular mechanisms governing and regulating it, have been extensively studied but have received less attention in the specific context of CF lungs. Here, we review the current knowledge on S. aureus biofilm in this very context, i.e., the importance, study methods, molecular data published on mono- and multi-species biofilm and anti-biofilm strategies. This focus on studies including clinical isolates from CF patients shows that they are still under-represented in the literature compared with studies based on reference strains, and underlines the need for such studies. Indeed, CF clinical strains display specific characteristics that may not be extrapolated from results obtained on laboratory strains.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
| | - Agathe Boudet
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Pauline Sorlin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, 34093 Montpellier, France
| | - Quentin Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, 59000 Lille, France
| | - Raphaël Chiron
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC—Virulence Bactérienne et Infections Chroniques, Université de Montpellier, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Hélène Marchandin
- HSM—HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
14
|
Peng Q, Tang X, Dong W, Sun N, Yuan W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics (Basel) 2022; 12:antibiotics12010012. [PMID: 36671212 PMCID: PMC9854888 DOI: 10.3390/antibiotics12010012] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria can form biofilms in natural and clinical environments on both biotic and abiotic surfaces. The bacterial aggregates embedded in biofilms are formed by their own produced extracellular matrix. Staphylococcus aureus (S. aureus) is one of the most common pathogens of biofilm infections. The formation of biofilm can protect bacteria from being attacked by the host immune system and antibiotics and thus bacteria can be persistent against external challenges. Therefore, clinical treatments for biofilm infections are currently encountering difficulty. To address this critical challenge, a new and effective treatment method needs to be developed. A comprehensive understanding of bacterial biofilm formation and regulation mechanisms may provide meaningful insights against antibiotic resistance due to bacterial biofilms. In this review, we discuss an overview of S. aureus biofilms including the formation process, structural and functional properties of biofilm matrix, and the mechanism regulating biofilm formation.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Ning Sun
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| |
Collapse
|
15
|
Ramond E, Lepissier A, Ding X, Bouvier C, Tan X, Euphrasie D, Monbernard P, Dupuis M, Saubaméa B, Nemazanyy I, Nassif X, Ferroni A, Sermet-Gaudelus I, Charbit A, Coureuil M, Jamet A. Lung-adapted Staphylococcus aureus isolates with dysfunctional agr system trigger a proinflammatory response. J Infect Dis 2022; 226:1276-1285. [PMID: 35524969 DOI: 10.1093/infdis/jiac191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (Sa) dominates the lung microbiota of Cystic Fibrosis (CF) children and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of Sa to the decline in respiratory function in CF children is not elucidated. METHODS To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS Using an Air-Liquid infection model, we observed a strong correlation between Sa adaption in the lung (late isolates), low toxicity and pro-inflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on Staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted Sa isolates. CONCLUSION Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a pro-inflammatory response through acquired agr dysfunction.
Collapse
Affiliation(s)
- Elodie Ramond
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Agathe Lepissier
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Epithelial channellopathies, Cystic Fibrosis and other diseases, Paris, France
| | - Xiongqi Ding
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Clémence Bouvier
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Xin Tan
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Daniel Euphrasie
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Pierre Monbernard
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Marion Dupuis
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Bruno Saubaméa
- Cellular and Molecular Imaging facility, INSERM US25, UMS3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Ivan Nemazanyy
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Xavier Nassif
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Agnès Ferroni
- Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Epithelial channellopathies, Cystic Fibrosis and other diseases, Paris, France
| | - Alain Charbit
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Mathieu Coureuil
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Anne Jamet
- Université de Paris; Faculté de Médecine, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France.,Department of Clinical Microbiology, Necker-Enfants Malades Hospital, AP-HP Centre Université de Paris, Paris, France
| |
Collapse
|
16
|
Morales-Laverde L, Echeverz M, Trobos M, Solano C, Lasa I. Experimental Polymorphism Survey in Intergenic Regions of the icaADBCR Locus in Staphylococcus aureus Isolates from Periprosthetic Joint Infections. Microorganisms 2022; 10:600. [PMID: 35336176 PMCID: PMC8955882 DOI: 10.3390/microorganisms10030600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections (PJI) characterized by bacterial biofilm formation and recalcitrance to immune-mediated clearance and antibiotics. The molecular events behind PJI infection are yet to be unraveled. In this sense, identification of polymorphisms in bacterial genomes may help to establish associations between sequence variants and the ability of S. aureus to cause PJI. Here, we report an experimental nucleotide-level survey specifically aimed at the intergenic regions (IGRs) of the icaADBCR locus, which is responsible for the synthesis of the biofilm exopolysaccharide PIA/PNAG, in a collection of strains sampled from PJI and wounds. IGRs of the icaADBCR locus were highly conserved and no PJI-specific SNPs were found. Moreover, polymorphisms in these IGRs did not significantly affect transcription of the icaADBC operon under in vitro laboratory conditions. In contrast, an SNP within the icaR coding region, resulting in a V176E change in the transcriptional repressor IcaR, led to a significant increase in icaADBC operon transcription and PIA/PNAG production and a reduction in S. aureus virulence in a Galleria mellonella infection model. In conclusion, SNPs in icaADBCR IGRs of S. aureus isolates from PJI are not associated with icaADBC expression, PIA/PNAG production and adaptation to PJI.
Collapse
Affiliation(s)
- Liliana Morales-Laverde
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.-L.); (M.E.); (C.S.)
| | - Maite Echeverz
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.-L.); (M.E.); (C.S.)
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.-L.); (M.E.); (C.S.)
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.-L.); (M.E.); (C.S.)
| |
Collapse
|
17
|
Zeng Z, Lin S, Li Q, Wang W, Wang Y, Xiao T, Guo Y. Molecular Basis of Wrinkled Variants Isolated From Pseudoalteromonas lipolytica Biofilms. Front Microbiol 2022; 13:797197. [PMID: 35295294 PMCID: PMC8919034 DOI: 10.3389/fmicb.2022.797197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Many Pseudoalteromonas species are dominant biofilm-forming Gammaproteobacteria in the ocean. The formation of Pseudoalteromonas biofilms is often accompanied by the occurrence of variants with different colony morphologies that may exhibit increased marine antifouling or anticorrosion activities. However, the genetic basis of the occurrence of these variants remains largely unexplored. In this study, we identified that wrinkled variants of P. lipolytica mainly arose due to mutations in the AT00_08765, a wspF-like gene, that are associated with decreased swimming motility and increased cellulose production. Moreover, we found that the spontaneous mutation in flhA, encoding a flagellar biosynthesis protein, also caused a wrinkled colony morphology that is associated with cellulose overproduction, indicating that flhA plays a dual role in controlling flagellar assembly and polysaccharide production in P. lipolytica. Investigation of wrinkled variants harboring spontaneous mutation in dgcB, encoding a GGDEF domain protein, also demonstrated dgcB plays an important role in regulating cellulose production and swimming motility. In addition, by screening the suppressor of the AT00_08765 variant strain, we also identified that the spontaneous mutation in cheR and bcsC directly abolished the wrinkled phenotype of the AT00_08765 variant strain, suggesting that the chemosensory signaling transduction and cellulose production are crucial for the determination of the wrinkled phenotype in P. lipolytica. Taken together, this study provides insights into the genetic variation within biofilms of P. lipolytica.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yuexue Guo,
| |
Collapse
|
18
|
Wu S, Zhang J, Peng Q, Liu Y, Lei L, Zhang H. The Role of Staphylococcus aureus YycFG in Gene Regulation, Biofilm Organization and Drug Resistance. Antibiotics (Basel) 2021; 10:antibiotics10121555. [PMID: 34943766 PMCID: PMC8698359 DOI: 10.3390/antibiotics10121555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is a serious global health concern that may have significant social and financial consequences. Methicillin-resistant Staphylococcus aureus (MRSA) infection is responsible for substantial morbidity and leads to the death of 21.8% of infected patients annually. A lack of novel antibiotics has prompted the exploration of therapies targeting bacterial virulence mechanisms. The two-component signal transduction system (TCS) enables microbial cells to regulate gene expression and the subsequent metabolic processes that occur due to environmental changes. The YycFG TCS in S. aureus is essential for bacterial viability, the regulation of cell membrane metabolism, cell wall synthesis and biofilm formation. However, the role of YycFG-associated biofilm organization in S. aureus antimicrobial drug resistance and gene regulation has not been discussed in detail. We reviewed the main molecules involved in YycFG-associated cell wall biosynthesis, biofilm development and polysaccharide intercellular adhesin (PIA) accumulation. Two YycFG-associated regulatory mechanisms, accessory gene regulator (agr) and staphylococcal accessory regulator (SarA), were also discussed. We highlighted the importance of biofilm formation in the development of antimicrobial drug resistance in S. aureus infections. Data revealed that inhibition of the YycFG pathway reduced PIA production, biofilm formation and bacterial pathogenicity, which provides a potential target for the management of MRSA-induced infections.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
| | - Junqi Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
| | - Qi Peng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Lei Lei
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (H.Z.)
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (J.Z.); (Q.P.)
- Correspondence: (L.L.); (H.Z.)
| |
Collapse
|
19
|
Graf AC, Striesow J, Pané-Farré J, Sura T, Wurster M, Lalk M, Pieper DH, Becher D, Kahl BC, Riedel K. An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum. Front Cell Infect Microbiol 2021; 11:724569. [PMID: 34513734 PMCID: PMC8432295 DOI: 10.3389/fcimb.2021.724569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
Collapse
Affiliation(s)
- Alexander C Graf
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Johanna Striesow
- Research Group ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Thomas Sura
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Martina Wurster
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Dietmar H Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
21
|
Shittu AO, Taiwo FF, Froböse NJ, Schwartbeck B, Niemann S, Mellmann A, Schaumburg F. Genomic analysis of Staphylococcus aureus from the West African Dwarf (WAD) goat in Nigeria. Antimicrob Resist Infect Control 2021; 10:122. [PMID: 34412702 PMCID: PMC8375196 DOI: 10.1186/s13756-021-00987-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background Staphylococcus aureus can colonize various host species, and human-animal interaction is a significant factor for cross-species transmission. However, data on S. aureus colonization in animals, particularly on ruminants in close contact with humans, is limited. The West African Dwarf (WAD) goat is among the earliest domesticated ruminant associated with rural dwellers and small-holder farmers in sub-Saharan Africa. This study aimed to investigate the population structure, antibiotic resistance, and virulence gene determinants of S. aureus from the WAD goat in Nigeria. Methods Nasal samples were obtained from the WAD goat in five markets in Osun State, South-West Nigeria. S. aureus was characterized by antibiotic susceptibility testing, detection of virulence determinants, spa typing, and multilocus sequence typing (MLST). Representative isolates were selected for whole-genome sequencing, biofilm, and cytotoxicity assay. Results Of the 726 nasal samples obtained from the WAD goat, 90 S. aureus (12.4%) were recovered. Overall, 86 isolates were methicillin-susceptible, and four were mecA-positive (i.e., methicillin-resistant S. aureus [MRSA]). A diverse S. aureus clonal population was observed (20 sequence types [STs] and 37 spa types), while 35% (13/37) and 40% (8/20) were new spa types and STs, respectively. Eleven MLST clonal complexes (CC) were identified (CC1, CC5, CC8, CC15, CC30, CC45, CC97, CC121, CC133, CC152, CC522). The MRSA isolates were designated as t127-ST852-CC1-SCCmec type VII, t4690-ST152-CC152-SCCmec type Vc, and t8821-ST152-CC152-SCCmec type Vc. Phylogenetic analysis revealed that 60% (54/90) of all isolates were associated with ruminant lineages (i.e., CC133, CC522). Panton-Valentine Leukocidin (PVL)-positive S. aureus was identified in CC1, CC30, CC121, and CC152. For the CC522 isolates, we illustrate their pathogenic potential by the detection of the toxic shock syndrome gene and hemolysins, as well as their strong cytotoxicity and ability to form biofilms. Conclusions This is the first detailed investigation on the genomic content of S. aureus from the WAD goat in Nigeria. The S. aureus population of the WAD goat consists mainly of ruminant-associated lineages (e.g., CC133, CC522), interspersed with human-associated clones, including PVL-positive MRSA CC1 and CC152. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-021-00987-8.
Collapse
Affiliation(s)
- Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria. .,Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany.
| | | | - Neele Judith Froböse
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Bianca Schwartbeck
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Alexander Mellmann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany.,Institute for Hygiene, University Hospital Münster, Robert-Koch-Straße 41, 48149, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| |
Collapse
|
22
|
Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. mSphere 2021; 6:e0035821. [PMID: 34160233 PMCID: PMC8265651 DOI: 10.1128/msphere.00358-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the airways of cystic fibrosis (CF) patients and often persists for extended periods. There is limited knowledge about the diversity of S. aureus in CF. We hypothesized that increased diversity of S. aureus would impact CF lung disease. Therefore, we conducted a 1-year observational prospective study with 14 patients with long-term S. aureus infection. From every sputum, 40 S. aureus isolates were chosen and characterized in terms of phenotypic appearance (size, hemolysis, mucoidy, and pigmentation), important virulence traits such as nuclease activity, biofilm formation, and molecular typing by spa sequence typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood (C-reactive protein [CRP], interleukin 6 [IL-6], and S100A8/9 [calprotectin]) were collected. From 58 visits of 14 patients, 2,319 S. aureus isolates were distinguished into 32 phenotypes (PTs) and 50 spa types. The Simpson diversity index (SDI) was used to calculate the phenotypic and genotypic diversity, revealing a high diversity of PTs ranging from 0.19 to 0.87 among patients, while the diversity of spa types of isolates was less pronounced. The SDI of PTs was positively associated with P. aeruginosa coinfection and inflammatory parameters, with IL-6 being the most sensitive parameter. Also, coinfection with P. aeruginosa was associated with mucoid S. aureus and S. aureus with high nuclease activity. Our analyses showed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was present and associated with P. aeruginosa coinfection and inflammation. IMPORTANCE Staphylococcus aureus can persist for extended periods in the airways of people with cystic fibrosis (CF) in spite of antibiotic therapy and high numbers of neutrophils, which fail to eradicate this pathogen. Therefore, S. aureus needs to adapt to this hostile niche. There is only limited knowledge about the diversity of S. aureus in respiratory specimens. We conducted a 1-year prospective study with 14 patients with long-term S. aureus infection and investigated 40 S. aureus isolates from every sputum in terms of phenotypic appearance, nuclease activity, biofilm formation, and molecular typing. Data about coinfection with Pseudomonas aeruginosa and clinical parameters such as lung function, exacerbation, and inflammatory markers in blood were collected. Thirty-two phenotypes (PTs) and 50 spa types were distinguished. Our analyses revealed that in CF patients with long-term S. aureus airway infection, a highly diverse and dynamic S. aureus population was associated with P. aeruginosa coinfection and inflammation.
Collapse
|
23
|
Marincola G, Jaschkowitz G, Kieninger AK, Wencker FDR, Feßler AT, Schwarz S, Ziebuhr W. Plasmid-Chromosome Crosstalk in Staphylococcus aureus: A Horizontally Acquired Transcription Regulator Controls Polysaccharide Intercellular Adhesin-Mediated Biofilm Formation. Front Cell Infect Microbiol 2021; 11:660702. [PMID: 33829001 PMCID: PMC8019970 DOI: 10.3389/fcimb.2021.660702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Greta Jaschkowitz
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ann-Katrin Kieninger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Andrea T Feßler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Stefan Schwarz
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Abstract
Within-host adaptation is a hallmark of chronic bacterial infections, involving substantial genomic changes. Recent large-scale genomic data from prolonged infections allow the examination of adaptive strategies employed by different pathogens and open the door to investigate whether they converge toward similar strategies. Here, we compiled extensive data of whole-genome sequences of bacterial isolates belonging to miscellaneous species sampled at sequential time points during clinical infections. Analysis of these data revealed that different species share some common adaptive strategies, achieved by mutating various genes. Although the same genes were often mutated in several strains within a species, different genes related to the same pathway, structure, or function were changed in other species utilizing the same adaptive strategy (e.g., mutating flagellar genes). Strategies exploited by various bacterial species were often predicted to be driven by the host immune system, a powerful selective pressure that is not species specific. Remarkably, we find adaptive strategies identified previously within single species to be ubiquitous. Two striking examples are shifts from siderophore-based to heme-based iron scavenging (previously shown for Pseudomonas aeruginosa) and changes in glycerol-phosphate metabolism (previously shown to decrease sensitivity to antibiotics in Mycobacterium tuberculosis). Virulence factors were often adaptively affected in different species, indicating shifts from acute to chronic virulence and virulence attenuation during infection. Our study presents a global view on common within-host adaptive strategies employed by different bacterial species and provides a rich resource for further studying these processes.
Collapse
Affiliation(s)
- Yair E Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Camus L, Briaud P, Vandenesch F, Moreau K. How Bacterial Adaptation to Cystic Fibrosis Environment Shapes Interactions Between Pseudomonas aeruginosa and Staphylococcus aureus. Front Microbiol 2021; 12:617784. [PMID: 33746915 PMCID: PMC7966511 DOI: 10.3389/fmicb.2021.617784] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the two most prevalent bacteria species in the lungs of cystic fibrosis (CF) patients and are associated with poor clinical outcomes. Co-infection by the two species is a frequent situation that promotes their interaction. The ability of P. aeruginosa to outperform S. aureus has been widely described, and this competitive interaction was, for a long time, the only one considered. More recently, several studies have described that the two species are able to coexist. This change in relationship is linked to the evolution of bacterial strains in the lungs. This review attempts to decipher how bacterial adaptation to the CF environment can induce a change in the type of interaction and promote coexisting interaction between P. aeruginosa and S. aureus. The impact of coexistence on the establishment and maintenance of a chronic infection will also be presented, by considering the latest research on the subject.
Collapse
Affiliation(s)
- Laura Camus
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - Paul Briaud
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France.,Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR 5308/ENS de Lyon, Lyon, France
| |
Collapse
|
26
|
Haim MS, Zaheer R, Bharat A, Di Gregorio S, Di Conza J, Galanternik L, Lubovich S, Golding GR, Graham MR, Van Domselaar G, Cardona ST, Mollerach M. Comparative genomics of ST5 and ST30 methicillin-resistant Staphylococcus aureus sequential isolates recovered from paediatric patients with cystic fibrosis. Microb Genom 2021; 7:mgen000510. [PMID: 33599606 PMCID: PMC8190608 DOI: 10.1099/mgen.0.000510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus chronic airway infection in patients with cystic fibrosis (CF) allows this pathogen to adapt over time in response to different selection pressures. We have previously shown that the main sequence types related to community-acquired methicillin-resistant S. aureus (MRSA) infections in Argentina - ST5 and ST30 - are also frequently isolated from the sputum of patients with CF, but in these patients they usually display multi-drug antimicrobial resistance. In this study, we sequenced the genomes of MRSA from four paediatric CF patients with the goal of identifying mutations among sequential isolates, especially those possibly related to antimicrobial resistance and virulence, which might contribute to the adaptation of the pathogen in the airways of patients with CF. Our results revealed genetic differences in sequential MRSA strains isolated from patients with CF in both their core and accessory genomes. Although the genetic adaptation of S. aureus was distinct in different hosts, we detected independent mutations in thyA, htrA, rpsJ and gyrA - which are known to have crucial roles in S. aureus virulence and antimicrobial resistance - in isolates recovered from multiple patients. Moreover, we identified allelic variants that were detected in all of the isolates recovered after a certain time point; these non-synonymous mutations were in genes associated with antimicrobial resistance, virulence, iron scavenging and oxidative stress resistance. In conclusion, our results provide evidence of genetic variability among sequential MRSA isolates that could be implicated in the adaptation of these strains during chronic CF airway infection.
Collapse
Affiliation(s)
- María Sol Haim
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rahat Zaheer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Silvina Lubovich
- Hospital de Niños 'Dr Ricardo Gutiérrez', Buenos Aires, Argentina
| | - George R. Golding
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Morag R. Graham
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020. [PMID: 33240473 DOI: 10.1016/jcsbj202010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
|
28
|
Martins KB, Olmedo DWV, Paz MM, Ramos DF. Staphylococcus aureus and its Effects on the Prognosis of Bronchiectasis. Microb Drug Resist 2020; 27:823-834. [PMID: 33232626 DOI: 10.1089/mdr.2020.0352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bronchiectasis, which is an abnormal and irreversible dilation of one or several bronchial segments, causes significant morbidity and impaired quality of life to patients, mainly as the result of recurrent and chronic respiratory infections. Staphylococcus aureus is a microorganism known for its high infectious potential related to the production of molecules with great pathogenic power, such as enzymes, toxins, adhesins, and biofilm, which determine the degree of severity of systemic symptoms and can induce exacerbated immune response. This review highlighted the clinical significance of S. aureus colonization/infection in bronchiectasis patients, since little is known about it, despite its increasing frequency of isolation and potential serious morbidity.
Collapse
Affiliation(s)
- Katheryne Benini Martins
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Daniel Wenceslau Votto Olmedo
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Milene Machado Paz
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Post-graduate Program in Health Sciences-School of Medicine, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 2020; 18:3324-3334. [PMID: 33240473 PMCID: PMC7674160 DOI: 10.1016/j.csbj.2020.10.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
PIA is a key extracellular matrix component in staphylococci and other bacteria. PIA is a cationic, partially deacetylated N-acetylglucosamine polymer. PIA has a major role in bacterial biofilms and biofilm-associated infection.
Exopolysaccharide is a key part of the extracellular matrix that contributes to important mechanisms of bacterial pathogenicity, most notably biofilm formation and immune evasion. In the human pathogens Staphylococcus aureus and S. epidermidis, as well as in many other staphylococcal species, the only exopolysaccharide is polysaccharide intercellular adhesin (PIA), a cationic, partially deacetylated homopolymer of N-acetylglucosamine, whose biosynthetic machinery is encoded in the ica locus. PIA production is strongly dependent on environmental conditions and controlled by many regulatory systems. PIA contributes significantly to staphylococcal biofilm formation and immune evasion mechanisms, such as resistance to antimicrobial peptides and ingestion and killing by phagocytes, and presence of the ica genes is associated with infectivity. Due to its role in pathogenesis, PIA has raised considerable interest as a potential vaccine component or target.
Collapse
Affiliation(s)
- Hoai T T Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA.,School of Biotechnology, International University, Vietnam National University of Ho Chi Minh City, Khu Pho 6, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda 20814, MD, USA
| |
Collapse
|
30
|
Prasad YS, Miryala S, Lalitha K, Saritha B, Maheswari CU, Sridharan V, Srinandan CS, Nagarajan S. An injectable self-healing anesthetic glycolipid-based oleogel with antibiofilm and diabetic wound skin repair properties. Sci Rep 2020; 10:18017. [PMID: 33093507 PMCID: PMC7582191 DOI: 10.1038/s41598-020-73708-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Globally, wound infections are considered as one of the major healthcare problems owing to the delayed healing process in diabetic patients and microbial contamination. Thus, the development of advanced materials for wound skin repair is of great research interest. Even though several biomaterials were identified as wound healing agents, gel-based scaffolds derived from either polymer or small molecules have displayed promising wound closure mechanism. Herein, for the first time, we report an injectable and self-healing self-assembled anesthetic oleogel derived from glycolipid, which exhibits antibiofilm and wound closure performance in diabetic rat. Glycolipid derived by the reaction of hydrophobic vinyl ester with α-chloralose in the presence of novozyme 435 undergoes spontaneous self-assembly in paraffin oil furnished an oleogel displaying self-healing behavior. In addition, we have prepared composite gel by encapsulating curcumin in the 3D fibrous network of oleogel. More interestingly, glycolipid in its native form demoed potential in disassembling methicillin-resistant Staphylococcus aureus, methicillin-susceptible Staphylococcus aureus, and Pseudomonas aeruginosa biofilms. Both oleogel and composite gel enhanced the wound skin repair in diabetic induced Wistar rats by promoting collagen synthesis, controlling free radical generation and further regulating tissue remodeling phases. Altogether, the reported supramolecular self-assembled anesthetic glycolipid could be potentially used for diabetic skin wound repair and to treat bacterial biofilm related infections.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Krishnamoorthy Lalitha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Balasubramani Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, J&K, 181143, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| | - Subbiah Nagarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
31
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
32
|
Tan X, Coureuil M, Ramond E, Euphrasie D, Dupuis M, Tros F, Meyer J, Nemazanyy I, Chhuon C, Guerrera IC, Ferroni A, Sermet-Gaudelus I, Nassif X, Charbit A, Jamet A. Chronic Staphylococcus aureus Lung Infection Correlates With Proteogenomic and Metabolic Adaptations Leading to an Increased Intracellular Persistence. Clin Infect Dis 2020; 69:1937-1945. [PMID: 30753350 DOI: 10.1093/cid/ciz106] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lung infection in cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Improving our understanding of the mechanisms associated with the persistence of S. aureus is therefore an important issue. METHODS We selected pairs of sequential S. aureus isolates from 3 patients with CF and from 1 patient with non-CF chronic lung disease. We used a combination of genomic, proteomic, and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence. RESULTS In this study, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CF bronchial epithelial-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own-patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated. Furthermore, we identified the underlying genetic modifications that induce altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets. CONCLUSIONS Our results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.
Collapse
Affiliation(s)
- Xin Tan
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Mathieu Coureuil
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Elodie Ramond
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Daniel Euphrasie
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Fabiola Tros
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Julie Meyer
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Ivan Nemazanyy
- Plateforme d'étude du métabolisme, Structure Fédérative de Recherche INSERM US24/CNRS UMS3633, Paris, France
| | - Cerina Chhuon
- Plateforme Protéome Institut Necker-Enfants Malades, PPN, Structure Fédérative de Recherche SFR Necker, University Paris Descartes, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Agnes Ferroni
- Laboratoire de Microbiologie de l'hopital Necker, University Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Canalopathies épithéliales: la mucoviscidose et autres maladies, Paris, France
| | - Xavier Nassif
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Alain Charbit
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| | - Anne Jamet
- Université Paris Descartes, INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team: Pathogenesis of Systemic Infections, Paris, France
| |
Collapse
|
33
|
Chang J, Lee RE, Lee W. A pursuit of Staphylococcus aureus continues: a role of persister cells. Arch Pharm Res 2020; 43:630-638. [PMID: 32627141 DOI: 10.1007/s12272-020-01246-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a pathogen that causes critical diseases, such as pneumonia, endocarditis, and bacteremia, upon gaining access to the bloodstream of the host. Because host innate immunity alone cannot fight against this rapidly expanding pathogen, the use of antibiotic agents is necessary to clear out S. aureus. However, sub-populations of S. aureus fail to respond to the antibiotics resulting in ineffective clearance of the bacteria. One mechanism by which S. aureus does not respond to the antibiotics is by developing resistance through alterations in its genetic makeup, and genetic studies have revealed a major portion of mechanisms that are responsible for the rise of these antibiotic-resistant strains. Another sub-population that fails to respond to the antibiotics is called persister cells. There is a mounting clinical evidence that these persister cells significantly contribute to the antibiotic failure and persistent infection, but a clear mechanistic picture of the formation of the S. aureus persister cells is unavailable. This review focuses on drawing out a mechanistic map of factors that contribute to the formation of S. aureus persister cells. Understanding the mechanism will provide future direction for the development of novel antibiotic strategies to more efficiently tackle infections caused by S. aureus.
Collapse
Affiliation(s)
- JuOae Chang
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Rho-Eun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
| |
Collapse
|
34
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11. [PMID: 32576671 DOI: 10.31234/osf.io/9whp4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Bernardy EE, Petit RA, Raghuram V, Alexander AM, Read TD, Goldberg JB. Genotypic and Phenotypic Diversity of Staphylococcus aureus Isolates from Cystic Fibrosis Patient Lung Infections and Their Interactions with Pseudomonas aeruginosa. mBio 2020; 11:mBio.00735-20. [PMID: 32576671 PMCID: PMC7315118 DOI: 10.1128/mbio.00735-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus has recently overtaken Pseudomonas aeruginosa as the most commonly recognized bacterial pathogen that infects the respiratory tracts of individuals with the genetic disease cystic fibrosis (CF) in the United States. Most studies of S. aureus in CF patient lung infections have focused on a few isolates, often exclusively laboratory-adapted strains, and how they are killed by P. aeruginosa Less is known about the diversity of S. aureus CF patient lung isolates in terms of both their virulence and their interaction with P. aeruginosa To begin to address this gap, we recently sequenced 64 clinical S. aureus isolates and a reference isolate, JE2. Here, we analyzed the antibiotic resistance genotypes, sequence types, clonal complexes, spa types, agr types, and presence/absence of other known virulence factor genes of these isolates. We hypothesized that virulence phenotypes of S. aureus, namely, toxin production and the mucoid phenotype, would be lost in these isolates due to adaptation in the CF patient lung. In contrast to these expectations, we found that most isolates can lyse both rabbit and sheep blood (67.7%) and produce polysaccharide (69.2%), suggesting that these phenotypes were not lost during adaptation to the CF lung. We also identified three distinct phenotypic groups of S. aureus based on their survival in the presence of nonmucoid P. aeruginosa laboratory strain PAO1 and its mucoid derivative. Altogether, our work provides greater insight into the diversity of S. aureus isolates from CF patients, specifically the distribution of important virulence factors and their interaction with P. aeruginosa, all of which have implications in patient health.IMPORTANCEStaphylococcus aureus is now the most frequently detected recognized pathogen in the lungs of individuals who have cystic fibrosis (CF) in the United States, followed closely by Pseudomonas aeruginosa When these pathogens are found to coinfect the CF lung, patients have a significantly worse prognosis. While P. aeruginosa has been rigorously studied in the context of bacterial pathogenesis in CF, less is known about S. aureus Here, we present an in-depth study of 64 S. aureus clinical isolates from CF patients, for which we investigated genetic diversity utilizing whole-genome sequencing, virulence phenotypes, and interactions with P. aeruginosa We found that S. aureus isolated from CF lungs are phylogenetically diverse; most retain known virulence factors and vary in their interactions with P. aeruginosa (i.e., they range from being highly sensitive to P. aeruginosa to completely tolerant to it). Deepening our understanding of how S. aureus responds to its environment and other microbes in the CF lung will enable future development of effective treatments and preventative measures against these formidable infections.
Collapse
Affiliation(s)
- Eryn E Bernardy
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Robert A Petit
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ashley M Alexander
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia, USA
- Emory-Children's Center for Cystic Fibrosis Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Treffon J, Fotiadis SA, van Alen S, Becker K, Kahl BC. The Virulence Potential of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Cultured from the Airways of Cystic Fibrosis Patients. Toxins (Basel) 2020; 12:E360. [PMID: 32486247 PMCID: PMC7354617 DOI: 10.3390/toxins12060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is one of the most common pathogens that infects the airways of patients with cystic fibrosis (CF) and contributes to respiratory failure. Recently, livestock-associated methicillin-resistant S. aureus (LA-MRSA), usually cultured in farm animals, were detected in CF airways. Although some of these strains are able to establish severe infections in humans, there is limited knowledge about the role of LA-MRSA virulence in CF lung disease. To address this issue, we analyzed LA-MRSA, hospital-associated (HA-) MRSA and methicillin-susceptible S.aureus (MSSA) clinical isolates recovered early in the course of airway infection and several years after persistence in this hostile environment from pulmonary specimens of nine CF patients regarding important virulence traits such as their hemolytic activity, biofilm formation, invasion in airway epithelial cells, cytotoxicity, and antibiotic susceptibility. We detected that CF LA-MRSA isolates were resistant to tetracycline, more hemolytic and cytotoxic than HA-MRSA, and more invasive than MSSA. Despite the residence in the animal host, LA-MRSA still represent a serious threat to humans, as such clones possess a virulence potential similar or even higher than that of HA-MRSA. Furthermore, we confirmed that S. aureus individually adapts to the airways of CF patients, which eventually impedes the success of antistaphylococcal therapy of airway infections in CF.
Collapse
Affiliation(s)
- Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
- Institute of Hygiene, University Hospital Münster, 48149 Münster, Germany
| | - Sarah Ann Fotiadis
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
| | - Sarah van Alen
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
- Business Unit Pain, Grünenthal GmbH, 52222 Stolberg, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.T.); (S.A.F.); (S.v.A.); (K.B.)
| |
Collapse
|
37
|
Lange J, Heidenreich K, Higelin K, Dyck K, Marx V, Reichel C, van Wamel W, den Reijer M, Görlich D, Kahl BC. Staphylococcus aureus Pathogenicity in Cystic Fibrosis Patients-Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity. Toxins (Basel) 2020; 12:toxins12050279. [PMID: 32357453 PMCID: PMC7290773 DOI: 10.3390/toxins12050279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus and cystic fibrosis (CF) are closely interlinked. To date, however, the impact of S. aureus culture in CF airways on lung function and disease progression has only been elucidated to a limited degree. This analysis aims to identify bacterial factors associated to clinical deterioration. Data were collected during an observational prospective multi-center study following 195 patients from 17 centers. The average follow-up time was 80 weeks. S. aureus isolates (n = 3180) were scanned for the presence of 25 virulence genes and agr-types using single and multiplex PCR. The presence of specific virulence genes was not associated to clinical deterioration. For the agr-types 1 and 4, however, a link to the subjects’ clinical status became evident. Furthermore, a significant longitudinal decrease in the virulence gene quantity was observed. Analyses of the plasticity of the virulence genes revealed significantly increased plasticity rates in the presence of environmental stress. The results suggest that the phylogenetic background defines S. aureus pathogenicity rather than specific virulence genes. The longitudinal loss of virulence genes most likely reflects the adaptation process directed towards a persistent and colonizing rather than infecting lifestyle.
Collapse
Affiliation(s)
- Jonas Lange
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kathrin Heidenreich
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Katharina Higelin
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Kristina Dyck
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Vanessa Marx
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Christian Reichel
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
| | - Willem van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Martijn den Reijer
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (W.v.W.); (M.d.R.)
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, 48149 Münster, Germany;
| | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (J.L.); (K.H.); (K.H.); (K.D.); (V.M.); (C.R.)
- Correspondence: ; Tel.: +49-251-8355358
| |
Collapse
|
38
|
Westphal C, Görlich D, Kampmeier S, Herzog S, Braun N, Hitschke C, Mellmann A, Peters G, Kahl BC. Antibiotic Treatment and Age Are Associated With Staphylococcus aureus Carriage Profiles During Persistence in the Airways of Cystic Fibrosis Patients. Front Microbiol 2020; 11:230. [PMID: 32174894 PMCID: PMC7055462 DOI: 10.3389/fmicb.2020.00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/14/2023] Open
Abstract
Background Staphylococcus aureus is one of the most isolated pathogens from the airways of cystic fibrosis (CF) patients. There is a lack of information about the clonal nature of S. aureus cultured from CF patients and their impact on disease. We hypothesized that patients would differ in their clinical status depending on S. aureus clonal carriage profiles during persistence. Methods During a 21-months prospective observational multicenter study (Junge et al., 2016), 3893 S. aureus isolates (nose, oropharynx, and sputa) were cultured from 183 CF patients (16 German centers, 1 Austrian center) and subjected to spa-sequence typing to assess clonality. Data were associated to lung function, age, gender, and antibiotic treatment by multivariate regression analysis. Results Two hundred and sixty-five different spa-types were determined with eight prevalent spa-types (isolated from more than 10 patients): t084, t091, t008, t015, t002 t012, t364, and t056. We observed different carriage profiles of spa-types during the study period: patients being positive with a prevalent spa-type, only one, a dominant or related spa-type/s. Patients with more antibiotic cycles were more likely to be positive for only one spa-type (p = 0.005), while older patients were more likely to have related (p = 0.006), or dominant spa-types (p = 0.026). Two percent of isolates were identified as methicillin-resistant S. aureus (MRSA) and evidence of transmission of clones within centers was low. Conclusion There was a significant association of antibiotic therapy and age on S. aureus carriage profiles in CF patients indicating that antibiotic therapy prevents acquisition of new clones, while during aging of patients with persisting S. aureus, dominant clones were selected and mutations in the spa-repeat region accumulated.
Collapse
Affiliation(s)
- Corinna Westphal
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, Münster, Germany
| | | | - Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Nadja Braun
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Carina Hitschke
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
39
|
Herzog S, Dach F, de Buhr N, Niemann S, Schlagowski J, Chaves-Moreno D, Neumann C, Goretzko J, Schwierzeck V, Mellmann A, Dübbers A, Küster P, Schültingkemper H, Rescher U, Pieper DH, von Köckritz-Blickwede M, Kahl BC. High Nuclease Activity of Long Persisting Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis Patients Protects Against NET-Mediated Killing. Front Immunol 2019; 10:2552. [PMID: 31772562 PMCID: PMC6849659 DOI: 10.3389/fimmu.2019.02552] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is one of the first and most prevalent pathogens cultured from the airways of cystic fibrosis (CF) patients, which can persist there for extended periods. Airway infections in CF patients are characterized by a strong inflammatory response of highly recruited neutrophils. One killing mechanism of neutrophils is the formation of neutrophil extracellular traps (NETs), which capture and eradicate bacteria by extracellular fibers of neutrophil chromatin decorated with antimicrobial granule proteins. S. aureus secretes nuclease, which can degrade NETs. We hypothesized, that S. aureus adapts to the airways of CF patients during persistent infection by escaping from NET-mediated killing via an increase of nuclease activity. Sputum samples of CF patients with chronic S. aureus infection were visualized by confocal microscopy after immuno-fluorescence staining for NET-specific markers, S. aureus bacteria and overall DNA structures. Nuclease activity was analyzed in sequential isogenic long persisting S. aureus isolates, as confirmed by whole genome sequencing, from an individual CF patient using a FRET-based nuclease activity assay. Additionally, some of these isolates were selected and analyzed by qRT-PCR to determine the expression of nuc1 and regulators of interest. NET-killing assays were performed with clinical S. aureus isolates to evaluate killing and bacterial survival depending on nuclease activity. To confirm the role of nuclease during NET-mediated killing, a clinical isolate with low nuclease activity was transformed with a nuclease expression vector (pCM28nuc). Furthermore, two sputa from an individual CF patient were subjected to RNA-sequence analysis to evaluate the activity of nuclease in vivo. In sputa, S. aureus was associated to extracellular DNA structures. Nuclease activity in clinical S. aureus isolates increased in a time-and phenotype-dependent manner. In the clinical isolates, the expression of nuc1 was inversely correlated to the activity of agr and was independent of saeS. NET-mediated killing was significantly higher in S. aureus isolates with low compared to isolates with high nuclease activity. Importantly, transformation of the clinical isolate with low nuclease activity with pCM28nuc conferred protection against NET-mediated killing confirming the beneficial role of nuclease for protection against NETs. Also, nuclease expression in in vivo sputa was high, which underlines the important role of nuclease within the highly inflamed CF airways. In conclusion, our data show that S. aureus adapts to the neutrophil-rich environment of CF airways with increasing nuclease expression most likely to avoid NET-killing during long-term persistence.
Collapse
Affiliation(s)
- Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Felix Dach
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| | - Nicole de Buhr
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jannik Schlagowski
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Diego Chaves-Moreno
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | - Claudia Neumann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jonas Goretzko
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Vera Schwierzeck
- Institute of Hygiene, University Hospital Münster, Münster, Germany
| | | | - Angelika Dübbers
- Department of Pediatrics, University Hospital Münster, Münster, Germany
| | - Peter Küster
- Department of Pediatrics, Clemenshospital, Münster, Germany
| | | | - Ursula Rescher
- Center for Molecular Biology of Inflammation (ZMBE), Institute of Medical Biochemistry, University of Münster, Münster, Germany
| | - Dietmar H. Pieper
- Helmholtz Center for Infection Research, Helmholtz Association of German Research Centers (HZ), Brunswick, Germany
| | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Interdisciplinary Center for Clinical Research, Münster, Germany
| |
Collapse
|
40
|
The prevalence of Staphylococcus aureus with mucoid phenotype in the airways of patients with cystic fibrosis-A prospective study. Int J Med Microbiol 2019; 309:283-287. [PMID: 31122879 DOI: 10.1016/j.ijmm.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the most frequently isolated pathogens in the respiratory tract of CF patients. Recently, we characterized peculiar mucoid S. aureus isolates, which are excessive biofilm formers and which carried a 5bp-deletion within the intergenic region of the ica operon. In this prospective study, we determined the prevalence of mucoid S. aureus-isolates in the airways of CF-patients during a 3-months period. METHODS We analyzed specimens (sputa, throat swabs) from 81 CF patients who attended two CF centers in Münster, Germany. Ten S. aureus isolates were randomly picked from every S. aureus-positive airway specimen and evaluated for mucoidy using Congo Red agar and phenotypic tests. Mucoid isolates were characterized by spa sequence typing, biofilm production and sequencing of the intergenic region of the ica operon to screen for the 5bp-deletion. RESULTS In 7 of 81 examined patients (8.6%), we detected mucoid S. aureus phenotypes (37 out of 1050 isolates; 3.5%). Twenty-five mucoid isolates carried the 5bp-deletion. Mucoid isolates produced excessive biofilm and were significantly more resistant to certain antibiotics. CONCLUSIONS In our prospective study, mucoid S. aureus was present in 8.6% of S. aureus-positive CF-patients. In 6 of 7 patients, mucoid isolates carried the 5bp-deletion, indicating that also other so far not identified mechanisms cause excessive biofilm formation. Further studies are necessary to ascertain the clinical impact of mucoid S. aureus phenotypes on the severity of the CF disease.
Collapse
|
41
|
Pena Amaya P, Haim MS, Fernández S, Di Gregorio S, Teper A, Vázquez M, Lubovich S, Galanternik L, Mollerach M. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in Cystic Fibrosis Patients from Argentina. Microb Drug Resist 2018; 24:613-620. [DOI: 10.1089/mdr.2017.0162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Paula Pena Amaya
- Hospital de Niños “Dr. Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Maria S. Haim
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Silvina Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Alejandro Teper
- Hospital de Niños “Dr. Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Miryam Vázquez
- Hospital de Niños “Dr. Ricardo Gutiérrez,” Buenos Aires, Argentina
| | - Silvina Lubovich
- Hospital de Niños “Dr. Ricardo Gutiérrez,” Buenos Aires, Argentina
| | | | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
42
|
Schwerdt M, Neumann C, Schwartbeck B, Kampmeier S, Herzog S, Görlich D, Dübbers A, Große-Onnebrink J, Kessler C, Küster P, Schültingkemper H, Treffon J, Peters G, Kahl BC. Staphylococcus aureus in the airways of cystic fibrosis patients - A retrospective long-term study. Int J Med Microbiol 2018; 308:631-639. [PMID: 29501453 DOI: 10.1016/j.ijmm.2018.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is an autosomal recessive disease associated with chronic airway infections by Staphylococcus aureus as one of the earliest and most prevalent pathogens. We conducted a retrospective study to determine the S. aureus infection status of CF patients treated since 1994 at two certified CF-centres in Münster, Germany, to get insights into the dynamics of S. aureus airway infection and the clinical impact on lung function on a long-term perspective. MATERIALS AND METHODS We used data from our microbiological database collected between 1994 and 2016 for patients treated at two centres in Münster, Germany, respectively, to determine the infection status for S. aureus. Furthermore, the resistance to selected antibiotics was determined for all patients' isolates and for 15 patients on a longitudinal basis. In addition, the prevalence of adaptive phenotypes such as small colony variants (SCVs) and mucoid S. aureus was assessed. RESULTS For this study, 2867 patient years with respiratory specimens (mean of 9.3 years for every patient, range 1-22 years) were evaluated for 283 CF patients (median age of 7 years at the beginning of the observation period, range 0-57 years, 51% male). 18% of patients were rarely infected by S. aureus (≤24% of observation years), 20% of patients intermittently (25-49%) and 61% persistently (≥50% of observation period). Susceptibility testing for 12969 S. aureus isolates resulted in resistance to methicillin in 9%, trimethoprim/sulfamethoxazole in 10%, levofloxacin in 14%, gentamicin in 20%, erythromycin and/or clindamycin in 30% and penicillin in 80% of all isolates. S. aureus isolates of 15 patients revealed dynamics of resistance with increase, decrease and loss of resistant isolates to the analysed antibiotics during the study period. SCVs were isolated at least once from 42% (n = 118) of patients and mucoid isolates from 2% (n = 7) of patients. In the last study year, 89 patients were infected by S. aureus only, 44 patients by S. aureus and Pseudomonas aeruginosa and 18 by P. aeruginosa only. Patients infected by S. aureus only were younger and had better lung function compared to the other two groups. CONCLUSIONS We determined a high percentage of patients with persistent S. aureus infection. During persistence, mostly fluctuation of resistance against various antibiotics was observed in the isolates indicating acquisition and loss of resistance genes by S. aureus. The prevalence of adaptive phenotypes during long-term persistence was high for SCVs (42% of patients), but low for mucoid isolates (2% of patients), which might be underestimated for mucoid phenotypes due to the retrospective study design and the difficulty to detect mucoid isolates in primary cultures. While patients with S. aureus only had better lung function and were younger, no difference was found between the group of P. aeruginosa and S. aureus co-infection and P. aeruginosa only with previous S. aureus infection.
Collapse
Affiliation(s)
- Mathias Schwerdt
- Institute of Medical Microbiology, University Hospital Münster, Germany
| | - Claudia Neumann
- Institute of Medical Microbiology, University Hospital Münster, Germany
| | | | | | - Susann Herzog
- Institute of Medical Microbiology, University Hospital Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University Hospital Münster, Germany
| | | | | | | | - Peter Küster
- Department of Pediatrics, Clemenshospital, Münster, Germany
| | | | - Janina Treffon
- Institute of Medical Microbiology, University Hospital Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Germany.
| |
Collapse
|
43
|
A Novel Repressor of the ica Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating Staphylococcus aureus. mBio 2017; 8:mBio.02282-16. [PMID: 28143981 PMCID: PMC5285506 DOI: 10.1128/mbio.02282-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super-biofilm-elaborating/polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosamine (PNAG)-overproducing strain (L. Shrestha et al., Microbiol Immunol 60:148–159, 2016, https://doi.org/10.1111/1348-0421.12359). A microarray analysis and DNA genome sequencing were performed to identify the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional expression levels of a 7-gene cluster (satf2580 to satf2586) and the ica operon in TF2758. Within the 7-gene cluster, a putative transcriptional regulator gene designated rob had a nonsense mutation that caused the truncation of the protein. The complementation of TF2758 with rob from FK300, an rsbU-repaired derivative of S. aureus strain NCTC8325-4, significantly decreased biofilm elaboration, suggesting a role for rob in this process. The deletion of rob in non-biofilm-producing FK300 significantly increased biofilm elaboration and PIA/PNAG production. In the search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob, we identified open reading frame (ORF) SAOUHSC_2898 (satf2584). Our results suggest that ORF SAOUHSC_2898 (satf2584) and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG production in the rob deletion mutant. Rob bound to a palindromic sequence within its own promoter region. Furthermore, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is an important regulator of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584) and Ica protein expression in S. aureus. During the search for molecular mechanisms underlying biofilm overproduction of Staphylococcus aureus TF2758, we found a putative transcriptional regulator gene designated rob within a 7-gene cluster showing a high transcriptional expression level by microarray analysis. The deletion of rob in non-biofilm-producing FK300, an rsbU-repaired derivative of NCTC8325-4, significantly increased biofilm elaboration and PIA/PNAG production. The search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob identified ORF SAOUHSC_2898. Besides binding to its own promoter region to control ORF SAOUHSC_2898 expression, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is a new important regulator of biofilm elaboration through its control of SAOUHSC_2898 and Ica protein expression in S. aureus.
Collapse
|