1
|
Paz M, Moratorio G. Deep mutational scanning and CRISPR-engineered viruses: tools for evolutionary and functional genomics studies. mSphere 2025:e0050824. [PMID: 40272173 DOI: 10.1128/msphere.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Recent advancements in synthetic biology and sequencing technologies have revolutionized the ability to manipulate viral genomes with unparalleled precision. This review focuses on two powerful methodologies: deep mutational scanning and CRISPR-based genome editing, that enable comprehensive mutagenesis and detailed functional characterization of viral proteins. These approaches have significantly deepened our understanding of the molecular determinants driving viral evolution and adaptation. Furthermore, we discuss how these advances provide transformative insights for future vaccine development and therapeutic strategies.
Collapse
Affiliation(s)
- Mercedes Paz
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
- Center for Innovation in Epidemiological Surveillance, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Rojas-Sánchez S, Kolev NG, Tschudi C. Deep mutational scanning of the Trypanosoma brucei developmental regulator RBP6 reveals an essential disordered region influenced by positive residues. Nat Commun 2025; 16:1168. [PMID: 39885181 PMCID: PMC11782513 DOI: 10.1038/s41467-025-56553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure. Expression of libraries containing all single-point variants of RBP6 in non-infectious procyclic forms and subsequent purification of infectious metacyclics supports the existence of an RNA-recognition motif (RRM) and reveal an N-terminal intrinsically disordered region (N-IDR). In contrast to the RRM, the N-IDR is more tolerant to substitutions; however, a handful of positions contain a third of all deleterious mutations found in the N-IDR. Introduction of positively charged residues in the N-IDR dramatically alters the normal metacyclogenesis pattern. Our results reveal an essential N-IDR, possibly playing a regulatory role, and an RRM likely involved in protein-RNA interactions.
Collapse
Affiliation(s)
- Saúl Rojas-Sánchez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
| |
Collapse
|
3
|
Jiang K, Yan Z, Di Bernardo M, Sgrizzi SR, Villiger L, Kayabolen A, Kim BJ, Carscadden JK, Hiraizumi M, Nishimasu H, Gootenberg JS, Abudayyeh OO. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 2025; 387:eadr6006. [PMID: 39571002 DOI: 10.1126/science.adr6006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 01/25/2025]
Abstract
Directed protein evolution is central to biomedical applications but faces challenges such as experimental complexity, inefficient multiproperty optimization, and local maxima traps. Although in silico methods that use protein language models (PLMs) can provide modeled fitness landscape guidance, they struggle to generalize across diverse protein families and map to protein activity. We present EVOLVEpro, a few-shot active learning framework that combines PLMs and regression models to rapidly improve protein activity. EVOLVEpro surpasses current methods, yielding up to 100-fold improvements in desired properties. We demonstrate its effectiveness across six proteins in RNA production, genome editing, and antibody binding applications. These results highlight the advantages of few-shot active learning with minimal experimental data over zero-shot predictions. EVOLVEpro opens new possibilities for artificial intelligence-guided protein engineering in biology and medicine.
Collapse
Affiliation(s)
- Kaiyi Jiang
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
- Department of Bioengineering Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhaoqing Yan
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Matteo Di Bernardo
- Whitehead Institute Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha R Sgrizzi
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Lukas Villiger
- Department of Dermatology and Allergology Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Alisan Kayabolen
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - B J Kim
- Koch Institute for Integrative Cancer Research at MIT Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josephine K Carscadden
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, Japan
| | - Jonathan S Gootenberg
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Omar O Abudayyeh
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Sebastian RM, Patrick JE, Hui T, Amici DR, Giacomelli AO, Butty VL, Hahn WC, Mendillo ML, Lin YS, Shoulders MD. Dominant-negative TP53 mutations potentiated by the HSF1-regulated proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621414. [PMID: 39554167 PMCID: PMC11565964 DOI: 10.1101/2024.11.01.621414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible explanation for this observation is that the consequent upregulation of proteostasis factors could biophysically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the impacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncoprotein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 activation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This effect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially supporting the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with providing the first experimental and quantitative insights into how HSF1 influences oncoprotein mutational spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of mutations that drive chemotherapeutic resistance and metastasis.
Collapse
Affiliation(s)
- Rebecca M. Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica E. Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C. Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity 2024; 57:2061-2076.e11. [PMID: 39013466 PMCID: PMC11390330 DOI: 10.1016/j.immuni.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Hong Z, Shimagaki KS, Barton JP. popDMS infers mutation effects from deep mutational scanning data. Bioinformatics 2024; 40:btae499. [PMID: 39115383 PMCID: PMC11335369 DOI: 10.1093/bioinformatics/btae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
SUMMARY Deep mutational scanning (DMS) experiments provide a powerful method to measure the functional effects of genetic mutations at massive scales. However, the data generated from these experiments can be difficult to analyze, with significant variation between experimental replicates. To overcome this challenge, we developed popDMS, a computational method based on population genetics theory, to infer the functional effects of mutations from DMS data. Through extensive tests, we found that the functional effects of single mutations and epistasis inferred by popDMS are highly consistent across replicates, comparing favorably with existing methods. Our approach is flexible and can be widely applied to DMS data that includes multiple time points, multiple replicates, and different experimental conditions. AVAILABILITY AND IMPLEMENTATION popDMS is implemented in Python and Julia, and is freely available on GitHub at https://github.com/bartonlab/popDMS.
Collapse
Affiliation(s)
- Zhenchen Hong
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States
| | - Kai S Shimagaki
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, PA 15260, United States
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, PA 15260, United States
- Department of Physics and Astronomy, University of Pittsburgh, PA 15260, United States
| |
Collapse
|
7
|
Jiang K, Yan Z, Di Bernardo M, Sgrizzi SR, Villiger L, Kayabolen A, Kim B, Carscadden JK, Hiraizumi M, Nishimasu H, Gootenberg JS, Abudayyeh OO. Rapid protein evolution by few-shot learning with a protein language model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604015. [PMID: 39071429 PMCID: PMC11275896 DOI: 10.1101/2024.07.17.604015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Directed evolution of proteins is critical for applications in basic biological research, therapeutics, diagnostics, and sustainability. However, directed evolution methods are labor intensive, cannot efficiently optimize over multiple protein properties, and are often trapped by local maxima. In silico-directed evolution methods incorporating protein language models (PLMs) have the potential to accelerate this engineering process, but current approaches fail to generalize across diverse protein families. We introduce EVOLVEpro, a few-shot active learning framework to rapidly improve protein activity using a combination of PLMs and protein activity predictors, achieving improved activity with as few as four rounds of evolution. EVOLVEpro substantially enhances the efficiency and effectiveness of in silico protein evolution, surpassing current state-of-the-art methods and yielding proteins with up to 100-fold improvement of desired properties. We showcase EVOLVEpro for five proteins across three applications: T7 RNA polymerase for RNA production, a miniature CRISPR nuclease, a prime editor, and an integrase for genome editing, and a monoclonal antibody for epitope binding. These results demonstrate the advantages of few-shot active learning with small amounts of experimental data over zero-shot predictions. EVOLVEpro paves the way for broader applications of AI-guided protein engineering in biology and medicine.
Collapse
Affiliation(s)
- Kaiyi Jiang
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
- Department of Bioengineering Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Zhaoqing Yan
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Matteo Di Bernardo
- Department of Bioengineering Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Samantha R. Sgrizzi
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Lukas Villiger
- Department of Dermatology and Allergology Kantonspital St. Gallen St. Gallen, 9000, Switzerland
| | - Alisan Kayabolen
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Byungji Kim
- Koch Institute for Integrative Cancer Research At MIT Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Josephine K. Carscadden
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Inamori Research Institute for Science 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Jonathan S. Gootenberg
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Omar O. Abudayyeh
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| |
Collapse
|
8
|
Lei R, Qing E, Odle A, Yuan M, Gunawardene CD, Tan TJC, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. Nat Commun 2024; 15:4056. [PMID: 38744813 PMCID: PMC11094058 DOI: 10.1038/s41467-024-48104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chaminda D Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antigenic variability of Lassa virus glycoprotein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579020. [PMID: 38370709 PMCID: PMC10871245 DOI: 10.1101/2024.02.05.579020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we use pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affect cell entry and antibody neutralization. Our experiments define functional constraints throughout GPC. We quantify how GPC mutations affect neutralization by a panel of monoclonal antibodies and show that all antibodies are escaped by mutations that exist among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R. Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G. Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A. Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead contact
| |
Collapse
|
10
|
Hie BL, Shanker VR, Xu D, Bruun TUJ, Weidenbacher PA, Tang S, Wu W, Pak JE, Kim PS. Efficient evolution of human antibodies from general protein language models. Nat Biotechnol 2024; 42:275-283. [PMID: 37095349 PMCID: PMC10869273 DOI: 10.1038/s41587-023-01763-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
Natural evolution must explore a vast landscape of possible sequences for desirable yet rare mutations, suggesting that learning from natural evolutionary strategies could guide artificial evolution. Here we report that general protein language models can efficiently evolve human antibodies by suggesting mutations that are evolutionarily plausible, despite providing the model with no information about the target antigen, binding specificity or protein structure. We performed language-model-guided affinity maturation of seven antibodies, screening 20 or fewer variants of each antibody across only two rounds of laboratory evolution, and improved the binding affinities of four clinically relevant, highly mature antibodies up to sevenfold and three unmatured antibodies up to 160-fold, with many designs also demonstrating favorable thermostability and viral neutralization activity against Ebola and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudoviruses. The same models that improve antibody binding also guide efficient evolution across diverse protein families and selection pressures, including antibiotic resistance and enzyme activity, suggesting that these results generalize to many settings.
Collapse
Affiliation(s)
- Brian L Hie
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Varun R Shanker
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Theodora U J Bruun
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton A Weidenbacher
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Wesley Wu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Hong Z, Barton JP. popDMS infers mutation effects from deep mutational scanning data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577759. [PMID: 38352383 PMCID: PMC10862717 DOI: 10.1101/2024.01.29.577759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Deep mutational scanning (DMS) experiments provide a powerful method to measure the functional effects of genetic mutations at massive scales. However, the data generated from these experiments can be difficult to analyze, with significant variation between experimental replicates. To overcome this challenge, we developed popDMS, a computational method based on population genetics theory, to infer the functional effects of mutations from DMS data. Through extensive tests, we found that the functional effects of single mutations and epistasis inferred by popDMS are highly consistent across replicates, comparing favorably with existing methods. Our approach is flexible and can be widely applied to DMS data that includes multiple time points, multiple replicates, and different experimental conditions.
Collapse
Affiliation(s)
- Zhenchen Hong
- Department of Physics and Astronomy, University of California, Riverside, USA
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Department of Physics and Astronomy, University of Pittsburgh, USA
| |
Collapse
|
12
|
Irvine EB, Reddy ST. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:235-243. [PMID: 38166249 DOI: 10.4049/jimmunol.2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
Abs are versatile molecules with the potential to achieve exceptional binding to target Ags, while also possessing biophysical properties suitable for therapeutic drug development. Protein display and directed evolution systems have transformed synthetic Ab discovery, engineering, and optimization, vastly expanding the number of Ab clones able to be experimentally screened for binding. Moreover, the burgeoning integration of high-throughput screening, deep sequencing, and machine learning has further augmented in vitro Ab optimization, promising to accelerate the design process and massively expand the Ab sequence space interrogated. In this Brief Review, we discuss the experimental and computational tools employed in synthetic Ab engineering and optimization. We also explore the therapeutic challenges posed by developing Abs for infectious diseases, and the prospects for leveraging machine learning-guided protein engineering to prospectively design Abs resistant to viral escape.
Collapse
Affiliation(s)
- Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
13
|
Schwab B, Yin J. Computational multigene interactions in virus growth and infection spread. Virus Evol 2023; 10:vead082. [PMID: 38361828 PMCID: PMC10868543 DOI: 10.1093/ve/vead082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
Viruses persist in nature owing to their extreme genetic heterogeneity and large population sizes, which enable them to evade host immune defenses, escape antiviral drugs, and adapt to new hosts. The persistence of viruses is challenging to study because mutations affect multiple virus genes, interactions among genes in their impacts on virus growth are seldom known, and measures of viral fitness are yet to be standardized. To address these challenges, we employed a data-driven computational model of cell infection by a virus. The infection model accounted for the kinetics of viral gene expression, functional gene-gene interactions, genome replication, and allocation of host cellular resources to produce progeny of vesicular stomatitis virus, a prototype RNA virus. We used this model to computationally probe how interactions among genes carrying up to eleven deleterious mutations affect different measures of virus fitness: single-cycle growth yields and multicycle rates of infection spread. Individual mutations were implemented by perturbing biophysical parameters associated with individual gene functions of the wild-type model. Our analysis revealed synergistic epistasis among deleterious mutations in their effects on virus yield; so adverse effects of single deleterious mutations were amplified by interaction. For the same mutations, multicycle infection spread indicated weak or negligible epistasis, where single mutations act alone in their effects on infection spread. These results were robust to simulation in high- and low-host resource environments. Our work highlights how different types and magnitudes of epistasis can arise for genetically identical virus variants, depending on the fitness measure. More broadly, gene-gene interactions can differently affect how viruses grow and spread.
Collapse
Affiliation(s)
- Bradley Schwab
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| | - John Yin
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| |
Collapse
|
14
|
Jackson-Jones KA, McKnight Á, Sloan RD. The innate immune factor RPRD2/REAF and its role in the Lv2 restriction of HIV. mBio 2023; 14:e0257221. [PMID: 37882563 PMCID: PMC10746242 DOI: 10.1128/mbio.02572-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus. The viral determinants of Lv2 susceptibility have been mapped to the envelope and capsid proteins in both HIV-1 and HIV-2, and also viral protein R (Vpr) in HIV-1, and appears dependent on cellular entry mechanism. A genome-wide screen identified several likely contributing host factors including members of the polymerase-associated factor 1 (PAF1) and human silencing hub (HUSH) complexes, and the newly characterized regulation of nuclear pre-mRNA domain containing 2 (RPRD2). Subsequently, RPRD2 (or RNA-associated early-stage antiviral factor) has been shown to be upregulated upon T cell activation, is highly expressed in myeloid cells, binds viral reverse transcripts, and potently restricts HIV-1 infection. RPRD2 is also bound by HIV-1 Vpr and targeted for degradation by the proteasome upon reverse transcription, suggesting RPRD2 impedes reverse transcription and Vpr targeting overcomes this block. RPRD2 is mainly localized to the nucleus and binds RNA, DNA, and DNA:RNA hybrids. More recently, RPRD2 has been shown to negatively regulate genome-wide transcription and interact with the HUSH and PAF1 complexes which repress HIV transcription and are implicated in maintenance of HIV latency. In this review, we examine Lv2 restriction and the antiviral role of RPRD2 and consider potential mechanism(s) of action.
Collapse
Affiliation(s)
- Kathryn A. Jackson-Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Infectious Diseases & Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Richard D. Sloan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
| |
Collapse
|
15
|
Lei R, Qing E, Odle A, Yuan M, Tan TJ, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569051. [PMID: 38076875 PMCID: PMC10705381 DOI: 10.1101/2023.11.28.569051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we performed a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identified mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we showed that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
16
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Zhang Z, Wang Q, Nguyen HT, Chen HC, Chiu TJ, Smith Iii AB, Sodroski JG. Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol 2023; 97:e0059223. [PMID: 37696048 PMCID: PMC10537687 DOI: 10.1128/jvi.00592-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 09/13/2023] Open
Abstract
The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer mediates entry into host cells by binding receptors, CD4 and CCR5/CXCR4, and fusing the viral and cell membranes. In infected cells, cleavage of the gp160 Env precursor yields the mature Env trimer, with gp120 exterior and gp41 transmembrane Env subunits. Env cleavage stabilizes the State-1 conformation, which is the major target for broadly neutralizing antibodies, and decreases the spontaneous sampling of more open Env conformations that expose epitopes for poorly neutralizing antibodies. During HIV-1 entry into cells, CD4 binding drives the metastable Env from a pretriggered (State-1) conformation into more "open," lower-energy states. Here, we report that changes in two dissimilar elements of the HIV-1 Env trimer, namely particular gp120 glycans and the gp41 fusion peptide-proximal region (FPPR), can independently modulate the stability of State 1. Individual deletion of several gp120 glycans destabilized State 1, whereas removal of a V1 glycan resulted in phenotypes indicative of a more stable pretriggered Env conformation. Likewise, some alterations of the gp41 FPPR decreased the level of spontaneous shedding of gp120 from the Env trimer and stabilized the pretriggered State-1 Env conformation. State-1-stabilizing changes were additive and could suppress the phenotypes associated with State-1-destabilizing alterations in Env. Our results support a model in which multiple protein and carbohydrate elements of the HIV-1 Env trimer additively contribute to the stability of the pretriggered (State-1) conformation. The Env modifications identified in this study will assist efforts to characterize the structure and immunogenicity of the metastable State-1 conformation. IMPORTANCE The elicitation of antibodies that neutralize multiple strains of HIV-1 is an elusive goal that has frustrated the development of an effective vaccine. The pretriggered shape of the HIV-1 envelope glycoprotein (Env) spike on the virus surface is the major target for such broadly neutralizing antibodies. The "closed" pretriggered Env shape resists the binding of most antibodies but is unstable and often assumes "open" shapes that elicit ineffective antibodies. We identified particular changes in both the protein and the sugar components of the Env trimer that stabilize the pretriggered shape. Combinations of these changes were even more effective at stabilizing the pretriggered Env than the individual changes. Stabilizing changes in Env could counteract the effect of Env changes that destabilize the pretriggered shape. Locking Env in its pretriggered shape will assist efforts to understand the Env spike on the virus and to incorporate this shape into vaccines.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Amos B Smith Iii
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Joseph G Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
18
|
Glögl M, Friedrich N, Cerutti G, Lemmin T, Kwon YD, Gorman J, Maliqi L, Mittl PRE, Hesselman MC, Schmidt D, Weber J, Foulkes C, Dingens AS, Bylund T, Olia AS, Verardi R, Reinberg T, Baumann NS, Rusert P, Dreier B, Shapiro L, Kwong PD, Plückthun A, Trkola A. Trapping the HIV-1 V3 loop in a helical conformation enables broad neutralization. Nat Struct Mol Biol 2023; 30:1323-1336. [PMID: 37605043 PMCID: PMC10497408 DOI: 10.1038/s41594-023-01062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
The third variable (V3) loop on the human immunodeficiency virus 1 (HIV-1) envelope glycoprotein trimer is indispensable for virus cell entry. Conformational masking of V3 within the trimer allows efficient neutralization via V3 only by rare, broadly neutralizing glycan-dependent antibodies targeting the closed prefusion trimer but not by abundant antibodies that access the V3 crown on open trimers after CD4 attachment. Here, we report on a distinct category of V3-specific inhibitors based on designed ankyrin repeat protein (DARPin) technology that reinstitute the CD4-bound state as a key neutralization target with up to >90% breadth. Broadly neutralizing DARPins (bnDs) bound V3 solely on open envelope and recognized a four-turn amphipathic α-helix in the carboxy-terminal half of V3 (amino acids 314-324), which we termed 'αV3C'. The bnD contact surface on αV3C was as conserved as the CD4 binding site. Molecular dynamics and escape mutation analyses underscored the functional relevance of αV3C, highlighting the potential of αV3C-based inhibitors and, more generally, of postattachment inhibition of HIV-1.
Collapse
Affiliation(s)
- Matthias Glögl
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Thomas Lemmin
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liridona Maliqi
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Maria C Hesselman
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Jacqueline Weber
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Adam S Dingens
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Nicolas S Baumann
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute for Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
19
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 2023; 31:1200-1215.e9. [PMID: 37327779 PMCID: PMC10351223 DOI: 10.1016/j.chom.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533993. [PMID: 36993197 PMCID: PMC10055425 DOI: 10.1101/2023.03.23.533993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera known to target the CD4-binding site that neutralize diverse strains of HIV. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one sera targeting two epitopes within the CD4 binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E. Radford
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Department of Genome Sciences & Medical Scientist Training
Program, University of Washington, Seattle, Washington, 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Timothy C. Yu
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center,
Seattle, Washington, 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
21
|
Dadonaite B, Crawford KHD, Radford CE, Farrell AG, Yu TC, Hannon WW, Zhou P, Andrabi R, Burton DR, Liu L, Ho DD, Chu HY, Neher RA, Bloom JD. A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike. Cell 2023; 186:1263-1278.e20. [PMID: 36868218 PMCID: PMC9922669 DOI: 10.1016/j.cell.2023.02.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ∼7,000 distinct amino acid mutations in the context of up to ∼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ∼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Caelan E Radford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, MIT & Harvard, Cambridge, MA 02139, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Helen Y Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Flynn J, Samant N, Schneider-Nachum G, Tenzin T, Bolon DNA. Mutational fitness landscape and drug resistance. Curr Opin Struct Biol 2023; 78:102525. [PMID: 36621152 PMCID: PMC10243218 DOI: 10.1016/j.sbi.2022.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
Robust technology has been developed to systematically quantify fitness landscapes that provide valuable opportunities to improve our understanding of drug resistance and define new avenues to develop drugs with reduced resistance susceptibility. We outline the critical importance of drug resistance studies and the potential for fitness landscape approaches to contribute to this effort. We describe the major technical advancements in mutational scanning, which is the primary approach used to quantify protein fitness landscapes. There are many complex steps to consider in planning and executing mutational scanning projects including developing a selection scheme, generating mutant libraries, tracking the frequency of variants using next-generation sequencing, and processing and interpreting the data. Key experimental parameters impacting each of these steps are discussed to aid in planning fitness landscape studies. There is a strong need for improved understanding of drug resistance, and fitness landscapes provide a promising new approach.
Collapse
Affiliation(s)
- Julia Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neha Samant
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gily Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tsepal Tenzin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
23
|
Dadonaite B, Crawford KHD, Radford CE, Farrell AG, Yu TC, Hannon WW, Zhou P, Andrabi R, Burton DR, Liu L, Ho DD, Neher RA, Bloom JD. A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.13.512056. [PMID: 36263061 PMCID: PMC9580381 DOI: 10.1101/2022.10.13.512056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here we describe a new deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We demonstrate this new platform by making libraries of the Omicron BA.1 and Delta spikes. These libraries each contain ~7000 distinct amino-acid mutations in the context of up to ~135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how ~10 5 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, Washington, 98109, USA
| | - Caelan E Radford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Timothy C Yu
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - William W Hannon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, 98109, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Richard A. Neher
- Biozentrum, University of Basel, Basel, Switzerland, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Fantini M, Sarti E, Tartaglia GG, Pastore A. Editorial: Molecular evolution: You learn from your mistakes. Front Mol Biosci 2022; 9:985289. [PMID: 36060243 PMCID: PMC9428718 DOI: 10.3389/fmolb.2022.985289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marco Fantini
- BioSNS Laboratory of Biology, Scuola Normale Superiore (SNS), Pisa, Italy
| | - Edoardo Sarti
- Algorithms, Biology, Structure (ABS), Inria at Université Côte d’Azur, Valbonne, France
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- RNA System Biology Lab, Centre for Human Technologies, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
- Centre for Genomic Regulation (CRG) and ICREA, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Dipartimento di Biologia e Biotecnologie, Sapienza University, Rome, Italy
| | - Annalisa Pastore
- UK-DRI Centre at the Maurice Wohl Institute, Department of Clinical and Basic Neuroscience, King’s College London, London, United Kingdom
- *Correspondence: Annalisa Pastore,
| |
Collapse
|
25
|
Rajendran M, Ferran MC, Babbitt GA. Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics. BIOPHYSICAL REPORTS 2022; 2:100056. [PMID: 35403093 PMCID: PMC8978532 DOI: 10.1016/j.bpr.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 01/08/2023]
Abstract
The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutralizing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational method to monitor hotspots of functional evolution in antibody binding footprints.
Collapse
|
26
|
Safari M, Jayaraman B, Zommer H, Yang S, Smith C, Fernandes JD, Frankel AD. Functional and structural segregation of overlapping helices in HIV-1. eLife 2022; 11:e72482. [PMID: 35511220 PMCID: PMC9119678 DOI: 10.7554/elife.72482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Overlapping coding regions balance selective forces between multiple genes. One possible division of nucleotide sequence is that the predominant selective force on a particular nucleotide can be attributed to just one gene. While this arrangement has been observed in regions in which one gene is structured and the other is disordered, we sought to explore how overlapping genes balance constraints when both protein products are structured over the same sequence. We use a combination of sequence analysis, functional assays, and selection experiments to examine an overlapped region in HIV-1 that encodes helical regions in both Env and Rev. We find that functional segregation occurs even in this overlap, with each protein spacing its functional residues in a manner that allows a mutable non-binding face of one helix to encode important functional residues on a charged face in the other helix. Additionally, our experiments reveal novel and critical functional residues in Env and have implications for the therapeutic targeting of HIV-1.
Collapse
Affiliation(s)
- Maliheh Safari
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Bhargavi Jayaraman
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henni Zommer
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Shumin Yang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- School of Medicine, Tsinghua UniversityBeijingChina
| | - Cynthia Smith
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jason D Fernandes
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
27
|
Phylogenetic inference of changes in amino acid propensities with single-position resolution. PLoS Comput Biol 2022; 18:e1009878. [PMID: 35180226 PMCID: PMC9106220 DOI: 10.1371/journal.pcbi.1009878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 05/13/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Fitness conferred by the same allele may differ between genotypes and environments, and these differences shape variation and evolution. Changes in amino acid propensities at protein sites over the course of evolution have been inferred from sequence alignments statistically, but the existing methods are data-intensive and aggregate multiple sites. Here, we develop an approach to detect individual amino acids that confer different fitness in different groups of species from combined sequence and phylogenetic data. Using the fact that the probability of a substitution to an amino acid depends on its fitness, our method looks for amino acids such that substitutions to them occur more frequently in one group of lineages than in another. We validate our method using simulated evolution of a protein site under different scenarios and show that it has high specificity for a wide range of assumptions regarding the underlying changes in selection, while its sensitivity differs between scenarios. We apply our method to the env gene of two HIV-1 subtypes, A and B, and to the HA gene of two influenza A subtypes, H1 and H3, and show that the inferred fitness changes are consistent with the fitness differences observed in deep mutational scanning experiments. We find that changes in relative fitness of different amino acid variants within a site do not always trigger episodes of positive selection and therefore may not result in an overall increase in the frequency of substitutions, but can still be detected from changes in relative frequencies of different substitutions.
Collapse
|
28
|
The endoplasmic reticulum proteostasis network profoundly shapes the protein sequence space accessible to HIV envelope. PLoS Biol 2022; 20:e3001569. [PMID: 35180219 PMCID: PMC8906867 DOI: 10.1371/journal.pbio.3001569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/09/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation. The host cell’s endoplasmic reticulum proteostasis network has a profound, constraining impact on the protein sequence space accessible to HIV’s envelope protein, which is a major target of the host’s adaptive immune system; in particular, upregulation of stringent quality control pathways appears to restrict the viability of destabilizing envelope variants.
Collapse
|
29
|
Evolution during primary HIV infection does not require adaptive immune selection. Proc Natl Acad Sci U S A 2022; 119:2109172119. [PMID: 35145025 PMCID: PMC8851487 DOI: 10.1073/pnas.2109172119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Modern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The optimal model of primary infection required no positive selection, suggesting that the host adaptive immune system reduces viral load but surprisingly does not drive observed viral evolution. Rather, the fitness (infectivity) of mutant variants is drawn from an exponential distribution in which most variants are slightly less infectious than their parents (nearly neutral evolution). This distribution was not largely different from either in vivo fitness distributions recorded beyond primary infection or in vitro distributions that are observed without adaptive immunity, suggesting the intrinsic viral fitness distribution may drive evolution. Simulated phylogenetic trees also agree with independent data and illuminate how phylogenetic inference must consider viral and immune-cell population dynamics to gain accurate mechanistic insights.
Collapse
|
30
|
Høie MH, Cagiada M, Beck Frederiksen AH, Stein A, Lindorff-Larsen K. Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation. Cell Rep 2022; 38:110207. [PMID: 35021073 DOI: 10.1016/j.celrep.2021.110207] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/23/2023] Open
Abstract
Understanding and predicting the functional consequences of single amino acid changes is central in many areas of protein science. Here, we collect and analyze experimental measurements of effects of >150,000 variants in 29 proteins. We use biophysical calculations to predict changes in stability for each variant and assess them in light of sequence conservation. We find that the sequence analyses give more accurate prediction of variant effects than predictions of stability and that about half of the variants that show loss of function do so due to stability effects. We construct a machine learning model to predict variant effects from protein structure and sequence alignments and show how the two sources of information support one another and enable mechanistic interpretations. Together, our results show how one can leverage large-scale experimental assessments of variant effects to gain deeper and general insights into the mechanisms that cause loss of function.
Collapse
Affiliation(s)
- Magnus Haraldson Høie
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anders Haagen Beck Frederiksen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
31
|
Roychowdury H, Romero PA. Microfluidic deep mutational scanning of the human executioner caspases reveals differences in structure and regulation. Cell Death Dis 2022; 8:7. [PMID: 35013287 PMCID: PMC8748541 DOI: 10.1038/s41420-021-00799-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The human caspase family comprises 12 cysteine proteases that are centrally involved in cell death and inflammation responses. The members of this family have conserved sequences and structures, highly similar enzymatic activities and substrate preferences, and overlapping physiological roles. In this paper, we present a deep mutational scan of the executioner caspases CASP3 and CASP7 to dissect differences in their structure, function, and regulation. Our approach leverages high-throughput microfluidic screening to analyze hundreds of thousands of caspase variants in tightly controlled in vitro reactions. The resulting data provides a large-scale and unbiased view of the impact of amino acid substitutions on the proteolytic activity of CASP3 and CASP7. We use this data to pinpoint key functional differences between CASP3 and CASP7, including a secondary internal cleavage site, CASP7 Q196 that is not present in CASP3. Our results will open avenues for inquiry in caspase function and regulation that could potentially inform the development of future caspase-specific therapeutics.
Collapse
Affiliation(s)
| | - Philip A Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. .,The University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
32
|
Meijers M, Vanshylla K, Gruell H, Klein F, Lässig M. Predicting in vivo escape dynamics of HIV-1 from a broadly neutralizing antibody. Proc Natl Acad Sci U S A 2021; 118:e2104651118. [PMID: 34301904 PMCID: PMC8325275 DOI: 10.1073/pnas.2104651118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Broadly neutralizing antibodies are promising candidates for treatment and prevention of HIV-1 infections. Such antibodies can temporarily suppress viral load in infected individuals; however, the virus often rebounds by escape mutants that have evolved resistance. In this paper, we map a fitness model of HIV-1 interacting with broadly neutralizing antibodies using in vivo data from a recent clinical trial. We identify two fitness factors, antibody dosage and viral load, that determine viral reproduction rates reproducibly across different hosts. The model successfully predicts the escape dynamics of HIV-1 in the course of an antibody treatment, including a characteristic frequency turnover between sensitive and resistant strains. This turnover is governed by a dosage-dependent fitness ranking, resulting from an evolutionary trade-off between antibody resistance and its collateral cost in drug-free growth. Our analysis suggests resistance-cost trade-off curves as a measure of antibody performance in the presence of resistance evolution.
Collapse
Affiliation(s)
- Matthijs Meijers
- Institut für Biologische Physik, University of Cologne, 50937 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Partner Site Bonn-Cologne, German Center for Infection Research, 50931 Cologne, Germany
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Michael Lässig
- Institut für Biologische Physik, University of Cologne, 50937 Cologne, Germany;
| |
Collapse
|
33
|
Ellis D, Brunette N, Crawford KHD, Walls AC, Pham MN, Chen C, Herpoldt KL, Fiala B, Murphy M, Pettie D, Kraft JC, Malone KD, Navarro MJ, Ogohara C, Kepl E, Ravichandran R, Sydeman C, Ahlrichs M, Johnson M, Blackstone A, Carter L, Starr TN, Greaney AJ, Lee KK, Veesler D, Bloom JD, King NP. Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Front Immunol 2021; 12:710263. [PMID: 34267764 PMCID: PMC8276696 DOI: 10.3389/fimmu.2021.710263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States
| | - Natalie Brunette
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Katharine H. D. Crawford
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Minh N. Pham
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - Karla-Luise Herpoldt
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Brooke Fiala
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - John C. Kraft
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Keara D. Malone
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Cassandra Ogohara
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Elizabeth Kepl
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Max Johnson
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Alyssa Blackstone
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Tyler N. Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allison J. Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Burton TD, Eyre NS. Applications of Deep Mutational Scanning in Virology. Viruses 2021; 13:1020. [PMID: 34071591 PMCID: PMC8227372 DOI: 10.3390/v13061020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Several recently developed high-throughput techniques have changed the field of molecular virology. For example, proteomics studies reveal complete interactomes of a viral protein, genome-wide CRISPR knockout and activation screens probe the importance of every single human gene in aiding or fighting a virus, and ChIP-seq experiments reveal genome-wide epigenetic changes in response to infection. Deep mutational scanning is a relatively novel form of protein science which allows the in-depth functional analysis of every nucleotide within a viral gene or genome, revealing regions of importance, flexibility, and mutational potential. In this review, we discuss the application of this technique to RNA viruses including members of the Flaviviridae family, Influenza A Virus and Severe Acute Respiratory Syndrome Coronavirus 2. We also briefly discuss the reverse genetics systems which allow for analysis of viral replication cycles, next-generation sequencing technologies and the bioinformatics tools that facilitate this research.
Collapse
Affiliation(s)
| | - Nicholas S. Eyre
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
35
|
Li H, Wang S, Lee FH, Roark RS, Murphy AI, Smith J, Zhao C, Rando J, Chohan N, Ding Y, Kim E, Lindemuth E, Bar KJ, Pandrea I, Apetrei C, Keele BF, Lifson JD, Lewis MG, Denny TN, Haynes BF, Hahn BH, Shaw GM. New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention and Cure. J Virol 2021; 95:JVI.00071-21. [PMID: 33658341 PMCID: PMC8139694 DOI: 10.1128/jvi.00071-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Previously, we showed that substitution of HIV-1 Env residue 375-Ser by bulky aromatic residues enhances binding to rhesus CD4 and enables primary HIV-1 Envs to support efficient replication as simian-human immunodeficiency virus (SHIV) chimeras in rhesus macaques (RMs). Here, we test this design strategy more broadly by constructing SHIVs containing ten primary Envs corresponding to HIV-1 subtypes A, B, C, AE and AG. All ten SHIVs bearing wildtype Env375 residues replicated efficiently in human CD4+ T cells, but only one replicated efficiently in primary rhesus cells. This was a subtype AE SHIV that naturally contained His at Env375. Replacement of wildtype Env375 residues by Trp, Tyr, Phe or His in the other nine SHIVs led to efficient replication in rhesus CD4+ T cells in vitro and in vivo Nine SHIVs containing optimized Env375 alleles were grown large-scale in primary rhesus CD4+ T cells to serve as challenge stocks in preclinical prevention trials. These virus stocks were genetically homogeneous, native-like in Env antigenicity and tier-2 neutralization sensitivity, and transmissible by rectal, vaginal, penile, oral or intravenous routes. To facilitate future SHIV constructions, we engineered a simplified second-generation design scheme and validated it in RMs. Overall, our findings demonstrate that SHIVs bearing primary Envs with bulky aromatic substitutions at Env375 consistently replicate in RMs, recapitulating many features of HIV-1 infection in humans. Such SHIVs are efficiently transmitted by mucosal routes common to HIV-1 infection and can be used to test vaccine efficacy in preclinical monkey trials.ImportanceSHIV infection of Indian rhesus macaques is an important animal model for studying HIV-1 transmission, prevention, immunopathogenesis and cure. Such research is timely, given recent progress with active and passive immunization and novel approaches to HIV-1 cure. Given the multifaceted roles of HIV-1 Env in cell tropism and virus entry, and as a target for neutralizing and non-neutralizing antibodies, Envs selected for SHIV construction are of paramount importance. Until recently, it has been impossible to strategically design SHIVs bearing clinically relevant Envs that replicate consistently in monkeys. This changed with the discovery that bulky aromatic substitutions at residue Env375 confer enhanced affinity to rhesus CD4. Here, we show that 10 new SHIVs bearing primary HIV-1 Envs with residue 375 substitutions replicated efficiently in RMs and could be transmitted efficiently across rectal, vaginal, penile and oral mucosa. These findings suggest an expanded role for SHIVs as a model of HIV-1 infection.
Collapse
Affiliation(s)
- Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alex I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eunlim Kim
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Narayanan KK, Procko E. Deep Mutational Scanning of Viral Glycoproteins and Their Host Receptors. Front Mol Biosci 2021; 8:636660. [PMID: 33898517 PMCID: PMC8062978 DOI: 10.3389/fmolb.2021.636660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Deep mutational scanning or deep mutagenesis is a powerful tool for understanding the sequence diversity available to viruses for adaptation in a laboratory setting. It generally involves tracking an in vitro selection of protein sequence variants with deep sequencing to map mutational effects based on changes in sequence abundance. Coupled with any of a number of selection strategies, deep mutagenesis can explore the mutational diversity available to viral glycoproteins, which mediate critical roles in cell entry and are exposed to the humoral arm of the host immune response. Mutational landscapes of viral glycoproteins for host cell attachment and membrane fusion reveal extensive epistasis and potential escape mutations to neutralizing antibodies or other therapeutics, as well as aiding in the design of optimized immunogens for eliciting broadly protective immunity. While less explored, deep mutational scans of host receptors further assist in understanding virus-host protein interactions. Critical residues on the host receptors for engaging with viral spikes are readily identified and may help with structural modeling. Furthermore, mutations may be found for engineering soluble decoy receptors as neutralizing agents that specifically bind viral targets with tight affinity and limited potential for viral escape. By untangling the complexities of how sequence contributes to viral glycoprotein and host receptor interactions, deep mutational scanning is impacting ideas and strategies at multiple levels for combatting circulating and emergent virus strains.
Collapse
Affiliation(s)
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, United States
| |
Collapse
|
37
|
Spielman SJ. Relative Model Fit Does Not Predict Topological Accuracy in Single-Gene Protein Phylogenetics. Mol Biol Evol 2021; 37:2110-2123. [PMID: 32191313 PMCID: PMC7306691 DOI: 10.1093/molbev/msaa075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is regarded as best practice in phylogenetic reconstruction to perform relative model selection to determine an appropriate evolutionary model for the data. This procedure ranks a set of candidate models according to their goodness of fit to the data, commonly using an information theoretic criterion. Users then specify the best-ranking model for inference. Although it is often assumed that better-fitting models translate to increase accuracy, recent studies have shown that the specific model employed may not substantially affect inferences. We examine whether there is a systematic relationship between relative model fit and topological inference accuracy in protein phylogenetics, using simulations and real sequences. Simulations employed site-heterogeneous mechanistic codon models that are distinct from protein-level phylogenetic inference models, allowing us to investigate how protein models performs when they are misspecified to the data, as will be the case for any real sequence analysis. We broadly find that phylogenies inferred across models with vastly different fits to the data produce highly consistent topologies. We additionally find that all models infer similar proportions of false-positive splits, raising the possibility that all available models of protein evolution are similarly misspecified. Moreover, we find that the parameter-rich GTR (general time reversible) model, whose amino acid exchangeabilities are free parameters, performs similarly to models with fixed exchangeabilities, although the inference precision associated with GTR models was not examined. We conclude that, although relative model selection may not hinder phylogenetic analysis on protein data, it may not offer specific predictable improvements and is not a reliable proxy for accuracy.
Collapse
|
38
|
Dingens AS, Pratap P, Malone K, Hilton SK, Ketas T, Cottrell CA, Overbaugh J, Moore JP, Klasse PJ, Ward AB, Bloom JD. High-resolution mapping of the neutralizing and binding specificities of polyclonal sera post-HIV Env trimer vaccination. eLife 2021; 10:e64281. [PMID: 33438580 PMCID: PMC7864656 DOI: 10.7554/elife.64281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mapping polyclonal serum responses is critical to rational vaccine design. However, most high-resolution mapping approaches involve isolating and characterizing individual antibodies, which incompletely defines the polyclonal response. Here we use two complementary approaches to directly map the specificities of the neutralizing and binding antibodies of polyclonal anti-HIV-1 sera from rabbits immunized with BG505 Env SOSIP trimers. We used mutational antigenic profiling to determine how all mutations in Env affected viral neutralization and electron microscopy polyclonal epitope mapping (EMPEM) to directly visualize serum Fabs bound to Env trimers. The dominant neutralizing specificities were generally only a subset of the more diverse binding specificities. Additional differences between binding and neutralization reflected antigenicity differences between virus and soluble Env trimer. Furthermore, we refined residue-level epitope specificity directly from sera, revealing subtle differences across sera. Together, mutational antigenic profiling and EMPEM yield a holistic view of the binding and neutralizing specificity of polyclonal sera.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Payal Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Keara Malone
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Thomas Ketas
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - PJ Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
39
|
Mattenberger F, Latorre V, Tirosh O, Stern A, Geller R. Globally defining the effects of mutations in a picornavirus capsid. eLife 2021; 10:64256. [PMID: 33432927 PMCID: PMC7861617 DOI: 10.7554/elife.64256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The capsids of non-enveloped viruses are highly multimeric and multifunctional protein assemblies that play key roles in viral biology and pathogenesis. Despite their importance, a comprehensive understanding of how mutations affect viral fitness across different structural and functional attributes of the capsid is lacking. To address this limitation, we globally define the effects of mutations across the capsid of a human picornavirus. Using this resource, we identify structural and sequence determinants that accurately predict mutational fitness effects, refine evolutionary analyses, and define the sequence specificity of key capsid-encoded motifs. Furthermore, capitalizing on the derived sequence requirements for capsid-encoded protease cleavage sites, we implement a bioinformatic approach for identifying novel host proteins targeted by viral proteases. Our findings represent the most comprehensive investigation of mutational fitness effects in a picornavirus capsid to date and illuminate important aspects of viral biology, evolution, and host interactions. A virus is made up of genetic material that is encased with a protective protein coat called the capsid. The capsid also helps the virus to infect host cells by binding to the host receptor proteins and releasing its genetic material. Inside the cell, the virus hitchhikes the infected cell’s machinery to grow or replicate its own genetic material. Viral capsids are the main target of the host’s defence system, and therefore, continuously change in an attempt to escape the immune system by introducing alterations (known as mutations) into the genes encoding viral capsid proteins. Mutations occur randomly, and so while some changes to the viral capsid might confer an advantage, others may have no effect at all, or even weaken the virus. To better understand the effect of capsid mutations on the virus’ ability to infect host cells, Mattenberger et al. studied the Coxsackievirus B3, which is linked to heart problems and acute heart failure in humans. The researchers analysed around 90% of possible amino acid mutations (over 14,800 mutations) and correlated each mutation to how it influenced the virus’ ability to replicate in human cells grown in the laboratory. Based on these results, Mattenberger et al. developed a computer model to predict how a particular mutation might affect the virus. The analysis also identified specific amino acid sequences of capsid proteins that are essential for certain tasks, such as building the capsid. It also included an analysis of sequences in the capsid that allow it to be recognized by another viral protein, which cuts the capsid proteins into the right size from a larger precursor. By looking for similar sequences in human genes, the researchers identified several ones that the virus may attack and inactivate to support its own replication. These findings may help identify potential drug targets to develop new antiviral therapies. For example, proteins of the capsid that are less likely to mutate will provide a better target as they lower the possibility of the virus to become resistant to the treatment. They also highlight new proteins in human cells that could potentially block the virus in cells.
Collapse
Affiliation(s)
- Florian Mattenberger
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Victor Latorre
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Omer Tirosh
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Geller
- Institute for Integrative Systems Biology, I2SysBio (Universitat de València-CSIC), Paterna, Spain
| |
Collapse
|
40
|
Roark RS, Li H, Williams WB, Chug H, Mason RD, Gorman J, Wang S, Lee FH, Rando J, Bonsignori M, Hwang KK, Saunders KO, Wiehe K, Moody MA, Hraber PT, Wagh K, Giorgi EE, Russell RM, Bibollet-Ruche F, Liu W, Connell J, Smith AG, DeVoto J, Murphy AI, Smith J, Ding W, Zhao C, Chohan N, Okumura M, Rosario C, Ding Y, Lindemuth E, Bauer AM, Bar KJ, Ambrozak D, Chao CW, Chuang GY, Geng H, Lin BC, Louder MK, Nguyen R, Zhang B, Lewis MG, Raymond DD, Doria-Rose NA, Schramm CA, Douek DC, Roederer M, Kepler TB, Kelsoe G, Mascola JR, Kwong PD, Korber BT, Harrison SC, Haynes BF, Hahn BH, Shaw GM. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 2021; 371:eabd2638. [PMID: 33214287 PMCID: PMC8040783 DOI: 10.1126/science.abd2638] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
Collapse
Affiliation(s)
- Ryan S Roark
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hema Chug
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fang-Hua Lee
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliette Rando
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Peter T Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ronnie M Russell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Connell
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia DeVoto
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander I Murphy
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Smith
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenge Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengyan Zhao
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neha Chohan
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maho Okumura
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Rosario
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Ding
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Lindemuth
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anya M Bauer
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J Bar
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Donald D Raymond
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Departments of Immunology and Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bette T Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Saha A, Dixit NM. Pre-existing resistance in the latent reservoir can compromise VRC01 therapy during chronic HIV-1 infection. PLoS Comput Biol 2020; 16:e1008434. [PMID: 33253162 PMCID: PMC7728175 DOI: 10.1371/journal.pcbi.1008434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/10/2020] [Accepted: 10/11/2020] [Indexed: 01/26/2023] Open
Abstract
Passive immunization with broadly neutralizing antibodies (bNAbs) of HIV-1 appears a promising strategy for eliciting long-term HIV-1 remission. When administered concomitantly with the cessation of antiretroviral therapy (ART) to patients with established viremic control, bNAb therapy is expected to prolong remission. Surprisingly, in clinical trials on chronic HIV-1 patients, the bNAb VRC01 failed to prolong remission substantially. Identifying the cause of this failure is important for improving VRC01-based therapies and unraveling potential vulnerabilities of other bNAbs. In the trials, viremia resurged rapidly in most patients despite suppressive VRC01 concentrations in circulation, suggesting that VRC01 resistance was the likely cause of failure. ART swiftly halts viral replication, precluding the development of resistance during ART. If resistance were to emerge post ART, virological breakthrough would have taken longer than without VRC01 therapy. We hypothesized therefore that VRC01-resistant strains must have been formed before ART initiation, survived ART in latently infected cells, and been activated during VRC01 therapy, causing treatment failure. Current assays preclude testing this hypothesis experimentally. We developed a mathematical model based on the hypothesis and challenged it with available clinical data. The model integrated within-host HIV-1 evolution, stochastic latency reactivation, and viral dynamics with multiple-dose VRC01 pharmacokinetics. The model predicted that single but not higher VRC01-resistant mutants would pre-exist in the latent reservoir. We constructed a virtual patient population that parsimoniously recapitulated inter-patient variations. Model predictions with this population quantitatively captured data of VRC01 failure from clinical trials, presenting strong evidence supporting the hypothesis. We attributed VRC01 failure to single-mutant VRC01-resistant proviruses in the latent reservoir triggering viral recrudescence, particularly when VRC01 was at trough levels. Pre-existing resistant proviruses in the latent reservoir may similarly compromise other bNAbs. Our study provides a framework for designing bNAb-based therapeutic protocols that would avert such failure and maximize HIV-1 remission. Antiretroviral therapy (ART) can control but not eradicate HIV-1. Stopping ART leads to rapid viral resurgence and progressive disease. ART is therefore administered lifelong. Tremendous efforts are ongoing to devise strategies that will enable stopping ART and yet prevent viral resurgence. One such strategy involves the administration of broadly neutralizing antibodies (bNAbs) of HIV-1 at the time of stopping ART. This strategy is expected to delay if not prevent viral resurgence. Surprisingly, treatment with VRC01, a potent bNAb, resulted in hardly any improvement in viral remission. In this study, we elucidate the cause of this failure. We hypothesized that VRC01-resistant strains may pre-exist in latently infected cells, which are unaffected by ART. They can thus outlast ART and get reactivated, triggering VRC01 failure. We built a detailed mathematical model based on this hypothesis and showed that it quantitatively captured observations of VRC01 failure in clinical trials on chronic HIV-1 patients. Our study thus identifies a potential vulnerability of bNAbs, namely, bNAb-resistant strains pre-existing in latently infected cells. Our model offers a framework for predicting bNAb-based treatment protocols that would preclude failure due to pre-existing resistance and maximally prolong remission.
Collapse
Affiliation(s)
- Ananya Saha
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
- * E-mail:
| |
Collapse
|
42
|
Probing the Structure of the HIV-1 Envelope Trimer Using Aspartate Scanning Mutagenesis. J Virol 2020; 94:JVI.01426-20. [PMID: 32817217 DOI: 10.1128/jvi.01426-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
HIV-1 envelope (Env) glycoprotein gp160 exists as a trimer of heterodimers on the viral surface. In most structures of the soluble ectodomain of trimeric HIV-1 envelope glycoprotein, the regions from 512 to 517 of the fusion peptide and from 547 to 568 of the N-heptad repeat are disordered. We used aspartate scanning mutagenesis of subtype B strain JRFL Env as an alternate method to probe residue burial in the context of cleaved, cell surface-expressed Env, as buried residues should be intolerant to substitution with Asp. The data are inconsistent with a fully disordered 547 to 568 stretch, as residues 548, 549, 550, 555, 556, 559, 562, and 566 to 569 are all sensitive to Asp substitution. In the fusion peptide region, residues 513 and 515 were also sensitive to Asp substitution, suggesting that the fusion peptide may not be fully exposed in native Env. gp41 is metastable in the context of native trimer. Introduction of Asp at residues that are exposed in the prefusion state but buried in the postfusion state is expected to destabilize the postfusion state and any intermediate states where the residue is buried. We therefore performed soluble CD4 (sCD4)-induced gp120 shedding experiments to identify Asp mutants at residues 551, 554 to 559, 561 to 567, and 569 that could prevent gp120 shedding. We also observed similar mutational effects on shedding for equivalent mutants in the context of clade C Env from isolate 4-2J.41. These substitutions can potentially be used to stabilize native-like trimer derivatives that are used as HIV-1 vaccine immunogens.IMPORTANCE In most crystal structures of the soluble ectodomain of the HIV-1 Env trimer, some residues in the fusion and N-heptad repeat regions are disordered. Whether this is true in the context of native, functional Env on the virion surface is not known. This knowledge may be useful for stabilizing Env in its prefusion conformation and will also help to improve understanding of the viral entry process. Burial of the charged residue Asp in a protein structure is highly destabilizing. We therefore used Asp scanning mutagenesis to probe the burial of apparently disordered residues in native Env and to examine the effect of mutations in these regions on Env stability and conformation as probed by antibody binding to cell surface-expressed Env, CD4-induced shedding of HIV-1 gp120, and viral infectivity studies. Mutations that prevent shedding can potentially be used to stabilize native-like Env constructs for use as vaccine immunogens.
Collapse
|
43
|
Procko E. Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community. Expert Rev Proteomics 2020; 17:633-638. [PMID: 33084449 PMCID: PMC7594187 DOI: 10.1080/14789450.2020.1833721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The spike (S) of SARS coronavirus 2 (SARS-CoV-2) engages angiotensin-converting enzyme 2 (ACE2) on a host cell to trigger viral-cell membrane fusion and infection. The extracellular region of ACE2 can be administered as a soluble decoy to compete for binding sites on the receptor-binding domain (RBD) of S, but it has only moderate affinity and efficacy. The RBD, which is targeted by neutralizing antibodies, may also change and adapt through mutation as SARS-CoV-2 becomes endemic, posing challenges for therapeutic and vaccine development. AREAS COVERED Deep mutagenesis is a Big Data approach to characterizing sequence variants. A deep mutational scan of ACE2 expressed on human cells identified mutations that increase S affinity and guided the engineering of a potent and broad soluble receptor decoy. A deep mutational scan of the RBD displayed on the surface of yeast has revealed residues tolerant of mutational changes that may act as a source for drug resistance and antigenic drift. EXPERT OPINION Deep mutagenesis requires a selection of diverse sequence variants; an in vitro evolution experiment that is tracked with next-generation sequencing. The choice of expression system, diversity of the variant library and selection strategy have important consequences for data quality and interpretation.
Collapse
Affiliation(s)
- Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| |
Collapse
|
44
|
Abstract
Infectious disease research spans scales from the molecular to the global—from specific mechanisms of pathogen drug resistance, virulence, and replication to the movement of people, animals, and pathogens around the world. All of these research areas have been impacted by the recent growth of large-scale data sources and data analytics. Some of these advances rely on data or analytic methods that are common to most biomedical data science, while others leverage the unique nature of infectious disease, namely its communicability. This review outlines major research progress in the past few years and highlights some remaining opportunities, focusing on data or methodological approaches particular to infectious disease.
Collapse
Affiliation(s)
- Peter M. Kasson
- Department of Biomedical Engineering and Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia 22908, USA
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
45
|
Livesey BJ, Marsh JA. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol Syst Biol 2020; 16:e9380. [PMID: 32627955 PMCID: PMC7336272 DOI: 10.15252/msb.20199380] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022] Open
Abstract
To deal with the huge number of novel protein-coding variants identified by genome and exome sequencing studies, many computational variant effect predictors (VEPs) have been developed. Such predictors are often trained and evaluated using different variant data sets, making a direct comparison between VEPs difficult. In this study, we use 31 previously published deep mutational scanning (DMS) experiments, which provide quantitative, independent phenotypic measurements for large numbers of single amino acid substitutions, in order to benchmark and compare 46 different VEPs. We also evaluate the ability of DMS measurements and VEPs to discriminate between pathogenic and benign missense variants. We find that DMS experiments tend to be superior to the top-ranking predictors, demonstrating the tremendous potential of DMS for identifying novel human disease mutations. Among the VEPs, DeepSequence clearly stood out, showing both the strongest correlations with DMS data and having the best ability to predict pathogenic mutations, which is especially remarkable given that it is an unsupervised method. We further recommend SNAP2, DEOGEN2, SNPs&GO, SuSPect and REVEL based upon their performance in these analyses.
Collapse
Affiliation(s)
- Benjamin J Livesey
- MRC Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Joseph A Marsh
- MRC Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
46
|
A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection. PLoS Pathog 2020; 16:e1008171. [PMID: 32492061 PMCID: PMC7295245 DOI: 10.1371/journal.ppat.1008171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/15/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host environment, of which the immune system is an important aspect. During the earliest stages of infection, this process of evolution is very rapid, driven by a small number of CTL escape mutations. As the infection progresses, immune escape variants evolve under reduced magnitudes of selection, while competition between an increasing number of polymorphic alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection acting upon specific variant alleles. To tackle this complex problem, we developed a novel multi-locus inference method to evaluate the role of selection during the chronic stage of within-host infection. We applied this method to targeted sequence data from the p24 and gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection. We identify a broad distribution of beneficial fitness effects during infection, with a small number of variants evolving under strong selection and very many variants evolving under weaker selection. The uniquely large number of infections analysed granted a previously unparalleled statistical power to identify loci at which selection could be inferred to act with statistical confidence. Our model makes no prior assumptions about the nature of alleles under selection, such that any synonymous or non-synonymous variant may be inferred to evolve under selection. However, the majority of variants inferred with confidence to be under selection were non-synonymous in nature, and in most cases were have previously been associated with either CTL escape in p24 or neutralising antibody escape in gp41. We also identified a putative new CTL escape site (residue 286 in gag), and a region of gp41 (including residues 644, 648, 655 in env) likely to be associated with immune escape. Sites inferred to be under selection in multiple hosts have high within-host and between-host diversity although not all sites with high between-host diversity were inferred to be under selection at the within-host level. Our identification of selection at sites associated with resistance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the role of selection in untreated individuals when designing bNAb based therapies.
Collapse
|
47
|
Kong R, Duan H, Sheng Z, Xu K, Acharya P, Chen X, Cheng C, Dingens AS, Gorman J, Sastry M, Shen CH, Zhang B, Zhou T, Chuang GY, Chao CW, Gu Y, Jafari AJ, Louder MK, O'Dell S, Rowshan AP, Viox EG, Wang Y, Choi CW, Corcoran MM, Corrigan AR, Dandey VP, Eng ET, Geng H, Foulds KE, Guo Y, Kwon YD, Lin B, Liu K, Mason RD, Nason MC, Ohr TY, Ou L, Rawi R, Sarfo EK, Schön A, Todd JP, Wang S, Wei H, Wu W, Mullikin JC, Bailer RT, Doria-Rose NA, Karlsson Hedestam GB, Scorpio DG, Overbaugh J, Bloom JD, Carragher B, Potter CS, Shapiro L, Kwong PD, Mascola JR. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell 2020; 178:567-584.e19. [PMID: 31348886 DOI: 10.1016/j.cell.2019.06.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
Abstract
The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.
Collapse
Affiliation(s)
- Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ariana P Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Tiffany Y Ohr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John P Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Winston Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | -
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Identification of HIV-1 Envelope Mutations that Enhance Entry Using Macaque CD4 and CCR5. Viruses 2020; 12:v12020241. [PMID: 32098152 PMCID: PMC7077290 DOI: 10.3390/v12020241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022] Open
Abstract
Although Rhesus macaques are an important animal model for HIV-1 vaccine development research, most transmitted HIV-1 strains replicate poorly in macaque cells. A major genetic determinant of this species-specific restriction is a non-synonymous mutation in macaque CD4 that results in reduced HIV-1 Envelope (Env)-mediated viral entry compared to human CD4. Recent research efforts employing either laboratory evolution or structure-guided design strategies have uncovered several mutations in Env’s gp120 subunit that enhance binding of macaque CD4 by transmitted/founder HIV-1 viruses. In order to identify additional Env mutations that promote infection of macaque cells, we utilized deep mutational scanning to screen thousands of Env point mutants for those that enhance HIV-1 entry via macaque receptors. We identified many uncharacterized amino acid mutations in the N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) regions of gp41 that increased entry into cells bearing macaque receptors up to 9-fold. Many of these mutations also modestly increased infection of cells bearing human CD4 and CCR5 (up to 1.5-fold). NHR/CHR mutations identified by deep mutational scanning that enhanced entry also increased sensitivity to neutralizing antibodies targeting the MPER epitope, and to inactivation by cold-incubation, suggesting that they promote sampling of an intermediate trimer conformation between closed and receptor bound states. Identification of this set of mutations can inform future macaque model studies, and also further our understanding of the relationship between Env structure and function.
Collapse
|
49
|
Schommers P, Gruell H, Abernathy ME, Tran MK, Dingens AS, Gristick HB, Barnes CO, Schoofs T, Schlotz M, Vanshylla K, Kreer C, Weiland D, Holtick U, Scheid C, Valter MM, van Gils MJ, Sanders RW, Vehreschild JJ, Cornely OA, Lehmann C, Fätkenheuer G, Seaman MS, Bloom JD, Bjorkman PJ, Klein F. Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell 2020; 180:471-489.e22. [PMID: 32004464 PMCID: PMC7042716 DOI: 10.1016/j.cell.2020.01.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 μg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.
Collapse
Affiliation(s)
- Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Morgan E Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - My-Kim Tran
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Daniela Weiland
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Markus M Valter
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Medical Department 2, University Hospital of Frankfurt, 60590 Frankfurt, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
50
|
SNP Diversity in CD14 Gene Promoter Suggests Adaptation Footprints in Trypanosome Tolerant N'Dama ( Bos taurus) but not in Susceptible White Fulani ( Bos indicus) Cattle. Genes (Basel) 2020; 11:genes11010112. [PMID: 31963925 PMCID: PMC7017169 DOI: 10.3390/genes11010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune response to infections has been shown to be mediated by genetic diversity in pattern recognition receptors, leading to disease tolerance or susceptibility. We elucidated naturally occurring variations within the bovine CD14 gene promoter in trypanosome-tolerant (N'Dama) and susceptible (White Fulani) cattle, with genomic and computational approaches. Blood samples were collected from White Fulani and N'Dama cattle, genomic DNA extracted and the entire promoter region of the CD14 gene amplified by PCR. We sequenced this region and performed in silico computation to identify SNP variants, transcription factor binding sites, as well as micro RNAs in the region. CD14 promoter sequences were compared with the reference bovine genome from the Ensembl database to identify various SNPs. Furthermore, we validated three selected N'Dama specific SNPs using custom Taqman SNP genotyping assay for genetic diversity. In all, we identified a total of 54 and 41 SNPs at the CD14 promoter for N'Dama and White Fulani respectively, including 13 unique SNPs present in N'Dama only. The significantly higher SNP density at the CD14 gene promoter region in N'Dama may be responsible for disease tolerance, possibly an evolutionary adaptation. Our genotype analysis of the three loci selected for validation show that mutant alleles (A/A, C/C, and A/A) were adaptation profiles within disease tolerant N'Dama. A similar observation was made for our haplotype analysis revealing that haplotypes H1 (ACA) and H2 (ACG) were significant combinations within the population. The SNP effect prediction revealed 101 and 89 new transcription factor binding sites in N'Dama and White Fulani, respectively. We conclude that disease tolerant N'Dama possessing higher SNP density at the CD14 gene promoter and the preponderance of mutant alleles potentially confirms the significance of this promoter in immune response, which is lacking in susceptible White Fulani. We, therefore, recommend further in vitro and in vivo study of this observation in infected animals, as the next step for understanding genetic diversity relating to varying disease phenotypes in both breeds.
Collapse
|