1
|
Foulkes C, Friedrich N, Ivan B, Stiegeler E, Magnus C, Schmidt D, Karakus U, Weber J, Günthard HF, Pasin C, Rusert P, Trkola A. Assessing bnAb potency in the context of HIV-1 envelope conformational plasticity. PLoS Pathog 2025; 21:e1012825. [PMID: 39836706 PMCID: PMC11774494 DOI: 10.1371/journal.ppat.1012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection. 23 mutations resulted in a highly neutralization sensitive phenotype, which was associated with de-stabilization of the closed, prefusion conformation. Including 19 of these mutants into a Sensitivity Env mutant panel (SENSE-19), we classified bnAbs according to potency variations in response to trimer opening. To verify that these sensitivity patterns are independent of the in vitro assay system, replication-competent SENSE-19 mutant viruses were tested on primary CD4 T cells. While loss of potency on SENSE-19 was registered for bnAbs from several classes recognizing quaternary epitopes on pre-triggered Env, structural destabilization benefitted MPER bnAbs and other inhibitors known to have post-CD4 attachment neutralization activity. Importantly, for a subset of CD4bs bnAbs, and the interface bnAb PGT151, particularly low potency variation was noted, suggesting that Env conformational tolerance can be achieved but is not the rule. In summary, SENSE-19 screens revealed distinct tolerance levels to Env conformational intermediates between bnAbs that provide mechanistic insights in their function and broaden current neutralization breadth assessments.
Collapse
Affiliation(s)
- Caio Foulkes
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Branislav Ivan
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
2
|
Cale EM, Shen CH, Olia AS, Radakovich NA, Rawi R, Yang Y, Ambrozak DR, Bennici AK, Chuang GY, Crooks ED, Driscoll JI, Lin BC, Louder MK, Madden PJ, Messina MA, Osawa K, Stewart-Jones GBE, Verardi R, Vrakas Z, Xie D, Zhang B, Binley JM, Connors M, Koup RA, Pierson TC, Doria-Rose NA, Kwong PD, Mascola JR, Gorman J. A multidonor class of highly glycan-dependent HIV-1 gp120-gp41 interface-targeting broadly neutralizing antibodies. Cell Rep 2024; 43:115010. [PMID: 39675002 DOI: 10.1016/j.celrep.2024.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Antibodies that target the gp120-gp41 interface of the HIV-1 envelope (Env) trimer comprise a commonly elicited category of broadly neutralizing antibodies (bNAbs). Here, we isolate and characterize VRC44, a bNAb lineage with up to 52% neutralization breadth. The cryoelectron microscopy (cryo-EM) structure of antibody VRC44.01 in complex with the Env trimer reveals binding to the same gp120-gp41 interface site of vulnerability as antibody 35O22 from a different HIV-1-infected donor. In addition to having similar angles of approach and extensive contacts with glycans N88 and N625, VRC44 and 35O22 derive from the same IGHV1-18 gene and share convergent mutations, indicating these two antibodies to be members of the only known highly glycan-dependent multidonor class. Strikingly, both lineages achieved almost 100% neutralization breadth against virus strains displaying high-mannose glycans. The high breadth and reproducible elicitation of VRC44 and 35O22 lineages validate germline-based methods of immunogen design for targeting the HIV-1 gp120-gp41 interface.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan A Radakovich
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony K Bennici
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma D Crooks
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jefferson I Driscoll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick J Madden
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Osawa
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zoe Vrakas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle Xie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M Binley
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, Weston, MA 02493, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
3
|
Wang H, Cheng C, Dal Santo JL, Shen CH, Bylund T, Henry AR, Howe CA, Hwang J, Morano NC, Morris DJ, Pletnev S, Roark RS, Zhou T, Hansen BT, Hoyt FH, Johnston TS, Wang S, Zhang B, Ambrozak DR, Becker JE, Bender MF, Changela A, Chaudhary R, Corcoran M, Corrigan AR, Foulds KE, Guo Y, Lee M, Li Y, Lin BC, Liu T, Louder MK, Mandolesi M, Mason RD, McKee K, Nair V, O'Dell S, Olia AS, Ou L, Pegu A, Raju N, Rawi R, Roberts-Torres J, Sarfo EK, Sastry M, Schaub AJ, Schmidt SD, Schramm CA, Schwartz CL, Smith SC, Stephens T, Stuckey J, Teng IT, Todd JP, Tsybovsky Y, Van Wazer DJ, Wang S, Doria-Rose NA, Fischer ER, Georgiev IS, Karlsson Hedestam GB, Sheng Z, Woodward RA, Douek DC, Koup RA, Pierson TC, Shapiro L, Shaw GM, Mascola JR, Kwong PD. Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques. Cell 2024; 187:7214-7231.e23. [PMID: 39471811 PMCID: PMC11645223 DOI: 10.1016/j.cell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID50] ∼100) on a 208-strain panel. Molecular dissection of these responses by antibody isolation and cryo-electron microscopy (cryo-EM) structure determination revealed 15 of 16 antibody lineages with cross-clade neutralization to be directed toward the fusion-peptide site of vulnerability. In each macaque, isolated antibodies from memory B cells recapitulated the plasma-neutralizing response, with fusion-peptide-binding antibodies reaching breadths of 40%-60% (50% inhibitory concentration [IC50] < 50 μg/mL) and total lineage-concentrations estimates of 50-200 μg/mL. Longitudinal mapping indicated that these responses arose prior to SHIV infection. Collectively, these results provide in vivo molecular examples for one to a few B cell lineages affording potent, broadly neutralizing plasma responses.
Collapse
Affiliation(s)
- Hua Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Dal Santo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin A Howe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juyun Hwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel J Morris
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan S Roark
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Forrest H Hoyt
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E Becker
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nair
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindi L Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Smith
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Modex Therapeutics Inc., Natick, MA 01760, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
4
|
Xu J, Zhou T, McKee K, Zhang B, Liu C, Nazzari AF, Pegu A, Shen CH, Becker JE, Bender MF, Chan P, Changela A, Chaudhary R, Chen X, Einav T, Kwon YD, Lin BC, Louder MK, Merriam JS, Morano NC, O'Dell S, Olia AS, Rawi R, Roark RS, Stephens T, Teng IT, Tourtellott-Fogt E, Wang S, Yang ES, Shapiro L, Tsybovsky Y, Doria-Rose NA, Casellas R, Kwong PD. Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309268. [PMID: 38704686 PMCID: PMC11234422 DOI: 10.1002/advs.202309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.
Collapse
Affiliation(s)
- Jianliang Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan S Roark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Tourtellott-Fogt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
5
|
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, Stecher M, Park J, Radford CE, Dingens AS, Ercanoglu MS, Gruell H, Odidika S, Dahlhaus M, Gieselmann L, Ahmadov E, Lawong RY, Heger E, Knops E, Wyen C, Kümmerle T, Römer K, Scholten S, Wolf T, Stephan C, Suárez I, Raju N, Adhikari A, Esser S, Streeck H, Duerr R, Nanfack AJ, Zolla-Pazner S, Geldmacher C, Geisenberger O, Kroidl A, William W, Maganga L, Ntinginya NE, Georgiev IS, Vehreschild JJ, Hoelscher M, Fätkenheuer G, Lavinder JJ, Bloom JD, Seaman MS, Lehmann C, Pfeifer N, Georgiou G, Klein F. Dynamics and durability of HIV-1 neutralization are determined by viral replication. Nat Med 2023; 29:2763-2774. [PMID: 37957379 PMCID: PMC10667105 DOI: 10.1038/s41591-023-02582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1)-neutralizing antibodies (nAbs) that prevent infection are the main goal of HIV vaccine discovery. But as no nAb-eliciting vaccines are yet available, only data from HIV-1 neutralizers-persons with HIV-1 who naturally develop broad and potent nAbs-can inform about the dynamics and durability of nAb responses in humans, knowledge which is crucial for the design of future HIV-1 vaccine regimens. To address this, we assessed HIV-1-neutralizing immunoglobulin G (IgG) from 2,354 persons with HIV-1 on or off antiretroviral therapy (ART). Infection with non-clade B viruses, CD4+ T cell counts <200 µl-1, being off ART and a longer time off ART were independent predictors of a more potent and broad neutralization. In longitudinal analyses, we found nAb half-lives of 9.3 and 16.9 years in individuals with no- or low-level viremia, respectively, and 4.0 years in persons who newly initiated ART. Finally, in a potent HIV-1 neutralizer, we identified lower fractions of serum nAbs and of nAb-encoding memory B cells after ART initiation, suggesting that a decreasing neutralizing serum activity after antigen withdrawal is due to lower levels of nAbs. These results collectively show that HIV-1-neutralizing responses can persist for several years, even at low antigen levels, suggesting that an HIV-1 vaccine may elicit a durable nAb response.
Collapse
Affiliation(s)
- Philipp Schommers
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Dae Sung Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Maike Schlotz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ralf Eggeling
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarland Informatics Campus, Saarbrücken, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Juyeon Park
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stanley Odidika
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Marten Dahlhaus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Elvin Ahmadov
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rene Y Lawong
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Wyen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | | | - Katja Römer
- Gemeinschaftspraxis Gotenring, Cologne, Germany
| | | | - Timo Wolf
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Christoph Stephan
- Infectious Diseases Division, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Isabelle Suárez
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anurag Adhikari
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Institute of Virology, Medical Faculty, University Bonn, Bonn, Germany
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York City, NY, USA
- Department of Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Vaccine Center, NYU Grossman School of Medicine, New York City, NY, USA
| | - Aubin J Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Microbiology, Icahn School of Medicine, New York City, NY, USA
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Otto Geisenberger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Wiston William
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | - Lucas Maganga
- Mbeya Medical Research Centre, National Institute for Medical Research, Mbeya, Tanzania
| | | | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jason J Lavinder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - George Georgiou
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 2023; 31:1200-1215.e9. [PMID: 37327779 PMCID: PMC10351223 DOI: 10.1016/j.chom.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here, we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera that neutralize diverse strains of HIV and target the site engaging the host receptor CD4. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one serum targeting two epitopes within the CD4-binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E Radford
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Bauer A, Lindemuth E, Marino FE, Krause R, Joy J, Docken SS, Mallick S, McCormick K, Holt C, Georgiev I, Felber B, Keele BF, Veazey R, Davenport MP, Li H, Shaw GM, Bar KJ. Adaptation of a transmitted/founder simian-human immunodeficiency virus for enhanced replication in rhesus macaques. PLoS Pathog 2023; 19:e1011059. [PMID: 37399208 PMCID: PMC10348547 DOI: 10.1371/journal.ppat.1011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/14/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.
Collapse
Affiliation(s)
- Anya Bauer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Lindemuth
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Francesco Elia Marino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ryan Krause
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jaimy Joy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Suvadip Mallick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin McCormick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Clinton Holt
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ivelin Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Barbara Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald Veazey
- Department of Pathology and Laboratory Medicine, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | | | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharine J. Bar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Radford CE, Schommers P, Gieselmann L, Crawford KHD, Dadonaite B, Yu TC, Dingens AS, Overbaugh J, Klein F, Bloom JD. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533993. [PMID: 36993197 PMCID: PMC10055425 DOI: 10.1101/2023.03.23.533993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Understanding the specificities of human serum antibodies that broadly neutralize HIV can inform prevention and treatment strategies. Here we describe a deep mutational scanning system that can measure the effects of combinations of mutations to HIV envelope (Env) on neutralization by antibodies and polyclonal serum. We first show that this system can accurately map how all functionally tolerated mutations to Env affect neutralization by monoclonal antibodies. We then comprehensively map Env mutations that affect neutralization by a set of human polyclonal sera known to target the CD4-binding site that neutralize diverse strains of HIV. The neutralizing activities of these sera target different epitopes, with most sera having specificities reminiscent of individual characterized monoclonal antibodies, but one sera targeting two epitopes within the CD4 binding site. Mapping the specificity of the neutralizing activity in polyclonal human serum will aid in assessing anti-HIV immune responses to inform prevention strategies.
Collapse
Affiliation(s)
- Caelan E. Radford
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Department of Genome Sciences & Medical Scientist Training
Program, University of Washington, Seattle, Washington, 98109, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Timothy C. Yu
- Molecular and Cellular Biology Graduate Program, University of
Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, Washington,
98109, USA
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center,
Seattle, Washington, 98109, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology,
Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931
Cologne, Germany
- German Center for Infection Research, partner site
Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred
Hutchinson Cancer Center, Seattle, Washington, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
9
|
Einav T, Creanga A, Andrews SF, McDermott AB, Kanekiyo M. Harnessing low dimensionality to visualize the antibody-virus landscape for influenza. NATURE COMPUTATIONAL SCIENCE 2023; 3:164-173. [PMID: 38177625 PMCID: PMC10766546 DOI: 10.1038/s43588-022-00375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 01/06/2024]
Abstract
Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.
Collapse
Affiliation(s)
- Tal Einav
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Raju N, Zhan X, Das S, Karwal L, Dean HJ, Crowe JE, Carnahan RH, Georgiev IS. Neutralization fingerprinting technology for characterizing polyclonal antibody responses to dengue vaccines. Cell Rep 2022; 41:111807. [PMID: 36516766 DOI: 10.1016/j.celrep.2022.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Dengue is a major public health threat. There are four dengue virus (DENV) serotypes; therefore, efforts are focused on developing safe and effective tetravalent DENV vaccines. While neutralizing antibodies contribute to protective immunity, there are still important gaps in understanding of immune responses elicited by dengue infection and vaccination. To that end, here, we develop a computational modeling framework based on the concept of antibody-virus neutralization fingerprints in order to characterize samples from clinical studies of TAK-003, a tetravalent vaccine candidate currently in phase 3 trials. Our results suggest a similarity of neutralizing antibody specificities in baseline-seronegative individuals. In contrast, amplification of pre-existing neutralizing antibody specificities is predicted for baseline-seropositive individuals, thus quantifying the role of immunologic imprinting in driving antibody responses to DENV vaccines. The neutralization fingerprinting analysis framework presented here can contribute to understanding dengue immune correlates of protection and help guide further vaccine development and optimization.
Collapse
Affiliation(s)
- Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Subash Das
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Hansi J Dean
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Barnes CO, Schoofs T, Gnanapragasam PN, Golijanin J, Huey-Tubman KE, Gruell H, Schommers P, Suh-Toma N, Lee YE, Cetrulo Lorenzi JC, Piechocka-Trocha A, Scheid JF, West AP, Walker BD, Seaman MS, Klein F, Nussenzweig MC, Bjorkman PJ. A naturally arising broad and potent CD4-binding site antibody with low somatic mutation. SCIENCE ADVANCES 2022; 8:eabp8155. [PMID: 35960796 PMCID: PMC9374330 DOI: 10.1126/sciadv.abp8155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The induction of broadly neutralizing antibodies (bNAbs) is a potential strategy for a vaccine against HIV-1. However, most bNAbs exhibit features such as unusually high somatic hypermutation, including insertions and deletions, which make their induction challenging. VRC01-class bNAbs not only exhibit extraordinary breadth and potency but also rank among the most highly somatically mutated bNAbs. Here, we describe a VRC01-class antibody isolated from a viremic controller, BG24, that is much less mutated than most relatives of its class while achieving comparable breadth and potency. A 3.8-Å x-ray crystal structure of a BG24-BG505 Env trimer complex revealed conserved contacts at the gp120 interface characteristic of the VRC01-class Abs, despite lacking common CDR3 sequence motifs. The existence of moderately mutated CD4-binding site (CD4bs) bNAbs such as BG24 provides a simpler blueprint for CD4bs antibody induction by a vaccine, raising the prospect that such an induction might be feasible with a germline-targeting approach.
Collapse
Affiliation(s)
- Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | | | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn E. Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Johannes F. Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the HIV-1 envelope glycoprotein. Nat Commun 2022; 13:4515. [PMID: 35922441 PMCID: PMC9349188 DOI: 10.1038/s41467-022-32208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
A major goal of current HIV-1 vaccine design efforts is to induce broadly neutralizing antibodies (bNAbs). The VH1-2-derived bNAb IOMA directed to the CD4-binding site of the HIV-1 envelope glycoprotein is of interest because, unlike the better-known VH1-2-derived VRC01-class bNAbs, it does not require a rare short light chain complementarity-determining region 3 (CDRL3). Here, we describe three IOMA-class NAbs, ACS101-103, with up to 37% breadth, that share many characteristics with IOMA, including an average-length CDRL3. Cryo-electron microscopy revealed that ACS101 shares interactions with those observed with other VH1-2 and VH1-46-class bNAbs, but exhibits a unique binding mode to residues in loop D. Analysis of longitudinal sequences from the patient suggests that a transmitter/founder-virus lacking the N276 glycan might have initiated the development of these NAbs. Together these data strengthen the rationale for germline-targeting vaccination strategies to induce IOMA-class bNAbs and provide a wealth of sequence and structural information to support such strategies.
Collapse
|
13
|
Abstract
Antibodies have been used to prevent or treat viral infections since the nineteenth century, but the full potential to use passive immunization for infectious diseases has yet to be realized. The advent of efficient methods for isolating broad and potently neutralizing human monoclonal antibodies is enabling us to develop antibodies with unprecedented activities. The discovery of IgG Fc region modifications that extend antibody half-life in humans to three months or more suggests that antibodies could become the principal tool with which we manage future viral epidemics. Antibodies for members of most virus families that cause severe disease in humans have been isolated, and many of them are in clinical development, an area that has accelerated during the effort to prevent or treat COVID-19 (coronavirus disease 2019). Broad and potently neutralizing antibodies are also important research reagents for identification of protective epitopes that can be engineered into active vaccines through structure-based reverse vaccinology. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
14
|
Ng QR, Tee KK, Binley JM, Tong T. Cross-Neutralizing CRF01_AE-Infected Plasma from Malaysia Targets CD4-Binding Site of Human Immunodeficiency Virus Type-1 Envelope Glycoprotein. AIDS Res Hum Retroviruses 2022; 38:162-172. [PMID: 34006141 PMCID: PMC9206480 DOI: 10.1089/aid.2020.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) antigenic variation poses a great challenge for vaccine immunogen design to elicit broadly neutralizing antibodies (bNAbs). Over the last 10-15 years, great progress has been made to understand the conserved sites of sensitivity on HIV envelope glycoprotein spikes targeted by bNAbs. Plasma neutralization mapping and monoclonal antibody isolation efforts have revealed five major conserved epitope clusters. Most of this work has focused on subtype B and C-infected Caucasian or African donors. It is not clear if the same epitopes and epitope rank order preferences are also true in donors infected with different HIV-1 subtypes and with different racial backgrounds. To investigate this point, in this study we report the first attempt to profile the bNAb specificities of CRF01_AE-infected Malaysian plasmas. We first measured neutralization titers of 21 plasmas against a subtype A, B, and AE pseudovirus panel. This revealed that 14% (3 of 21) plasmas had cross-clade breadth. Focusing on the cross-neutralizing plasma P9, we used AE and JR-FL mutant pseudoviruses, gp120 monomer interference, and native polyacrylamide gel electrophoresis to better understand the neutralization specificity. P9 demonstrates CD4-binding-site specificity with trimer dependence and D368 independence.
Collapse
Affiliation(s)
- Qi Ron Ng
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - James M. Binley
- HIV and Coronavirus Vaccine Development, San Diego Biomedical Research Institute, San Diego, California, USA
| | - Tommy Tong
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia.,Address correspondence to: Tommy Tong, Department of Biological Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| |
Collapse
|
15
|
Lucier A, Fong Y, Li SH, Dennis M, Eudailey J, Nelson A, Saunders K, Cunningham CK, McFarland E, McKinney R, Moody MA, LaBranche C, Montefiori D, Permar SR, Fouda GG. Frequent Development of Broadly Neutralizing Antibodies in Early Life in a Large Cohort of Children With Human Immunodeficiency Virus. J Infect Dis 2021; 225:1731-1740. [PMID: 34962990 PMCID: PMC9113503 DOI: 10.1093/infdis/jiab629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent studies have indicated that broadly neutralizing antibodies (bnAbs) in children may develop earlier after human immunodeficiency virus (HIV) infection compared to adults. METHODS We evaluated plasma from 212 antiretroviral therapy-naive children with HIV (1-3 years old). Neutralization breadth and potency was assessed using a panel of 10 viruses and compared to adults with chronic HIV. The magnitude, epitope specificity, and immunoglobulin (Ig)G subclass distribution of Env-specific antibodies were assessed using a binding antibody multiplex assay. RESULTS One-year-old children demonstrated neutralization breadth comparable to chronically infected adults, whereas 2- and 3-year-olds exhibited significantly greater neutralization breadth (P = .014). Likewise, binding antibody responses increased with age, with levels in 2- and 3-year-old children comparable to adults. Overall, there was no significant difference in antibody specificities or IgG subclass distribution between the pediatric and adult cohorts. It is interesting to note that the neutralization activity was mapped to a single epitope (CD4 binding site, V2 or V3 glycans) in only 5 of 38 pediatric broadly neutralizing samples, which suggests that most children may develop a polyclonal neutralization response. CONCLUSIONS These results contribute to a growing body of evidence suggesting that initiating HIV immunization early in life may present advantages for the development of broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Amanda Lucier
- Duke University Medical Center, Durham, North Carolina, USA
| | - Youyi Fong
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shuk Hang Li
- Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Dennis
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Ashley Nelson
- Duke University Medical Center, Durham, North Carolina, USA
| | - Kevin Saunders
- Duke University Medical Center, Durham, North Carolina, USA
| | - Coleen K Cunningham
- Duke University Medical Center, Durham, North Carolina, USA,University of California, Irvine, California, USA
| | | | - Ross McKinney
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | - Sallie R Permar
- Duke University Medical Center, Durham, North Carolina, USA,Weill Cornell School of Medicine, New York, New York, USA
| | - Genevieve G Fouda
- Duke University Medical Center, Durham, North Carolina, USA,Correspondence: Genevieve G. Fouda, MD, PhD, Duke Human Vaccine Institute, 2 genome court MSRBII, DUMC 103020, Durham, NC 27710, USA ()
| |
Collapse
|
16
|
Nyanhete TE, Edwards RJ, LaBranche CC, Mansouri K, Eaton A, Dennison SM, Saunders KO, Goodman D, Janowska K, Spreng RL, Zhang L, Mudrak SV, Hope TJ, Hora B, Bradley T, Georgiev IS, Montefiori DC, Acharya P, Tomaras GD. Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Front Immunol 2021; 12:670561. [PMID: 35003053 PMCID: PMC8733328 DOI: 10.3389/fimmu.2021.670561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E. Nyanhete
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Celia C. LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
17
|
Townsley SM, Donofrio GC, Jian N, Leggat DJ, Dussupt V, Mendez-Rivera L, Eller LA, Cofer L, Choe M, Ehrenberg PK, Geretz A, Gift S, Grande R, Lee A, Peterson C, Piechowiak MB, Slike BM, Tran U, Joyce MG, Georgiev IS, Rolland M, Thomas R, Tovanabutra S, Doria-Rose NA, Polonis VR, Mascola JR, McDermott AB, Michael NL, Robb ML, Krebs SJ. B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host Microbe 2021; 29:564-578.e9. [PMID: 33662277 DOI: 10.1016/j.chom.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
Determining which immunological mechanisms contribute to the development of broad neutralizing antibodies (bNAbs) during HIV-1 infection is a major goal to inform vaccine design. Using samples from a longitudinal HIV-1 acute infection cohort, we found key B cell determinants within the first 14-43 days of viremia that predict the development of bNAbs years later. Individuals who develop neutralization breadth had significantly higher B cell engagement with the autologous founder HIV envelope (Env) within 1 month of initial viremia. A higher frequency of founder-Env-specific naive B cells was associated with increased B cell activation and differentiation and predictive of bNAb development. These data demonstrate that the initial B cell interaction with the founder HIV Env is important for the development of broadly neutralizing antibodies and provide evidence that events within HIV acute infection lead to downstream functional outcomes.
Collapse
Affiliation(s)
- Samantha M Townsley
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ningbo Jian
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David J Leggat
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lauryn Cofer
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Misook Choe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Syna Gift
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rebecca Grande
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anna Lee
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Caroline Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mary Bryson Piechowiak
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Victoria R Polonis
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
18
|
Cale EM, Bai H, Bose M, Messina MA, Colby DJ, Sanders-Buell E, Dearlove B, Li Y, Engeman E, Silas D, O'Sullivan AM, Mann B, Pinyakorn S, Intasan J, Benjapornpong K, Sacdalan C, Kroon E, Phanuphak N, Gramzinski R, Vasan S, Robb ML, Michael NL, Lynch RM, Bailer RT, Pagliuzza A, Chomont N, Pegu A, Doria-Rose NA, Trautmann L, Crowell TA, Mascola JR, Ananworanich J, Tovanabutra S, Rolland M. Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. J Clin Invest 2021; 130:3299-3304. [PMID: 32182219 PMCID: PMC7259993 DOI: 10.1172/jci134395] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/11/2020] [Indexed: 01/04/2023] Open
Abstract
Infusion of the broadly neutralizing antibody VRC01 has been evaluated in individuals chronically infected with HIV-1. Here, we studied how VRC01 infusions affected viral rebound after cessation of antiretroviral therapy (ART) in 18 acutely treated and durably suppressed individuals. Viral rebound occurred in all individuals, yet VRC01 infusions modestly delayed rebound and participants who showed a faster decay of VRC01 in serum rebounded more rapidly. Participants with strains most sensitive to VRC01 or with VRC01 epitope motifs similar to known VRC01-susceptible strains rebounded later. Upon rebound, HIV-1 sequences were indistinguishable from those sampled at diagnosis. Across the cohort, participant-derived Env showed different sensitivity to VRC01 neutralization (including 2 resistant viruses), yet neutralization sensitivity was similar at diagnosis and after rebound, indicating the lack of selection for VRC01 resistance during treatment interruption. Our results showed that viremia rebounded despite the absence of HIV-1 adaptation to VRC01 and an average VRC01 trough of 221 μg/mL. Although VRC01 levels were insufficient to prevent a resurgent infection, knowledge that they did not mediate Env mutations in acute-like viruses is relevant for antibody-based strategies in acute infection.
Collapse
Affiliation(s)
- Evan M Cale
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Meera Bose
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Michael A Messina
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Donn J Colby
- SEARCH, Thai Red Cross Research Center, Bangkok, Thailand
| | - Eric Sanders-Buell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Bethany Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Yifan Li
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Emily Engeman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Daniel Silas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Anne Marie O'Sullivan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Brendan Mann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | | | | | - Carlo Sacdalan
- SEARCH, Thai Red Cross Research Center, Bangkok, Thailand
| | - Eugène Kroon
- SEARCH, Thai Red Cross Research Center, Bangkok, Thailand
| | | | - Robert Gramzinski
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Lydie Trautmann
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Trevor A Crowell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,SEARCH, Thai Red Cross Research Center, Bangkok, Thailand.,Department of Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathog 2020; 16:e1009101. [PMID: 33290394 PMCID: PMC7748270 DOI: 10.1371/journal.ppat.1009101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
The RV144 vaccine efficacy clinical trial showed a reduction in HIV-1 infections by 31%. Vaccine efficacy was associated with stronger binding antibody responses to the HIV Envelope (Env) V1V2 region, with decreased efficacy as responses wane. High levels of Ab-dependent cellular cytotoxicity (ADCC) together with low plasma levels of Env-specific IgA also correlated with decreased infection risk. We investigated whether B cell priming from RV144 vaccination impacted functional antibody responses to HIV-1 following infection. Antibody responses were assessed in 37 vaccine and 63 placebo recipients at 6, 12, and 36 months following HIV diagnosis. The magnitude, specificity, dynamics, subclass recognition and distribution of the binding antibody response following infection were different in RV144 vaccine recipients compared to placebo recipients. Vaccine recipients demonstrated increased IgG1 binding specifically to V1V2, as well as increased IgG2 and IgG4 but decreased IgG3 to HIV-1 Env. No difference in IgA binding to HIV-1 Env was detected between the vaccine and placebo recipients following infection. RV144 vaccination limited the development of broadly neutralizing antibodies post-infection, but enhanced Fc-mediated effector functions indicating B cell priming by RV144 vaccination impacted downstream antibody function. However, these functional responses were not associated with clinical markers of disease progression. These data reveal that RV144 vaccination primed B cells towards specific binding and functional antibody responses following HIV-1 infection.
Collapse
|
20
|
Redd AD, Doria-Rose NA, Weiner JA, Nason M, Seivers M, Schmidt SD, Laeyendecker O, Martens C, Bruno D, Keele BF, Raju N, Georgiev IS, Lamers SL, Astemborski J, Kirk GD, Mascola JR, Ackerman ME, Mehta SH, Quinn TC. Longitudinal Antibody Responses in People Who Inject Drugs Infected With Similar Human Immunodeficiency Virus Strains. J Infect Dis 2020; 221:756-765. [PMID: 31581292 DOI: 10.1093/infdis/jiz503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple factors influence the human immunodeficiency virus (HIV) antibody response produced during natural infection, leading to responses that can vary in specificity, strength, and breadth. METHODS People who inject drugs identified as recently infected with HIV (n = 23) were analyzed for clustering of their viral sequences (genetic distance, <2%). Longitudinal antibody responses were identified for neutralizing antibody (Nab) potential, and differences in antibody subclass, specificity, and Fc receptor ligation using pseudovirus entry and multiplexed Fc array assays, respectively. Responses were analyzed for differences between subject groups, defined by similarity in the sequence of the infecting virus. RESULTS Viral sequences from infected individuals were grouped into 3 distinct clusters with 7 unclustered individuals. Subjects in cluster 1 generally had lower antibody response magnitudes, except for antibodies targeting the V1/V2 region. Subjects in clusters 2 and 3 typically had higher antibody response magnitudes, with the Fv specificity of cluster 2 favoring gp140 recognition. NAb responses differed significantly between clusters for 3 of 18 pseudoviruses examined (P < .05), but there were no differences in overall NAb breadth (P = .62). DISCUSSION These data demonstrate that individuals infected with similar viral strains can generate partially similar antibody responses, but these do not drastically differ from those in individuals infected with relatively unrelated strains.
Collapse
Affiliation(s)
- Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Matthew Seivers
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Oliver Laeyendecker
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Craig Martens
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Daniel Bruno
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Fredrick, Maryland, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Vaccine Center, Nashville, Tennessee, USA
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Vaccine Center, Nashville, Tennessee, USA
| | | | - Jacquie Astemborski
- Department of Epidemiology, Bloomberg of School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gregory D Kirk
- Department of Epidemiology, Bloomberg of School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Shruti H Mehta
- Department of Epidemiology, Bloomberg of School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
A facile method of mapping HIV-1 neutralizing epitopes using chemically masked cysteines and deep sequencing. Proc Natl Acad Sci U S A 2020; 117:29584-29594. [PMID: 33168755 DOI: 10.1073/pnas.2010256117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Identification of specific epitopes targeted by neutralizing antibodies is essential to advance epitope-based vaccine design strategies. We report a facile methodology for rapid epitope mapping of neutralizing antibodies (NAbs) against HIV-1 Envelope (Env) at single-residue resolution, using Cys labeling, viral neutralization assays, and deep sequencing. This was achieved by the generation of a library of Cys mutations in Env glycoprotein on the viral surface, covalent labeling of the Cys residues using a Cys-reactive label that masks epitope residues, followed by infection of the labeled mutant virions in mammalian cells in the presence of NAbs. Env gene sequencing from NAb-resistant viruses was used to accurately delineate epitopes for the NAbs VRC01, PGT128, and PGT151. These agreed well with corresponding experimentally determined structural epitopes previously inferred from NAb:Env structures. HIV-1 infection is associated with complex and polyclonal antibody responses, typically composed of multiple antibody specificities. Deconvoluting the epitope specificities in a polyclonal response is a challenging task. We therefore extended our methodology to map multiple specificities of epitopes targeted in polyclonal sera, elicited in immunized animals as well as in an HIV-1-infected elite neutralizer capable of neutralizing tier 3 pseudoviruses with high titers. The method can be readily extended to other viruses for which convenient reverse genetics or lentiviral surface display systems are available.
Collapse
|
22
|
Selection and immune recognition of HIV-1 MPER mimotopes. Virology 2020; 550:99-108. [PMID: 32980676 DOI: 10.1016/j.virol.2020.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by several neutralizing antibodies (NAbs) and is of interest for vaccine design. In this study, we identified novel MPER peptide mimotopes and evaluated their reactivity with HIV + plasma antibodies to characterize the diversity of the immune responses to MPER during natural infection. We utilized phage display technology to generate novel mimotopes that fit antigen-binding sites of MPER NAbs 4E10, 2F5 and Z13. Plasma antibodies from 10 HIV + patients were mapped by phage immunoprecipitation, to identify unique patient MPER binding profiles that were distinct from, and overlapping with, those of MPER NAbs. 4E10 mimotope binding profiles correlated with plasma neutralization of HIV-2/HIV-1 MPER chimeric virus, and with overall plasma neutralization breadth and potency. When administered as vaccines, 4E10 mimotopes elicited low titer NAb responses in mice. HIV mimotopes may be useful for detailed analysis of plasma antibody specificity.
Collapse
|
23
|
Systems serology for decoding infection and vaccine-induced antibody responses to HIV-1. Curr Opin HIV AIDS 2020; 14:253-264. [PMID: 31033729 DOI: 10.1097/coh.0000000000000558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Experimental and analytical advances have enabled systematic, high-resolution studies of humoral immune responses, and are beginning to define mechanisms of immunity to HIV. RECENT FINDINGS High-throughput, information-rich experimental and analytical methods, whether genomic, proteomic, or transcriptomic, have firmly established their value across a diversity of fields. Consideration of these tools as trawlers in 'fishing expeditions' has faded as 'data-driven discovery' has come to be valued as an irreplaceable means to develop fundamental understanding of biological systems. Collectively, studies of HIV-1 infection and vaccination including functional, biophysical, and biochemical humoral profiling approaches have provided insights into the phenotypic characteristics of individual and pools of antibodies. Relating these measures to clinical status, protection/efficacy outcomes, and cellular profiling data using machine learning has offered the possibility of identifying unanticipated mechanisms of action and gaining insights into fundamental immunological processes that might otherwise be difficult to decipher. SUMMARY Recent evidence establishes that systematic data collection and application of machine learning approaches can identify humoral immune correlates that are generalizable across distinct HIV-1 immunogens and vaccine regimens and translatable between model organisms and the clinic. These outcomes provide a strong rationale supporting the utility and further expansion of these approaches both in support of vaccine development and more broadly in defining mechanisms of immunity.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bnAbs) are considered a key component of an effective HIV-1 vaccine, but despite intensive efforts, induction of bnAbs by vaccination has thus far not been possible. Potent bnAb activity is rare in natural infection and a deeper understanding of factors that promote or limit bnAb evolution is critical to guide bnAb vaccine development. This review reflects on recent key discoveries on correlates of bnAb development and discusses what further insights are needed to move forward. RECENT FINDINGS An increasing number of parameters have been implicated to influence bnAb development in natural infection. Most recent findings highlight a range of immune factors linked with bnAb evolution. Novel approaches have brought exciting progress in defining signatures of the viral envelope associated with bnAb activity. SUMMARY Focused efforts of recent years have unraveled a multiply layered process of HIV-1 bnAb development. As it is understood today, bnAb evolution can be triggered and influenced by a range of factors and several different pathways may exist how bnAb induction and maturation can occur. To capitalize on the gained knowledge, future research needs to validate factors to identify independent drivers of bnAb induction to advance vaccine design.
Collapse
|
25
|
Schommers P, Gruell H, Abernathy ME, Tran MK, Dingens AS, Gristick HB, Barnes CO, Schoofs T, Schlotz M, Vanshylla K, Kreer C, Weiland D, Holtick U, Scheid C, Valter MM, van Gils MJ, Sanders RW, Vehreschild JJ, Cornely OA, Lehmann C, Fätkenheuer G, Seaman MS, Bloom JD, Bjorkman PJ, Klein F. Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell 2020; 180:471-489.e22. [PMID: 32004464 PMCID: PMC7042716 DOI: 10.1016/j.cell.2020.01.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 μg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.
Collapse
Affiliation(s)
- Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Morgan E Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - My-Kim Tran
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Daniela Weiland
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Markus M Valter
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Medical Department 2, University Hospital of Frankfurt, 60590 Frankfurt, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
26
|
Cooperation between somatic mutation and germline-encoded residues enables antibody recognition of HIV-1 envelope glycans. PLoS Pathog 2019; 15:e1008165. [PMID: 31841553 PMCID: PMC6936856 DOI: 10.1371/journal.ppat.1008165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/30/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Viral glycoproteins are a primary target for host antibody responses. However, glycans on viral glycoproteins can hinder antibody recognition since they are self glycans derived from the host biosynthesis pathway. During natural HIV-1 infection, neutralizing antibodies are made against glycans on HIV-1 envelope glycoprotein (Env). However, such antibodies are rarely elicited with vaccination. Previously, the vaccine-induced, macaque antibody DH501 was isolated and shown to bind to high mannose glycans on HIV-1 Env. Understanding how DH501 underwent affinity maturation to recognize glycans could inform vaccine induction of HIV-1 glycan antibodies. Here, we show that DH501 Env glycan reactivity is mediated by both germline-encoded residues that contact glycans, and somatic mutations that increase antibody paratope flexibility. Only somatic mutations in the heavy chain were required for glycan reactivity. The paratope conformation was fragile as single mutations within the immunoglobulin fold or complementarity determining regions were sufficient for eliminating antibody function. Taken together, the initial germline VHDJH rearrangement generated contact residues capable of binding glycans, and somatic mutations were required to form a flexible paratope with a cavity conducive to HIV-1 envelope glycan binding. The requirement for the presence of most somatic mutations across the heavy chain variable region provides one explanation for the difficulty in inducing anti-Env glycan antibodies with HIV-1 Env vaccination. The viral pathogen HIV-1 uses sugar molecules, called glycans, from the host to densely cover its envelope protein. Most broadly neutralizing HIV-1 antibodies interact with glycans on the HIV-1 envelope protein. For this reason, the vaccine induction of anti-HIV-1 glycan antibodies is a principal goal. Since vaccine-induced anti-HIV-1 glycan antibodies are rare, it has not been determined how antibodies develop during vaccination to recognize HIV-1 glycans. Here, we elucidated the amino acids required for a primate antibody induced by HIV-1 vaccination to interact with HIV envelope glycans. Genetic and functional analyses showed the putative antibody germline nucleotide sequence encoded amino acids that were required for glycan reactivity. Somatic mutation also introduced critical amino acids that were required for glycan recognition. Unusually, the somatic mutations were not required in order to form direct contacts with antigen, but instead functioned to improve antibody flexibility and to form its glycan binding site. These results define the molecular development of a vaccine-induced HIV-1 glycan antibody, providing insight into why vaccines rarely elicit antibodies against the glycans on the HIV-1 outer coat protein.
Collapse
|
27
|
Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S, Dehez F, Chipot C, Barbieri S, Minola A, Jarrossay D, Tomaras GD, Shen X, Riva A, Tarkowski M, Schwartz O, Bruel T, Dufloo J, Seaman MS, Montefiori DC, Lanzavecchia A, Corti D, Pantaleo G, Weissenhorn W. Structural Basis for Broad HIV-1 Neutralization by the MPER-Specific Human Broadly Neutralizing Antibody LN01. Cell Host Microbe 2019; 26:623-637.e8. [PMID: 31653484 PMCID: PMC6854463 DOI: 10.1016/j.chom.2019.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022]
Abstract
Potent and broadly neutralizing antibodies (bnAbs) are the hallmark of HIV-1 protection by vaccination. The membrane-proximal external region (MPER) of the HIV-1 gp41 fusion protein is targeted by the most broadly reactive HIV-1 neutralizing antibodies. Here, we examine the structural and molecular mechansims of neutralization by anti-MPER bnAb, LN01, which was isolated from lymph-node-derived germinal center B cells of an elite controller and exhibits broad neutralization breadth. LN01 engages both MPER and the transmembrane (TM) region, which together form a continuous helix in complex with LN01. The tilted TM orientation allows LN01 to interact simultaneously with the peptidic component of the MPER epitope and membrane via two specific lipid binding sites of the antibody paratope. Although LN01 carries a high load of somatic mutations, most key residues interacting with the MPER epitope and lipids are germline encoded, lending support for the LN01 epitope as a candidate for lineage-based vaccine development. bNAb LN01 neutralizes 92% of a 118-strain virus panel LN01 targets the HIV-1 gp41 MPER, the TM region, and lipids LN01-complexed MPER forms a continuous helix with TM Most LN01 paratope residues interacting with MPER-TM and lipids are germline encoded
Collapse
Affiliation(s)
- Dora Pinto
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Craig Fenwick
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Christophe Caillat
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Serafima Guseva
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - François Dehez
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France
| | - Christophe Chipot
- LPCT, UMR 7019 Université de Lorraine CNRS, 54500 Vandœuvre-lès-Nancy, France; Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, LPCT, UMR 7019 Universiteé de Lorraine CNRS, Vandœuvre-lès-Nancy 54500, France; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sonia Barbieri
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Andrea Minola
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Bellinzona 6500, Ticino, Switzerland
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC 27710, USA; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | | | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Maciej Tarkowski
- Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Università di Milano, 20157 Milan, Italy
| | - Olivier Schwartz
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Timothée Bruel
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France
| | - Jérémy Dufloo
- Institut Pasteur, Virus & Immunity Unit, CNRS UMR 3569, Paris 75015, France; Vaccine Research Institute, 94000 Créteil, France; Paris Diderot University, Sorbonne Paris Cité, Paris 75013, France
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, 6500 Bellinzona, Ticino, Switzerland.
| | - Giuseppe Pantaleo
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France.
| |
Collapse
|
28
|
Williams KL, Wang B, Arenz D, Williams JA, Dingens AS, Cortez V, Simonich CA, Rainwater S, Lehman DA, Lee KK, Overbaugh J. Superinfection Drives HIV Neutralizing Antibody Responses from Several B Cell Lineages that Contribute to a Polyclonal Repertoire. Cell Rep 2019; 23:682-691. [PMID: 29669274 PMCID: PMC5990032 DOI: 10.1016/j.celrep.2018.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 03/17/2018] [Indexed: 12/03/2022] Open
Abstract
Eliciting broad and potent HIV-specific neutralizing antibody responses represents the holy grail of HIV vaccine efforts. Data from singly infected individuals with broad and potent plasma neutralizing activity targeting one epitope have guided our understanding of how these responses develop. However, far less is known about responses developed by super-infected individuals who acquire two distinct HIV strains. Here, we isolated HIV-specific mAbs from a superinfected individual with a broad plasma response. In this superinfection case, neutralizing activity resulted from multiple distinct B cell lineages that arose in response to either the initial or the superinfecting virus, including an antibody that targets the N332 supersite. This nAb, QA013.2, was specific to the superinfecting virus and was associated with eventual reemergence of the initial infecting virus. The complex dynamic between viruses in superinfection may drive development of a unique collection of polyclonal nAbs that present a higher barrier to escape than monoclonal responses.
Collapse
Affiliation(s)
- Katherine L Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Bingjie Wang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dana Arenz
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam S Dingens
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Valerie Cortez
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Cassandra A Simonich
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephanie Rainwater
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Dara A Lehman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Raju N, Setliff I, Georgiev IS. NFPws: a web server for delineating broadly neutralizing antibody specificities from serum HIV-1 neutralization data. Bioinformatics 2019; 35:3502-3504. [PMID: 30838378 PMCID: PMC6748713 DOI: 10.1093/bioinformatics/btz097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION A better understanding of antibody responses to HIV-1 infection in humans can provide novel insights for the development of an effective HIV-1 vaccine. Neutralization fingerprinting (NFP) is an efficient and accurate algorithm for delineating the epitope specificities found in polyclonal antibody responses to HIV-1 infection. Here, we report the development of NFPws, a web server implementation of the NFP algorithm. The server takes as input serum neutralization data for a set of diverse viral strains, and uses a mathematical model to identify similarities between the serum neutralization pattern and the patterns for known broadly neutralizing monoclonal antibodies (bNAbs), in order to predict the prevalence of bNAb epitope specificities in the given serum. In addition, NFPws also computes and displays a number of estimates related to prediction confidence, as well as the likelihood of presence of novel, previously uncharacterized, antibody specificities in a given serum. NFPws also implements a JSmol viewer for molecular structure visualization of the prediction results. Overall, the NFPws server will be an important tool for the identification and analysis of epitope specificities of bNAb responses against HIV-1. AVAILABILITY AND IMPLEMENTATION NFPws is freely available to access at (http://iglab.accre.vanderbilt.edu/NFPws). The webserver is developed using html, CSS, javascript and perl CGI scripts. The NFP algorithm is implemented with scripts written in octave, linux shell and perl. JSmol is implemented to visualize the prediction results on a representative 3D structure of an HIV-1 antigen.
Collapse
Affiliation(s)
- Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
30
|
Impact of HIV-1 Diversity on Its Sensitivity to Neutralization. Vaccines (Basel) 2019; 7:vaccines7030074. [PMID: 31349655 PMCID: PMC6789624 DOI: 10.3390/vaccines7030074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 pandemic remains a major burden on global public health and a vaccine to prevent HIV-1 infection is highly desirable but has not yet been developed. Among the many roadblocks to achieve this goal, the high antigenic diversity of the HIV-1 envelope protein (Env) is one of the most important and challenging to overcome. The recent development of broadly neutralizing antibodies has considerably improved our knowledge on Env structure and its interplay with neutralizing antibodies. This review aims at highlighting how the genetic diversity of HIV-1 thwarts current, and possibly future, vaccine developments. We will focus on the impact of HIV-1 Env diversification on the sensitivity to neutralizing antibodies and the repercussions of this continuous process at a population level.
Collapse
|
31
|
Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 2019; 50:1513-1529.e9. [PMID: 31126879 PMCID: PMC6591006 DOI: 10.1016/j.immuni.2019.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Westridge High School, 324 Madeline Drive, Pasadena, CA 91105, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Franziska Bach
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Bai H, Li Y, Michael NL, Robb ML, Rolland M. The breadth of HIV-1 neutralizing antibodies depends on the conservation of key sites in their epitopes. PLoS Comput Biol 2019; 15:e1007056. [PMID: 31170145 PMCID: PMC6581281 DOI: 10.1371/journal.pcbi.1007056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/18/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022] Open
Abstract
Developing HIV-1 vaccines that trigger broadly neutralizing antibodies (bnAbs) is a priority as bnAbs are considered key to elicitation of a protective immune response. To investigate whether the breadth of a neutralizing antibody (nAb) depended on the conservation of its epitope among circulating viruses, we examined Antibody:Envelope (Ab:Env) interactions and worldwide Env diversity. We found that sites corresponding to bnAb epitopes were as variable as other accessible, non-hypervariable Env sites (p = 0.50, Mann-Whitney U-test) with no significant relationship between epitope conservation and neutralization breadth (Spearman’s ρ = -0.44, adjusted p = 0.079). However, when accounting for key sites in the Ab:Env interaction, we showed that the broadest bnAbs targeted more conserved epitopes (Spearman’s ρ = -0.70, adjusted p = 5.0e-5). Neutralization breadth did not stem from the overall conservation of Ab epitopes but depended instead on the conservation of key sites of the Ab:Env interaction, revealing a mechanistic basis for neutralization breadth that could be exploited for vaccine design. So far, no HIV-1 vaccine has elicited broadly neutralizing antibodies (bnAbs) in humans. HIV-1, one of the most rapidly evolving pathogens, is remarkable for its high variability across individuals and adaptability within hosts. We tested the relationship between HIV-1 diversity and neutralization breadth. While bnAbs did not specifically target more conserved regions of HIV-1 Env, we found that the broadest bnAbs relied forcibly more on structural interactions at key sites of the Ab:Env interaction than other Abs. Understanding mechanisms underlying neutralization breadth provides guidelines to design more efficacious vaccines and antibody-based therapeutics.
Collapse
Affiliation(s)
- Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
33
|
Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity 2019; 50:677-691.e13. [PMID: 30876875 DOI: 10.1016/j.immuni.2019.02.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/13/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
Lineage-based vaccine design is an attractive approach for eliciting broadly neutralizing antibodies (bNAbs) against HIV-1. However, most bNAb lineages studied to date have features indicative of unusual recombination and/or development. From an individual in the prospective RV217 cohort, we identified three lineages of bNAbs targeting the membrane-proximal external region (MPER) of the HIV-1 envelope. Antibodies RV217-VRC42.01, -VRC43.01, and -VRC46.01 used distinct modes of recognition and neutralized 96%, 62%, and 30%, respectively, of a 208-strain virus panel. All three lineages had modest levels of somatic hypermutation and normal antibody-loop lengths and were initiated by the founder virus MPER. The broadest lineage, VRC42, was similar to the known bNAb 4E10. A multimeric immunogen based on the founder MPER activated B cells bearing the unmutated common ancestor of VRC42, with modest maturation of early VRC42 intermediates imparting neutralization breadth. These features suggest that VRC42 may be a promising template for lineage-based vaccine design.
Collapse
|
34
|
Zheng H, Tang J, Lu S, Qian Q, Liu W, Yang Z, Liu B, Long L, Ding X, Lin P, Pun J, Wong K, Yin Z, Wong T, Loo WTY, Zhang K, Huang H, Liang J. Characterization of a monoclonal antibody that binds to both gp120 and gp41. Future Virol 2018. [DOI: 10.2217/fvl-2018-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: AIDS has become a global pandemic. Characterization of broadly HIV-1-neutralizing antibodies (bnAbs) may facilitate the vaccine design. Methods & materials: Recombinant antibody library construction provides a resourceful way of monoclonal antibody screening and isolation against HIV-1. Results: In this study, we screened a novel human monoclonal antibody, named 2B8, which can bind both the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). 2B8 did not bind to the CD4 binding site mutant, gp120 D368R, suggesting that the 2B8 epitope is conformational and overlaps the CD4 binding site on gp120. 2B8 neutralized 50% of the HIV-1 cell line-based pseudo virus isolates tested. Conclusion: The further study of its novel epitope may reveal the new mechanism of neutralization and assist the design of vaccine immunogens against HIV-1.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Radiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, PR China
| | - Jiansong Tang
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| | - Shiqiang Lu
- Department of Antibody Engineering, Simcere Pharmaceutical Group, Nanjing, PR China
| | - Qian Qian
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, PR China
| | - Wan Liu
- Department of Medicine, Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, PR China
| | - Zheng Yang
- Department of Tuberculosis Prevention, Shenzhen Center for Chronic Disease Control, Shenzhen, PR China
| | - Bing Liu
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, PR China
| | - Long Long
- School of Dental Medicine, University of Colorado Denver, Denver, CO, USA
| | - Xiaomei Ding
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| | - Pinya Lin
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| | - Johnny Pun
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| | - Kiana Wong
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| | - Zhao Yin
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| | - Tattung Wong
- Hong Kong Institute of Precision Health Management Limited, United Centre, Hong Kong, PR China
| | - Wing TY Loo
- Precision Health Research Center Company Limited, Shatin, Hong Kong, PR China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Department of Education of Guizhou Province, Guiyang, PR China
- Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, PR China
| | - Hui Huang
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
- Nanjing University of Information Science & Technology, Nanjing, Jiangsu, PR China
| | - Jianguo Liang
- China Bioengineering Technology Group Limited, Unit 209, Building 16W, Hong Kong Science Park, Shatin, NT, HK 999077, PR China
| |
Collapse
|
35
|
Hallen MA, Martin JW, Ojewole A, Jou JD, Lowegard AU, Frenkel MS, Gainza P, Nisonoff HM, Mukund A, Wang S, Holt GT, Zhou D, Dowd E, Donald BR. OSPREY 3.0: Open-source protein redesign for you, with powerful new features. J Comput Chem 2018; 39:2494-2507. [PMID: 30368845 PMCID: PMC6391056 DOI: 10.1002/jcc.25522] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
We present osprey 3.0, a new and greatly improved release of the osprey protein design software. Osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is over two orders of magnitude faster than previous versions of osprey when running the same algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which introduce substantial speedups as well as improved biophysical modeling. It also includes GPU support, which provides an additional speedup of over an order of magnitude. Like previous versions of osprey, osprey 3.0 offers a unique package of advantages over other design software, including provable design algorithms that account for continuous flexibility during design and model conformational entropy. Finally, we show here empirically that osprey 3.0 accurately predicts the effect of mutations on protein-protein binding. Osprey 3.0 is available at http://www.cs.duke.edu/donaldlab/osprey.php as free and open-source software. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark A. Hallen
- Department of Computer Science, Duke University, Durham, NC
27708
- Toyota Technological Institute at Chicago, Chicago, IL
60637
| | | | - Adegoke Ojewole
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Jonathan D. Jou
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Anna U. Lowegard
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Marcel S. Frenkel
- Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710
| | - Pablo Gainza
- Department of Computer Science, Duke University, Durham, NC
27708
| | | | - Aditya Mukund
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Siyu Wang
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Graham T. Holt
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - David Zhou
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Elizabeth Dowd
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Bruce R. Donald
- Department of Computer Science, Duke University, Durham, NC
27708
- Department of Chemistry, Duke University, Durham, NC
27708
- Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710
| |
Collapse
|
36
|
Iwamoto N, Mason R, Hu J, Ransier A, Welles H, Song K, Douek D, Roederer M. A high throughput lentivirus sieving assay identifies neutralization resistant Envelope sequences and predicts in vivo sieving. J Immunol Methods 2018; 464:64-73. [PMID: 30389575 DOI: 10.1016/j.jim.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 01/29/2023]
Abstract
An effective prophylactic vaccine against human immunodeficiency virus (HIV) will likely require a potent antibody response that can neutralize the virus at the mucosal portal of entry. The elicitation of potent broadly-neutralizing anti-sera will be an iterative process, optimizing candidates that only block a fraction of potential viral strains. This effect, termed "sieving", is evidence of a partially efficacious vaccine. Understanding the mechanisms of resistance of the breakthrough viruses is important for improving vaccines. We developed a high-throughput assay that can be used on vaccine-elicited antisera or monoclonal antibodies. Using the SIVsmE660 swarm stock and sera from a large NHP vaccine/challenge study, our in vitro sieving assay identified the same viral subspecies as in the animal study-those with a canonical C1 amino acid variants conferring global neutralization resistance to antibodies. Using a genetically divergent swarm stock, we identified five other amino acid variants that confer global resistance; the C1 mutations in this stock were not selected, also in agreement with in vivo challenge studies. Thus, the in vitro sieving assay can be used with genetically diverse challenge stocks to predict the coverage of a vaccine-elicited sera and possibly inform candidate vaccine development efforts.
Collapse
Affiliation(s)
- Nami Iwamoto
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Rosemarie Mason
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Hugh Welles
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Kaimei Song
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States.
| |
Collapse
|
37
|
Abstract
A large array of broadly neutralizing antibodies (bnAbs) against HIV have been isolated and described, particularly in the last decade. This continually expanding array of bnAbs has crucially led to the identification of novel epitopes on the HIV envelope protein via which antibodies can block a broad range of HIV strains. Moreover, these studies have produced high-resolution understanding of these sites of vulnerability on the envelope protein. They have also clarified the mechanisms of action of bnAbs and provided detailed descriptions of B cell ontogenies from which they arise. However, it is still not possible to predict which HIV-infected individuals will go onto develop breath nor is it possible to induce neutralization breadth by immunization in humans. This review aims to discuss the major insights gained so far and also to evaluate the requirement to continue isolating and characterizing new bnAbs. While new epitopes may remain to be uncovered, a clearer probable benefit of further bnAb characterization is a greater understanding of key decision points in bnAb development within the anti-HIV immune response. This in turn may lead to new insights into how to trigger bnAbs by immunization and more clearly define the challenges to using bnAbs as therapeutic agents.
Collapse
Affiliation(s)
- Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
38
|
Redd AD, Helleberg M, Sievers M, Schmidt SD, Doria-Rose NA, Bruno D, Traeger S, Martens C, Fonager J, Kronborg G, Packman Z, Mascola JR, Porcella SF, Gerstoft J, Quinn TC. Limited anti-HIV neutralizing antibody breadth and potency before and after HIV superinfection in Danish men who have sex with men. Infect Dis (Lond) 2018; 51:56-61. [PMID: 30317905 DOI: 10.1080/23744235.2018.1500708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND The role of the anti-HIV neutralizing antibody response in protecting against HIV superinfection, and changes in neutralizing antibody potency and breadth after HIV superinfection have not been fully elucidated. This study examined the rate of HIV superinfection in men who have sex with men (MSM) also diagnosed with syphilis in Denmark, and the anti-HIV neutralizing antibody response in men who became superinfected. MATERIALS AND METHODS MSM enrolled in the Danish HIV cohort who acquired syphilis were examined longitudinally for HIV superinfection using a validated next-generation sequencing assay. HIV superinfection cases were matched 3:1 to controls, and neutralizing antibody responses before (cases/controls) and after (cases) HIV superinfection were determined using a 20-pseudovirus panel. RESULTS Four cases of HIV superinfection were identified from 95 MSM screened for a rate of HIV superinfection of 1.56/100 pys (95% CI = 0.43-4.01). Prior to HIV superinfection neutralizing antibody responses were low in breadth and potency, and did not differ between cases and controls (p = 1.0). In cases, neutralizing antibody responses increased modestly after HIV superinfection. CONCLUSIONS These data support the theory that the natural neutralizing antibody response to HIV infection may not be the controlling factor in protecting against a subsequent HIV challenge.
Collapse
Affiliation(s)
- Andrew D Redd
- a Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH , Bethesda , USA.,b Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marie Helleberg
- c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Matthew Sievers
- b Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | | | | | - Daniel Bruno
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Shelby Traeger
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Craig Martens
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Jannik Fonager
- f Section for Virus Surveillance and Research, Department of Virus & Microbiological Special Diagnostics, Infectious Disease Preparedness , Statens Serum Institut , Copenhagen , Denmark
| | - Gitte Kronborg
- g Department of Infectious Diseases , Copenhagen University Hospital , Hvidovre , Denmark
| | - Zoe Packman
- h Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - John R Mascola
- d Vaccine Research Center, NIAID, NIH , Bethesda , MD , USA
| | - Stephen F Porcella
- e Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH , Hamilton , MT , USA
| | - Jan Gerstoft
- c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Thomas C Quinn
- a Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH , Bethesda , USA.,b Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
39
|
Setliff I, McDonnell WJ, Raju N, Bombardi RG, Murji AA, Scheepers C, Ziki R, Mynhardt C, Shepherd BE, Mamchak AA, Garrett N, Karim SA, Mallal SA, Crowe JE, Morris L, Georgiev IS. Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals the Existence of Public Antibody Clonotypes in HIV-1 Infection. Cell Host Microbe 2018; 23:845-854.e6. [PMID: 29861170 PMCID: PMC6002606 DOI: 10.1016/j.chom.2018.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/27/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
Abstract
Characterization of single antibody lineages within infected individuals has provided insights into the development of Env-specific antibodies. However, a systems-level understanding of the humoral response against HIV-1 is limited. Here, we interrogated the antibody repertoires of multiple HIV-infected donors from an infection-naive state through acute and chronic infection using next-generation sequencing. This analysis revealed the existence of "public" antibody clonotypes that were shared among multiple HIV-infected individuals. The HIV-1 reactivity for representative antibodies from an identified public clonotype shared by three donors was confirmed. Furthermore, a meta-analysis of publicly available antibody repertoire sequencing datasets revealed antibodies with high sequence identity to known HIV-reactive antibodies, even in repertoires that were reported to be HIV naive. The discovery of public antibody clonotypes in HIV-infected individuals represents an avenue of significant potential for better understanding antibody responses to HIV-1 infection, as well as for clonotype-specific vaccine development.
Collapse
Affiliation(s)
- Ian Setliff
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wyatt J McDonnell
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amyn A Murji
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cathrine Scheepers
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rutendo Ziki
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Charissa Mynhardt
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Bryan E Shepherd
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Simon A Mallal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa; Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
40
|
Xu K, Acharya P, Kong R, Cheng C, Chuang GY, Liu K, Louder MK, O'Dell S, Rawi R, Sastry M, Shen CH, Zhang B, Zhou T, Asokan M, Bailer RT, Chambers M, Chen X, Choi CW, Dandey VP, Doria-Rose NA, Druz A, Eng ET, Farney SK, Foulds KE, Geng H, Georgiev IS, Gorman J, Hill KR, Jafari AJ, Kwon YD, Lai YT, Lemmin T, McKee K, Ohr TY, Ou L, Peng D, Rowshan AP, Sheng Z, Todd JP, Tsybovsky Y, Viox EG, Wang Y, Wei H, Yang Y, Zhou AF, Chen R, Yang L, Scorpio DG, McDermott AB, Shapiro L, Carragher B, Potter CS, Mascola JR, Kwong PD. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat Med 2018; 24:857-867. [PMID: 29867235 PMCID: PMC6358635 DOI: 10.1038/s41591-018-0042-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
A central goal of HIV-1 vaccine research is the elicitation of antibodies capable of neutralizing diverse primary isolates of HIV-1. Here we show that focusing the immune response to exposed N-terminal residues of the fusion peptide, a critical component of the viral entry machinery and the epitope of antibodies elicited by HIV-1 infection, through immunization with fusion peptide-coupled carriers and prefusion stabilized envelope trimers, induces cross-clade neutralizing responses. In mice, these immunogens elicited monoclonal antibodies capable of neutralizing up to 31% of a cross-clade panel of 208 HIV-1 strains. Crystal and cryoelectron microscopy structures of these antibodies revealed fusion peptide conformational diversity as a molecular explanation for the cross-clade neutralization. Immunization of guinea pigs and rhesus macaques induced similarly broad fusion peptide-directed neutralizing responses, suggesting translatability. The N terminus of the HIV-1 fusion peptide is thus a promising target of vaccine efforts aimed at eliciting broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chang W Choi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Edward T Eng
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kurt R Hill
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexander J Jafari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany Y Ohr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dongjun Peng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ariana P Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elise G Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy F Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rui Chen
- GenScript USA, Piscataway, NJ, USA
| | - Lu Yang
- GenScript USA, Piscataway, NJ, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
41
|
Zhou T, Zheng A, Baxa U, Chuang GY, Georgiev IS, Kong R, O'Dell S, Shahzad-Ul-Hussan S, Shen CH, Tsybovsky Y, Bailer RT, Gift SK, Louder MK, McKee K, Rawi R, Stevenson CH, Stewart-Jones GBE, Taft JD, Waltari E, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CCD, Wu CY, Mullikin JC, Bewley CA, Burton DR, Polonis VR, Shapiro L, Wong CH, Mascola JR, Kwong PD, Wu X. A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity 2018; 48:500-513.e6. [PMID: 29548671 PMCID: PMC6421865 DOI: 10.1016/j.immuni.2018.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/26/2023]
Abstract
Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syed Shahzad-Ul-Hussan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Syna K Gift
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Catherine H Stevenson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sachin S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Vidya S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chang-Chun D Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Affiliate of the Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
42
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
43
|
Hraber P, Korber B, Wagh K, Montefiori D, Roederer M. A single, continuous metric to define tiered serum neutralization potency against HIV. eLife 2018; 7:31805. [PMID: 29350181 PMCID: PMC5788501 DOI: 10.7554/elife.31805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
HIV-1 Envelope (Env) variants are grouped into tiers by their neutralization-sensitivity phenotype. This helped to recognize that tier 1 neutralization responses can be elicited readily, but do not protect against new infections. Tier 3 viruses are the least sensitive to neutralization. Because most circulating viruses are tier 2, vaccines that elicit neutralization responses against them are needed. While tier classification is widely used for viruses, a way to rate serum or antibody neutralization responses in comparable terms is needed. Logistic regression of neutralization outcomes summarizes serum or antibody potency on a continuous, tier-like scale. It also tests significance of the neutralization score, to indicate cases where serum response does not depend on virus tiers. The method can standardize results from different virus panels, and could lead to high-throughput assays, which evaluate a single serum dilution, rather than a dilution series, for more efficient use of limited resources to screen samples from vaccinees.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, United States
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, United States.,New Mexico Consortium, Los Alamos, United States
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, United States
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
44
|
Landais E, Murrell B, Briney B, Murrell S, Rantalainen K, Berndsen ZT, Ramos A, Wickramasinghe L, Smith ML, Eren K, de Val N, Wu M, Cappelletti A, Umotoy J, Lie Y, Wrin T, Algate P, Chan-Hui PY, Karita E, Ward AB, Wilson IA, Burton DR, Smith D, Pond SLK, Poignard P. HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage. Immunity 2017; 47:990-1003.e9. [PMID: 29166592 PMCID: PMC5736302 DOI: 10.1016/j.immuni.2017.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 01/16/2023]
Abstract
Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design.
Collapse
Affiliation(s)
- Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA.
| | - Ben Murrell
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sasha Murrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Lalinda Wickramasinghe
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Melissa Laird Smith
- Icahn School of Medicine and Icahn Institute for Genomics and Multiscale Biology at Mount Sinai, New York, NY 10029, USA
| | - Kemal Eren
- Biomedical Informatics, University of California San Diego, San Diego, CA 92103, USA; Bioinformatics and Systems Biology, University of California San Diego, San Diego, CA 92103, USA
| | - Natalia de Val
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Audrey Cappelletti
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Institut de Biologie Structurale, Université Grenoble Alpes, Commissariat a l'Energie Atomique, Centre National de Recherche Scientifique and Centre Hospitalier Universitaire Grenoble Alpes, 38044 Grenoble, France
| | - Jeffrey Umotoy
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Yolanda Lie
- Monogram Biosciences Inc., Laboratory Corporation of America Holdings, San Francisco CA 94080, USA
| | - Terri Wrin
- Monogram Biosciences Inc., Laboratory Corporation of America Holdings, San Francisco CA 94080, USA
| | - Paul Algate
- Theraclone Sciences, Inc., Seattle, WA 98104, USA
| | | | - Etienne Karita
- Rwanda-Zambia HIV Research Group, Project San Francisco, Kigali, Rwanda
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02114, USA
| | - Davey Smith
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA; Veterans Affairs Healthcare System, San Diego, CA 92161, USA
| | | | - Pascal Poignard
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA; Institut de Biologie Structurale, Université Grenoble Alpes, Commissariat a l'Energie Atomique, Centre National de Recherche Scientifique and Centre Hospitalier Universitaire Grenoble Alpes, 38044 Grenoble, France.
| |
Collapse
|
45
|
Construction of a Recombinant OmpC Dominant Epitope-Based Vaccine Against Escherichia coli and Evaluation of Its Immunogenicity and Protective Immunity. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.55652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
46
|
Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments. J Virol 2017; 91:JVI.00991-17. [PMID: 28747500 PMCID: PMC5599761 DOI: 10.1128/jvi.00991-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
In the search for effective immunologic interventions to prevent and treat HIV-1 infection, standardized reference reagents are a cost-effective way to maintain robustness and reproducibility among immunological assays. To support planned and ongoing studies where clade C predominates, here we describe three virus panels, chosen from 200 well-characterized clade C envelope (Env)-pseudotyped viruses from early infection. All 200 Envs were expressed as a single round of replication pseudoviruses and were tested to quantify neutralization titers by 16 broadly neutralizing antibodies (bnAbs) and sera from 30 subjects with chronic clade C infections. We selected large panels of 50 and 100 Envs either to characterize cross-reactive breadth for sera identified as having potent neutralization activity based on initial screening or to evaluate neutralization magnitude-breadth distributions of newly isolated antibodies. We identified these panels by downselection after hierarchical clustering of bnAb neutralization titers. The resulting panels represent the diversity of neutralization profiles throughout the range of virus sensitivities identified in the original panel of 200 viruses. A small 12-Env panel was chosen to screen sera from vaccine trials or natural-infection studies for neutralization responses. We considered panels selected by previously described methods but favored a computationally informed method that enabled selection of viruses representing diverse neutralization sensitivity patterns, given that we do not a priori know what the neutralization-response profile of vaccine sera will be relative to that of sera from infected individuals. The resulting 12-Env panel complements existing panels. Use of standardized panels enables direct comparisons of data from different trials and study sites testing HIV-1 clade C-specific products. IMPORTANCE HIV-1 group M includes nine clades and many recombinants. Clade C is the most common lineage, responsible for roughly half of current HIV-1 infections, and is a focus for vaccine design and testing. Standard reference reagents, particularly virus panels to study neutralization by antibodies, are crucial for developing cost-effective and yet rigorous and reproducible assays against diverse examples of this variable virus. We developed clade C-specific panels for use as standardized reagents to monitor complex polyclonal sera for neutralization activity and to characterize the potency and breadth of cross-reactive neutralization by monoclonal antibodies, whether engineered or isolated from infected individuals. We chose from 200 southern African, clade C envelope-pseudotyped viruses with neutralization titers against 16 broadly neutralizing antibodies and 30 sera from chronic clade C infections. We selected panels to represent the diversity of bnAb neutralization profiles and Env neutralization sensitivities. Use of standard virus panels can facilitate comparison of results across studies and sites.
Collapse
|
47
|
Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity 2017; 46:777-791.e10. [PMID: 28514685 DOI: 10.1016/j.immuni.2017.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/09/2017] [Accepted: 04/21/2017] [Indexed: 11/21/2022]
Abstract
Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
Collapse
|
48
|
Sun Z, Lu S, Yang Z, Li J, Zhang MY. Construction of a recombinant full-length membrane associated IgG library. Virus Res 2017; 238:156-163. [DOI: 10.1016/j.virusres.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/12/2023]
|
49
|
Doria-Rose NA, Altae-Tran HR, Roark RS, Schmidt SD, Sutton MS, Louder MK, Chuang GY, Bailer RT, Cortez V, Kong R, McKee K, O’Dell S, Wang F, Abdool Karim SS, Binley JM, Connors M, Haynes BF, Martin MA, Montefiori DC, Morris L, Overbaugh J, Kwong PD, Mascola JR, Georgiev IS. Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathog 2017; 13:e1006148. [PMID: 28052137 PMCID: PMC5241146 DOI: 10.1371/journal.ppat.1006148] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such large-scale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1. HIV-1 remains a significant global health threat, with no effective vaccine against the virus currently available. Since traditional vaccine design efforts have had limited success, much effort in recent years has focused on gaining a better understanding of the ways select individuals are able to effectively neutralize the virus upon natural infection, and to utilize that knowledge for the design of optimized vaccine candidates. Primary emphasis has been placed on characterizing the antibody arm of the immune system, and specifically on antibodies capable of neutralizing the majority of circulating HIV-1 strains. Various experimental techniques can be applied to map the epitope targets of these antibodies, but more recently, the development of computational methods has provided an efficient and accurate alternative for understanding the complex antibody responses to HIV-1 in a given individual. Here, we present the next generation of this computational technology, and show that these new methods have significantly improved accuracy and confidence, and that they enable the interrogation of biologically important questions that can lead to new insights for the design of an effective vaccine against HIV-1.
Collapse
Affiliation(s)
- Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Han R. Altae-Tran
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Ryan S. Roark
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew S. Sutton
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark K. Louder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Valerie Cortez
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States of America
| | - Rui Kong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Krisha McKee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Felicia Wang
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, United States of America
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States of America
| | - James M. Binley
- San Diego Biomedical Research Institute, San Diego, CA, United States of America
| | - Mark Connors
- HIV-Specific Immunity Section, National Institutes of Health, Bethesda, MD, United States of America
| | - Barton F. Haynes
- Duke University Human Vaccine Institute, Durham, NC, United States of America
- Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC, United States of America
- Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, NC, United States of America
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - David C. Montefiori
- Duke University Human Vaccine Institute, Durham, NC, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States of America
| | - Lynn Morris
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States of America
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|