1
|
Creighton RL, Hughes SM, Hladik F, Gornalusse GG. The intestinal interferon system and specialized enterocytes as putative drivers of HIV latency. Front Immunol 2025; 16:1589752. [PMID: 40438119 PMCID: PMC12116432 DOI: 10.3389/fimmu.2025.1589752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The barrier to HIV cure is the HIV reservoir, which is composed of latently infected CD4+ T cells and myeloid cells that carry stably integrated and replication-competent provirus. The gastrointestinal tract (GIT) contains a substantial part of the HIV reservoir and its immunophysiology could be especially conducive for HIV persistence and reactivation. However, the exact cellular microenvironment and molecular mechanisms that govern the renewal of provirus-harboring cells and proviral reactivation in the GIT remain unclear. In this review, we outline the evidence supporting an overarching hypothesis that interferon activity driven by specialized enterocytes creates a microenvironment that fosters proliferation of latently infected CD4+ T cells and sporadic HIV reactivation from these cells. First, we describe unique immunologic features of the gastrointestinal associated lymphoid tissue (GALT), specifically highlighting IFN activity in specialized enterocytes and potential interactions between these cells and neighboring HIV susceptible cells. Then, we will describe dysregulation of IFN signaling in HIV infection and how IFN dysregulation in the GALT may contribute to the persistence and reactivation of the latent HIV reservoir. Finally, we will speculate on the clinical implications of this hypothesis for HIV cure strategies and outline the next steps.
Collapse
Affiliation(s)
- Rachel L. Creighton
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Germán G. Gornalusse
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Gramatica A, Miller IG, Ward AR, Khan F, Kemmer TJ, Weiler J, Huynh TT, Zumbo P, Kurland AP, Leyre L, Ren Y, Klevorn T, Copertino DC, Chukwukere U, Levinger C, Dilling TR, Linden N, Board NL, Falling Iversen E, Terry S, Mota TM, Bedir S, Clayton KL, Bosque A, MacLaren Ehui L, Kovacs C, Betel D, Johnson JR, Paiardini M, Danesh A, Jones RB. EZH2 inhibition mitigates HIV immune evasion, reduces reservoir formation, and promotes skewing of CD8 + T cells toward less-exhausted phenotypes. Cell Rep 2025; 44:115652. [PMID: 40333189 DOI: 10.1016/j.celrep.2025.115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Persistent HIV reservoirs in CD4+ T cells pose a barrier to curing HIV infection. We identify overexpression of enhancer of zeste homolog 2 (EZH2) in HIV-infected CD4+ T cells that survive cytotoxic T lymphocyte (CTL) exposure, suggesting a mechanism of CTL resistance. Inhibition of EZH2 with the US Food and Drug Administration-approved drug tazemetostat increases surface expression of major histocompatibility complex (MHC) class I on CD4+ T cells, counterbalancing HIV Nef-mediated MHC class I downregulation. This improves CTL-mediated elimination of HIV-infected cells and suppresses viral replication in vitro. In a participant-derived xenograft mouse model, tazemetostat elevates MHC class I and the pro-apoptotic protein BIM in CD4+ T cells, facilitating CD8+ T cell-mediated reductions of HIV reservoir seeding. Additionally, tazemetostat promotes sustained skewing of CD8+ T cells toward less-differentiated and exhausted phenotypes. Our findings reveal EZH2 overexpression as a mechanism of CTL resistance and support the clinical evaluation of tazemetostat as a method of enhancing clearance of HIV reservoirs and improving CD8+ T cell function.
Collapse
Affiliation(s)
- Andrea Gramatica
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Itzayana G Miller
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Farzana Khan
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tyler J Kemmer
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tan Thinh Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew P Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Louise Leyre
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Yanqin Ren
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thais Klevorn
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Uchenna Chukwukere
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Callie Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | - Thomas R Dilling
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nathan L Board
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Sandra Terry
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Seden Bedir
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiera L Clayton
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20052, USA
| | | | - Colin Kovacs
- Maple Leaf Medical Clinic and Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jeffry R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30322 USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ali Danesh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
3
|
Hariharan V, White JA, Dragoni F, Fray EJ, Pathoulas N, Moskovljevic M, Zhang H, Singhal A, Lai J, Beg SA, Scully EP, Gilliams EA, Block DS, Keruly J, Moore RD, Siliciano JD, Simonetti FR, Siliciano RF. Superinfection with intact HIV-1 results in conditional replication of defective proviruses and nonsuppressible viremia in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647291. [PMID: 40236094 PMCID: PMC11996531 DOI: 10.1101/2025.04.04.647291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
During replication of some RNA viruses, defective particles can spontaneously arise and interfere with wild-type (WT) virus replication. Recently, engineered versions of these defective interfering particles (DIPs) have been proposed as an HIV-1 therapeutic. However, DIPs have yet to be reported in people with HIV-1 (PWH). Here, we find DIPs in PWH who have a rare, polyclonal form of non-suppressible viremia (NSV). While antiretroviral therapy (ART) rapidly reduces viremia to undetectable levels, some individuals experience sustained viremia due to virus production from cell clones harboring intact or defective proviruses. We characterized the source of NSV in two PWH who never reached undetectable viral load despite ART adherence. Remarkably, in each participant, we found a diverse set of defective viral genomes all sharing the same fatal deletions. We found that this paradoxical accumulation of mutations by viruses with fatal defects was driven by superinfection with intact viruses, resulting in mobilization of defective genomes and accumulation of additional mutations during untreated infection. We show that these defective proviruses interfere with WT virus replication, conditionally replicate, and, in one case, have an R 0 > 1, enabling in vivo spread. Despite this, clinical outcomes show no evidence of a beneficial effect of these DIPs.
Collapse
|
4
|
Moskovljevic M, Dragoni F, Board NL, Wu F, Lai J, Zhang H, White JR, Hoh R, Lynn K, Tebas P, Mounzer K, Deeks SG, Montaner LJ, Siliciano JD, Siliciano RF, Simonetti FR. Cognate antigen engagement induces HIV-1 expression in latently infected CD4 + T cells from people on long-term antiretroviral therapy. Immunity 2024; 57:2928-2944.e6. [PMID: 39612916 PMCID: PMC11896817 DOI: 10.1016/j.immuni.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists in latently infected CD4+ T cells, preventing a cure. Antigens drive the proliferation of infected cells, precluding latent reservoir decay. However, the relationship between antigen recognition and HIV-1 gene expression is poorly understood because most studies of latency reversal use agents that induce non-specific global T cell activation. Here, we isolated rare CD4+ T cells responding to cytomegalovirus (CMV) or HIV-1 Gag antigens from people living with HIV-1 on long-term ART and assessed T cell activation and HIV-1 RNA expression upon coculture with autologous dendritic cells (DCs) presenting cognate antigens. Presentation of cognate antigens ex vivo induced broad T cell activation (median 42-fold increase in CD154+CD69+ cells) and significantly increased HIV-1 transcription (median 4-fold), mostly through the induction of rare cells with higher viral expression. Thus, despite low proviral inducibility, antigen recognition can promote HIV-1 expression, potentially contributing to spontaneous reservoir activity and viral rebound upon ART interruption.
Collapse
Affiliation(s)
- Milica Moskovljevic
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Filippo Dragoni
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nathan L Board
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun Lai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Rebecca Hoh
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kenneth Lynn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karam Mounzer
- Jonathan Lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA 19107, USA
| | - Steven G Deeks
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | - Janet D Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Francesco R Simonetti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Vela LC, Carrere L, Naasz C, Kalavacherla S, Tan TS, de Armas L, Gao C, Yu XG, Pahwa SG, Luzuriaga K, Lichterfeld M. Profound reduction of HIV-1 reservoir cells over 3 decades of antiretroviral therapy started in early infancy. JCI Insight 2024; 10:e186550. [PMID: 39541163 PMCID: PMC11721289 DOI: 10.1172/jci.insight.186550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
HIV-1 reservoir cells persist indefinitely during suppressive antiretroviral therapy (ART) in individuals who acquire infection in adulthood, but little is known about the longitudinal evolution of viral reservoir cells during long-term ART started during early infancy. We studied 2 fraternal twins who acquired HIV-1 perinatally, started ART at week 10 after birth and remained on ART for 28 years. We observed that the frequency of genome-intact proviruses, determined by single-genome near-full-length proviral sequencing, declined by approximately 4,000- to 13,000-fold during this period, indicating enhanced decay rates of intact proviruses even after adjusting for dilution effects from somatic growth. Despite analyzing more than one billion PBMC after 28 years of ART in each participant, no intact proviruses were detected in 1 participant, and 1 intact provirus was isolated in the other. The longitudinal decline of defective proviruses in the 2 participants was more similar to proviral decay kinetics reported in individuals who started ART during adulthood; moreover, clonal sequence clusters were readily detectable for defective proviruses but not for intact proviruses after 28 years of ART in the 2 twins. Together, these data suggest decreased long-term stability and increased immunological vulnerability of intact proviruses during long-term ART started in early infancy.
Collapse
Affiliation(s)
- Liliana C. Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Chloe Naasz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sruthi Kalavacherla
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Toong Seng Tan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lesley de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Savita G. Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Bobkova MR. Defective HIV proviruses: possible involvement in the HIV infection pathogenesis. Vopr Virusol 2024; 69:399-414. [PMID: 39527763 DOI: 10.36233/0507-4088-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/16/2024]
Abstract
This review article analyzes information obtained from a literature search on defective HIV genomes (HIV-1, Human Immunodeficiency Virus, Lentivirus, Orthoretrovirinae, Retroviridae). It discusses the origins of defective HIV genomes, their potential for transcription and translation, and the role of defective RNA and proteins in stimulating both innate and adaptive immunity. The article also explores their contribution to HIV pathogenesis, immune system hyperactivation despite successful antiretroviral therapy (ART), and the evolutionary processes in HIV proviral populations under ART. Additionally, it addresses challenges in reservoir elimination and HIV eradication that arise from the existence of defective HIV viruses.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
7
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. J Exp Med 2024; 221:e20240391. [PMID: 39141127 PMCID: PMC11323366 DOI: 10.1084/jem.20240391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
HIV-1 antiretroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses, leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here, we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 100-10,000× less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir, thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Chica and Heinz Schaller (CHS) Research Group, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Margolis DM. Advancing Toward a Human Immunodeficiency Virus Cure: Initial Progress on a Difficult Path. Infect Dis Clin North Am 2024; 38:487-497. [PMID: 38969530 PMCID: PMC11410351 DOI: 10.1016/j.idc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Therapies to eradicate human immunodeficiency virus (HIV) infection, sparing lifelong antiviral therapy, are a still-distant goal. But significant advances have been made to reverse HIV latency while antiretroviral therapy (ART) is maintained to allow targeting of the persistent viral reservoir, to test interventions that could clear cells emerging from latent infection, and to improve HIV cure research assays and infrastructure. Steady progress gives hope that future therapies to clear HIV infection may relieve individuals and society of the burden of HIV.
Collapse
Affiliation(s)
- David M Margolis
- Medicine, Microbiology & Immunology, Epidemiology; UNC HIV Cure Center; University of North Carolina at Chapel Hill, 2016 Genetic Medicine Building, 120 Mason Farm Road, CB 7042, Chapel Hill, NC 27599-7042, USA.
| |
Collapse
|
9
|
Dinesha TR, Boobalan J, Kumar CV, Manikandan P, Muhila M, Solomon SS, Srikrishnan AK, Murugavel KG. HIV-1 low-level viraemia predicts virological failure in first-line and second-line ART-experienced individuals in India: A retrospective longitudinal study. HIV Med 2024; 25:852-861. [PMID: 38663865 DOI: 10.1111/hiv.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/16/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To study the prevalence of low-level viraemia (LLV) and its association with virological failure (VF). METHODS We conducted a retrospective analysis of 3498 participants at YRG CARE, Chennai, India (2013-2018) on antiretroviral therapy (ART) for ≥6 months with two or more plasma viral load (pVL) measurements. Results were stratified for those with pVL <1000 copies/mL: fully suppressed (FS) (pVL <40), low-LLV (pVL 40-199), mid-LLV (pVL 200-399), and high-LLV (pVL 400-999). The study assessed the association with VF (pVL >1000 copies/mL) using Cox proportional hazard model. RESULTS Among 3498 participants, 2965 (84.8%) were FS and 533 (15.2%) were LLV. During the follow-up, 348 (10%) experienced VF, with 222 (6.3%) experienced after LLV (42% of LLV) and 126 (3.6%) experienced after FS (4.3% of FS). When compared with FS, those with LLV had a greater risk of VF [adjusted hazard ratio (aHR) = 12.7; 95% confidence interval (CI): 10.2-15.9]. First-line participants had a higher VF incidence (aHR = 15.8, 95% CI: 11.4-21.9) than second-line participants (aHR = 5.6, 95% CI: 4.1-7.7). Those with high-LLV had the highest VF risk (aHR = 22.856, 95% CI: 15.204-34.359 vs. aHR = 8.186, 95% CI: 5.564-12.043, for first-line vs. second-line participants, respectively), followed by those with mid-LLV (aHR = 13.375, 95% CI: 8.327-21.483 vs. aHR = 6.261, 95% CI: 4.044-9.695) and low-LLV (aHR = 12.976, 95% CI: 7.974-21.118 vs. aHR = 4.158, 95% CI: 2.826-6.119). CONCLUSIONS The prevalence of LLV was intermediate in our study population. There was a higher risk of VF among individuals with LLV, and this risk increased with the increasing levels of LLV. Close monitoring of individuals experiencing LLV could help in the early identification of VF.
Collapse
Affiliation(s)
| | - Jayaseelan Boobalan
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | | | | | - Mohanarangan Muhila
- Y.R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | | | | | | |
Collapse
|
10
|
Immonen TT, Fennessey CM, Lipkey L, Newman L, Macairan A, Bosche M, Waltz N, Del Prete GQ, Lifson JD, Keele BF. No evidence for ongoing replication on ART in SIV-infected macaques. Nat Commun 2024; 15:5093. [PMID: 38877003 PMCID: PMC11178840 DOI: 10.1038/s41467-024-49369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The capacity of HIV-1 to replicate during optimal antiretroviral therapy (ART) is challenging to assess directly. To gain greater sensitivity to detect evolution on ART, we used a nonhuman primate (NHP) model providing precise control over the level of pre-ART evolution and more comprehensive analyses than are possible with clinical samples. We infected 21 rhesus macaques (RMs) with the barcoded virus SIVmac239M and initiated ART early to minimize baseline genetic diversity. RMs were treated for 285-1200 days. We used several tests of molecular evolution to compare 1352 near-full-length (nFL) SIV DNA single genome sequences from PBMCs, lymph nodes, and spleen obtained near the time of ART initiation and those present after long-term ART, none of which showed significant changes to the SIV DNA population during ART in any animal. To investigate the possibility of ongoing replication in unsampled putative tissue sanctuaries during ART, we discontinued treatment in four animals and confirmed that none of the 336 nFL SIV RNA sequences obtained from rebound plasma viremia showed evidence of evolution. The rigorous nature of our analyses reinforced the emerging consensus of a lack of appreciable ongoing replication on effective ART and validates the relevance of this NHP model for cure studies.
Collapse
Affiliation(s)
- Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Agatha Macairan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Marjorie Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nora Waltz
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Armani-Tourret M, Bone B, Tan TS, Sun W, Bellefroid M, Struyve T, Louella M, Yu XG, Lichterfeld M. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat Rev Microbiol 2024; 22:328-344. [PMID: 38337034 PMCID: PMC11131351 DOI: 10.1038/s41579-024-01010-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Successful approaches for eradication or cure of HIV-1 infection are likely to include immunological mechanisms, but remarkably little is known about how human immune responses can recognize and interact with the few HIV-1-infected cells that harbour genome-intact viral DNA, persist long term despite antiretroviral therapy and represent the main barrier to a cure. For a long time regarded as being completely shielded from host immune responses due to viral latency, these cells do, on closer examination with single-cell analytic techniques, display discrete footprints of immune selection, implying that human immune responses may be able to effectively engage and target at least some of these cells. The failure to eliminate rebound-competent virally infected cells in the majority of persons likely reflects the evolution of a highly selected pool of reservoir cells that are effectively camouflaged from immune recognition or rely on sophisticated approaches for resisting immune-mediated killing. Understanding the fine-tuned interplay between host immune responses and viral reservoir cells will help to design improved interventions that exploit the immunological vulnerabilities of HIV-1 reservoir cells.
Collapse
Affiliation(s)
- Marie Armani-Tourret
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Bone
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Toong Seng Tan
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Weiwei Sun
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Maxime Bellefroid
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Tine Struyve
- HIV Cure Research Center, Ghent University, Ghent, Belgium
| | - Michael Louella
- Community Advisory Board, Delaney AIDS Research Enterprise (DARE), San Francisco, CA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Bareng OT, Moyo S, Mudanga M, Sebina K, Koofhethile CK, Choga WT, Moraka NO, Maruapula D, Gobe I, Motswaledi MS, Musonda R, Nkomo B, Ramaabya D, Chebani T, Makuruetsa P, Makhema J, Shapiro R, Lockman S, Gaseitsiwe S. Low-Level Viremia among Adults Living with HIV on Dolutegravir-Based First-Line Antiretroviral Therapy Is a Predictor of Virological Failure in Botswana. Viruses 2024; 16:720. [PMID: 38793602 PMCID: PMC11125697 DOI: 10.3390/v16050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
We evaluated subsequent virologic outcomes in individuals experiencing low-level virem ia (LLV) on dolutegravir (DTG)-based first-line antiretroviral therapy (ART) in Botswana. We used a national dataset from 50,742 adults who initiated on DTG-based first-line ART from June 2016-December 2022. Individuals with at least two viral load (VL) measurements post three months on DTG-based first-line ART were evaluated for first and subsequent episodes of LLV (VL:51-999 copies/mL). LLV was sub-categorized as low-LLV (51-200 copies/mL), medium-LLV (201-400 copies/mL) and high-LLV (401-999 copies/mL). The study outcome was virologic failure (VF) (VL ≥ 1000 copies/mL): virologic non-suppression defined as single-VF and confirmed-VF defined as two-consecutive VF measurements after an initial VL < 1000 copies/mL. Cox regression analysis identified predictive factors of subsequent VF. The prevalence of LLV was only statistically different at timepoints >6-12 (2.8%) and >12-24 (3.9%) (p-value < 0.01). LLV was strongly associated with both virologic non-suppression (adjusted hazards ratio [aHR] = 2.6; 95% CI: 2.2-3.3, p-value ≤ 0.001) and confirmed VF (aHR = 2.5; 95% CI: 2.4-2.7, p-value ≤ 0.001) compared to initially virally suppressed PLWH. High-LLV (HR = 3.3; 95% CI: 2.9-3.6) and persistent-LLV (HR = 6.6; 95% CI: 4.9-8.9) were associated with an increased hazard for virologic non-suppression than low-LLV and a single-LLV episode, respectively. In a national cohort of PLWH on DTG-based first-line ART, LLV > 400 copies/mL and persistent-LLV had a stronger association with VF. Frequent VL testing and adherence support are warranted for individuals with VL > 50 copies/mL.
Collapse
Affiliation(s)
- Ontlametse T. Bareng
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Medical Sciences, Faculty of Allied Health Professions, University of Botswana, Gaborone 0022, Botswana (M.S.M.)
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7935, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Mbatshi Mudanga
- Department of Strategic Information, Botswana-University of Maryland School of Medicine Health Initiative, Gaborone 0022, Botswana
| | - Kagiso Sebina
- Department of Strategic Information, Botswana-University of Maryland School of Medicine Health Initiative, Gaborone 0022, Botswana
| | - Catherine K. Koofhethile
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wonderful T. Choga
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Medical Sciences, Faculty of Allied Health Professions, University of Botswana, Gaborone 0022, Botswana (M.S.M.)
| | - Natasha O. Moraka
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Medical Sciences, Faculty of Allied Health Professions, University of Botswana, Gaborone 0022, Botswana (M.S.M.)
| | - Dorcas Maruapula
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
| | - Irene Gobe
- Department of Medical Sciences, Faculty of Allied Health Professions, University of Botswana, Gaborone 0022, Botswana (M.S.M.)
| | - Modisa S. Motswaledi
- Department of Medical Sciences, Faculty of Allied Health Professions, University of Botswana, Gaborone 0022, Botswana (M.S.M.)
| | - Rosemary Musonda
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
| | | | - Dinah Ramaabya
- Botswana Ministry of Health, Gaborone 0038, Botswana (T.C.)
| | - Tony Chebani
- Botswana Ministry of Health, Gaborone 0038, Botswana (T.C.)
| | | | - Joseph Makhema
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roger Shapiro
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shahin Lockman
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA 02115, USA
| | - Simani Gaseitsiwe
- Botswana Harvard Health Partnership, Gaborone 0000, Botswana (C.K.K.); (N.O.M.); (D.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
13
|
Esteban-Cantos A, Montejano R, Pinto-Martínez A, Rodríguez-Centeno J, Pulido F, Arribas JR. Non-suppressible viraemia during HIV-1 therapy: a challenge for clinicians. Lancet HIV 2024; 11:e333-e340. [PMID: 38604202 DOI: 10.1016/s2352-3018(24)00063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
In individuals receiving antiretroviral therapy (ART), persistent low-level viraemia not attributed to suboptimal ART adherence, detrimental pharmacological interactions, or drug resistance is referred to as non-suppressible viraemia (NSV). This Review presents recent findings in the virological characterisation of NSV, revealing that it consists of one or a few identical populations of plasma viruses without signs of evolution. This finding suggests that NSV originates from virus production by expanded HIV-infected cell clones, reflecting the persistence of the HIV reservoir despite ART. We discuss knowledge gaps regarding the management and the clinical consequences of NSV. The prevalence of NSV remains to be precisely determined and there is very little understanding of its effects on virological failure, HIV transmission, secondary inflammation, morbidity, and mortality. This issue, along with the absence of specific recommendations for the management of NSV in HIV clinical guidelines, underscores the complexities involved in treating individuals with NSV.
Collapse
Affiliation(s)
- Andrés Esteban-Cantos
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Montejano
- Internal Medical Service, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adriana Pinto-Martínez
- HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Rodríguez-Centeno
- HIV/AIDS and Infectious Diseases Research Group, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Federico Pulido
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José R Arribas
- Internal Medical Service, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Teixeira AR, Bittar C, Silva Santos GS, Oliveira TY, Huang AS, Linden N, Ferreira IA, Murdza T, Muecksch F, Jones RB, Caskey M, Jankovic M, Nussenzweig MC. Transcription of HIV-1 at sites of intact latent provirus integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591331. [PMID: 38746186 PMCID: PMC11092494 DOI: 10.1101/2024.04.26.591331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
HIV-1 anti-retroviral therapy is highly effective but fails to eliminate a reservoir of latent proviruses leading to a requirement for life-long treatment. How the site of integration of authentic intact latent proviruses might impact their own or neighboring gene expression or reservoir dynamics is poorly understood. Here we report on proviral and neighboring gene transcription at sites of intact latent HIV-1 integration in cultured T cells obtained directly from people living with HIV, as well as engineered primary T cells and cell lines. Proviral gene expression was correlated to the level of endogenous gene expression under resting but not activated conditions. Notably, latent proviral promoters were 10010,000X less active than in productively infected cells and had little or no measurable impact on neighboring gene expression under resting or activated conditions. Thus, the site of integration has a dominant effect on the transcriptional activity of intact HIV-1 proviruses in the latent reservoir thereby influencing cytopathic effects and proviral immune evasion.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Cintia Bittar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isabella A.T.M. Ferreira
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tetyana Murdza
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Frauke Muecksch
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
- Chica and Heinz Schaller (CHS) Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - R. Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
15
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Chandrasekar AP, Maynes M, Badley AD. Dynamic modulation of the non-canonical NF-κB signaling pathway for HIV shock and kill. Front Cell Infect Microbiol 2024; 14:1354502. [PMID: 38505285 PMCID: PMC10949532 DOI: 10.3389/fcimb.2024.1354502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
HIV cure still remains an elusive target. The "Shock and Kill" strategy which aims to reactivate HIV from latently infected cells and subsequently kill them through virally induced apoptosis or immune mediated clearance, is the subject of widespread investigation. NF-κB is a ubiquitous transcription factor which serves as a point of confluence for a number of intracellular signaling pathways and is also a crucial regulator of HIV transcription. Due to its relatively lower side effect profile and proven role in HIV transcription, the non-canonical NF-κB pathway has emerged as an attractive target for HIV reactivation, as a first step towards eradication. A comprehensive review examining this pathway in the setting of HIV and its potential utility to cure efforts is currently lacking. This review aims to summarize non-canonical NF-κB signaling and the importance of this pathway in HIV shock-and-kill efforts.
Collapse
Affiliation(s)
- Aswath P. Chandrasekar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN, United States
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
| | - Mark Maynes
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
18
|
Kufera JT, Armstrong C, Wu F, Singhal A, Zhang H, Lai J, Wilkins HN, Simonetti FR, Siliciano JD, Siliciano RF. CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation. J Exp Med 2024; 221:e20231511. [PMID: 38270554 PMCID: PMC10818065 DOI: 10.1084/jem.20231511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy as a barrier to cure. The antigen-driven proliferation of infected cells is a major mechanism of reservoir persistence. However, activation through the T cell antigen receptor (TCR) can induce latent proviruses, leading to viral cytopathic effects and immune clearance. In single-cell studies, we show that, relative to uninfected cells or cells with a defective provirus, CD4+ T cells with an intact provirus have a profound proliferative defect in response to TCR stimulation. Virion production was observed in only 16.5% of cultures with an intact provirus, but proliferation was reduced even when no virion production was detected. Proliferation was inversely correlated with in vivo clone size. These results may reflect the effects of previous in vivo proliferation and do not support attempts to reduce the reservoir with antiproliferative agents, which may have greater effects on normal T cell responses.
Collapse
Affiliation(s)
- Joshua T. Kufera
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ciara Armstrong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Singhal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah N. Wilkins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
19
|
Armani-Tourret M, Gao C, Hartana CA, Sun W, Carrere L, Vela L, Hochroth A, Bellefroid M, Sbrolla A, Shea K, Flynn T, Roseto I, Rassadkina Y, Lee C, Giguel F, Malhotra R, Bushman FD, Gandhi RT, Yu XG, Kuritzkes DR, Lichterfeld M. Selection of epigenetically privileged HIV-1 proviruses during treatment with panobinostat and interferon-α2a. Cell 2024; 187:1238-1254.e14. [PMID: 38367616 PMCID: PMC10903630 DOI: 10.1016/j.cell.2024.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/26/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
CD4+ T cells with latent HIV-1 infection persist despite treatment with antiretroviral agents and represent the main barrier to a cure of HIV-1 infection. Pharmacological disruption of viral latency may expose HIV-1-infected cells to host immune activity, but the clinical efficacy of latency-reversing agents for reducing HIV-1 persistence remains to be proven. Here, we show in a randomized-controlled human clinical trial that the histone deacetylase inhibitor panobinostat, when administered in combination with pegylated interferon-α2a, induces a structural transformation of the HIV-1 reservoir cell pool, characterized by a disproportionate overrepresentation of HIV-1 proviruses integrated in ZNF genes and in chromatin regions with reduced H3K27ac marks, the molecular target sites for panobinostat. By contrast, proviruses near H3K27ac marks were actively selected against, likely due to increased susceptibility to panobinostat. These data suggest that latency-reversing treatment can increase the immunological vulnerability of HIV-1 reservoir cells and accelerate the selection of epigenetically privileged HIV-1 proviruses.
Collapse
Affiliation(s)
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - WeiWei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Vela
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Amy Sbrolla
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina Shea
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Theresa Flynn
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Carole Lee
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francoise Giguel
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rajeev Malhotra
- Division of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajesh T Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobarrubias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL, the MACS/WIHS combined cohort study (MWCSS) OfotokunIghovwerha1ShethAnandi1WingoodGina1BrownTodd2MargolickJoseph2AnastosKathryn3HannaDavid3SharmaAnjali3GustafsonDeborah4WilsonTracey4D’SouzaGypsyamber5GangeStephen5TopperElizabeth5CohenMardge6FrenchAudrey6WolinskySteven7PalellaFrank7StosorValentina7AouizeratBradley8PriceJennifer8TienPhyllis8DetelsRoger9MimiagaMatthew9KassayeSeble10MerensteinDaniel10AlcaideMaria11FischlMargaret11JonesDeborah11MartinsonJeremy12RinaldoCharles12KempfMirjam-Colette13Dionne-OdomJodie13Konkle-ParkerDeborah13BrockJames B.13AdimoraAdaora14Floris-MooreMichelle14Emory University, Atlanta, Georgia, USAJohns Hopkins University, Baltimore, Maryland, USAAlbert Einstein College of Medicine, Bronx, New York, USASuny Downstate Medical Center, Brooklyn, New York, USAJohns Hopkins University, Baltimore, Maryland, USAHektoen Institute for Medical Research, Chicago, Illinois, USANorthwestern University at Chicago, Chicago, Illinois, USAUniversity of California San Francisco, San Francisco, California, USAUniversity of California Los Angeles, Los Angeles, California, USAGeorgetown University, Washington, DC, USAUniversity of Miami School of Medicine, Coral Gables, Florida, USAUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USAUniversity of Alabama Birmingham, Birmingham, Alabama, USAUniversity of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. J Virol 2024; 98:e0165523. [PMID: 38214547 PMCID: PMC10878278 DOI: 10.1128/jvi.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Kyle Cobarrubias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Maggie C. Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Michael J. Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A. Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Adaora Adimora
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Mark H. Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I. Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - the MACS/WIHS combined cohort study (MWCSS)OfotokunIghovwerha1ShethAnandi1WingoodGina1BrownTodd2MargolickJoseph2AnastosKathryn3HannaDavid3SharmaAnjali3GustafsonDeborah4WilsonTracey4D’SouzaGypsyamber5GangeStephen5TopperElizabeth5CohenMardge6FrenchAudrey6WolinskySteven7PalellaFrank7StosorValentina7AouizeratBradley8PriceJennifer8TienPhyllis8DetelsRoger9MimiagaMatthew9KassayeSeble10MerensteinDaniel10AlcaideMaria11FischlMargaret11JonesDeborah11MartinsonJeremy12RinaldoCharles12KempfMirjam-Colette13Dionne-OdomJodie13Konkle-ParkerDeborah13BrockJames B.13AdimoraAdaora14Floris-MooreMichelle14Emory University, Atlanta, Georgia, USAJohns Hopkins University, Baltimore, Maryland, USAAlbert Einstein College of Medicine, Bronx, New York, USASuny Downstate Medical Center, Brooklyn, New York, USAJohns Hopkins University, Baltimore, Maryland, USAHektoen Institute for Medical Research, Chicago, Illinois, USANorthwestern University at Chicago, Chicago, Illinois, USAUniversity of California San Francisco, San Francisco, California, USAUniversity of California Los Angeles, Los Angeles, California, USAGeorgetown University, Washington, DC, USAUniversity of Miami School of Medicine, Coral Gables, Florida, USAUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USAUniversity of Alabama Birmingham, Birmingham, Alabama, USAUniversity of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- College of Dentistry, New York University, New York, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
21
|
Reeves DB, Rigau DN, Romero A, Zhang H, Simonetti FR, Varriale J, Hoh R, Zhang L, Smith KN, Montaner LJ, Rubin LH, Gange SJ, Roan NR, Tien PC, Margolick JB, Peluso MJ, Deeks SG, Schiffer JT, Siliciano JD, Siliciano RF, Antar AAR. Mild HIV-specific selective forces overlaying natural CD4+ T cell dynamics explain the clonality and decay dynamics of HIV reservoir cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302704. [PMID: 38405967 PMCID: PMC10888981 DOI: 10.1101/2024.02.13.24302704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRβ) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRβ and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.
Collapse
|
22
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
23
|
Naranjo O, Torices S, Clifford PR, Rodriguez T, Osborne OM, Tiburcio D, Fattakhov N, Park M, Stevenson M, Toborek M. AKT signaling modulates latent viral reservoir viability in HIV-1-infected blood-brain barrier pericytes. J Biol Chem 2024; 300:105526. [PMID: 38043797 PMCID: PMC10777012 DOI: 10.1016/j.jbc.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023] Open
Abstract
Despite antiretroviral therapy (ART), chronic forms of HIV-associated neurocognitive disorders (HAND) affect an estimated 50% of individuals living with HIV, greatly impacting their quality of life. The prevailing theory of HAND progression posits that chronic inflammation arising from the activation of latent viral reservoirs leads to progressive damage in the central nervous system (CNS). Recent evidence indicates that blood-brain barrier (BBB) pericytes are capable of active HIV-1 infection; however, their latent infection has not been defined. Given their location and function, BBB pericytes are poised to be a key viral reservoir in the development of HAND. We present the first transcriptional analysis of uninfected, active, and latent human BBB pericytes, revealing distinct transcriptional phenotypes. In addition, we demonstrate that latent infection of BBB pericytes relies on AKT signaling for reservoir survival. These findings provide insight into the state of reservoir maintenance in the CNS during HIV-1 infection and provide novel targets for reservoir clearance.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Paul R Clifford
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Thaidy Rodriguez
- Department of Urology, University of California San Francisco, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Olivia M Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Destiny Tiburcio
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
24
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. mBio 2023; 14:e0241723. [PMID: 37971267 PMCID: PMC10746175 DOI: 10.1128/mbio.02417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Characterizing the human immunodeficiency virus (HIV) reservoir that endures despite antiretroviral therapy (ART) is critical to cure efforts. We observed that the oldest proviruses persisting during ART were exclusively defective, while intact proviruses (and rebound HIV) dated to nearer ART initiation. This helps explain why studies that sampled sub-genomic proviruses on-ART (which are largely defective) routinely found sequences dating to early infection, whereas those that sampled replication-competent HIV found almost none. Together with our findings that intact proviruses were more likely to be clonal, and that on-ART low-level/isolated viremia originated from proviruses of varying ages (including possibly defective ones), our observations indicate that (i) on-ART and rebound viremia can have distinct within-host origins, (ii) intact proviruses have shorter lifespans than grossly defective ones and thus depend more heavily on clonal expansion for persistence, and (iii) an HIV reservoir predominantly "dating" to near ART initiation will be substantially adapted to within-host pressures, complicating immune-based cure strategies.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte J. Beelen
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Wu F, Simonetti FR. Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure. Curr HIV/AIDS Rep 2023; 20:428-439. [PMID: 37955826 PMCID: PMC10719122 DOI: 10.1007/s11904-023-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and its clinical management. RECENT FINDINGS While residual viremia (RV, 1-3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some individuals experience non-suppressible viremia (NSV, > 20-50 copies/mL) despite optimal adherence. When issues of drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV are not infectious, due to defects in the 5'-Leader sequence. However, additional viruses and host determinants of NSV are not fully understood. The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, and it sheds light on virus-host interactions that could advance HIV-1 remission research.
Collapse
Affiliation(s)
- Fengting Wu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Francesco R Simonetti
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Sun W, Rassadkina Y, Gao C, Collens SI, Lian X, Solomon IH, Mukerji SS, Yu XG, Lichterfeld M. Persistence of intact HIV-1 proviruses in the brain during antiretroviral therapy. eLife 2023; 12:RP89837. [PMID: 37938115 PMCID: PMC10631759 DOI: 10.7554/elife.89837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the CNS. Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | | | - Ce Gao
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | | | - Xiaodong Lian
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women’s HospitalBostonUnited States
| | - Shibani S Mukerji
- Department of Neurology, Massachusetts General HospitalBostonUnited States
| | - Xu G Yu
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Infectious Disease Division, Brigham and Women’s HospitalBostonUnited States
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
- Infectious Disease Division, Brigham and Women’s HospitalBostonUnited States
| |
Collapse
|
27
|
Dragoni F, Kwaa AK, Traut CC, Veenhuis RT, Woldemeskel BA, Camilo-Contreras A, Raymond HE, Dykema AG, Scully EP, Rosecrans AM, Smith KN, Bushman FD, Simonetti FR, Blankson JN. Proviral location affects cognate peptide-induced virus production and immune recognition of HIV-1-infected T cell clones. J Clin Invest 2023; 133:e171097. [PMID: 37698927 PMCID: PMC10617777 DOI: 10.1172/jci171097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.
Collapse
Affiliation(s)
| | | | | | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology, and
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Hayley E. Raymond
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Arbor G. Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Kellie N. Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Joel N. Blankson
- Department of Medicine
- Department of Molecular and Comparative Pathobiology, and
| |
Collapse
|
28
|
Ikeogu N, Ajibola O, Zayats R, Murooka TT. Identifying physiological tissue niches that support the HIV reservoir in T cells. mBio 2023; 14:e0205323. [PMID: 37747190 PMCID: PMC10653859 DOI: 10.1128/mbio.02053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Successful antiretroviral therapy (ART) can efficiently suppress Human Immunodeficiency Virus-1 (HIV-1) replication to undetectable levels, but rare populations of infected memory CD4+ T cells continue to persist, complicating viral eradication efforts. Memory T cells utilize distinct homing and adhesion molecules to enter, exit, or establish residence at diverse tissue sites, integrating cellular and environmental cues that maintain homeostasis and life-long protection against pathogens. Critical roles for T cell receptor and cytokine signals driving clonal expansion and memory generation during immunity generation are well established, but whether HIV-infected T cells can utilize similar mechanisms for their own long-term survival is unclear. How infected, but transcriptionally silent T cells maintain their recirculation potential through blood and peripheral tissues, or whether they acquire new capabilities to establish unique peripheral tissue niches, is also not well understood. In this review, we will discuss the cellular and molecular cues that are important for memory T cell homeostasis and highlight opportunities for HIV to hijack normal immunological processes to establish long-term viral persistence.
Collapse
Affiliation(s)
- Nnamdi Ikeogu
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oluwaseun Ajibola
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
29
|
Banga R, Procopio FA, Lana E, Gladkov GT, Roseto I, Parsons EM, Lian X, Armani-Tourret M, Bellefroid M, Gao C, Kauzlaric A, Foglierini M, Alfageme-Abello O, Sluka SHM, Munoz O, Mastrangelo A, Fenwick C, Muller Y, Mkindi CG, Daubenberger C, Cavassini M, Trunfio R, Déglise S, Corpataux JM, Delorenzi M, Lichterfeld M, Pantaleo G, Perreau M. Lymph node dendritic cells harbor inducible replication-competent HIV despite years of suppressive ART. Cell Host Microbe 2023; 31:1714-1731.e9. [PMID: 37751747 PMCID: PMC11068440 DOI: 10.1016/j.chom.2023.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/02/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.
Collapse
Affiliation(s)
- Riddhima Banga
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Francesco Andrea Procopio
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Erica Lana
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | - Elizabeth M Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Annamaria Kauzlaric
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathilde Foglierini
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Oscar Alfageme-Abello
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Susanna H M Sluka
- Newborn Screening Switzerland, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Olivia Munoz
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Mastrangelo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Craig Fenwick
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Yannick Muller
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Catherine Gerald Mkindi
- Ifakara Health Institute, Bagamoyo, United Republic of Tanzania; Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Matthias Cavassini
- Services of Infectious Diseases, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rafael Trunfio
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Sébastien Déglise
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Services of Vascular Surgery, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Translational Bioinformatics and Statistics Department of Oncology, University of Lausanne Swiss Cancer Center, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Giuseppe Pantaleo
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Matthieu Perreau
- Services of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
30
|
Kulkarni S, Endsley JJ, Lai Z, Bradley T, Sharan R. Single-Cell Transcriptomics of Mtb/HIV Co-Infection. Cells 2023; 12:2295. [PMID: 37759517 PMCID: PMC10529032 DOI: 10.3390/cells12182295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) co-infection continues to pose a significant healthcare burden. HIV co-infection during TB predisposes the host to the reactivation of latent TB infection (LTBI), worsening disease conditions and mortality. There is a lack of biomarkers of LTBI reactivation and/or immune-related transcriptional signatures to distinguish active TB from LTBI and predict TB reactivation upon HIV co-infection. Characterizing individual cells using next-generation sequencing-based technologies has facilitated novel biological discoveries about infectious diseases, including TB and HIV pathogenesis. Compared to the more conventional sequencing techniques that provide a bulk assessment, single-cell RNA sequencing (scRNA-seq) can reveal complex and new cell types and identify more high-resolution cellular heterogeneity. This review will summarize the progress made in defining the immune atlas of TB and HIV infections using scRNA-seq, including host-pathogen interactions, heterogeneity in HIV pathogenesis, and the animal models employed to model disease. This review will also address the tools needed to bridge the gap between disease outcomes in single infection vs. co-infection. Finally, it will elaborate on the translational benefits of single-cell sequencing in TB/HIV diagnosis in humans.
Collapse
Affiliation(s)
- Smita Kulkarni
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Janice J. Endsley
- Departments of Microbiology & Immunology and Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
- Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Department of Pediatrics, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Riti Sharan
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
31
|
Wong M, Wei Y, Ho YC. Single-cell multiomic understanding of HIV-1 reservoir at epigenetic, transcriptional, and protein levels. Curr Opin HIV AIDS 2023; 18:246-256. [PMID: 37535039 PMCID: PMC10442869 DOI: 10.1097/coh.0000000000000809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE OF REVIEW The success of HIV-1 eradication strategies relies on in-depth understanding of HIV-1-infected cells. However, HIV-1-infected cells are extremely heterogeneous and rare. Single-cell multiomic approaches resolve the heterogeneity and rarity of HIV-1-infected cells. RECENT FINDINGS Advancement in single-cell multiomic approaches enabled HIV-1 reservoir profiling across the epigenetic (ATAC-seq), transcriptional (RNA-seq), and protein levels (CITE-seq). Using HIV-1 RNA as a surrogate, ECCITE-seq identified enrichment of HIV-1-infected cells in clonally expanded cytotoxic CD4+ T cells. Using HIV-1 DNA PCR-activated microfluidic sorting, FIND-seq captured the bulk transcriptome of HIV-1 DNA+ cells. Using targeted HIV-1 DNA amplification, PheP-seq identified surface protein expression of intact versus defective HIV-1-infected cells. Using ATAC-seq to identify HIV-1 DNA, ASAP-seq captured transcription factor activity and surface protein expression of HIV-1 DNA+ cells. Combining HIV-1 mapping by ATAC-seq and HIV-1 RNA mapping by RNA-seq, DOGMA-seq captured the epigenetic, transcriptional, and surface protein expression of latent and transcriptionally active HIV-1-infected cells. To identify reproducible biological insights and authentic HIV-1-infected cells and avoid false-positive discovery of artifacts, we reviewed current practices of single-cell multiomic experimental design and bioinformatic analysis. SUMMARY Single-cell multiomic approaches may identify innovative mechanisms of HIV-1 persistence, nominate therapeutic strategies, and accelerate discoveries.
Collapse
Affiliation(s)
- Michelle Wong
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
32
|
McMyn NF, Varriale J, Fray EJ, Zitzmann C, MacLeod H, Lai J, Singhal A, Moskovljevic M, Garcia MA, Lopez BM, Hariharan V, Rhodehouse K, Lynn K, Tebas P, Mounzer K, Montaner LJ, Benko E, Kovacs C, Hoh R, Simonetti FR, Laird GM, Deeks SG, Ribeiro RM, Perelson AS, Siliciano RF, Siliciano JM. The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy. J Clin Invest 2023; 133:e171554. [PMID: 37463049 PMCID: PMC10471168 DOI: 10.1172/jci171554] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear. Recent integration site studies indicate gradual selection against inducible, intact proviruses, raising speculation that decades of ART might allow treatment interruption without viral rebound. Therefore, we measured the reservoir in 42 people on long-term ART (mean 22 years) using a quantitative viral outgrowth assay. After 7 years of ART, there was no long-term decrease in the frequency of inducible, replication-competent proviruses but rather an increase with an estimated doubling time of 23 years. Another reservoir assay, the intact proviral DNA assay, confirmed that reservoir decay with t1/2 of 44 months did not continue with long-term ART. The lack of decay reflected proliferation of infected cells. Most inducible, replication-competent viruses (79.8%) had env sequences identical to those of other isolates from the same sample. Thus, although integration site analysis indicates changes in reservoir composition, the proliferation of CD4+ T cells counteracts decay, maintaining the frequency of inducible, replication-competent proviruses at roughly constant levels over the long term. These results reinforce the need for lifelong ART.
Collapse
Affiliation(s)
- Natalie F. McMyn
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Varriale
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily J. Fray
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anushka Singhal
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Mauro A. Garcia
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brianna M. Lopez
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vivek Hariharan
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth Lynn
- The Wistar Institute, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pablo Tebas
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karam Mounzer
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, Pennsylvania, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | | | | | | | | | - Ruy M. Ribeiro
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Robert F. Siliciano
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | | |
Collapse
|
33
|
Aoko A, Pals S, Ngugi T, Katiku E, Joseph R, Basiye F, Kimanga D, Kimani M, Masamaro K, Ngugi E, Musingila P, Nganga L, Ondondo R, Makory V, Ayugi R, Momanyi L, Mambo B, Bowen N, Okutoyi S, Chun HM. Retrospective longitudinal analysis of low-level viremia among HIV-1 infected adults on antiretroviral therapy in Kenya. EClinicalMedicine 2023; 63:102166. [PMID: 37649807 PMCID: PMC10462863 DOI: 10.1016/j.eclinm.2023.102166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Background HIV low-level viremia (LLV) (51-999 copies/mL) can progress to treatment failure and increase potential for drug resistance. We analyzed retrospective longitudinal data from people living with HIV (PLHIV) on antiretroviral therapy (ART) in Kenya to understand LLV prevalence and virologic outcomes. Methods We calculated rates of virologic suppression (≤50 copies/mL), LLV (51-999 copies/mL), virologic non-suppression (≥1000 copies/mL), and virologic failure (≥2 consecutive virologic non-suppression results) among PLHIV aged 15 years and older who received at least 24 weeks of ART during 2015-2021. We analyzed risk for virologic non-suppression and virologic failure using time-dependent models (each viral load (VL) <1000 copies/mL used to predict the next VL). Findings Of 793,902 patients with at least one VL, 18.5% had LLV (51-199 cp/mL 11.1%; 200-399 cp/mL 4.0%; and 400-999 cp/mL 3.4%) and 9.2% had virologic non-suppression at initial result. Among all VLs performed, 26.4% were LLV. Among patients with initial LLV, 13.3% and 2.4% progressed to virologic non-suppression and virologic failure, respectively. Compared to virologic suppression (≤50 copies/mL), LLV was associated with increased risk of virologic non-suppression (adjusted relative risk [aRR] 2.43) and virologic failure (aRR 3.86). Risk of virologic failure increased with LLV range (aRR 2.17 with 51-199 copies/mL, aRR 3.98 with 200-399 copies/mL and aRR 7.99 with 400-999 copies/mL). Compared to patients who never received dolutegravir (DTG), patients who initiated DTG had lower risk of virologic non-suppression (aRR 0.60) and virologic failure (aRR 0.51); similarly, patients who transitioned to DTG had lower risk of virologic non-suppression (aRR 0.58) and virologic failure (aRR 0.35) for the same LLV range. Interpretation Approximately a quarter of patients experienced LLV and had increased risk of virologic non-suppression and failure. Lowering the threshold to define virologic suppression from <1000 to <50 copies/mL to allow for earlier interventions along with universal uptake of DTG may improve individual and program outcomes and progress towards achieving HIV epidemic control. Funding No specific funding was received for the analysis. HIV program support was provided by the President's Emergency Plan for AIDS Relief (PEPFAR) through the United States Centers for Disease Control and Prevention (CDC).
Collapse
Affiliation(s)
- Appolonia Aoko
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Sherri Pals
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV/TB, Center for Global Health, Atlanta, Georgia, USA
| | | | - Elizabeth Katiku
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Rachael Joseph
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Frank Basiye
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Davies Kimanga
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Maureen Kimani
- Ministry of Health Kenya, Division of Community Health, Nairobi, Kenya
| | - Kenneth Masamaro
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Evelyn Ngugi
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Paul Musingila
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Lucy Nganga
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Raphael Ondondo
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV&TB, Center for Global Health, Nairobi, Kenya
| | - Valeria Makory
- Ministry of Health Kenya, National AIDS & STI Control Program, Nairobi, Kenya
| | - Rose Ayugi
- Ministry of Health Kenya, National AIDS & STI Control Program, Nairobi, Kenya
| | - Lazarus Momanyi
- Ministry of Health Kenya, National AIDS & STI Control Program, Nairobi, Kenya
| | - Barbara Mambo
- Ministry of Health Kenya, National AIDS & STI Control Program, Nairobi, Kenya
| | - Nancy Bowen
- Ministry of Health Kenya, National Public Health Laboratory, Nairobi, Kenya
| | | | - Helen M. Chun
- U.S. Centers for Disease Control and Prevention (CDC), Division of Global HIV/TB, Center for Global Health, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Botha JC, Demirov D, Gordijn C, Katusiime MG, Bale MJ, Wu X, Wells D, Hughes SH, Cotton MF, Mellors JW, Kearney MF, van Zyl GU. The largest HIV-1-infected T cell clones in children on long-term combination antiretroviral therapy contain solo LTRs. mBio 2023; 14:e0111623. [PMID: 37530525 PMCID: PMC10470503 DOI: 10.1128/mbio.01116-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Combination antiretroviral therapy (cART) suppresses viral replication but does not cure HIV infection because a reservoir of infectious (intact) HIV proviruses persists in long-lived CD4+T cells. However, a large majority (>95%) of HIV-infected cells that persist on effective cART carry defective (non-infectious) proviruses. Defective proviruses consisting of only a single LTR (solo long terminal repeat) are commonly found as endogenous retroviruses in many animal species, but the frequency of solo-LTR HIV proviruses has not been well defined. Here we show that, in five pediatric donors whose viremia was suppressed on cART for at least 5 years, the proviruses in the nine largest clones of HIV-infected cells were solo LTRs. The sizes of five of these clones were assayed longitudinally by integration site-specific quantitative PCR. Minor waxing and waning of the clones was observed, suggesting that these clones are generally stable over time. Our findings show that solo LTRs comprise a large fraction of the proviruses in infected cell clones that persist in children on long-term cART. IMPORTANCE This work highlights that severely deleted HIV-1 proviruses comprise a significant proportion of the proviral landscape and are often overlooked.
Collapse
Affiliation(s)
| | - Dimiter Demirov
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Mary Grace Katusiime
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Michael J. Bale
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xiaolin Wu
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daria Wells
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mary F. Kearney
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | | |
Collapse
|
35
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobamibias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. RESEARCH SQUARE 2023:rs.3.rs-3259040. [PMID: 37645749 PMCID: PMC10462229 DOI: 10.21203/rs.3.rs-3259040/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bradley R Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kyle Cobamibias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nande M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, NC, USA
| | - Margaret A Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adaora Adimora
- Departments of Medicine and Epidemiology, University of North Carolina School of Medicine, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, NY, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
36
|
Sun W, Rassadkina Y, Gao C, Collens SI, Lian X, Solomon IH, Mukerji S, Yu XG, Lichterfeld M. Persistence of intact HIV-1 proviruses in the brain during antiretroviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546135. [PMID: 37425847 PMCID: PMC10327102 DOI: 10.1101/2023.06.26.546135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the central nervous system (CNS). Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | | | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Shibani Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
37
|
Gong K, Lai Y. Development trends of immune activation during HIV infection in recent three decades: a bibliometric analysis based on CiteSpace. Arch Microbiol 2023; 205:283. [PMID: 37432538 DOI: 10.1007/s00203-023-03624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
This study aimed to evaluate and pinpoint the status, hot areas, and frontiers of immune activation during HIV infection utilizing CiteSpace. From 1990 to 2022, we searched for studies on immune activation during HIV infection in the Web of Science Core Collection. CiteSpace was used to visually analyze the publications to identify the research status and pertinent research hotspots and frontiers in terms of the countries, institutions, authors, references, journals, and keywords. The Web of Science Core Collection yielded 5321 articles on immune activation during HIV infection. With 2854 and 364 articles, the United States and the University of California, San Francisco were the leading nation and institution in this domain. Steven G. Deeks has published 95 papers and is the most published author. The top cited articles on microbial translocation as a significant factor during HIV infection were published by Brenchley et al. Research on molecular/biology/genetics is often referenced in publications in the journals of molecular/biology/immunology. Inflammation, risk, mortality, cardiovascular disease, persistence, and biomarkers will be high-frequency words that are hot topics of research. According to the results, there was a strong collaboration between countries and organizations but little collaboration among authors. Molecular biology, immunology, and medicine are the main study subjects. The current hot topics in research are inflammation, risk, mortality, cardiovascular disease, persistence, and biomarkers. Future studies should concentrate on reducing the pathological changes caused by inflammation and altering the mechanisms of immune activation to reduce the size of the viral reservoir.
Collapse
Affiliation(s)
- Kang Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
38
|
Kuzmichev YV, Lackman-Smith C, Bakkour S, Wiegand A, Bale MJ, Musick A, Bernstein W, Aronson N, Ake J, Tovanabutra S, Stone M, Ptak RG, Kearney MF, Busch MP, Wonderlich ER, Kulpa DA. Application of ultrasensitive digital ELISA for p24 enables improved evaluation of HIV-1 reservoir diversity and growth kinetics in viral outgrowth assays. Sci Rep 2023; 13:10958. [PMID: 37414788 PMCID: PMC10326067 DOI: 10.1038/s41598-023-37223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023] Open
Abstract
The advent of combined antiretroviral therapy (cART) has been instrumental in controlling HIV-1 replication and transmission and decreasing associated morbidity and mortality. However, cART alone is not able to cure HIV-1 due to the presence of long-lived, latently infected immune cells, which re-seed plasma viremia when cART is interrupted. Assessment of HIV-cure strategies using ex vivo culture methods for further understanding of the diversity of reactivated HIV, viral outgrowth, and replication dynamics are enhanced using ultrasensitive digital ELISA based on single-molecule array (Simoa) technology to increase the sensitivity of endpoint detection. In viral outgrowth assays (VOA), exponential HIV-1 outgrowth has been shown to be dependent upon initial virus burst size surpassing a critical growth threshold of 5100 HIV-1 RNA copies. Here, we show an association between ultrasensitive HIV-1 Gag p24 concentrations and HIV-1 RNA copy number that characterize viral dynamics below the exponential replication threshold. Single-genome sequencing (SGS) revealed the presence of multiple identical HIV-1 sequences, indicative of low-level replication occurring below the threshold of exponential outgrowth early during a VOA. However, SGS further revealed diverse related HIV variants detectable by ultrasensitive methods that failed to establish exponential outgrowth. Overall, our data suggest that viral outgrowth occurring below the threshold necessary for establishing exponential growth in culture does not preclude replication competence of reactivated HIV, and ultrasensitive detection of HIV-1 p24 may provide a method to detect previously unquantifiable variants. These data strongly support the use of the Simoa platform in a multi-prong approach to measuring latent viral burden and efficacy of therapeutic interventions aimed at an HIV-1 cure.
Collapse
Affiliation(s)
- Yury V Kuzmichev
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Infectious Disease Research, Southern Research, Frederick, MD, USA.
| | - Carol Lackman-Smith
- Department of Infectious Disease Research, Southern Research, Frederick, MD, USA
| | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ann Wiegand
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
| | - Michael J Bale
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Musick
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
| | - Wendy Bernstein
- Uniformed Services University, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Naomi Aronson
- Uniformed Services University, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Roger G Ptak
- Department of Infectious Disease Research, Southern Research, Frederick, MD, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, NCI at Frederick, NIH, Frederick, MD, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
39
|
Zhang C, Zaman LA, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Humanized Mice for Studies of HIV-1 Persistence and Elimination. Pathogens 2023; 12:879. [PMID: 37513726 PMCID: PMC10383313 DOI: 10.3390/pathogens12070879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (S.G.)
| |
Collapse
|
40
|
Promsote W, Xu L, Hataye J, Fabozzi G, March K, Almasri CG, DeMouth ME, Lovelace SE, Talana CA, Doria-Rose NA, McKee K, Hait SH, Casazza JP, Ambrozak D, Beninga J, Rao E, Furtmann N, Birkenfeld J, McCarthy E, Todd JP, Petrovas C, Connors M, Hebert AT, Beck J, Shen J, Zhang B, Levit M, Wei RR, Yang ZY, Pegu A, Mascola JR, Nabel GJ, Koup RA. Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections. Nat Commun 2023; 14:3719. [PMID: 37349337 PMCID: PMC10287722 DOI: 10.1038/s41467-023-39265-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4+ and CD8+ T cells. Co-culturing CD4+ with autologous CD8+ T cells from ART-suppressed HIV+ donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8+ T cells. This trispecific antibody mediates CD4+ and CD8+ T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection.
Collapse
Affiliation(s)
- Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassandra G Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | | | - Joerg Birkenfeld
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- Perspix Biotech GmbH, FiZ Frankfurt Innovation Center Biotechnology, Altenhoeferallee 3, 60438, Frankfurt, Germany
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (chuv) and University of Lausanne, Lausanne, Switzerland
| | | | | | - Jeremy Beck
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | - Junqing Shen
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | - Bailin Zhang
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | | | - Ronnie R Wei
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Zhi-Yong Yang
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Gary J Nabel
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA.
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA.
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Gandhi RT, Bosch RJ, Mar H, Laird GM, Halvas EK, Hovind L, Collier AC, Riddler SA, Martin A, Ritter K, McMahon DK, Eron JJ, Cyktor JC, Mellors JW. Varied Patterns of Decay of Intact Human Immunodeficiency Virus Type 1 Proviruses Over 2 Decades of Antiretroviral Therapy. J Infect Dis 2023; 227:1376-1380. [PMID: 36763044 PMCID: PMC10474937 DOI: 10.1093/infdis/jiad039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Fourteen people with human immunodeficiency virus type 1 had longitudinal measurements of intact, defective, and total proviral DNA over the course of two decades of antiretroviral therapy. Three patterns of intact proviral DNA decay were revealed: (1) biphasic decline with markedly slower second-phase decline, (2) initial decline that transitions to a zero-slope plateau, and (3) initial decline followed by later increases in intact proviral DNA. Defective proviral DNA levels were essentially stable. Mechanisms of slowing or reversal of second-phase decay of intact proviral DNA may include the inability to clear cells with intact but transcriptionally silent proviruses and clonal expansion of cells with intact proviruses.
Collapse
Affiliation(s)
- Rajesh T Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hanna Mar
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Elias K Halvas
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laura Hovind
- Frontier Science and Technology Research Foundation, Amherst, New York, USA
| | - Ann C Collier
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sharon A Riddler
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Deborah K McMahon
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John W Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Ajibola G, Maswabi K, Hughes MD, Bennett K, Holme MP, Capparelli EV, Jean-Philippe P, Moyo S, Mohammed T, Batlang O, Sakoi M, Ricci L, Lockman S, Makhema J, Kuritzkes DR, Lichterfeld M, Shapiro RL. Brief Report: Long-Term Clinical, Immunologic, and Virologic Outcomes Among Early-Treated Children With HIV in Botswana: A Nonrandomized Controlled Clinical Trial. J Acquir Immune Defic Syndr 2023; 92:393-398. [PMID: 36729692 PMCID: PMC10006291 DOI: 10.1097/qai.0000000000003147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Early antiretroviral treatment (ART) improves outcomes in children, but few studies have comprehensively evaluated the impact of ART started from the first week of life. METHODS Children diagnosed with HIV within 96 hours of life were enrolled into the Early Infant Treatment Study in Botswana and followed on ART for 96 weeks. Nevirapine, zidovudine, and lamivudine were initiated; nevirapine was switched to lopinavir/ritonavir between weeks 2-5 in accordance with gestational age. Clinical and laboratory evaluations occurred at weeks 1, 2, 4, 8, 12, 24, 36, 48, 60, 72, 84, and 96. FINDINGS Forty children initiated ART at a median of 2 (IQR 2, 3) days of life; 38 (95%) completed follow-up through 96 weeks, and 2 (5%) died between 12 and 24 weeks. ART was well tolerated; 9 children (24%) experienced a grade 3 or 4 hematologic event, and 2 (5%) required treatment modification for anemia. The median 96-week CD4 count was 1625 (IQR 1179, 2493) cells/mm 3 with only 5/38 (13%) having absolute counts <1000 cells/mm 3 . Although 23 (61%) had at least one visit with HIV-1 RNA ≥40 copies/mL at or after 24 weeks, 28 (74%) had HIV-1 RNA <40 copies/mL at the 96-week visit. Median cell-associated HIV-1 DNA at 84/96-week PBMCs was 1.9 (IQR 1.0, 2.6) log 10 copies/10 6 cells. Pre-ART reservoir size at birth was predictive of the viral reservoir at 84/96 weeks. INTERPRETATION Initiation of ART in the first week of life led to favorable clinical outcomes, preserved CD4 cell counts, and low viral reservoir through 96 weeks of life.
Collapse
Affiliation(s)
| | - Kenneth Maswabi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Michael D. Hughes
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kara Bennett
- Bennett Statistical Consulting, Inc., Ballston Lake, NY, USA
| | - Molly Pretorius Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Oganne Batlang
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Maureen Sakoi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lucia Ricci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Mathias Lichterfeld
- Brigham and Women’s Hospital, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Roger L. Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
43
|
Kinloch NN, Shahid A, Dong W, Kirkby D, Jones BR, Beelen CJ, MacMillan D, Lee GQ, Mota TM, Sudderuddin H, Barad E, Harris M, Brumme CJ, Jones RB, Brockman MA, Joy JB, Brumme ZL. HIV reservoirs are dominated by genetically younger and clonally enriched proviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536611. [PMID: 37090500 PMCID: PMC10120704 DOI: 10.1101/2023.04.12.536611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In order to cure HIV, we need to better understand the within-host evolutionary origins of the small reservoir of genome-intact proviruses that persists within infected cells during antiretroviral therapy (ART). Most prior studies on reservoir evolutionary dynamics however did not discriminate genome-intact proviruses from the vast background of defective ones. We reconstructed within-host pre-ART HIV evolutionary histories in six individuals and leveraged this information to infer the ages of intact and defective proviruses sampled after an average >9 years on ART, along with the ages of rebound and low-level/isolated viremia occurring during this time. We observed that the longest-lived proviruses persisting on ART were exclusively defective, usually due to large deletions. In contrast, intact proviruses and rebound HIV exclusively dated to the years immediately preceding ART. These observations are consistent with genome-intact proviruses having shorter lifespans, likely due to the cumulative risk of elimination following viral reactivation and protein production. Consistent with this, intact proviruses (and those with packaging signal defects) were three times more likely to be genetically identical compared to other proviral types, highlighting clonal expansion as particularly important in ensuring their survival. By contrast, low-level/isolated viremia sequences were genetically heterogeneous and sometimes ancestral, where viremia may have originated from defective proviruses. Results reveal that the HIV reservoir is dominated by clonally-enriched and genetically younger sequences that date to the untreated infection period when viral populations had been under within-host selection pressures for the longest duration. Knowledge of these qualities may help focus strategies for reservoir elimination.
Collapse
Affiliation(s)
- Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
| | | | - Daniel MacMillan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Guinevere Q. Lee
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Talia M. Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Experimental Medicine Program, University of British Columbia, Vancouver, BC
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby BC
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
- Bioinformatics Program, University of British Columbia, Vancouver, BC
- Department of Medicine, University of British Columbia, Vancouver, BC
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC
| |
Collapse
|
44
|
White JA, Wu F, Yasin S, Moskovljevic M, Varriale J, Dragoni F, Camilo-Contreras A, Duan J, Zheng MY, Tadzong NF, Patel HB, Quiambao JMC, Rhodehouse K, Zhang H, Lai J, Beg SA, Delannoy M, Kilcrease C, Hoffmann CJ, Poulin S, Chano F, Tremblay C, Cherian J, Barditch-Crovo P, Chida N, Moore RD, Summers MF, Siliciano RF, Siliciano JD, Simonetti FR. Clonally expanded HIV-1 proviruses with 5'-leader defects can give rise to nonsuppressible residual viremia. J Clin Invest 2023; 133:165245. [PMID: 36602866 PMCID: PMC10014112 DOI: 10.1172/jci165245] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.
Collapse
Affiliation(s)
- Jennifer A White
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saif Yasin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filippo Dragoni
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jiayi Duan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Y Zheng
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Ndeh F Tadzong
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Heer B Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Jeanelle Mae C Quiambao
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Kyle Rhodehouse
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Subul A Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Delannoy
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christin Kilcrease
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher J Hoffmann
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada.,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Canada
| | - Jerald Cherian
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patricia Barditch-Crovo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha Chida
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard D Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael F Summers
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Fray EJ, Wu F, Simonetti FR, Zitzmann C, Sambaturu N, Molina-Paris C, Bender AM, Liu PT, Ventura JD, Wiseman RW, O'Connor DH, Geleziunas R, Leitner T, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023; 31:356-372.e5. [PMID: 36809762 PMCID: PMC10583177 DOI: 10.1016/j.chom.2023.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.
Collapse
Affiliation(s)
- Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | | | - Thomas Leitner
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
47
|
In-Depth Characterization of Full-Length Archived Viral Genomes after Nine Years of Posttreatment HIV Control. Microbiol Spectr 2023; 11:e0326722. [PMID: 36692300 PMCID: PMC9927157 DOI: 10.1128/spectrum.03267-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the search for control of human immunodeficiency virus type 1 (HIV-1) infection without antiretroviral therapy, posttreatment controllers (PTCs) are models of HIV remission. To better understand their mechanisms of control, we characterized the HIV blood reservoirs of 8 PTCs (median of 9.4 years after treatment interruption) in comparison with those of 13 natural HIV infection controllers (HICs) (median of 18 years of infection) and with those of individuals receiving efficient antiretroviral therapy initiated during either primary HIV infection (PHIs; n = 8) or chronic HIV infection (CHIs; n = 6). This characterization was performed with single-genome amplification and deep sequencing. The proviral diversity, which reflects the history of past viral replication, was lower in the PTCs, PHIs, and aviremic HICs than in the blipper HICs and CHIs. The proportions of intact and defective proviruses among the proviral pool in PTCs were not significantly different from those of other groups. When looking at the quantities of proviruses per million peripheral blood mononuclear cells (PBMCs), they had similar amounts of intact proviruses as other groups but smaller amounts of defective proviruses than CHIs, suggesting a role of these forms in HIV pathogenesis. Two HICs but none of the PTCs harbored only proviruses with deletion in nef; these attenuated strains could contribute to viral control in these participants. We show, for the first time, the presence of intact proviruses and low viral diversity in PTCs long after treatment interruption, as well as the absence of evolution of the proviral quasispecies in subsequent samples. This reflects low residual replication over time. Further data are necessary to confirm these results. IMPORTANCE Most people living with HIV need antiretroviral therapy to control their infection and experience viral relapse in case of treatment interruption, because of viral reservoir (proviruses) persistence. Knowing that proviruses are very diverse and most of them are defective in treated individuals, we aimed to characterize the HIV blood reservoirs of posttreatment controllers (PTCs), rare models of drug-free remission, in comparison with spontaneous controllers and treated individuals. At a median time of 9 years after treatment interruption, which is unprecedented in the literature, we showed that the proportions and quantities of intact proviruses were similar between PTCs and other individuals. Unlike 2/7 spontaneous controllers who harbored only nef-deleted proviruses, which are attenuated strains, which could contribute to their control, no such case was observed in PTCs. Furthermore, PTCs displayed low viral genetic diversity and no evolution of their reservoirs, indicating very low residual replication, despite the presence of intact proviruses.
Collapse
|
48
|
Abstract
OBJECTIVES Despite suppressive antiretroviral therapy (ART), HIV can persist in a diverse range of CD4+ T-cell subsets. Through longitudinal env sampling from people with HIV (PWH) on ART, we characterized the persistence and phenotypic properties of HIV envs over two time-points (T1 and T2). METHODS Longitudinal blood and lymphoid tissue samples were obtained from eight PWH on suppressive ART. Single genome amplification (SGA) was performed on env to understand the genetic diversity and degree of clonal expansions over time. A subset of envs were used to generate pseudovirus particles to assess sensitivity to autologous plasma IgG and broadly neutralizing antibodies (bNAbs). RESULTS Identical env sequences indicating clonal expansion persisted between T1 and T2 and within multiple T-cell subsets. At both time-points, CXCR4-tropic (X4) Envs were more prevalent in naive and central memory cells; the proportion of X4 Envs did not significantly change in each subset between T1 and T2. Autologous purified plasma IgG showed variable neutralization of Envs, with no significant difference in neutralization between R5 and X4 Envs. X4 Envs were more sensitive to neutralization with clinical bNAbs, with CD4-binding site bNAbs demonstrating high breadth and potency against Envs. CONCLUSION Our data suggest the viral reservoir in PWH on ART was predominantly maintained over time through proliferation and potentially differentiation of infected cells. We found the humoral immune response to Envs within the latent reservoir was variable between PWH. Finally, we identified coreceptor usage can influence bNAb sensitivity and may need to be considered for future bNAb immunotherapy approaches.
Collapse
|
49
|
Li M, Budai MM, Chen M, Wang J. Targeting HIV-1 reservoirs in T cell subsets. Front Immunol 2023; 14:1087923. [PMID: 36742330 PMCID: PMC9895780 DOI: 10.3389/fimmu.2023.1087923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The HIV-1 reservoirs harbor the latent proviruses that are integrated into the host genome. It is a challenging task to eradicate the proviruses in order to achieve an HIV cure. We have described a strategy for the clearance of HIV-1 infection through selective elimination of host cells harboring replication-competent HIV (SECH), by inhibition of autophagy and promotion of apoptosis during viral re-activation. HIV-1 can infect various CD4+ T cell subsets, but it is not known whether the SECH approach is equally effective in targeting HIV-1 reservoirs in these different subsets in vivo. In a humanized mouse model, we found that treatments of HIV-1 infection by suppressive antiretroviral therapy (ART) led to the establishment of latent HIV reservoirs in naïve, central memory and effector memory T cells. Moreover, SECH treatments could clear latent HIV-1 reservoirs in these different T cell subsets of humanized mice. Co-culture studies showed that T cell subsets latently infected by HIV-1, but not uninfected bystander cells, were susceptible to cell death induced by SECH treatments. Our study suggests that the SECH strategy is effective for specific targeting of latent HIV-1 reservoirs in different T cell subsets.
Collapse
Affiliation(s)
- Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Marietta M. Budai
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, United States
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
50
|
Lian X, Seiger KW, Parsons EM, Gao C, Sun W, Gladkov GT, Roseto IC, Einkauf KB, Osborn MR, Chevalier JM, Jiang C, Blackmer J, Carrington M, Rosenberg ES, Lederman MM, McMahon DK, Bosch RJ, Jacobson JM, Gandhi RT, Peluso MJ, Chun TW, Deeks SG, Yu XG, Lichterfeld M. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy. Cell Host Microbe 2023; 31:83-96.e5. [PMID: 36596305 PMCID: PMC9839361 DOI: 10.1016/j.chom.2022.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023]
Abstract
HIV-1 establishes a life-long reservoir of virally infected cells which cannot be eliminated by antiretroviral therapy (ART). Here, we demonstrate a markedly altered viral reservoir profile of long-term ART-treated individuals, characterized by large clones of intact proviruses preferentially integrated in heterochromatin locations, most prominently in centromeric satellite/micro-satellite DNA. Longitudinal evaluations suggested that this specific reservoir configuration results from selection processes that promote the persistence of intact proviruses in repressive chromatin positions, while proviruses in permissive chromosomal locations are more likely to be eliminated. A bias toward chromosomal integration sites in heterochromatin locations was also observed for intact proviruses in study participants who maintained viral control after discontinuation of antiretroviral therapy. Together, these results raise the possibility that antiviral selection mechanisms during long-term ART may induce an HIV-1 reservoir structure with features of deep latency and, possibly, more limited abilities to drive rebound viremia upon treatment interruptions.
Collapse
Affiliation(s)
- Xiaodong Lian
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kyra W Seiger
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth M Parsons
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ce Gao
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Gregory T Gladkov
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Kevin B Einkauf
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew R Osborn
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Joshua M Chevalier
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jane Blackmer
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric S Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Ronald J Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Rajesh T Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael J Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xu G Yu
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|