1
|
Zareie P, Weiss ES, Kaplan DH, Mackay LK. Cutaneous T cell immunity. Nat Immunol 2025:10.1038/s41590-025-02145-3. [PMID: 40335684 DOI: 10.1038/s41590-025-02145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/13/2025] [Indexed: 05/09/2025]
Abstract
The skin is the primary barrier against environmental insults, safeguarding the body from mechanical, chemical and pathogenic threats. The frequent exposure of the skin to environmental challenges requires an immune response that incorporates a sophisticated combination of defenses. Tissue-resident lymphocytes are pivotal for skin immunity, working in tandem with commensal bacteria to maintain immune surveillance and homeostasis, as well as participating in the pathogenesis of several skin diseases. Indeed, it has been estimated that the human skin harbors nearly twice as many T cells as found in the circulation. Effective treatment of skin diseases and new therapy development require a thorough understanding of the complex interactions among skin tissue, immune cells and the microbiota, which together regulate the skin's immune balance. This Review explores the latest developments and understanding of this critical barrier organ, with a specific focus on the role of skin-resident T cells.
Collapse
Affiliation(s)
- Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Eric S Weiss
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Fry LG, Washam CL, Roys H, Bowlin AK, Venugopal G, Bird JT, Byrum SD, Weinkopff T. HIF-α signaling regulates the macrophage inflammatory response during Leishmania major infection. Front Immunol 2025; 16:1487311. [PMID: 40191198 PMCID: PMC11969800 DOI: 10.3389/fimmu.2025.1487311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Cutaneous leishmaniasis (CL) contributes significantly to the global burden of neglected tropical diseases, with 12 million people currently infected with Leishmania parasites. CL encompasses a range of disease manifestations, from self-healing skin lesions to permanent disfigurations. Currently there is no vaccine available, and many patients are refractory to treatment, emphasizing the need for new therapeutic targets. Previous work demonstrated macrophage HIF-α-mediated lymphangiogenesis is necessary to achieve efficient wound resolution during murine L. major infection. Here, we investigate the role of macrophage HIF-α signaling independent of lymphangiogenesis. We sought to determine the relative contributions of the parasite and the host-mediated inflammation in the lesional microenvironment to myeloid HIF-α signaling. Because HIF-α activation can be detected in infected and bystander macrophages in leishmanial lesions, we hypothesize it is the host's inflammatory response and microenvironment, rather than the parasite, that triggers HIF-α activation. To address this, macrophages from mice with intact HIF-α signaling (LysMCreARNTf/+) or mice with deleted HIF-α signaling (LysMCreARNTf/f) were subjected to RNASequencing after L. major infection and under pro-inflammatory stimulus. We report that L. major infection alone is enough to induce some minor HIF-α-dependent transcriptomic changes, while infection with L. major in combination with pro-inflammatory stimuli induces numerous transcriptomic changes that are both dependent and independent of HIF-α signaling. Additionally, by coupling transcriptomic analysis with several pathway analyses, we found HIF-α suppresses pathways involved in protein translation during L. major infection in a pro-inflammatory environment. Together these findings show L. major induces a HIF-α-dependent transcriptomic program, but HIF-α only suppresses protein translation in a pro-inflammatory environment. Thus, this work indicates the host inflammatory response, rather than the parasite, largely contributes to myeloid HIF-α signaling during Leishmania infection.
Collapse
Affiliation(s)
- Lucy G. Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anne K. Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jordan T. Bird
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Liu B, Gu Y, Ou Y, Liu L, Wang W, Zhou J, Wang Y, Du Y, Xie J, Liu Y, Zhang R, Zuo Q, Wang B. Protection conferred by mucosal novel bivalent Klebsiella pneumoniae vaccine immunization associates with presence of lung CD4 + T RM. Microbes Infect 2025:105483. [PMID: 40081566 DOI: 10.1016/j.micinf.2025.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumoniae is the principal cause of hospital-acquired infection with a high morbidity and mortality in immunocompromised individuals, yet no vaccine is approved. Here, we developed a novel bivalent subunit vaccine for the prevention of K. pneumoniae infection based on the outer membrane protein GlnH and the fimbriae protein FimA. The survival rate of immunized mice was significantly increased compared to that of unimmunized mice, while the bacterial burden, weight loss, and lung pathology were drastically reduced. Furthermore, vaccine-elicited CD4+ TRM cells were observed in lung tissues and appeared to play a critical role in vaccine efficacy. Transcriptomic analysis of total lung tissues from mice treated by FTY720 (S1PR1 inhibitor that blocks lymphocyte egress from secondary lymphoid structures) showed that cell activation, cytokine secretion and enhancement of the killing ability of neutrophils were related to the mechanism of protection against K. pneumoniae infection. These findings indicate that GlnH and FimA are effective candidate bivalent vaccine to fight K. pneumoniae infection.
Collapse
Affiliation(s)
- BiXia Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China
| | - YaRu Gu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 401320, PR China
| | - YangXue Ou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - LuXuan Liu
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - WenHao Wang
- College of Pharmacy, Henan University, Kaifeng, 475001, PR China
| | - JinRui Zhou
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China
| | - Ying Wang
- 953rd Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University, Shigatse, 857000, PR China
| | - YeXiang Du
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Jing Xie
- Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China
| | - Yuan Liu
- Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China
| | - Rui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China; Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China.
| | - QianFei Zuo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Bin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
4
|
Ma X, Zhao H, Song JK, Zhang Z, Gao CJ, Luo Y, Ding XJ, Xue TT, Zhang Y, Zhang MJ, Zhou M, Wang RP, Kuai L, Li B. Retracing from Outcomes to Causes: NRF2-Driven GSTA4 Transcriptional Regulation Controls Chronic Inflammation and Oxidative Stress in Atopic Dermatitis Recurrence. J Invest Dermatol 2025; 145:334-345.e11. [PMID: 38879155 DOI: 10.1016/j.jid.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy owing to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from patients with AD. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and ROS production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.
Collapse
Affiliation(s)
- Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Jie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting-Ting Xue
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Jie Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Fry LG, Washam CL, Roys H, Bowlin AK, Venugopal G, Bird JT, Byrum SD, Weinkopff T. HIF-α signaling regulates the macrophage inflammatory response during Leishmania major infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.605844. [PMID: 39253467 PMCID: PMC11383058 DOI: 10.1101/2024.08.27.605844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Cutaneous leishmaniasis (CL) contributes significantly to the global burden of neglected tropical diseases, with 12 million people currently infected with Leishmania parasites. CL encompasses a range of disease manifestations, from self-healing skin lesions to permanent disfigurations. Currently there is no vaccine available, and many patients are refractory to treatment, emphasizing the need for new therapeutic targets. Previous work demonstrated macrophage HIF-α-mediated lymphangiogenesis is necessary to achieve efficient wound resolution during murine L. major infection. Here, we investigate the role of macrophage HIF-α signaling independent of lymphangiogenesis. We sought to determine the relative contributions of the parasite and the host-mediated inflammation in the lesional microenvironment to myeloid HIF-α signaling. Because HIF-α activation can be detected in infected and bystander macrophages in leishmanial lesions, we hypothesize it is the host's inflammatory response and microenvironment, rather than the parasite, that triggers HIF-α activation. To address this, macrophages from mice with intact HIF-α signaling (LysM Cre ARNT f/+ ) or mice with deleted HIF-α signaling (LysM Cre ARNT f/f ) were subjected to RNASequencing after L. major infection and under pro-inflammatory stimulus. We report that L. major infection alone is enough to induce some minor HIF-α-dependent transcriptomic changes, while infection with L. major in combincation with pro-inflammatory stimuli induces numerous transcriptomic changes that are both dependent and independent of HIF-α signaling. Additionally, by coupling transcriptomic analysis with several pathway analyses, we found HIF-α suppresses pathways involved in protein translation during L. major infection in a pro-inflammatory environment. Together these findings show L. major induces a HIF-α-dependent transcriptomic program, but HIF-α only suppresses protein translation in a pro-inflammatory environment. Thus, this work indicates the host inflammatory response, rather than the parasite, largely contributes to myeloid HIF-α signaling during Leishmania infection.
Collapse
|
7
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Tedla MG, Nahar MF, Every AL, Scheerlinck JPY. The Immune Memory Response of In Vitro-Polarised Th1, Th2, and Th17 Cells in the Face of Ovalbumin-Transgenic Leishmania major in a Mouse Model. Int J Mol Sci 2024; 25:8753. [PMID: 39201440 PMCID: PMC11354729 DOI: 10.3390/ijms25168753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Th1 and Th2 cytokines determine the outcome of Leishmania major infection and immune protection depends mainly on memory T cells induced during vaccination. This largely hinges on the nature and type of memory T cells produced. In this study, transgenic Leishmania major strains expressing membrane-associated ovalbumin (mOVA) and soluble ovalbumin (sOVA) were used as a model to study whether fully differentiated Th1/Th2 and Th17 cells can recall immune memory and tolerate pathogen manipulation. Naïve OT-II T cells were polarised in vitro into Th1/Th2 cells, and these cells were transferred adoptively into recipient mice. Following the transferral of the memory cells, the recipient mice were challenged with OVA transgenic Leishmania major and a wild-type parasite was used a control. The in vitro-polarised T helper cells continued to produce the same cytokine signatures after being challenged by both forms of OVA-expressing Leishmania major parasites in vivo. This suggests that antigen-experienced cells remain the same or unaltered in the face of OVA-transgenic Leishmania major. Such ability of these antigen-experienced cells to remain resilient to manipulation by the parasite signifies that vaccines might be able to produce immune memory responses and defend against parasitic immune manipulation in order to protect the host from infection.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Department of Pediatrics, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Musammat F. Nahar
- Department of Health Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alison L. Every
- Australian Academy of Technological Sciences and Engineering, Forrest, ACT 2603, Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
9
|
Pu J, Zhao Z, Duan Y, Lu J, Yao Y, Wen Y, Li Y, Zhang Y, Ye F. Causal role of immune cells in uveitis: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1445775. [PMID: 39144656 PMCID: PMC11322614 DOI: 10.3389/fmed.2024.1445775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background Uveitis refers to a group inflammation affecting the uvea, retina, retinal blood vessels as well as vitreous body, which is one of the common causes of blindness. There is growing evidence linking different types of immune cells to uveitis, although it remains uncertain if these associations imply causal relationships. Recent advancements in high-density genetic markers like SNPs or CNVs for genotyping, along with the progress in genome-wide association studies (GWAS) technologies, have improved our understanding of the immunological mechanisms involved in ocular diseases. Therefore, our objective was to investigate the potential causal link between immune cells and uveitis using a Mendelian randomization study. Methods The exposure and outcome GWAS data for this study were sourced from an open-access database (https://gwas.mrcieu.ac.uk/). Two-sample MR analysis was utilized to evaluate the causal relationship between 731 immune cell features and uveitis. Various MR methods were employed to reduce bias and obtain dependable estimates of the causal link between the immune cell variables and the outcomes. Instrumental variable selection criteria were carefully chosen to enhance the accuracy and efficacy of the causal relationship between different immune cell types and the risk of uveitis. Results Using two-sample MR, IVW modeling showed that GAD had significant effect on immunophenotypes. CD3 levels on CD45RA- CD4+ T cells (OR = 1.087, 95%CI = 1.029 ~ 1.147, p = 0.003) and CD3 levels on CM CD4+ T cells (OR = 1.086, 95%CI = 1.033 ~ 1.141, p = 0.001) were found to be elevated in cases of uveitis. HLA DR levels in CD14- CD16+ monocyte cells (OR = 0.735, 95% CI = 0.635 ~ 0.850, p < 0.001) and HLA DR levels in NK cells (OR = 0.910, 95% CI = 0.851 ~ 0.972, p = 0.005) were observed to be reduced in individuals with uveitis. Furthermore, Two cells were identified to be significantly associated with uveitis risk: HLA DR on in NK cells (OR = 0.938, 95%CI = 0.899 ~ 0.979, p = 0.003), HLA DR on CD14- CD16+ monocytes (OR = 0.924, 95%CI = 0.878 ~ 0.972, p = 0.002). Conclusion This study highlights the intricate relationship between immune cells and generalized anxiety disorder using genetic methods, offering valuable insights for future clinical investigations.
Collapse
Affiliation(s)
- Jianping Pu
- Department of Ophthalmology, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhuanghong Zhao
- Department of Ophthalmology, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yanping Duan
- Department of Ophthalmology, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Lu
- Department of Pathology, Kunming Maternal and Children Hospital, Kunming, Yunnan, China
| | - Yuchen Yao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yuxin Wen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yanxun Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fengyu Ye
- Department of Ophthalmology, Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
10
|
Story ME, Ferris LK, Mathers AR. Resident memory T cells in dirty mice suppress innate cell activation and infiltration into the skin following stimulation with alarmins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602963. [PMID: 39071349 PMCID: PMC11275811 DOI: 10.1101/2024.07.11.602963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Trm cells are sequestered at barrier tissues as a swift first line defense against peripheral reinfections in both antigen dependent and antigen independent bystander modes. Trm cells are also capable of mediating autoimmune diseases, such as psoriasis, wherein autoreactive Trm cells are aberrantly activated. To quickly combat infections, activated Trm cells can stimulate the influx and activation of memory T cells and innate immune cells. However, there is significant heterogeneity in the inflammatory responses that Trm cell populations can induce, specifically in the activation of the innate profile. Most studies to date have utilized a reductionist approach to examine single Trm populations, specific pathogens, and defined tissues. Herein, we adopted a more holistic approach utilizing barrier-free 'dirty' mice to profile activated innate cells attracted to the skin in the presence of quiescent cutaneous Trm cells. Notably, dirty mice are a more human predictive model due to having a diverse microbial experience that leads to the development of a complete complement of Trm cells in the skin. We demonstrate that in the dirty mouse model mice have a significant reduction in cutaneous neutrophils and monocytes compared to SPF mice following local treatment with two separate innate stimuli. These findings reveal that cutaneous Trm cells have the capacity to temper the innate immune response and further substantiate the implication that Trm cells are heterogenous in their functions depending in large part on their tissue residency. However, in an autoimmune microenvironment Trm cells are capable of recruiting innate cells to the site of an exposure to a damage-associated molecular pattern. Likely due to the imbalance of IL-17 and IFN-γ.
Collapse
Affiliation(s)
- Meaghan E. Story
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura K. Ferris
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alicia R. Mathers
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
11
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
12
|
Layouni S, Remadi L, Kidar A, Chaâbane-Banaoues R, Haouas N, Babba H. Clinical polymorphism of zoonotic cutaneous leishmaniasis: combination of the clinical and the parasitological diagnosis. Parasitol Res 2024; 123:238. [PMID: 38856772 DOI: 10.1007/s00436-024-08263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease caused by Leishmania (L.) major. This zoonosis is characterized by a broad-spectrum clinical polymorphism and may be underestimated and poorly treated since it is a simulator of various dermatoses. The aim of our study was to analyze the clinical polymorphism of patients with ZCL. A total of 142 patients with confirmed CL based on the microscopic examination of skin lesion biopsies were included in this study. Molecular typing of Leishmania species revealed that all patients were infected with L. major. In total, 14 clinical forms were observed. Six were typical and eight were atypical. The typical ZCL forms are grouped as follows: papular (26.76%), ulcero-crusted (26.05%), ulcerated (13.38%), impetiginous (9.86%), nodular (9.15%), and papulo-nodular (5.63%) lesions. In atypical ZCL forms, we described erythematous (2.81%), erysipeloid (1.4%), sporotrichoid, (1.4%), keratotic (0.7%) lupoid (0.7%), lichenoid (0.7%), psoriasiform (0.7%), and zosteriform (0.7%) lesions. Here, the lichenoid and the keratotic forms caused by L. major were reported for the first time in Tunisia. These findings will help physicians to be aware of the unusual lesions of ZCL that could be confused with other dermatological diseases. For this reason, it will be necessary to improve the diagnosis of CL especially in endemic areas. Such large clinical polymorphism caused by L. major may be the result of a complex association between the vector microbiota, the parasite, and the host immune state, and further studies should be carried out in order to reveal the mechanisms involved in clinical polymorphism of ZCL.
Collapse
Affiliation(s)
- Samia Layouni
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
- Department of Nutrition and Environmental Sciences, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia.
| | - Latifa Remadi
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Laboratory of Molecular Entomology, Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
| | | | - Raja Chaâbane-Banaoues
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Najoua Haouas
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
13
|
Bamra T, Shafi T, Das S, Kumar M, Das P. Leishmania donovani mevalonate kinase regulates host actin for inducing phagocytosis. Biochimie 2024; 220:31-38. [PMID: 38123120 DOI: 10.1016/j.biochi.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Despite the well-established role of macrophages in phagocytosing Leishmania, the contribution of the parasite to this process is not well understood. Present study provides insights into the mechanism underlying the MVK-induced entry of L. donovani and improve our knowledge of host-pathogen interactions. We have discussed Mevalonate kinase (MVK)-induced actin reorganization, modulation of signaling pathways and host cell functions. Our results show that LdMVK gains access to macrophage cytosol and induces actin assembly modulation through the activation of actin-related proteins: VASP, Src and ERM. We have also demonstrated that LdMVK induces Ca2+ signaling and Akt pathway in macrophages, which are critical components of Leishmania survival and proliferation. Interestingly, we found that antibodies against LdMVK can kill Leishmania-infected macrophages in culture by forming extracellular traps, highlighting the potential of LdMVK in inhibiting parasite death. Overall, LdMVK is a virulent factor in Leishmania that mediates parasite internalization and host modulation by targeting host proteins phosphorylation and calcium homeostasis having significant implications in disease progression.
Collapse
Affiliation(s)
- Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India.
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India.
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Beleghata, Kolkata, West Bengal, 700 010, India.
| |
Collapse
|
14
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
16
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
17
|
Shah F, Giri PS, Bharti AH, Dwivedi M. Compromised melanocyte survival due to decreased suppression of CD4 + & CD8 + resident memory T cells by impaired TRM-regulatory T cells in generalized vitiligo patients. Exp Dermatol 2024; 33:e14982. [PMID: 37994568 DOI: 10.1111/exd.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Regulatory T cells (Tregs) are involved in the suppression of activated T cells in generalized vitiligo (GV). The study was aimed to investigate resident memory (TRM)-Tregs and antigen-specific Tregs' numbers and functional defects in 25 GV patients and 20 controls. CD4+ & CD8+ TRM cell proliferation was assessed by BrDU assay; production of IL-10, TGF-β, IFN-γ, perforin and granzyme B were assessed by ELISA and enumeration of TRM cells was done by flowcytometry. GV patients showed significantly increased frequency and absolute count of CD4+ & CD8+ TRM cells in lesional (L), perilesional (PL) and non-lesional (NL) skin compared to controls (p = 0.0003, p = 0.0029 & p = 0.0115, respectively & p = 0.0003, p = 0.003 & p = 0.086, respectively). Whereas, TRM-Treg (p < 0.0001 & p = 0.0015) and antigen-specific Tregs (p = 0.0014 & p = 0.003) exhibited significantly decreased frequency and absolute counts in L & PL skin. GV patients showed reduced suppression of CD8+ & CD4+ TRM cells (with increased IFN-γ, perforin & granzyme B) and decreased TRM-Tregs and antigen-specific Tregs (with decreased IL-10 & TGF-β production) and reduced proliferation of SK-Mel-28 cells in co-culture systems. Immunohistochemistry revealed increased expression of TRM stimulating cytokines: IL-15 & IL-17A and reduced expression of TGF-β & IL-10 in L, PL, NL skins compared to controls. These results for the first time suggest that decreased and impaired TRM-Tregs and antigen-specific Tregs are unable to suppress CD4+ & CD8+ TRMs' cytotoxic function and their proliferation due to decrease production of immunosuppressive cytokines (IL-10 & TGF-β) and increased production of TRM based IFN-γ, perforin and granzyme B production, thus compromising the melanocyte survival in GV.
Collapse
Affiliation(s)
- Firdosh Shah
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, India
| | - Prashant S Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, India
| | | | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, India
| |
Collapse
|
18
|
Hafezi Ahmadi MR, Mamizadeh M, Siamian D, Touyeh MAA, Shams M, Rashidi Y. Immunoinformatic Analysis of Leishmania Major gp46 Protein and Potential Targets for Vaccination against Leishmaniasis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:129-139. [PMID: 38318831 DOI: 10.2174/0127722708283588240124095057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is a parasitic disease with a significant burden in the Old World countries. OBJECTIVE In the current study, some of the primary biochemical properties and IFN-γ inducing epitopes with specific binding capacity to human and mouse MHC alleles were predicted for Leishmania major gp46 antigenic protein. METHODS Several online servers were used to predict physico-chemical traits, allergenicity, antigenicity, transmembrane domain and signal peptide, subcellular localization, post-translational modifications (PTMs), secondary and tertiary structures, tertiary model refining with validations. Also, IEDB web server was used to predict mouse/human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes. RESULTS The 33.25 kDa protein was stable, hydrophilic, antigenic, while non-allergenic, with enhanced thermotolerance and 45 PTM sites. The secondary structure encompassed a random coil, followed by extended strands and helices. Ramachandran-based analysis of the refined model showed 73.1%, 21.6%, 3.4% and 1.9% of residues in the most favored, additional allowed, generously-allowed and disallowed regions, respectively. Epitope screening demonstrated 4 HTL epitopes against seemingly protective HLA alleles, 5 HTL epitopes against the HLA reference set, 3 human CTL epitopes and a number of mouse MHC-restricted epitopes. CONCLUSION This paper provides insights into the bioinformatics characteristics of the L. major gp46 protein as a promising vaccine candidate.
Collapse
Affiliation(s)
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Davood Siamian
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Mehdi Ali Asghari Touyeh
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Yasaman Rashidi
- Veterinary Student, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| |
Collapse
|
19
|
Saidi N, Blaizot R, Prévot G, Aoun K, Demar M, Cazenave PA, Bouratbine A, Pied S. Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Front Immunol 2023; 14:1134020. [PMID: 37575260 PMCID: PMC10421664 DOI: 10.3389/fimmu.2023.1134020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 08/15/2023] Open
Abstract
Cutaneous leishmaniasis (CL) caused by infection with the parasite Leishmania exhibits a large spectrum of clinical manifestations ranging from single healing to severe chronic lesions with the manifestation of resistance or not to treatment. Depending on the specie and multiple environmental parameters, the evolution of lesions is determined by a complex interaction between parasite factors and the early immune responses triggered, including innate and adaptive mechanisms. Moreover, lesion resolution requires parasite control as well as modulation of the pathologic local inflammation responses and the initiation of wound healing responses. Here, we have summarized recent advances in understanding the in situ immune response to cutaneous leishmaniasis: i) in North Africa caused by Leishmania (L.) major, L. tropica, and L. infantum, which caused in most cases localized autoresolutives forms, and ii) in French Guiana resulting from L. guyanensis and L. braziliensis, two of the most prevalent strains that may induce potentially mucosal forms of the disease. This review will allow a better understanding of local immune parameters, including cellular and cytokines release in the lesion, that controls infection and/or protect against the pathogenesis in new world compared to old world CL.
Collapse
Affiliation(s)
- Nasreddine Saidi
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
| | - Romain Blaizot
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Centre National de Référence des Leishmanioses, Laboratoire Associé, Hôpital Andrée Rosemon, Cayenne, French Guiana, France
- Service de Dermatologie, Hôpital de Cayenne, Cayenne, French Guiana, France
| | - Ghislaine Prévot
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| | - Karim Aoun
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
- Service de Parasitologie-Mycologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Magalie Demar
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
- Centre National de Référence des Leishmanioses, Laboratoire Associé, Hôpital Andrée Rosemon, Cayenne, French Guiana, France
- Service de Dermatologie, Hôpital de Cayenne, Cayenne, French Guiana, France
| | - Pierre André Cazenave
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| | - Aida Bouratbine
- Laboratoire de Recherche, LR 16-IPT-06, Parasitoses Médicales, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, Université Tunis El-Manar, Tunis, Tunisia
- Service de Parasitologie-Mycologie, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sylviane Pied
- Univ. Lille, Univ. French Guiana, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
20
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
21
|
Abstract
Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II-peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.
Collapse
Affiliation(s)
- Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Valadares DG, Clay OS, Chen Y, Scorza BM, Cassel SL, Sutterwala FS, Wilson ME. NLRP12-expressing dendritic cells mediate both dissemination of infection and adaptive immune responses in visceral leishmaniasis. iScience 2023; 26:106163. [PMID: 36879824 PMCID: PMC9985045 DOI: 10.1016/j.isci.2023.106163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023] Open
Abstract
The NLR protein NLRP12 contributes to innate immunity, but the mechanism remains elusive. Infection of Nlrp12 -/- or wild-type mice with Leishmania infantum led to aberrant parasite tropism. Parasites replicated to higher levels in livers of Nlrp12 -/- mice than in the livers of WT mice and failed to disseminate to spleens. Most retained liver parasites resided in dendritic cells (DCs), with correspondingly fewer infected DCs in spleens. Furthermore, Nlrp12 -/- DCs expressed lower CCR7 than WT DCs, failed to migrate toward CCL19 or CCL21 in chemotaxis assays, and migrated poorly to draining lymph nodes after sterile inflammation. Leishmania-infected Nlpr12 -/- DCs were significantly less effective at transporting parasites to lymph nodes than WT DCs. Consistently, adaptive immune responses were also impaired in infected Nlrp12 -/- mice. We hypothesize that Nlrp12-expressing DCs are required for efficient dissemination and immune clearance of L. infantum from the site of initial infection. This is at least partly due to the defective expression of CCR7.
Collapse
Affiliation(s)
- Diogo Garcia Valadares
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Owen Scott Clay
- Department of Pediatrics, Division of Pediatric Rheumatology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yani Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna Mary Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Suzanne Louise Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fayyaz Shiraz Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mary Edythe Wilson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Veterans’ Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Parween F, Singh SP, Zhang HH, Kathuria N, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Myers TG, Farber JM. Chemokine positioning determines mutually exclusive roles for their receptors in extravasation of pathogenic human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525561. [PMID: 36789428 PMCID: PMC9928044 DOI: 10.1101/2023.01.25.525561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.
Collapse
Affiliation(s)
- Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Nausheen Kathuria
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Francisco A. Otaizo-Carrasquero
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Paul J. Gardina
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hernan A. Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy G. Myers
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
24
|
Beyzay F, Zavaran Hosseini A, Hazrati A, Karimi M, Soudi S. Autophagy induced macrophages by α-alumina(α-AL2O3) conjugated cysteine peptidase, enhances the cytotoxic activity of CD8 + T lymphocytes against Leishmania major. BIOIMPACTS : BI 2023; 13:393-403. [PMID: 37736336 PMCID: PMC10509742 DOI: 10.34172/bi.2023.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 09/23/2023]
Abstract
Introduction Induction of a protective immune response against Leishmania major requires the activation of both TH1 and CD8+ T lymphocytes. Because L. major is an intra-phagosomal parasite, its antigens do not have access to MHC-I. The present study aimed to evaluate the effect of cysteine peptidase A (CPA)/cysteine peptidase B (CPB) conjugated to α-AL2O3 on autophagy induction in L. major infected macrophages and subsequent activation of cytotoxic CD8+ T lymphocytes. Methods Recombinant CPA and CPB of L. major were produced in expression vectors and purified. Aldehyde functionalized α-AL2O3 were conjugated to hydrazine-modified CPA/CPB by a chemical bond was confirmed by Fourier-transform infrared spectroscopy (FTIR). The High efficient internalization of α-AL2O3 conjugated CPA/CPB to macrophages was confirmed using a fluorescence microscope and flowcytometry. Induction of the acidic autophagosome and LC3 conversion in macrophages was determined by acridine orange (AO) staining and western blot. Autophagy-activated macrophages were used for CD8+ T cell priming. Cytotoxic activity of the primed CD8+ T cell against L. major infected macrophages was measured using apoptosis assay. Results α-AL2O3 conjugated CPA/CPB enhances macrophages antigen uptake and increases acidic vacuole formation and LC-3I to LC-3II conversion. Co-culture of autophagy-activated macrophages with CD8+ T cells augmented CD8+ T cells priming and proliferation more than in other study groups. These primed CD8+ T cells induce significant apoptotic death of L. major infected macrophages compared with non-primed CD8+ T cells. Conclusion α-AL2O3 nanoparticles enhance the cross-presentation of L. major antigens to CD8+ T cells by inducing autophagy. This finding supports the positive role of autophagy and encourages the use of α-AL2O3 in vaccine design.
Collapse
Affiliation(s)
- Fatemeh Beyzay
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Novel approaches to preventing phagosomal infections: timing is key. Trends Immunol 2023; 44:22-31. [PMID: 36494273 DOI: 10.1016/j.it.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Prophylactic vaccination strategies designed to prevent diseases caused by pathogens using the phagolysosome of innate immune cells as a site of intracellular replication and survival have been largely ineffective. These include Mycobacterium tuberculosis (Mtb), Leishmania spp., and Cryptococcus spp. These failed strategies have traditionally targeted CD4+ T helper (Th) 1 cell-mediated immune memory, deeming it crucial for vaccine efficacy. This failure warrants an investigation of alternative mediators of protection. Here, we suggest three novel approaches to activate phagocytic cells prior to or at the time of infection. We hypothesize that preventing the formation of the pathogen niche within the phagolysosome is essential for preventing disease, and a greater emphasis on the timing of phagocyte activation should generate more effective prophylactic treatment options.
Collapse
|
26
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
27
|
Advancements in the characterization of tissue resident memory T cells in skin disease. Clin Immunol 2022; 245:109183. [DOI: 10.1016/j.clim.2022.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
28
|
Jha B, Reverte M, Ronet C, Prevel F, Morgenthaler FD, Desponds C, Lye LF, Owens KL, Scarpellino L, Dubey LK, Sabine A, Petrova TV, Luther SA, Beverley SM, Fasel N. In and out: Leishmania metastasis by hijacking lymphatic system and migrating immune cells. Front Cell Infect Microbiol 2022; 12:941860. [PMID: 36034709 PMCID: PMC9414205 DOI: 10.3389/fcimb.2022.941860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
The lymphatic system plays a crucial role in mounting immune response against intracellular pathogens, and recent studies have documented its role in facilitating tumor dissemination linked largely with cancer cells. However, in mucocutaneous leishmaniasis (MCL) caused by Leishmania Viannia subgenus showing infectious metastasis and resulting in severe distant secondary lesions, the route of escape of these parasites to secondary sites has not yet been investigated in detail. Our results demonstrated that when infection was associated with inflammation and additionally exacerbated by the presence of dsRNA viral endosymbiont (LRV1), lymphatic vessels could serve as efficient routes for infected cells to egress from the primary site and colonize distant organs. We challenged this hypothesis by using the intracellular Leishmania protozoan parasites Leishmania guyanensis (Lgy) associated with or without a dsRNA viral endosymbiont, exacerbating the infection and responsible for a strong inflammatory response, and favoring metastasis of the infection. We analyzed possible cargo cells and the routes of dissemination through flow cytometry, histological analysis, and in vivo imaging in our metastatic model to show that parasites disseminated not only intracellularly but also as free extracellular parasites using migrating immune cells, lymph nodes (LNs), and lymph vessels, and followed intricate connections of draining and non-draining lymph node to finally end up in the blood and in distant skin, causing new lesions.
Collapse
Affiliation(s)
- Baijayanti Jha
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Marta Reverte
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Catherine Ronet
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Florence Prevel
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Katherine L. Owens
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | | | - Lalit Kumar Dubey
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Centre for Microvascular Research, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Amélie Sabine
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Epalinges, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Epalinges, Switzerland
| | - Sanjiv A. Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Stephen M. Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Nicolas Fasel
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel,
| |
Collapse
|
29
|
Ismail N, Karmakar S, Bhattacharya P, Sepahpour T, Takeda K, Hamano S, Matlashewski G, Satoskar AR, Gannavaram S, Dey R, Nakhasi HL. Leishmania Major Centrin Gene-Deleted Parasites Generate Skin Resident Memory T-Cell Immune Response Analogous to Leishmanization. Front Immunol 2022; 13:864031. [PMID: 35419001 PMCID: PMC8996177 DOI: 10.3389/fimmu.2022.864031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen -/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.
Collapse
Affiliation(s)
- Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Telly Sepahpour
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Kazuyo Takeda
- Laboratory of Clinical Hematology, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abhay R Satoskar
- Department of Pathology and Microbiology, Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
30
|
Zhao Z, Zhu H, Li Q, Liao W, Chen K, Yang M, Long D, He Z, Zhao M, Wu H, Lu Q. Skin CD4+ Trm cells distinguish acute cutaneous lupus erythematosus from localized discoid lupus erythematosus/subacute cutaneous lupus erythematosus and other skin diseases. J Autoimmun 2022; 128:102811. [DOI: 10.1016/j.jaut.2022.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022]
|
31
|
Hasan MH, Beura LK. Cellular interactions in resident memory T cell establishment and function. Curr Opin Immunol 2022; 74:68-75. [PMID: 34794039 PMCID: PMC8901561 DOI: 10.1016/j.coi.2021.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Tissue resident memory T cells (TRM) are enriched in non-lymphoid tissues and represent a formidable barrier against invading pathogens and tumors. TRM are armed with deployment ready effector molecules which combined with their frontline location allows them to be early organizing centers of our immune defense. Despite their autonomous nature, TRM rely on careful collaboration with other immune and non-immune cells located within the barrier organ to exert their superior protective role. Here, we highlight recent studies focusing on cellular interactions that regulate TRM establishment and function. A deeper understanding of these processes is instrumental in designing new means to target TRM for desirable outcomes in infectious diseases, cancers and autoimmunity.
Collapse
Affiliation(s)
- Mohammad H. Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, United States
| | - Lalit K. Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, United States,Corresponding author Please send all correspondence to
| |
Collapse
|
32
|
Nguyen NDNT, Guleed S, Olsen AW, Follmann F, Christensen JP, Dietrich J. Th1/Th17 T cell Tissue-Resident Immunity Increases Protection, But Is Not Required in a Vaccine Strategy Against Genital Infection With Chlamydia trachomatis. Front Immunol 2021; 12:790463. [PMID: 34925371 PMCID: PMC8674352 DOI: 10.3389/fimmu.2021.790463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The requirement for vaccine-induced tissue-resident immunity for protection against one or repeated infections with Chlamydia trachomatis (C.t.) is still not fully resolved. In this study, our aim was to investigate to which degree tissue-resident Th1/Th17 T cells in the genital tract (GT) could add to the protection mediated by circulating immunity. Out of several mucosal vaccine strategies, a strategy termed SIM (for simultaneous intrauterine and parenteral immunization with CAF01 adjuvanted CTH522), was superior in generating genital tract tissue-resident Th1/Th17 T cell immunity. This led to a faster and stronger local CD4 T cell response post infection, consisting of multifunctional IFNγ/TNFα-producing Th1 T cells and IFNγ/TNFα/IL-17-producing Th17 T cells, and a faster recruitment of innate immune cells. Post infection, SIM animals showed an additional significant reduction in bacterial levels compared to mice having received only a parenteral vaccine. Nevertheless, the parenteral strategy reduced bacterial levels by 75%, and interestingly, post infection, these mice generated their own vaccine-derived genital tract tissue-resident memory Th1/Th17 T cells, which upon a subsequent infection showed as fast an activation in the genital tract, as observed in SIM mice. Furthermore, in contrast to after the first infection, both groups of mice now showed a similar infection-induced boost in local vaginal IgA and IgG titers. Thus, vaccine-induced resident immunity, generated pre-infection, led to an advantage in the response against the first infection, but not the second infection, suggesting that a parenteral vaccine strategy is a suitable vaccine strategy against infections with Chlamydia trachomatis.
Collapse
Affiliation(s)
| | - Safia Guleed
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
33
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
34
|
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021; 12:748325. [PMID: 34712235 PMCID: PMC8546207 DOI: 10.3389/fimmu.2021.748325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Timur Oljuskin
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
35
|
Yuan R, Yu J, Jiao Z, Li J, Wu F, Yan R, Huang X, Chen C. The Roles of Tissue-Resident Memory T Cells in Lung Diseases. Front Immunol 2021; 12:710375. [PMID: 34707601 PMCID: PMC8542931 DOI: 10.3389/fimmu.2021.710375] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
The unique environment of the lungs is protected by complex immune interactions. Human lung tissue-resident memory T cells (TRM) have been shown to position at the pathogen entry points and play an essential role in fighting against viral and bacterial pathogens at the frontline through direct mechanisms and also by orchestrating the adaptive immune system through crosstalk. Recent evidence suggests that TRM cells also play a vital part in slowing down carcinogenesis and preventing the spread of solid tumors. Less beneficially, lung TRM cells can promote pathologic inflammation, causing chronic airway inflammatory changes such as asthma and fibrosis. TRM cells from infiltrating recipient T cells may also mediate allograft immunopathology, hence lung damage in patients after lung transplantations. Several therapeutic strategies targeting TRM cells have been developed. This review will summarize recent advances in understanding the establishment and maintenance of TRM cells in the lung, describe their roles in different lung diseases, and discuss how the TRM cells may guide future immunotherapies targeting infectious diseases, cancers and pathologic immune responses.
Collapse
Affiliation(s)
- Rui Yuan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiao Jiao
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinfei Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rongkai Yan
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojie Huang
- Department Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
36
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
37
|
Volpedo G, Huston RH, Holcomb EA, Pacheco-Fernandez T, Gannavaram S, Bhattacharya P, Nakhasi HL, Satoskar AR. From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Rev Vaccines 2021; 20:1431-1446. [PMID: 34511000 DOI: 10.1080/14760584.2021.1969231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Leishmaniasis is a major public health problem and the second most lethal parasitic disease in the world due to the lack of effective treatments and vaccines. Even when not lethal, leishmaniasis significantly affects individuals and communities through life-long disabilities, psycho-sociological trauma, poverty, and gender disparity in treatment. AREAS COVERED This review discusses the most relevant and recent research available on Pubmed and GoogleScholar highlighting leishmaniasis' global impact, pathogenesis, treatment options, and lack of effective control strategies. An effective vaccine is necessary to prevent morbidity and mortality, lower health care costs, and reduce the economic burden of leishmaniasis for endemic low- and middle-income countries. Since there are several forms of leishmaniasis, a pan-Leishmania vaccine without geographical restrictions is needed. This review also focuses on recent advances and common challenges in developing prophylactic strategies against leishmaniasis. EXPERT OPINION Despite advances in pre-clinical vaccine research, approval of a human leishmaniasis vaccine still faces major challenges - including manufacturing of candidate vaccines under Good Manufacturing Practices, developing well-designed clinical trials suitable in endemic countries, and defined correlates of protection. In addition, there is a need to explore Challenge Human Infection Model to avoid large trials because of fluctuating incidence and prevalence of leishmanasis.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ryan H Huston
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Erin A Holcomb
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021; 10:cells10092355. [PMID: 34572004 PMCID: PMC8471972 DOI: 10.3390/cells10092355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Adaptive cellular immunity plays a major role in clearing microbial invasion of mucosal tissues in mammals. Following the clearance of primary pathogens, memory lymphocytes are established both systemically and locally at pathogen entry sites. Recently, resident memory CD8 T and B cells (TRM and BRM respectively), which are parked mainly in non-lymphoid mucosal tissues, were characterized and demonstrated to be essential for protection against secondary microbial invasion. Here we reviewed the current understanding of the cellular and molecular cues regulating CD8 TRM and BRM development, maintenance and function. We focused particularly on elucidating the role of a novel tissue-resident helper T (TRH) cell population in assisting TRM and BRM responses in the respiratory mucosa following viral infection. Finally, we argue that the promotion of TRH responses by future mucosal vaccines would be key to the development of successful universal influenza or coronavirus vaccines, providing long-lasting immunity against a broad spectrum of viral strains.
Collapse
Affiliation(s)
- Young Min Son
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: or
| |
Collapse
|
39
|
Hohman LS, Mou Z, Carneiro MB, Ferland G, Kratofil RM, Kubes P, Uzonna JE, Peters NC. Protective CD4+ Th1 cell-mediated immunity is reliant upon execution of effector function prior to the establishment of the pathogen niche. PLoS Pathog 2021; 17:e1009944. [PMID: 34543348 PMCID: PMC8483310 DOI: 10.1371/journal.ppat.1009944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Intracellular infection with the parasite Leishmania major features a state of concomitant immunity in which CD4+ T helper 1 (Th1) cell-mediated immunity against reinfection coincides with a chronic but sub-clinical primary infection. In this setting, the rapidity of the Th1 response at a secondary site of challenge in the skin represents the best correlate of parasite elimination and has been associated with a reversal in Leishmania-mediated modulation of monocytic host cells. Remarkably, the degree to which Th1 cells are absolutely reliant upon the time at which they interact with infected monocytes to mediate their protective effect has not been defined. In the present work, we report that CXCR3-dependent recruitment of Ly6C+ Th1 effector (Th1EFF) cells is indispensable for concomitant immunity and acute (<4 days post-infection) Th1EFF cell-phagocyte interactions are critical to prevent the establishment of a permissive pathogen niche, as evidenced by altered recruitment, gene expression and functional capacity of innate and adaptive immune cells at the site of secondary challenge. Surprisingly, provision of Th1EFF cells after establishment of the pathogen niche, even when Th1 cells were provided in large quantities, abrogated protection, Th1EFF cell accumulation and IFN-γ production, and iNOS production by inflammatory monocytes. These findings indicate that protective Th1 immunity is critically dependent on activation of permissive phagocytic host cells by preactivated Th1EFF cells at the time of infection.
Collapse
Affiliation(s)
- Leah S. Hohman
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Zhirong Mou
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matheus B. Carneiro
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Gabriel Ferland
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| | - Rachel M. Kratofil
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jude E. Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Zou Y, Yuan H, Zhou S, Zhou Y, Zheng J, Zhu H, Pan M. The Pathogenic Role of CD4+ Tissue-Resident Memory T Cells Bearing T Follicular Helper-Like Phenotype in Pemphigus Lesions. J Invest Dermatol 2021; 141:2141-2150. [DOI: 10.1016/j.jid.2021.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
|
41
|
Emmanuel T, Mistegård J, Bregnhøj A, Johansen C, Iversen L. Tissue-Resident Memory T Cells in Skin Diseases: A Systematic Review. Int J Mol Sci 2021; 22:ijms22169004. [PMID: 34445713 PMCID: PMC8396505 DOI: 10.3390/ijms22169004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
In health, the non-recirculating nature and long-term persistence of tissue-resident memory T cells (TRMs) in tissues protects against invading pathogens. In disease, pathogenic TRMs contribute to the recurring traits of many skin diseases. We aimed to conduct a systematic literature review on the current understanding of the role of TRMs in skin diseases and identify gaps as well as future research paths. EMBASE, PubMed, SCOPUS, Web of Science, Clinicaltrials.gov and WHO Trials Registry were searched systematically for relevant studies from their inception to October 2020. Included studies were reviewed independently by two authors. This study was conducted in accordance with the PRISMA-S guidelines. This protocol was registered with the PROSPERO database (ref: CRD42020206416). We identified 96 studies meeting the inclusion criteria. TRMs have mostly been investigated in murine skin and in relation to infectious skin diseases. Pathogenic TRMs have been characterized in various skin diseases including psoriasis, vitiligo and cutaneous T-cell lymphoma. Studies are needed to discover biomarkers that may delineate TRMs poised for pathogenic activity in skin diseases and establish to which extent TRMs are contingent on the local skin microenvironment. Additionally, future studies may investigate the effects of current treatments on the persistence of pathogenic TRMs in human skin.
Collapse
|
42
|
Shah F, Patel S, Begum R, Dwivedi M. Emerging role of Tissue Resident Memory T cells in vitiligo: From pathogenesis to therapeutics. Autoimmun Rev 2021; 20:102868. [PMID: 34118458 DOI: 10.1016/j.autrev.2021.102868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Vitiligo is an acquired depigmenting disorder which affects both skin and mucous membranes and autoimmunity has been strongly suggested to play a role in loss of melanocytes. The recurrence of skin macules at the same sites where they were observed prior to the treatment, suggests the existence of Tissue Resident Memory T cells (TRMs) that persist within the skin or peripheral tissues with a longer survivability. Emerging studies have shown that reactivation of these skin TRMs results into autoreactive TRM cells in various autoimmune diseases including vitiligo. This review focuses on different subsets (CD8+ TRMs and CD4+ TRMs) of TRM cells, their retention and survivability in the skin along with their pathomechanisms leading to melanocyte death and progression of vitiligo. In addition, the review describes the TRM cells as potential targets for developing effective therapeutics of vitiligo.
Collapse
Affiliation(s)
- Firdosh Shah
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India
| | - Shivani Patel
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India.
| |
Collapse
|
43
|
Zayats R, Uzonna JE, Murooka TT. Visualizing the In Vivo Dynamics of Anti- Leishmania Immunity: Discoveries and Challenges. Front Immunol 2021; 12:671582. [PMID: 34093571 PMCID: PMC8172142 DOI: 10.3389/fimmu.2021.671582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.
Collapse
Affiliation(s)
- Romaniya Zayats
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E. Uzonna
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Rady Faculty of Health Sciences, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
44
|
Elmahallawy EK, Alkhaldi AAM, Saleh AA. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed Pharmacother 2021; 139:111671. [PMID: 33957562 DOI: 10.1016/j.biopha.2021.111671] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniasis, a neglected parasitic disease caused by a unicellular protozoan of the genus Leishmania, is transmitted through the bite of a female sandfly. The disease remains a major public health problem and is linked to tropical and subtropical regions, with an endemic picture in several regions, including East Africa, the Mediterranean basin and South America. The different causative species display a diversity of clinical presentations; therefore, the immunological data on leishmaniasis are both scarce and controversial for the different forms and infecting species of the parasite. The present review highlights the main immune parameters associated with leishmaniasis that might contribute to a better understanding of the pathogenicity of the parasite and the clinical outcomes of the disease. Our aim was to provide a concise overview of the immunobiology of the disease and the factors that influence it, as this knowledge may be helpful in developing novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt.
| | | | - Amira A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Zgazig, Egypt
| |
Collapse
|
45
|
Hirahara K, Kokubo K, Aoki A, Kiuchi M, Nakayama T. The Role of CD4 + Resident Memory T Cells in Local Immunity in the Mucosal Tissue - Protection Versus Pathology. Front Immunol 2021; 12:616309. [PMID: 33968018 PMCID: PMC8097179 DOI: 10.3389/fimmu.2021.616309] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2021] [Indexed: 01/12/2023] Open
Abstract
Memory T cells are crucial for both local and systemic protection against pathogens over a long period of time. Three major subsets of memory T cells; effector memory T (TEM) cells, central memory T (TCM) cells, and tissue-resident memory T (TRM) cells have been identified. The most recently identified subset, TRM cells, is characterized by the expression of the C-type lectin CD69 and/or the integrin CD103. TRM cells persist locally at sites of mucosal tissue, such as the lung, where they provide frontline defense against various pathogens. Importantly, however, TRM cells are also involved in shaping the pathology of inflammatory diseases. A number of pioneering studies revealed important roles of CD8+ TRM cells, particularly those in the local control of viral infection. However, the protective function and pathogenic role of CD4+ TRM cells that reside within the mucosal tissue remain largely unknown. In this review, we discuss the ambivalent feature of CD4+ TRM cells in the protective and pathological immune responses. We also review the transcriptional and epigenetic characteristics of CD4+ TRM cells in the lung that have been elucidated by recent technical approaches. A better understanding of the function of CD4+ TRM cells is crucial for the development of both effective vaccination against pathogens and new therapeutic strategies for intractable inflammatory diseases, such as inflammatory bowel diseases and chronic allergic diseases.
Collapse
Affiliation(s)
- Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Chiba, Japan
| | - Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ami Aoki
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiba, Japan
| |
Collapse
|
46
|
McNolty A, Anderson H, Stryker GA, Dondji B. Investigations on the effects of anti-Leishmania major serum on the progression of Leishmania infantum infection in vivo and in vitro - implications of heterologous exposure to Leishmania spp. Parasitol Res 2021; 120:1771-1780. [PMID: 33792813 DOI: 10.1007/s00436-021-07130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by protozoa of the genus Leishmania. Twenty different species are known to cause disease in humans with varying degrees of pathology. These diseases are transmitted throughout the geographic range of phlebotomine sandflies, found between the latitudes 50°N and 40°S. This study explores antibody dependent enhancement (ADE) as the cause of disease exacerbation in heterologous exposure of L. major primed mice to L. infantum challenge. BALB/c mice received serum from L. major infected or naive mice. All mice were challenged with L. infantum and tissue parasite burdens were recorded. Animals that received anti-L. major serum exhibited significantly higher parasite burdens. Surprisingly, these parasite burdens were higher than those of mice infected with L. major and challenged with L. infantum. In vitro phagocytosis assays were carried out to measure parasite uptake in the presence of naive vs. anti-L. major serum. J774A.1 murine monocytes were cultured with either L. major or L. infantum in the presence of anti-L. major serum, naive serum, or no serum. Significantly higher rates of L. major uptake by J774A.1 cells occurred in the presence of anti-L. major serum, but no measurable increase of L. infantum phagocytosis was seen. Our results suggest that increased disease severity observed in vivo in mice previously exposed to L. major and challenged with L infantum is not a result of extrinsic ADE. We speculate that intrinsic ADE, due to biased memory T cell responses caused by Fcγ signaling, could account for disease exacerbation seen in the animal model.
Collapse
Affiliation(s)
- Alan McNolty
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.,Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA
| | - Heidi Anderson
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.,Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA
| | - Gabrielle A Stryker
- Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.
| | - Blaise Dondji
- Laboratory of Cellular Immunology & Parasitology, Department of Biological Sciences, Central Washington University, 400E, University Way, Ellensburg, WA, 98926, USA.
| |
Collapse
|
47
|
Farias Amorim C, O. Novais F, Nguyen BT, Nascimento MT, Lago J, Lago AS, Carvalho LP, Beiting DP, Scott P. Localized skin inflammation during cutaneous leishmaniasis drives a chronic, systemic IFN-γ signature. PLoS Negl Trop Dis 2021; 15:e0009321. [PMID: 33793565 PMCID: PMC8043375 DOI: 10.1371/journal.pntd.0009321] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous leishmaniasis is a localized infection controlled by CD4+ T cells that produce IFN-γ within lesions. Phagocytic cells recruited to lesions, such as monocytes, are then exposed to IFN-γ which triggers their ability to kill the intracellular parasites. Consistent with this, transcriptional analysis of patient lesions identified an interferon stimulated gene (ISG) signature. To determine whether localized L. braziliensis infection triggers a systemic immune response that may influence the disease, we performed RNA sequencing (RNA-seq) on the blood of L. braziliensis-infected patients and healthy controls. Functional enrichment analysis identified an ISG signature as the dominant transcriptional response in the blood of patients. This ISG signature was associated with an increase in monocyte- and macrophage-specific marker genes in the blood and elevated serum levels IFN-γ. A cytotoxicity signature, which is a dominant feature in the lesions, was also observed in the blood and correlated with an increased abundance of cytolytic cells. Thus, two transcriptional signatures present in lesions were found systemically, although with a substantially reduced number of differentially expressed genes (DEGs). Finally, we found that the number of DEGs and ISGs in leishmaniasis was similar to tuberculosis-another localized infection-but significantly less than observed in malaria. In contrast, the cytolytic signature and increased cytolytic cell abundance was not found in tuberculosis or malaria. Our results indicate that systemic signatures can reflect what is occurring in leishmanial lesions. Furthermore, the presence of an ISG signature in blood monocytes and macrophages suggests a mechanism to limit systemic spread of the parasite, as well as enhance parasite control by pre-activating cells prior to lesion entry.
Collapse
Affiliation(s)
- Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Fernanda O. Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ba T. Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Mauricio T. Nascimento
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Jamile Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz–Fiocruz, Salvador, Brazil
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
48
|
Novais FO, Amorim CF, Scott P. Host-Directed Therapies for Cutaneous Leishmaniasis. Front Immunol 2021; 12:660183. [PMID: 33841444 PMCID: PMC8032888 DOI: 10.3389/fimmu.2021.660183] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous leishmaniasis exhibits a wide spectrum of clinical presentations from self-resolving infections to severe chronic disease. Anti-parasitic drugs are often ineffective in the most severe forms of the disease, and in some cases the magnitude of the disease can result from an uncontrolled inflammatory response rather than unrestrained parasite replication. In these patients, host-directed therapies offer a novel approach to improve clinical outcome. Importantly, there are many anti-inflammatory drugs with known safety and efficacy profiles that are currently used for other inflammatory diseases and are readily available to be used for leishmaniasis. However, since leishmaniasis consists of a wide range of clinical entities, mediated by a diverse group of leishmanial species, host-directed therapies will need to be tailored for specific types of leishmaniasis. There is now substantial evidence that host-directed therapies are likely to be beneficial beyond autoimmune diseases and cancer and thus should be an important component in the armamentarium to modulate the severity of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
49
|
Pacheco-Fernandez T, Volpedo G, Gannavaram S, Bhattacharya P, Dey R, Satoskar A, Matlashewski G, Nakhasi HL. Revival of Leishmanization and Leishmanin. Front Cell Infect Microbiol 2021; 11:639801. [PMID: 33816344 PMCID: PMC8010169 DOI: 10.3389/fcimb.2021.639801] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis includes a spectrum of diseases ranging from debilitating cutaneous to fatal visceral infections. This disease is caused by the parasitic protozoa of the genus Leishmania that is transmitted by infected sandflies. Over 1 billion people are at risk of leishmaniasis with an annual incidence of over 2 million cases throughout tropical and subtropical regions in close to 100 countries. Leishmaniasis is the only human parasitic disease where vaccination has been successful through a procedure known as leishmanization that has been widely used for decades in the Middle East. Leishmanization involved intradermal inoculation of live Leishmania major parasites resulting in a skin lesion that following natural healing provided protective immunity to re-infection. Leishmanization is however no longer practiced due to safety and ethical concerns that the lesions at the site of inoculation that can last for months in some people. New genome editing technologies involving CRISPR has now made it possible to engineer safer attenuated strains of Leishmania, which induce protective immunity making way for a second generation leishmanization that can enter into human trials. A major consideration will be how the test the efficacy of a vaccine in the midst of the visceral leishmaniasis elimination program. One solution will be to use the leishmanin skin test (LST) that was also used for decades to determine exposure and immunity to Leishmania. The LST involves injection of antigen from Leishmania in the skin dermis resulting in a delayed type hypersensitivity (DTH) immune reaction associated with a Th1 immune response and protection against visceral leishmaniasis. Reintroduction of novel approaches for leishmanization and the leishmanin skin test can play a major role in eliminating leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| | - Abhay Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, United States
| |
Collapse
|
50
|
Tokura Y, Phadungsaksawasdi P, Kurihara K, Fujiyama T, Honda T. Pathophysiology of Skin Resident Memory T Cells. Front Immunol 2021; 11:618897. [PMID: 33633737 PMCID: PMC7901930 DOI: 10.3389/fimmu.2020.618897] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue resident memory T (TRM) cells reside in peripheral, non-lymphoid tissues such as the skin, where they act as alarm-sensor cells or cytotoxic cells. Physiologically, skin TRM cells persist for a long term and can be reactivated upon reinfection with the same antigen, thus serving as peripheral sentinels in the immune surveillance network. CD8+CD69+CD103+ TRM cells are the well-characterized subtype that develops in the epidermis. The local mediators such as interleukin (IL)-15 and transforming growth factor (TGF)-β are required for the formation of long-lived TRM cell population in skin. Skin TRM cells engage virus-infected cells, proliferate in situ in response to local antigens and do not migrate out of the epidermis. Secondary TRM cell populations are derived from pre-existing TRM cells and newly recruited TRM precursors from the circulation. In addition to microbial pathogens, topical application of chemical allergen to skin causes delayed-type hypersensitivity and amplifies the number of antigen-specific CD8+ TRM cells at challenged site. Skin TRM cells are also involved in the pathological conditions, including vitiligo, psoriasis, fixed drug eruption and cutaneous T-cell lymphoma (CTCL). The functions of these TRM cells seem to be different, depending on each pathology. Psoriasis plaques are seen in a recurrent manner especially at the originally affected sites. Upon stimulation of the skin of psoriasis patients, the CD8+CD103+CD49a- TRM cells in the epidermis seem to be reactivated and initiate IL-17A production. Meanwhile, autoreactive CD8+CD103+CD49a+ TRM cells secreting interferon-γ are present in lesional vitiligo skin. Fixed drug eruption is another disease where skin TRM cells evoke its characteristic clinical appearance upon administration of a causative drug. Intraepidermal CD8+ TRM cells with an effector-memory phenotype resident in the skin lesions of fixed drug eruption play a major contributing role in the development of localized tissue damage. CTCL develops primarily in the skin by a clonal expansion of a transformed TRM cells. CD8+ CTCL with the pagetoid epidermotropic histology is considered to originate from epidermal CD8+ TRM cells. This review will discuss the current understanding of skin TRM biology and their contribution to skin homeostasis and diseases.
Collapse
Affiliation(s)
- Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Kazuo Kurihara
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiharu Fujiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|