1
|
Kreimeyer H, Llorente C, Schnabl B. Influence of Alcohol on the Intestinal Immune System. Alcohol Res 2025; 45:03. [PMID: 40151622 PMCID: PMC11913448 DOI: 10.35946/arcr.v45.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Alcohol misuse is associated with disruption of the microbial homeostasis (dysbiosis) and microbial overgrowth in the gut, gut barrier disruption, and translocation of microbes into the systemic circulation. It also induces changes in regulatory mechanisms of the gut, which is the largest peripheral immune organ. The gut-liver axis is important for health and disease, and alterations in the intestinal immune system contribute to alcohol-associated liver disease (ALD). Understanding these changes might help discover new targets for drugs and therapeutic approaches. SEARCH METHODS A systematic literature search was conducted in PubMed, Medline, and Embase of manuscripts published between January 2000 and November 2023 using the terms ("alcohol" or "ethanol") AND ("immune" or "immunol") AND ("intestine," "colon," or "gut"). Eligible manuscripts included studies and reviews that discussed the effects of ethanol on immune cells in the intestine. SEARCH RESULTS A total of 506 publications were found in the databases on November 20, 2023. After excluding duplicates and research not covering ALD (415 articles), 91 studies were reviewed. Also included were manuscripts covering specific immune cells in the context of ALD. DISCUSSION AND CONCLUSIONS Balancing immune tolerance vs. initiating an immune response challenges the intestinal immune system. Alcohol induces disruption of the intestinal barrier, which is accompanied by a thicker mucus layer and reduced anti-microbial peptides. This leads to longer attachment of bacteria to epithelial cells and consequently greater translocation into the circulation. Bacterial translocation activates the immune system, reducing the activity of regulatory T cells and inducing T helper 17 response via a variety of pathways. The role of innate immune cells, especially Type 3 innate lymphoid cells, and of specific B- and T-cell subsets in ALD remains elusive. Gut dysbiosis, translocation of viable bacteria and bacterial products into the circulation, and changes in the intestinal barrier have been linked to immune deficiency and infections in patients with cirrhosis. Modifying the intestinal immune system could reduce intestinal inflammation and alcohol-induced liver injury. Understanding the underlying pathophysiology can help to detect new targets for drugs and design therapeutic strategies.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
- Department of Medicine, U.S. Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
2
|
Feldman C, Anderson R. Smoking, Alcohol Use, Diabetes Mellitus, and Metabolic Syndrome as Risk Factors for Community-Acquired Pneumonia. Clin Chest Med 2025; 46:93-104. [PMID: 39890295 DOI: 10.1016/j.ccm.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Community-acquired pneumonia (CAP) continues to be a cause of significant morbidity and mortality worldwide. Much recent attention in this area of research has been focused on host factors associated with the infection. This article will discuss 4 diverse, yet often coexistent conditions, namely, smoking, excessive alcohol use, diabetes mellitus, and metabolic syndrome. While all these conditions can be considered to be largely associated with lifestyle factors, they represent important risk factors for CAP. All can lead to acquired host immune suppression that underlies their risk for the development of severe CAP.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa.
| | - Ronald Anderson
- Department of Immunology, School of Medicine, University of Pretoria, PO Box 667, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Song D, Wei W, Zhang J, Zhang L, Huo J, Wang W. The mechanism of baicalin in improving pulmonary inflammatory response and injury and regulating intestinal flora in Mycoplasma pneumoniae pneumonia mice. Cell Signal 2025; 126:111530. [PMID: 39603438 DOI: 10.1016/j.cellsig.2024.111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE Mycoplasma pneumoniae (MP) is a common pathogen that can cause respiratory infections. We explored the mechanisms of baicalin (BIA) affecting pulmonary inflammation and injury and regulated their intestinal flora through the TLR4/NF-κB pathway in MP pneumonia (MPP) mice with intestinal dysbiosis. METHODS The intestinal dysbiosis and the MPP mouse models with intestinal dysbiosis were established and treated with different doses of BIA, with lung wet-to-dry weight (W/D) ratio weighed. Kits were conducted to detect MP expression and serum C-reactive protein (CRP)/INF-γ/TNF-α/IL-1β/IL-8 levels, and RT-qPCR and Western blot to determine TLR4/MyD88/NF-κBp65 levels. Lung injury was assessed using HE staining, and intestinal flora structure using 16S rDNA sequencing. Gas chromatography-mass spectrometry determined fecal short-chain fatty acid (SFCA) content. RESULTS The broad-spectrum antibiotic mixture caused enlarged cecum, increased contents, darker color, weight loss, decreased intestinal flora abundance and diversity, and intestinal flora structure imbalance in mice. The MP-infected intestinal dysbiosis mice exhibited elevated MP expression, reduced body weight, increased W/D ratio, elevated serum CRP/INF-γ/TNFα/IL-1β/IL-8 levels, as well as interstitial pneumonitis in lungs. TLR4/MyD88/NF-κB p65 were elevated in lung tissues of MPP mice with intestinal dysbiosis. BIA partially reversed pulmonary inflammation and injury, and restored the flora diversity and SCFAs in MPP mice with intestinal dysbiosis. CONCLUSION BIA attenuated pulmonary inflammation and injury and modulated their intestinal flora imbalance by inhibiting the TLR4/NF-κB pathway in MPP mice with intestinal dysbiosis.
Collapse
Affiliation(s)
- Dan Song
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Wenfeng Wei
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Jie Zhang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| | - Lu Zhang
- Heilongjiang Nursing College, Harbin 150086, Heilongjiang, China
| | - Jinhai Huo
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China.
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, 142 Sanfu Street, Xiangfang District, Harbin 150080, Heilongjiang, China
| |
Collapse
|
4
|
Cui J, Xu Z, Yu Z, Zhang Q, Liu S, Du B, Gan L, Yan C, Xue G, Feng J, Fan Z, Fu T, Feng Y, Zhao H, Ding Z, Li X, Zhang R, Cui X, Tian Z, Huang K, Wang W, Bai Y, Zhou H, Sun Y, Yang X, Wan M, Ke Y, Yuan J. High-alcohol-producing Klebsiella pneumoniae aggravates lung injury by affecting neutrophils and the airway epithelium. Cell Rep Med 2025; 6:101886. [PMID: 39753141 PMCID: PMC11866443 DOI: 10.1016/j.xcrm.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity. To further explore the potential mechanism, a murine model is established with high-dose bacteria. Kpn stimulates granular neutrophils (G0), subsequently transforming them into phagocytic neutrophils (G1). HiAlc Kpn also causes dysfunction of pyrimidine metabolism, leading to neutrophil apoptosis. These changes inhibit phagocytosis of neutrophils and possibly suppress inflammasome-dependent innate immunity. In a persistent infective murine model, HiAlc Kpn induces lung fibrosis and production of reactive oxygen species (ROS), possibly affecting epithelial cell apoptosis and lung function. The results suggest that the subtype of neutrophil is a potential biomarker for the severity of lung injury caused by HiAlc Kpn.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Qun Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiyu Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaoran Li
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Rui Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Kewu Huang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wenjun Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yu Bai
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaopeng Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehua Ke
- Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
5
|
He Z, Zheng L, Chen Z, Wen J, Qin F, Mo H. The causal association of smoking, alcohol intake, and coffee intake with the risk of bacterial pneumonia: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40702. [PMID: 39686445 PMCID: PMC11651526 DOI: 10.1097/md.0000000000040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND At present, the association of smoking, alcohol intake, and coffee intake with the risk of bacterial pneumonia (BP) remains controversial. In this study, we used a 2-sample Mendelian randomization (MR) analysis to estimate the association of smoking, alcohol intake, and coffee intake with the risk of BP. METHODS We extracted genetic variants associated with smoking initiation and cigarettes per day from the Genome-Wide Association Study and Sequencing Consortium of Alcohol and Nicotine Use database (944,625 individuals). We also extracted genetic variants associated with past tobacco smoking, alcohol intake frequency, and coffee intake from the UK Biobank database (1,316,166 individuals). BP outcomes were chosen from the FinnGen genome-wide association studies (GWAS) database (7987 patients and 188,868 controls). The inverse variance-weighted method was used primarily to calculate odds ratios (OR) and 95% confidence intervals (CI). Sensitivity analysis using different approaches such as weighted median, MR Egger, and MR pleiotropy residual sum and outlier (MR-PRESSO) have been implemented, as well as leave-one-out analysis to identify pleiotropy. RESULTS The 2-sample MR analysis supported the causal association of genetically predicted cigarettes per day (OR: 1.23, 95% CI: [1.08-1.39], P < .01] and smoking initiation (OR: 1.22, 95% CI: [1.03-1.44], P = .02) with the risk of BP, but not past tobacco smoking, alcohol intake frequency, and coffee intake. Heterogeneity (P > .05) and pleiotropy (P > .05) tests provided confirmatory evidence for the validity of our MR estimates. CONCLUSION Our findings provide relevant evidence for a favorable causal association of genetically predicted smoking initiation and cigarettes per day with BP risk. However, there may not be a causal association between past tobacco smoking, alcohol intake, and coffee intake with increased BP incidence rates.
Collapse
Affiliation(s)
- Zhendong He
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Leting Zheng
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Zhanrui Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jing Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Fang Qin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Hanyou Mo
- Department of Rheumatology and Immunology, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
6
|
Santilli A, Han Y, Yan H, Sangwan N, Cresci GAM. The Gut-Lung Axis During Ethanol Exposure and a Pseudomonas aeruginosa Bacterial Challenge. Biomedicines 2024; 12:2757. [PMID: 39767664 PMCID: PMC11673028 DOI: 10.3390/biomedicines12122757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Susceptibility to and severity of pulmonary infections increase with ethanol consumption. We have previously shown that ethanol-induced changes in the gut microbiome disrupt gut homeostasis, allowing for the translocation of proinflammatory mediators into the circulation and eliciting an immune response in the lung. Additionally, targeting the gut with butyrate supplementation not only rescues ethanol-induced disruptions to gut health but also reverses aspects of immune dysregulation in the lungs. Here, we assessed the impact of this connection on a subsequent infectious challenge. Methods: To assess if ethanol-induced alterations to the gut microbiome could also impact the host response to a pulmonary infectious challenge, we employed a chronic-binge ethanol-feeding mouse model followed by a nasal instillation of Pseudomonas aeruginosa. Results: In addition to altering gut microbiome composition and metabolism, ethanol consumption also disrupted the local immune response as demonstrated by suppressed cecal SIgA levels, a decreased presence of CD3+CD8a+ cytotoxic T cells in the proximal colon mucosa, and depleted CD3+CD8a+ T cells and CD11c+CD8a+ dendritic cells in the mesenteric lymph nodes. Circulatory Ly6G+CD11b+ neutrophils increased, indicating a systemic change in immune-cell presence with ethanol exposure. Ethanol exposure increased CD11c+CD64+ macrophages and Ly6G+CD11b+ neutrophils in the lungs, with neutrophil populations being further exacerbated during a bacterial challenge with Pseudomonas aeruginosa. Lipocalin 2, a marker of oxidative stress, was also elevated with ethanol consumption, though not with infection. Conclusions: These data suggest that ethanol-induced changes in the gut microbiome and immune environment are linked to dysfunctional immune responses in the intestine, blood, and the lungs, compromising the pulmonary immune response during an infectious challenge in mice.
Collapse
Affiliation(s)
- Anthony Santilli
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.S.)
| | - Yingchun Han
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.S.)
| | - Hannah Yan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.S.)
| | - Naseer Sangwan
- Microbial Sequencing & Analytics Resource (MSAAR) Facility, Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gail A. M. Cresci
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.S.)
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Parker D, Muhkopadyay S, Sivaraman V. Alcohol activates cannabinoid receptor 1 and 2 in a model of pathogen induced pulmonary inflammation. Toxicol Lett 2024; 401:24-34. [PMID: 39251147 PMCID: PMC11527581 DOI: 10.1016/j.toxlet.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Alcohol use disorder (AUD) is defined as patterns of alcohol misuse and affects over 30 million people in the US. AUD is a systemic disease with the epidemiology of acute lung injury and excessive alcohol use established in the literature. However, the distinct mechanisms by which alcohol induces the risk of pulmonary inflammation are less clear. A compelling body of evidence shows that cannabinoid receptors (CB1R and CB2R) play a relevant role in AUD. For this study, we investigated the role of CBR signaling in pulmonary immune activation. Using a human macrophage cell line, we evaluated the expression of CBR1 and CBR2 after cells were exposed to EtOH, +/- cannabinoid agonists and antagonists by flow cytometry. We also evaluated the expression of cannabinoid receptors from the lungs of adolescent mice exposed to acute binge EtOH +/- cannabinoid agonists and antagonists at both resting state and after microbial challenge via western blot, rt-PCR, cytokine analysis, and histology. Our results suggest that EtOH exposure modulates the expression of CBR1 and CBR2. Second, EtOH may contribute to the release of DAMPs and other proinflammatory cytokines, Finally, microbial challenge induces pulmonary inflammation in acute binge EtOH-exposed mice, and this observed immune activation may be CBR-dependent. We have shown that adolescent binge drinking primes the lung to subsequent microbial infection in adulthood and this response can be mitigated with cannabinoid antagonists. These novel findings may provide a framework for developing potential novel therapeutics in AUD research.
Collapse
MESH Headings
- Animals
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Humans
- Ethanol/toxicity
- Lung/drug effects
- Lung/metabolism
- Lung/immunology
- Lung/pathology
- Mice, Inbred C57BL
- Pneumonia/chemically induced
- Pneumonia/metabolism
- Male
- Mice
- Cytokines/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Disease Models, Animal
- Cannabinoid Receptor Agonists/pharmacology
- Binge Drinking/complications
- Binge Drinking/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- De'Jana Parker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Somnath Muhkopadyay
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
8
|
Martins FRB, Beltrami VA, Zenóbio IC, Martins DG, da Silva Gurgel IL, de Assis Rabelo Ribeiro N, Queiroz-Junior CM, Bonaventura D, Rezende BM, Teixeira MM, Pinho V, Oliveira NL, Soriani FM. Chronic ethanol exposure decreases H3K27me3 in the Il6 promoter region of macrophages and generates persistent dysfunction on neutrophils during fungal infection. Inflamm Res 2024; 73:1747-1763. [PMID: 39127870 DOI: 10.1007/s00011-024-01928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE AND DESIGN The aim of this study was to investigate the effects of ethanol exposure on epigenetic markers in bone marrow (BM) and their impact on inflammatory response during Aspergillus fumigatus infection. RESULTS Chronic ethanol exposure decreased H3K27me3 enrichment in the Il6 promoter region while increased H3K4me3 enrichment in Tnf. Chimeric mice were generated by transplanting BM from mice exposed to ethanol or water. Infection of ethanol-chimeric mice culminated in higher clinical scores, although there was no effect on mortality. However, previous chronic exposure to ethanol affects persistently the inflammatory response in lung tissue, demonstrated by increased lung damage, neutrophil accumulation and IL-6, TNF and CXCL2 production in ethanol-chimeric mice, resulting in a decreased neutrophil infiltration into the alveolar space. Neutrophil killing and phagocytosis were also significantly lower. Moreover, BM derived macrophages (BMDM) from ethanol-chimeric mice stimulated with A. fumigatus conidia exhibited higher levels of TNF, CXCL2 and IL-6 release and a higher killing activity. The Il6 promoter of BMDM from ethanol-chimeric mice exhibited a reduction in H3K27me3 enrichment, a finding also observed in BM donors exposed to ethanol. CONCLUSIONS These evidences demonstrate that prior chronic alcohol exposure of bone-marrow modify immune effector cells functions impairing the inflammatory response during A. fumigatus infection. These findings highlight the persistent impact of chronic ethanol exposure on infectious disease outcomes.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Amorim Beltrami
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Cruz Zenóbio
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Débora Gonzaga Martins
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Luísa da Silva Gurgel
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Barbara Maximino Rezende
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nathalia Luisa Oliveira
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Villageliu DN, Cunningham KC, Smith DR, Knoell DL, Mandolfo M, Wyatt TA, Samuelson DR. Natural killer cell effector function is critical for host defense against alcohol-associated bacterial pneumonia. NPJ Biofilms Microbiomes 2024; 10:79. [PMID: 39227647 PMCID: PMC11372167 DOI: 10.1038/s41522-024-00558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/25/2024] [Indexed: 09/05/2024] Open
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
Affiliation(s)
- Daniel N Villageliu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly C Cunningham
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Deandra R Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mason Mandolfo
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Veterans Affairs Nebraska, University of Nebraska Medical Center, Western Iowa Health Care System, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
10
|
Gangaiah D, Gu M, Zaparte A, Will O, Dolan LC, Goering A, Pillai J, Mane SP, Plata G, Helmes EB, Welsh DA, Mahajan AK. Effects of Limosilactobacillus reuteri strains PTA-126787 and PTA-126788 on intestinal barrier integrity and immune homeostasis in an alcohol-induced leaky gut model. Sci Rep 2024; 14:19584. [PMID: 39179898 PMCID: PMC11344072 DOI: 10.1038/s41598-024-70549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Intestinal barrier is a first line of defense that prevents entry of various harmful substances from the lumen into the systemic environment. Impaired barrier function with consequent translocation of harmful substances into systemic circulation ("leaky gut") is a central theme in many gastrointestinal, autoimmune, mental, and metabolic diseases. Probiotics have emerged as a promising strategy to maintain intestinal integrity and address "leaky gut". Using in silico, in vitro and avian in vivo analyses, we previously showed that two novel L. reuteri strains, PTA-126787 (L. reuteri 3630) and PTA-126788 (L. reuteri 3632), isolated from broiler chickens possess favorable safety profiles. Consistent with a recent study, here we show that L. reuteri 3630 and 3632 are phylogenetically similar to human L. reuteri strains. Daily administration of high doses of L. reuteri 3630 and 3632 to Sprague Dawley rats for 28 days was found to be safe with no adverse effects. More importantly, administration of L. reuteri 3630 and 3632 significantly reduced markers associated with alcohol-induced leaky gut, by downregulating inflammatory cytokines and upregulating anti-inflammatory cytokines in an alcohol model of leaky gut in mice. While L. reuteri 3630 cells and supernatant showed no activation, L. reuteri 3632 cells but not supernatant showed activation of AhR, a key transcription factor that regulates gut and immune homeostasis. L. reuteri 3630 is creamish white in morphology typical of Lactobacillus species and L. reuteri 3632 displays a unique orange pigmentation, which was stable even after passaging for 480 generations. We identified a rare polyketide biosynthetic gene cluster in L. reuteri 3632 that likely encodes for the orange-pigmented secondary metabolite. Similar to L. reuteri 3632 cells, the purified orange metabolite activated AhR. All together, these data provide evidence on the phylogenetic relatedness, safety, efficacy, and one of the likely mechanisms of action of L. reuteri 3630 and 3632 for potential probiotic applications to address "leaky gut" and associated pathologies in humans.
Collapse
Affiliation(s)
| | - Min Gu
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Aline Zaparte
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Olaf Will
- Elanco Animal Health, Inc., Alfred-Nobel-Strasse 50, 40789, Monheim Am Rhein, Germany
| | - Laurie C Dolan
- GRAS Associates, 1180 Grand Park Avenue, North Bethesda, MD, 20852, USA
| | | | - Jason Pillai
- MicroMGx, Inc., 3440 S Dearborn St, Chicago, IL, 60616, USA
| | | | - German Plata
- BiomEdit, LLC, 2710 Innovation Way, Greenfield, IN, 46140, USA
| | - Emily B Helmes
- BiomEdit, LLC, 2710 Innovation Way, Greenfield, IN, 46140, USA
| | - David A Welsh
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | | |
Collapse
|
11
|
Zhou X, Shen X, Johnson JS, Spakowicz DJ, Agnello M, Zhou W, Avina M, Honkala A, Chleilat F, Chen SJ, Cha K, Leopold S, Zhu C, Chen L, Lyu L, Hornburg D, Wu S, Zhang X, Jiang C, Jiang L, Jiang L, Jian R, Brooks AW, Wang M, Contrepois K, Gao P, Rose SMSF, Tran TDB, Nguyen H, Celli A, Hong BY, Bautista EJ, Dorsett Y, Kavathas PB, Zhou Y, Sodergren E, Weinstock GM, Snyder MP. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. Cell Host Microbe 2024; 32:506-526.e9. [PMID: 38479397 PMCID: PMC11022754 DOI: 10.1016/j.chom.2024.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
To understand the dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune, and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that microbiome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. We identify individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggesting systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals show altered microbial stability and associations among microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford, CA 94305, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK
| | - Daniel J Spakowicz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Division of Medical Oncology, Ohio State University Wexner Medical Center, James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA
| | | | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA
| | - Monica Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Honkala
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faye Chleilat
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Jingyi Chen
- Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kexin Cha
- Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shana Leopold
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chenchen Zhu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai 200240, PRC
| | - Lin Lyu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai 200240, PRC
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chao Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PRC
| | - Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PRC
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew W Brooks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meng Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alessandra Celli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bo-Young Hong
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Woody L Hunt School of Dental Medicine, Texas Tech University Health Science Center, El Paso, TX 79905, USA
| | - Eddy J Bautista
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Headquarters-Mosquera, Cundinamarca 250047, Colombia
| | - Yair Dorsett
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Paula B Kavathas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Center for Genomics and Personalized Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford, CA 94305, USA; Stanford Healthcare Innovation Labs, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Liu L, Zhu S, Zhang Y, Zhu Z, Xue Y, Liu X. Hovenia dulcis Fruit Peduncle Polysaccharides Reduce Intestinal Dysbiosis and Hepatic Fatty Acid Metabolism Disorders in Alcohol-Exposed Mice. Foods 2024; 13:1145. [PMID: 38672817 PMCID: PMC11049514 DOI: 10.3390/foods13081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol abuse can lead to alcoholic liver disease, becoming a major global burden. Hovenia dulcis fruit peduncle polysaccharides (HDPs) have the potential to alleviate alcoholic liver injury and play essential roles in treating alcohol-exposed liver disease; however, the hepatoprotective effects and mechanisms remain elusive. In this study, we investigated the hepatoprotective effects of HDPs and their potential mechanisms in alcohol-exposed mice through liver metabolomics and gut microbiome. The results found that HDPs reduced medium-dose alcohol-caused dyslipidemia (significantly elevated T-CHO, TG, LDL-C), elevated liver glycogen levels, and inhibited intestinal-hepatic inflammation (significantly decreased IL-4, IFN-γ and TNF-α), consequently reversing hepatic pathological changes. When applying gut microbiome analysis, HDPs showed significant decreases in Proteobacteria, significant increases in Firmicutes at the phylum level, increased Lactobacillus abundance, and decreased Enterobacteria abundance, maintaining the composition of gut microbiota. Further hepatic metabolomics analysis revealed that HDPs had a regulatory effect on hepatic fatty acid metabolism, by increasing the major metabolic pathways including arachidonic acid and glycerophospholipid metabolism, and identified two important metabolites-C00157 (phosphatidylcholine, a glycerophospholipid plays a central role in energy production) and C04230 (1-Acyl-sn-glycero-3-phosphocholine, a lysophospholipid involved in the breakdown of phospholipids)-involved in the above metabolism. Overall, HDPs reduced intestinal dysbiosis and hepatic fatty acid metabolism disorders in alcohol-exposed mice, suggesting that HDPs have a beneficial effect on alleviating alcohol-induced hepatic metabolic disorders.
Collapse
Affiliation(s)
- Liangyu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China;
| | - Sijie Zhu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China;
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China;
| | - Yuchao Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, China;
| | - Zhenyuan Zhu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China;
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Xudong Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China;
| |
Collapse
|
13
|
Shen M, Zhao H, Han M, Su L, Cui X, Li D, Liu L, Wang C, Yang F. Alcohol-induced gut microbiome dysbiosis enhances the colonization of Klebsiella pneumoniae on the mouse intestinal tract. mSystems 2024; 9:e0005224. [PMID: 38345382 PMCID: PMC10949497 DOI: 10.1128/msystems.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 03/20/2024] Open
Abstract
Chronic alcohol consumption, an important risk factor for diseases and deaths, can cause intestinal microbiota dysbiosis and increase the infection of some opportunistic pathogens. However, the current studies on the effects of alcohol-induced intestinal microbiota dysbiosis on gut colonization of Klebsiella pneumoniae are still scarce. In the present study, we established a binge-on-chronic alcohol model in mice to identify the characteristics of alcohol-induced intestinal microbiome and metabolite dysbiosis using multi-omics and explored the effects and potential mechanisms of these dysbioses on the intestinal colonization of K. pneumoniae. The results show that chronic alcohol consumption alters the diversity and composition of gut microbiota (including bacteria and fungi), decreases the complexity of the interaction between intestinal bacteria and fungi, disturbs the gut metabolites, and promotes the colonization of K. pneumoniae on the gut of mice. The relevance analyses find that alcohol-induced gut microbiome dysbiosis has a strong correlation with the alteration of secondary bile acids. In vitro results suggest that the high concentration of lithocholic acid, a secondary bile acid, could significantly inhibit the proliferation of K. pneumoniae, and the adhesion of K. pneumoniae to Caco-2 cells. Our results indicate that alcohol-induced microbiome dysbiosis contributes to decreased levels of secondary bile acids, which was one of the main reasons affecting the colonization of K. pneumoniae in mice's intestines. Some secondary bile acids (e.g., lithocholic acid) might be a potential drug to prevent the colonization and spread of K. pneumoniae.IMPORTANCEAlcohol is one of the most commonly misused substances in our lives. However, long-term heavy drinking will increase the colonization of some opportunistic pathogens (e.g., Klebsiella pneumoniae) in the body. Here, we revealed that binge-on-chronic alcohol consumption disrupted the balance between gut bacteria and fungi, induced the gut microbiome and metabolites dysbiosis, and promoted the colonization of K. pneumoniae in the intestine of mice. In particular, alcohol-taking disrupted intestinal bile acid metabolism and reduced the lithocholic acid concentration. However, a high concentration of lithocholic acid can protect against intestinal colonization of K. pneumoniae by inhabiting the bacterial growth and adhesion to the host cell. Hence, regulating the balance of gut microbiota and intestinal bile acid metabolism may be a potential strategy for reducing the risk of K. pneumoniae infection and spread.
Collapse
Affiliation(s)
- Mengke Shen
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Department of Pathogenic Biology and Immunology, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Meiqing Han
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Lin Su
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xiaojian Cui
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Duan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Chuansheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
14
|
Huang F, Luo M, Peng J, Liu S, He J. Opportunistic pathogens increased and probiotics or short-chain fatty acid-producing bacteria decreased in the intestinal microbiota of pneumonia inpatients during SARS-CoV-2 Omicron variant epidemic. Lett Appl Microbiol 2024; 77:ovae022. [PMID: 38402465 DOI: 10.1093/lambio/ovae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
The global pandemic of COVID-19 has been over four years, and the role of intestinal microbiota in the occurrence and development of COVID-19 needs to be further clarified. During the outbreak of SARS-CoV-2 Omicron variant in China, we analyzed the intestinal microbiome in fecal samples from inpatients with pneumonia and normal individuals in January 2023. The microbiota composition, alpha diversity, beta diversity, differential microbial community, co-occurrence networks, and functional abundance were analyzed. The results showed significant differences in microbiota composition between the two groups. In pneumonia group, the abundance of Bifidobacterium, Blautia, Clostridium, and Coprococcus decreased, while the abundance of Enterococcus, Lactobacillus, and Megamonas increased. Through LEfSe analysis, 37 marker microbiota were identified in pneumonia group. Co-occurrence network analysis found that Lachnospiraceae was critical for the interaction of intestinal microbiota, and the anti-inflammatory bacteria Blautia was negatively correlated with the pro-inflammatory bacteria Ruminococcus. Functional prediction found the up-regulation of steroid biosynthesis, geraniol degradation, and mRNA surveillance pathway in pneumonia group. In conclusion, opportunistic pathogens increased and probiotics, or short-chain fatty acid-producing bacteria, decreased in the intestinal microbiota of pneumonia inpatients during the Omicron epidemic. Blautia could be used as a probiotic in the treatment of pneumonia patients in the future.
Collapse
Affiliation(s)
- Fan Huang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Min Luo
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Jun Peng
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Shide Liu
- General Surgery Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu 610200, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Zhou X, Shen X, Johnson JS, Spakowicz DJ, Agnello M, Zhou W, Avina M, Honkala A, Chleilat F, Chen SJ, Cha K, Leopold S, Zhu C, Chen L, Lyu L, Hornburg D, Wu S, Zhang X, Jiang C, Jiang L, Jiang L, Jian R, Brooks AW, Wang M, Contrepois K, Gao P, Schüssler-Fiorenza Rose SM, Binh Tran TD, Nguyen H, Celli A, Hong BY, Bautista EJ, Dorsett Y, Kavathas P, Zhou Y, Sodergren E, Weinstock GM, Snyder MP. Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577565. [PMID: 38352363 PMCID: PMC10862915 DOI: 10.1101/2024.02.01.577565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
To understand dynamic interplay between the human microbiome and host during health and disease, we analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune and clinical markers of microbiomes from four body sites in 86 participants over six years. We found that microbiome stability and individuality are body-site-specific and heavily influenced by the host. The stool and oral microbiome were more stable than the skin and nasal microbiomes, possibly due to their interaction with the host and environment. Also, we identified individual-specific and commonly shared bacterial taxa, with individualized taxa showing greater stability. Interestingly, microbiome dynamics correlated across body sites, suggesting systemic coordination influenced by host-microbial-environment interactions. Notably, insulin-resistant individuals showed altered microbial stability and associations between microbiome, molecular markers, and clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive views of multi-site microbial dynamics and their relationship with host health and disease. Study Highlights The stability of the human microbiome varies among individuals and body sites.Highly individualized microbial genera are more stable over time.At each of the four body sites, systematic interactions between the environment, the host and bacteria can be detected.Individuals with insulin resistance have lower microbiome stability, a more diversified skin microbiome, and significantly altered host-microbiome interactions.
Collapse
|
16
|
Samuelson D, Villageliu D, Cunningham K, Smith D, Knoell D, Mandolfo M, Wyatt T. Regulation of Natural Killer Cell TGF-β and AhR Signaling Pathways Via the Intestinal Microbiota is Critical for Host Defense Against Alcohol-Associated Bacterial Pneumonia. RESEARCH SQUARE 2023:rs.3.rs-3328953. [PMID: 37886455 PMCID: PMC10602187 DOI: 10.21203/rs.3.rs-3328953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromises NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent of aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-β) signaling, while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell specific TGF-β and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.
Collapse
|
17
|
Cunningham KC, Smith DR, Villageliú DN, Ellis CM, Ramer-Tait AE, Price JD, Wyatt TA, Knoell DL, Samuelson MM, Molina PE, Welsh DA, Samuelson DR. Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia. Cells 2023; 12:2267. [PMID: 37759490 PMCID: PMC10526526 DOI: 10.3390/cells12182267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when investigating the mechanisms behind alcohol-related disorders and treatment strategies.
Collapse
Affiliation(s)
- Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel N. Villageliú
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christi M. Ellis
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Todd A. Wyatt
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA
| | - Daren L. Knoell
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mystera M. Samuelson
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Animal Behavior Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
18
|
Samuelson DR, Smith DR, Cunningham KC, Haq S, Villageliú DN, Ellis CM, Chowdhury NB, Ramer-Tait AE, Price JD, Knoell DL. The Inherited Intestinal Microbiota from Myeloid-Specific ZIP8KO Mice Impairs Pulmonary Host Defense against Pneumococcal Pneumonia. Pathogens 2023; 12:639. [PMID: 37242309 PMCID: PMC10222741 DOI: 10.3390/pathogens12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Intestinal dysbiosis increases susceptibility to infection through the alteration of metabolic profiles, which increases morbidity. Zinc (Zn) homeostasis in mammals is tightly regulated by 24 Zn transporters. ZIP8 is unique in that it is required by myeloid cells to maintain proper host defense against bacterial pneumonia. In addition, a frequently occurring ZIP8 defective variant (SLC39A8 rs13107325) is strongly associated with inflammation-based disorders and bacterial infection. In this study, we developed a novel model to study the effects of ZIP8-mediated intestinal dysbiosis on pulmonary host defense independent of the genetic effects. Cecal microbial communities from a myeloid-specific Zip8 knockout mouse model were transplanted into germ-free mice. Conventionalized ZIP8KO-microbiota mice were then bred to produce F1 and F2 generations of ZIP8KO-microbiota mice. F1 ZIP8KO-microbiota mice were also infected with S. pneumoniae, and pulmonary host defense was assessed. Strikingly, the instillation of pneumococcus into the lung of F1 ZIP8KO-microbiota mice resulted in a significant increase in weight loss, inflammation, and mortality when compared to F1 wild-type (WT)-microbiota recipients. Similar defects in pulmonary host defense were observed in both genders, although consistently greater in females. From these results, we conclude that myeloid Zn homeostasis is not only critical for myeloid function but also plays a significant role in the maintenance and control of gut microbiota composition. Further, these data demonstrate that the intestinal microbiota, independent of host genetics, play a critical role in governing host defense in the lung against infection. Finally, these data strongly support future microbiome-based interventional studies, given the high incidence of zinc deficiency and the rs13107325 allele in humans.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| | - Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| | - Daniel N. Villageliú
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Christi M. Ellis
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
| | - Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA
| | - Amanda E. Ramer-Tait
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Jeffrey D. Price
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68508, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA
| | - Daren L. Knoell
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6120, USA
| |
Collapse
|
19
|
Tian Q, Zhang T, Wang L, Ma J, Sun X. Gut dysbiosis contributes to chlamydial induction of hydrosalpinx in the upper genital tract. Front Microbiol 2023; 14:1142283. [PMID: 37125189 PMCID: PMC10133527 DOI: 10.3389/fmicb.2023.1142283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Chlamydia trachomatis is one of the most common sexually infections that cause infertility, and its genital infection induces tubal adhesion and hydrosalpinx. Intravaginal Chlamydia muridarum infection in mice can induce hydrosalpinx in the upper genital tract and it has been used for studying C. trachomatis pathogenicity. DBA2/J strain mice were known to be resistant to the chlamydial induction of hydrosalpinx. In this study, we took advantage of this feature of DBA2/J mice to evaluate the role of antibiotic induced dysbiosis in chlamydial pathogenicity. Antibiotics (vancomycin and gentamicin) were orally administrated to induce dysbiosis in the gut of DBA2/J mice. The mice with or without antibiotic treatment were evaluated for gut and genital dysbiosis and then intravaginally challenged by C. muridarum. Chlamydial burden was tested and genital pathologies were evaluated. We found that oral antibiotics significantly enhanced chlamydial induction of genital hydrosalpinx. And the antibiotic treatment induced severe dysbiosis in the GI tract, including significantly reduced fecal DNA and increased ratios of firmicutes over bacteroidetes. The oral antibiotic did not alter chlamydial infection or microbiota in the mouse genital tracts. Our study showed that the oral antibiotics-enhanced hydrosalpinx correlated with dysbiosis in gut, providing the evidence for associating gut microbiome with chlamydial genital pathogenicity.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- *Correspondence: Qi Tian,
| | - Tianyuan Zhang
- Key Lab of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Tianyuan Zhang,
| | - Luying Wang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Sun
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, Grondin JA, Kang A, D'Agostino MR, Yao Y, Jain S, Zganiacz A, Kroezen Z, Shanmuganathan M, Singh R, Dvorkin-Gheva A, Britz-McKibbin P, Khan WI, Xing Z. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol 2022; 23:1687-1702. [PMID: 36456739 PMCID: PMC9747617 DOI: 10.1038/s41590-022-01354-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Maryam Vaseghi-Shanjani
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alisha Kang
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael R D'Agostino
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yushi Yao
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Immunology, Zhejiang University, Zhejiang, China
| | - Shreya Jain
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Zganiacz
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ramandeep Singh
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, M. G. DeGroote Institute for Infectious Disease Research and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
22
|
Noack L, Bundkirchen K, Xu B, Gylstorff S, Zhou Y, Köhler K, Jantaree P, Neunaber C, Nowak AJ, Relja B. Acute Intoxication With Alcohol Reduces Trauma-Induced Proinflammatory Response and Barrier Breakdown in the Lung via the Wnt/β-Catenin Signaling Pathway. Front Immunol 2022; 13:866925. [PMID: 35663960 PMCID: PMC9159919 DOI: 10.3389/fimmu.2022.866925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Trauma is the third leading cause of mortality worldwide. Upon admission, up to 50% of traumatized patients are acutely intoxicated with alcohol, which might lead to aberrant immune responses. An excessive and uncontrolled inflammatory response to injury is associated with damage to trauma-distant organs. We hypothesize that, along with inflammation-induced apoptosis, the activation of the Wnt/β-catenin signaling pathway would cause breakdown of the lung barrier and the development of lung injury after trauma. It remains unclear whether ethanol intoxication (EI) prior to trauma and hemorrhagic shock will attenuate inflammation and organ injury. Methods In this study, 14 male C57BL/6J mice were randomly assigned to two groups and exposed either to EtOH or to NaCl as a control by an oral gavage before receiving a femur fracture (Fx) and hemorrhagic shock, followed by resuscitation (THFx). Fourteen sham animals received either EtOH or NaCl and underwent surgical procedures without THFx induction. After 24 h, oil red O staining of fatty vacuoles in the liver was performed. Histological lung injury score (LIS) was assessed to analyze the trauma-induced RLI. Gene expression of Cxcl1, Il-1β, Muc5ac, Tnf, and Tnfrsf10b as well as CXCL1, IL-1β, and TNF protein levels in the lung tissue and bronchoalveolar lavage fluid were determined by RT-qPCR, ELISA, and immunohistological analyses. Infiltrating polymorphonuclear leukocytes (PMNLs) were examined via immunostaining. Apoptosis was detected by activated caspase-3 expression in the lung tissue. To confirm active Wnt signaling after trauma, gene expression of Wnt3a and its inhibitor sclerostin (Sost) was determined. Protein expression of A20 and RIPK4 as possible modulators of the Wnt signaling pathway was analyzed via immunofluorescence. Results Significant fatty changes in the liver confirmed the acute EI. Histopathology and decreased Muc5ac expression revealed an increased lung barrier breakdown and concomitant lung injury after THFx versus sham. EI prior trauma decreased lung injury. THFx increased not only the gene expression of pro-inflammatory markers but also the pulmonary infiltration with PMNL and apoptosis versus sham, while EI prior to THFx reduced those changes significantly. EI increased the THFx-reduced gene expression of Sost and reduced the THFx-induced expression of Wnt3a. While A20, RIPK4, and membranous β-catenin were significantly reduced after trauma, they were enhanced upon EI. Conclusion These findings suggest that acute EI alleviates the uncontrolled inflammatory response and lung barrier breakdown after trauma by suppressing the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Laurens Noack
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Baolin Xu
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany.,Trauma Department, Hannover Medical School, Hannover, Germany
| | - Severin Gylstorff
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Yuzhuo Zhou
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany.,Trauma Department, Hannover Medical School, Hannover, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Aleksander J Nowak
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
Hulsebus HJ, Najarro KM, McMahan RH, Boe DM, Orlicky DJ, Kovacs EJ. Ethanol Intoxication Impairs Respiratory Function and Bacterial Clearance and Is Associated With Neutrophil Accumulation in the Lung After Streptococcus pneumoniae Infection. Front Immunol 2022; 13:884719. [PMID: 35603143 PMCID: PMC9116899 DOI: 10.3389/fimmu.2022.884719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Alcohol consumption is commonplace in the United States and its prevalence has increased in recent years. Excessive alcohol use is linked to an increased risk of infections including pneumococcal pneumonia, mostly commonly caused by Streptococcus pneumoniae. In addition, pneumonia patients with prior alcohol use often require more intensive treatment and longer hospital stays due to complications of infection. The initial respiratory tract immune response to S. pneumoniae includes the production of pro-inflammatory cytokines and chemokines by resident cells in the upper and lower airways which activate and recruit leukocytes to the site of infection. However, this inflammation must be tightly regulated to avoid accumulation of toxic by-products and subsequent tissue damage. A majority of previous work on alcohol and pneumonia involve animal models utilizing high concentrations of ethanol or chronic exposure and offer conflicting results about how ethanol alters immunity to pathogens. Further, animal models often employ a high bacterial inoculum which may overwhelm the immune system and obscure results, limiting their applicability to the course of human infection. Here, we sought to determine how a more moderate ethanol exposure paradigm affects respiratory function and innate immunity in mice after intranasal infection with 104 colony forming units of S. pneumoniae. Ethanol-exposed mice displayed respiratory dysfunction and impaired bacterial clearance after infection compared to their vehicle-exposed counterparts. This altered response was associated with increased gene expression of neutrophil chemokines Cxcl1 and Cxcl2 in whole lung homogenates, elevated concentrations of circulating granulocyte-colony stimulating factor (G-CSF), and higher neutrophil numbers in the lung 24 hours after infection. Taken together, these findings suggest that even a more moderate ethanol consumption pattern can dramatically modulate the innate immune response to S. pneumoniae after only 3 days of ethanol exposure and provide insight into possible mechanisms related to the compromised respiratory immunity seen in alcohol consumers with pneumonia.
Collapse
Affiliation(s)
- Holly J Hulsebus
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kevin M Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel H McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Devin M Boe
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Immunology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
24
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
25
|
Assefa M, Tigabu A, Belachew T, Tessema B. Bacterial profile, antimicrobial susceptibility patterns, and associated factors of community-acquired pneumonia among adult patients in Gondar, Northwest Ethiopia: A cross-sectional study. PLoS One 2022; 17:e0262956. [PMID: 35104293 PMCID: PMC8806065 DOI: 10.1371/journal.pone.0262956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Community-acquired pneumonia is associated with higher morbidity, hospitalization, and mortality in adults. Likewise, antimicrobial resistance has increased in recent decades in Ethiopia. Therefore, this study was aimed to determine the bacterial isolates, their antimicrobial susceptibility patterns, and factors associated with community-acquired pneumonia among adult patients in Gondar, Northwest Ethiopia. Materials and methods This institutional-based cross-sectional study was conducted from April to June 2021. Sociodemographic, clinical, and other relevant data were collected using a pre-tested questionnaire. A total of 312 sputum specimens were collected using sputum cups and inoculated into blood agar, chocolate agar, mannitol salt agar, and MacConkey agar plates, which were then incubated at 37°C for 24 hours. The bacterial isolates were identified based on Gram staining, colony characteristics, and biochemical tests. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Inducible clindamycin resistance among the S. aureus isolates was detected by the D-test. Data were entered using EPI data version 4.6 and analyzed using SPSS version 20. P-value ≤ 0.05 at 95% CI was considered statistically significant. Results Of 312 cases, 39.4% (n = 123; 95% CI: 34.1%–44.9%) were found to have culture-confirmed pneumonia. The most common isolates were K. pneumoniae (31.0%, n = 39), S. pneumoniae (26.2%, n = 33), and S. aureus (20.6%, n = 26). The gram-positive bacteria were susceptible to chloramphenicol (100%) and clindamycin (96.6%). Gram-negative bacteria were susceptible to gentamicin (87.5%), azithromycin (87.1%), ciprofloxacin (86.6%), and ceftriaxone (79.0%) but highly resistant to ampicillin (100%), followed by tetracycline (87.1%), doxycycline (86.4%), co-trimoxazole (80.6%), and amoxicillin-clavulanic acid (79.0%). Overall, 72.2% of the isolates were multi-drug resistant to K. pneumoniae (94.9%, n = 37), E. coli (93.8%, n = 15), and S. pneumoniae (72.7%, n = 24). Only, 7.7% of S. aureus isolates showed inducible clindamycin resistance. Aging (AOR: 3.248, 95% CI: 1.001–10.545, p = 0.050), a history of pneumonia (AOR: 7.004, 95% CI: 3.591–13.658, p = 0.001), alcohol use (AOR: 6.614, 95% CI: 3.399–12.872, p < 0.001), and overcrowded living conditions (AOR: 4.348, 95% CI: 1.964–9.624, p = 0.001) were significantly associated with culture-positive sputum. Conclusion and recommendations This study found a high prevalence of bacteria-caused community-acquired pneumonia among adults and low susceptibility to ampicillin, tetracyclines, and amoxicillin-clavulanic acid. Therefore, culture-based bacterial identification and local antibiotic susceptibility testing should be performed regularly. Additionally, new insights into vaccine coverage against highly multi-drug resistant bacteria, particularly K. pneumoniae, are necessary.
Collapse
Affiliation(s)
- Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- * E-mail:
| | - Abiye Tigabu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
26
|
Gu M, Samuelson DR, de la Rua NM, Charles TP, Taylor CM, Luo M, Siggins RW, Shellito JE, Welsh DA. Host innate and adaptive immunity shapes the gut microbiota biogeography. Microbiol Immunol 2022; 66:330-341. [PMID: 35067963 DOI: 10.1111/1348-0421.12963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiota has a fundamental role in the development and the maturation of the host immune system. Both innate and adaptive immune cells have critical functions in microbial pathogen containment and clearance, but the regulation of the commensal microbiome ecosystem in the gastrointestinal tract by these major immune cell populations is incompletely defined. We investigated the role of specific innate and adaptive immune cell in the regulation of the microbiota in the intestinal tract biogeographically. Dendritic cells, macrophages, CD4+ T-cells, CD8+ T-cells, and B-cells were depleted using monoclonal antibodies and clodronate liposomes, and the microbial communities was determined by 16S rRNA gene sequencing. With specific immune cell depletion, distinct microbiota changes were observed. In general, immune cell depleted mice had higher microbiota richness and evenness at all gut anatomical sites. At each gut segment, samples from immune cell-depleted animals clustered away from the Isotype/Liposome control mice. This was especially dramatic for small intestinal microbiota. Specifically, Enterobacteriaceae, Bacteroides acidifaciens and Mucispirillum schaedleri were highly enriched in the mucosa and lumen of the small intestine in immune cell-deficient animals. Further, the mucosal microbiota had higher microbiota evenness compared to luminal microbiota at all gut segments, and the UniFrac distance between B cell depleted and isotype control mice was the largest in duodenum followed by ileum and colon. Taken together, our data suggest that innate and adaptive immune cells specifically contribute to the regulation of the gut microbiota's biogeographical distribution along the gastrointestinal tract, and microbiota in duodenum mucosa are more responsive to host immune changes compared to other anatomical sites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Gu
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicholas M de la Rua
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Tysheena P Charles
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Judd E Shellito
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David A Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| |
Collapse
|
27
|
Samuelson DR, Smith DR, Cunningham KC, Wyatt TA, Hall SC, Murry DJ, Chhonker YS, Knoell DL. ZIP8-Mediated Intestinal Dysbiosis Impairs Pulmonary Host Defense against Bacterial Pneumonia. Int J Mol Sci 2022; 23:1022. [PMID: 35162945 PMCID: PMC8834709 DOI: 10.3390/ijms23031022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Pneumococcal pneumonia is a leading cause of morbidity and mortality worldwide. An increased susceptibility is due, in part, to compromised immune function. Zinc is required for proper immune function, and an insufficient dietary intake increases the risk of pneumonia. Our group was the first to reveal that the Zn transporter, ZIP8, is required for host defense. Furthermore, the gut microbiota that is essential for lung immunity is adversely impacted by a commonly occurring defective ZIP8 allele in humans. Taken together, we hypothesized that loss of the ZIP8 function would lead to intestinal dysbiosis and impaired host defense against pneumonia. To test this, we utilized a novel myeloid-specific Zip8KO mouse model in our studies. The comparison of the cecal microbial composition of wild-type and Zip8KO mice revealed significant differences in microbial community structure. Most strikingly, upon a S. pneumoniae lung infection, mice recolonized with Zip8KO-derived microbiota exhibited an increase in weight loss, bacterial dissemination, and lung inflammation compared to mice recolonized with WT microbiota. For the first time, we reveal the critical role of myeloid-specific ZIP8 on the maintenance of the gut microbiome structure, and that loss of ZIP8 leads to intestinal dysbiosis and impaired host defense in the lung. Given the high incidence of dietary Zn deficiency and the ZIP8 variant allele in the human population, additional investigation is warranted to improve surveillance and treatment strategies.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
| | - Todd A. Wyatt
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.C.C.); (T.A.W.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Sannette C. Hall
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.R.S.); (S.C.H.); (D.J.M.); (Y.S.C.)
| |
Collapse
|
28
|
Testino G, Vignoli T, Patussi V, Allosio P, Amendola MF, Aricò S, Baselice A, Balbinot P, Campanile V, Fanucchi T, Macciò L, Meneguzzi C, Mioni D, Parisi M, Renzetti D, Rossin R, Gandin C, Bottaro LC, Caio G, Lungaro L, Zoli G, Scafato E, Caputo F. Alcohol use disorder in the COVID-19 era: Position paper of the Italian Society on Alcohol (SIA). Addict Biol 2022; 27:e13090. [PMID: 34532923 PMCID: PMC8646667 DOI: 10.1111/adb.13090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) first emerged in China in November 2019. Most governments have responded to the COVID-19 pandemic by imposing a lockdown. Some evidence suggests that a period of isolation might have led to a spike in alcohol misuse, and in the case of patients with alcohol use disorder (AUD), social isolation can favour lapse and relapse. The aim of our position paper is to provide specialists in the alcohol addiction field, in psychopharmacology, gastroenterology and in internal medicine, with appropriate tools to better manage patients with AUD and COVID-19,considering some important topics: (a) the susceptibility of AUD patients to infection; (b) the pharmacological interaction between medications used to treat AUD and to treat COVID-19; (c) the reorganization of the Centre for Alcohol Addiction Treatment for the management of AUD patients in the COVID-19 era (group activities, telemedicine, outpatients treatment, alcohol-related liver disease and liver transplantation, collecting samples); (d) AUD and SARS-CoV-2 vaccination. Telemedicine/telehealth will undoubtedly be useful/practical tools even though it remains at an elementary level; the contribution of the family and of caregivers in the management of AUD patients will play a significant role; the multidisciplinary intervention involving experts in the treatment of AUD with specialists in the treatment of COVID-19 disease will need implementation. Thus, the COVID-19 pandemic is rapidly leading addiction specialists towards a new governance scenario of AUD, which necessarily needs an in-depth reconsideration, focusing attention on a safe approach in combination with the efficacy of treatment.
Collapse
Affiliation(s)
- Gianni Testino
- Unit of Addiction and Hepatology, Regional Centre on AlcoholASL3 San Martino HospitalGenoaItaly
| | - Teo Vignoli
- Unit of Addiction TreatmentLugo (Ravenna)Italy
| | | | | | | | - Sarino Aricò
- Gastroenterology UnitMauriziano HospitalTorinoItaly
| | | | - Patrizia Balbinot
- Unit of Addiction and Hepatology, Regional Centre on AlcoholASL3 San Martino HospitalGenoaItaly
| | | | | | | | | | | | | | - Doda Renzetti
- Department of Internal MedicineMater Dei HospitalBariItaly
| | | | - Claudia Gandin
- National Observatory on AlcoholNational Institute of HealthRomeItaly
| | | | - Giacomo Caio
- Centre for the Study and Treatment of Alcohol‐Related DiseasesDepartment of Translational Medicine, University of FerraraFerraraItaly
| | - Lisa Lungaro
- Centre for the Study and Treatment of Alcohol‐Related DiseasesDepartment of Translational Medicine, University of FerraraFerraraItaly
| | - Giorgio Zoli
- Centre for the Study and Treatment of Alcohol‐Related DiseasesDepartment of Translational Medicine, University of FerraraFerraraItaly
- Department of Internal Medicine, SS Annunziata Hospital, Cento (Ferrara)University of FerraraFerraraItaly
| | - Emanuele Scafato
- National Observatory on AlcoholNational Institute of HealthRomeItaly
| | - Fabio Caputo
- Centre for the Study and Treatment of Alcohol‐Related DiseasesDepartment of Translational Medicine, University of FerraraFerraraItaly
- Department of Internal Medicine, SS Annunziata Hospital, Cento (Ferrara)University of FerraraFerraraItaly
| |
Collapse
|
29
|
Wang J, Chen X, Li J, Ishfaq M. Gut Microbiota Dysbiosis Aggravates Mycoplasma gallisepticum Colonization in the Chicken Lung. Front Vet Sci 2021; 8:788811. [PMID: 34917672 PMCID: PMC8669392 DOI: 10.3389/fvets.2021.788811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is the pathogen that causes chronic respiratory diseases in chickens. Gut microbiota plays an important role in maintaining body health and resisting respiratory infection, but the correlation between gut microbiota and MG infection is poorly defined. Therefore, in this study, the correlation between gut microbiota and MG infection was explored by disturbing gut microbiota in chickens with antibiotic cocktail. The results showed that the gut microbiota dysbiosis impairs pulmonary immune response against MG infection. It has been noted that MG colonization in the lung was significantly increased following gut microbiota dysbiosis, and this could be reversed by intranasally administrated toll-like receptor 2 (TLR2) ligand, recombinant chicken IL-17 protein or recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) protein. In addition, the levels of short-chain fatty acids (SCFAs) and vitamin A were significantly reduced in gut microbiota dysbiosis group, however, butyric acid or vitamin A as feed additives promoted MG clearance in the lung of gut microbiota dysbiosis group via increasing TLR2/IL17/GM-CSF and host defense peptides genes expression. The present study revealed an important role of gut microbiota in the defense against MG colonization in the lung of chicken.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xueping Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang, China
| |
Collapse
|
30
|
Chen T, Wang R, Duan Z, Yuan X, Ding Y, Feng Z, Bu F, Liu L, Wang Q, Zhou J, Zhu L, Ni Q, Shi G, Chen Y. Akkermansia muciniphila Protects Against Psychological Disorder-Induced Gut Microbiota-Mediated Colonic Mucosal Barrier Damage and Aggravation of Colitis. Front Cell Infect Microbiol 2021; 11:723856. [PMID: 34722332 PMCID: PMC8551916 DOI: 10.3389/fcimb.2021.723856] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Psychological disorders are associated with increased risk of severe inflammatory bowel disease (IBD) by causing gut microbiota dysbiosis and colonic mucosal barrier damage. However, the interaction between chronic restraint stress (CRS), gut microbiota composition, and colonic mucus remains unclear. We demonstrated that mice under CRS conditions exhibited alterations in microbiota composition, disruption of colonic mucus, and aggravation of colitis. In addition, the abundance of Akkermansia muciniphila was significantly decreased in mice under CRS and UC patients with depression, and positively associated with the expression of MUC2. After antibiotic treatment, the recipient mice colonized with CRS microbiota showed barrier defects and severe colitis. Administration of Akkermansia muciniphila was found to restore colonic mucus and modify the gut microbiota. We confirm that CRS-mediated gut microbiota dysbiosis results in colonic mucosal barrier damage and aggravation of colitis. Our results suggest that A. muciniphila is expected to be a potential probiotic to protect and treat colonic mucus that is involved in IBD with psychological disorders.
Collapse
Affiliation(s)
- Tuo Chen
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Rong Wang
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenglan Duan
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaomin Yuan
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Ding
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeyu Feng
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Bu
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiong Wang
- Basic Pharmacology Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhu
- Collaborative Innovation Center for Cancer Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Ni
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guoping Shi
- Collaborative Innovation Center for Cancer Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yugen Chen
- Department of Colorectal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Hong L, Lee SM, Kim WS, Choi YJ, Oh SH, Li YL, Choi SH, Chung DH, Jung E, Kang SK, Cho CS. Synbiotics Containing Nanoprebiotics: A Novel Therapeutic Strategy to Restore Gut Dysbiosis. Front Microbiol 2021; 12:715241. [PMID: 34475865 PMCID: PMC8406803 DOI: 10.3389/fmicb.2021.715241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
A new formulation, nanoprebiotics [e.g., phthalyl pullulan nanoparticles (PPNs)], was demonstrated to enhance the antimicrobial activity of probiotics [e.g., Lactobacillus plantarum (LP)] in vitro through intracellular stimulation better than that by backbone prebiotics, which are commonly used. In this study, we aimed to investigate whether this combination would exert distinct effects as synbiotics in vivo. Synbiotics combinations of LP, pullulan, and PPNs were used as experimental treatments in a dysbiosis-induced murine model, and their restorative effect was assessed using pathogen Escherichia coli K99 challenge. Our results showed that the E. coli infection was suppressed markedly in the experimental group fed with synbiotics containing PPNs. In addition, the decrease in serum endotoxin level after synbiotics treatment suggested the reinforcement of the gut barrier. Comparison of treatment groups, including a normal control group, showed that synbiotics containing PPNs increased microbial diversity, which is a representative parameter of healthy status. Furthermore, distinct from probiotics treatment alone, synbiotics showed additive effects of enrichment of several well-known beneficial bacteria such as Lactobacillus, Bifidobacterium, and other butyrate-producing bacteria including Faecalibacterium. Collectively, our results indicate that synbiotics containing PPNs are effective at restoring gut dysbiosis, suppressing pathogenic infection, and increasing microbial diversity, suggesting that synbiotics with nanoprebiotics have the potential to be a novel strategy for ameliorating gut dysbiosis and infectious diseases.
Collapse
Affiliation(s)
- Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang-Mok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Insilico Co., Ltd., Ansan-Si, South Korea
| | - Whee-Soo Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo-Ho Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yu-Ling Li
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | | | | | | | - Sang-Kee Kang
- Institutes of Green-Bio Science & Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Samuelson DR, Gu M, Shellito JE, Molina PE, Taylor CM, Luo M, Welsh DA. Pulmonary immune cell trafficking promotes host defense against alcohol-associated Klebsiella pneumonia. Commun Biol 2021; 4:997. [PMID: 34426641 PMCID: PMC8382828 DOI: 10.1038/s42003-021-02524-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota generates many different metabolites which are critical for the regulation of host signaling pathways. In fact, a wide-range of diseases are associated with increased levels of local or systemic microbe-derived metabolites. In contrast, certain bacterial metabolites, such as tryptophan metabolites, are known to contribute to both local and systemic homeostasis. Chronic alcohol consumption is accompanied by alterations to intestinal microbial communities, and their functional capacities. However, little is known about the role of alcohol-associated dysbiosis on host defense against bacterial pneumonia. Our previous work using fecal transplantation demonstrated that alcohol-associated intestinal dysbiosis, independent of ethanol consumption, increased susceptibility to Klebsiella pneumonia. Here, we demonstrate that intestinal microbiota treatments mitigate the increased risk of alcohol-associated pneumonia. Treatment with the microbial metabolite indole or with probiotics reduced pulmonary and extrapulmonary bacterial burden, restored immune responses, and improved cellular trafficking required for host defense. Protective effects were, in part, mediated by aryl hydrocarbon receptors (AhR), as inhibition of AhR diminished the protective effects. Thus, alcohol appears to impair the production/processing of tryptophan catabolites resulting in immune dysregulation and impaired cellular trafficking. These data support microbiota therapeutics as novel strategies to mitigate the increased risk for alcohol-associated bacterial pneumonia. Samuelson et al show that alcohol impairs the production/processing of microbial metabolites, specifically tryptophan catabolites, resulting in immune dysregulation and impaired cellular trafficking for optimal host defense. The metabolite, indole, or probiotics making indole metabolites mitigate alcohol-induced susceptibility to Klebsiella-associated pneumonia, and that the mechanisms are partially dependent on AhR.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, USA. .,Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Min Gu
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judd E Shellito
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - David A Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
33
|
Luthra-Guptasarma M, Guptasarma P. Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19? Bioessays 2021; 43:e2000211. [PMID: 34213801 DOI: 10.1002/bies.202000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
We propose that hyper-inflammation (HYPi) is a ''runaway'' consequence of acute inflammation (ACUi) that arises more easily (and also abates less easily) in those who host a pre-existing chronic inflammation (CHRi), because (i) most factors involved in generating an ACUi to limit viral proliferation are already present when there is an underlying CHRi, and also because (ii) anti-inflammatory (AI) mechanisms for the abatement of ACUi (following containment of viral proliferation) are suppressed and desensitized where there is an underlying CHRi, with this causing the ACUi to spiral into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through dietary changes) have an intimate and bidirectional cause-effect relationship with CHRi. We propose that avoidance of CHRi-promoting foods and adoption of CHRi-suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral diseases, such as influenza, which are characterized by episodic and unpredictable HYPi.
Collapse
Affiliation(s)
- Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
34
|
Gu M, Samuelson DR, Taylor CM, Molina PE, Luo M, Siggins RW, Shellito JE, Welsh DA. Alcohol-associated intestinal dysbiosis alters mucosal-associated invariant T-cell phenotype and function. Alcohol Clin Exp Res 2021; 45:934-947. [PMID: 33704802 PMCID: PMC8283808 DOI: 10.1111/acer.14589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic alcohol consumption is associated with a compromised innate and adaptive immune responses to infectious disease. Mucosa-associated invariant T (MAIT) cells play a critical role in antibacterial host defense. However, whether alcohol-associated deficits in innate and adaptive immune responses are mediated by alterations in MAIT cells remains unclear. METHODS To investigate the impact of alcohol on MAIT cells, mice were treated with binge-on-chronic alcohol for 10 days and sacrificed at day 11. MAIT cells in the barrier organs (lung, liver, and intestine) were characterized by flow cytometry. Two additional sets of animals were used to examine the involvement of gut microbiota on alcohol-induced MAIT cell changes: (1) Cecal microbiota from alcohol-fed (AF) mice were adoptive transferred into antibiotic-pretreated mice and (2) AF mice were treated with antibiotics during the experiment. MAIT cells in the barrier organs were measured via flow cytometry. RESULTS Binge-on-chronic alcohol feeding led to a significant reduction in the abundance of MAIT cells in the barrier tissues. However, CD69 expression on tissue-associated MAIT cells was increased in AF mice compared with pair-fed (PF) mice. The expression of Th1 cytokines and the corresponding transcriptional factor was tissue specific, showing downregulation in the intestine and increases in the lung and liver in AF animals. Transplantation of fecal microbiota from AF mice resulted in a MAIT cell profile aligned to that of AF mouse donor. Antibiotic treatment abolished the MAIT cell differences between AF and PF animals. CONCLUSION MAIT cells in the intestine, liver, and lung are perturbed by alcohol use and these changes are partially attributable to alcohol-associated dysbiosis. MAIT cell dysfunction may contribute to alcohol-induced innate and adaptive immunity and consequently end-organ pathophysiology.
Collapse
Affiliation(s)
- Min Gu
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Derrick R. Samuelson
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Judd E. Shellito
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David A. Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Science Center, New Orleans, LA, USA
| |
Collapse
|
35
|
Yang J, Syed F, Xia Y, Sanyal A, Shah V, Chalasani N, Zheng X, Yu Q, Lou Y, Li W. Blood Biomarkers of Intestinal Epithelium Damage Regenerating Islet-derived Protein 3α and Trefoil Factor 3 Are Persistently Elevated in Patients with Alcoholic Hepatitis. Alcohol Clin Exp Res 2021; 45:720-731. [PMID: 33587293 PMCID: PMC8076084 DOI: 10.1111/acer.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heavy alcohol consumption disrupts gut epithelial integrity, leading to increased permeability of the gastrointestinal tract and subsequent translocation of microbes. Regenerating islet-derived protein 3α (REG3α) and Trefoil factor 3 (TFF3) are mainly secreted to the gut lumen by Paneth and Goblet cells, respectively, and are functionally linked to gut barrier integrity. Circulating levels of REG3α and TFF3 have been identified as biomarkers for gut damage in several human diseases. We examined whether plasma levels of REG3α and TFF3 were dysregulated and correlated with conventional markers of microbial translocation (MT) and pro-inflammatory mediators in heavy drinkers with and without alcoholic hepatitis (AH). METHODS Cross-sectional and longitudinal studies were performed to monitor plasma levels of REG3α and TFF3 in 79 AH patients, 66 heavy drinkers without liver disease (HDC), and 46 healthy controls (HC) at enrollment and at 6- and 12-month follow-ups. Spearman correlation was used to measure the relationships of REG3α and TFF3 levels with MT, disease severity, inflammation, and effects of abstinence from alcohol. RESULTS At enrollment, AH patients had significantly higher levels of REG3α and TFF3 than HDC and HC. The elevated REG3α levels were positively correlated with the 30-day fatality rate. Plasma levels of REG3α and TFF3 in AH patients differentially correlated with conventional MT markers (sCD14, sCD163, and LBP) and several highly up-regulated inflammatory cytokines/chemokines/growth factors. At follow-ups, although REG3α and TFF3 levels were decreased in AH patients with alcohol abstinence, they did not fully return to baseline levels. CONCLUSIONS Circulating levels of REG3α and TFF3 were highly elevated in AH patients and differentially correlated with AH disease severity, MT, and inflammation, thereby serving as potential biomarkers of MT and gut epithelial damage in AH patients.
Collapse
Affiliation(s)
- Jing Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ying Xia
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
36
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Esmaeil Amini M, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, Eslami S, Babaie F, Aslani S, Torkamandi S, Mohammadi H. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol 2020; 88:107024. [PMID: 33182024 DOI: 10.1016/j.intimp.2020.107024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The human gastrointestinal microbiota, also known as the gut microbiota living in the human gastrointestinal tract, has been shown to have a significant impact on several human disorders including rheumatoid arthritis, diabetes, obesity, and multiple sclerosis (MS). MS is an inflammatory disease characterized by the destruction of the spinal cord and nerve cells in the brain due to an attack of immune cells, causing a wide range of harmful symptoms related to inflammation in the central nervous system (CNS). Despite extensive studies on MS that have shown that many external and genetic factors are involved in its pathogenesis, the exact role of external factors in the pathophysiology of MS is still unclear. Recent studies on MS and experimental autoimmune encephalomyelitis (EAE), an animal model of encephalitis, have shown that intestinal microbiota may play a key role in the pathogenesis of MS. Therefore, modification of the intestinal microbiome could be a promising strategy for the future treatment of MS. In this study, the characteristics of intestinal microbiota, the relationship between intestine and brain despite the blood-brain barrier, various factors involved in intestinal microbiota modification, changes in intestinal microbial composition in MS, intestinal microbiome modification strategies, and possible use of intestinal microbiome and factors affecting it have been discussed.
Collapse
Affiliation(s)
- Mohammad Esmaeil Amini
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Bakhshi
- Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements & Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Babaie
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
38
|
Abstract
Gut microbiota are known to impact multiple organs including the lung. The cross talk between gut microbes and lungs, termed as the "gut-lung axis," is vital for immune response and homeostasis in the airways. In this chapter, we summarized the coordinated development of microorganisms in the gut and lung, exogenous and endogenous factors related to the cross talk, the mechanisms of the gut-lung axis and their dysbiosis in lung diseases. Although the current understanding of the gut-lung axis is in its infancy, several gut microbiota-associated strategies have been designed to treat and prevent lung diseases.
Collapse
|
39
|
Ronis MJ, Mercer KE, Shankar K, Pulliam C, Pedersen K, Ingelman-Sundberg M, Friso S, Samuelson D, Del Valle L, Taylor C, Welsh DA. Potential role of gut microbiota, the proto-oncogene PIKE (Agap2) and cytochrome P450 CYP2W1 in promotion of liver cancer by alcoholic and nonalcoholic fatty liver disease and protection by dietary soy protein. Chem Biol Interact 2020; 325:109131. [PMID: 32417163 DOI: 10.1016/j.cbi.2020.109131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
We have previously demonstrated promotion of diethylnitrosamine (DEN) initiated liver tumorigenesis after feeding diets high in fat or ethanol (EtOH) to male mice. This was accompanied by hepatic induction of the proto-oncogene PIKE (Agap2). Switch of dietary protein from casein to soy protein isolate (SPI) significantly reduced tumor formation in these models. We have linked EtOH consumption in mice to microbial dysbiosis. Adoptive transfer studies demonstrate that microbiota from mice fed ethanol can induce hepatic steatosis in the absence of ethanol suggesting that microbiota or the microbial metabolome play key roles in development of fatty liver disease. Feeding SPI significantly changed gut bacteria in mice increasing alpha diversity (P < 0.05) and levels of Clostidiales spp. Feeding soy formula to piglets also resulted in significant changes in microbiota, the pattern of bile acid metabolites and in inhibition of the intestinal-hepatic FXR/FGF19-SHP pathway which has been linked to both steatosis and hepatocyte proliferation. Moreover, feeding SPI also resulted in induction of hepatic PPARα signaling and inhibition of PIKE mRNA expression coincident with inhibition of steatosis and cancer prevention. Feeding studies in the DEN model with differing dietary fats demonstrated tumor promotion specific to the saturated fat, cocoa butter relative to diets containing olive oil or corn oil associated with microbial dysbiosis including dramatic increases in Lachnospiraceae particularly from the genus Coprococcus. Immunohistochemical analysis demonstrated that tumors from EtOH-fed mice and patients with alcohol-associated HCC also expressed high levels of a novel cytochrome P450 enzyme CYP2W1. Additional adoptive transfer experiments and studies in knockout mice are required to determine the exact relationship between soy effects on the microbiota, expression of PIKE, CYP2W1, PPARα activation and prevention of tumorigenesis.
Collapse
Affiliation(s)
- Martin J Ronis
- Louisiana State University Health Sciences Center, New Orleans, USA.
| | | | | | - Casey Pulliam
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - Kim Pedersen
- Louisiana State University Health Sciences Center, New Orleans, USA
| | | | | | | | - Luis Del Valle
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - Chris Taylor
- Louisiana State University Health Sciences Center, New Orleans, USA
| | - David A Welsh
- Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
40
|
Maschirow L, Suttorp N, Opitz B. Microbiota-Dependent Regulation of Antimicrobial Immunity in the Lung. Am J Respir Cell Mol Biol 2020; 61:284-289. [PMID: 31059654 DOI: 10.1165/rcmb.2019-0101tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several body sites, including the intestinal and respiratory tracts, are colonized with a myriad of bacteria, archaea, fungi, and viruses, which are collectively referred to as the "microbiota." The bacterial component of the microbiota in particular has been recognized to influence a multitude of physiological functions, including innate and adaptive immune responses. Germ-free and microbiota-depleted animals display an impaired antimicrobial defense and are therefore highly susceptible to various infections, including those affecting the lung. In this review, we summarize current understanding of how the microbiota affects antimicrobial immunity and disease tolerance during viral and bacterial pulmonary infections. A better understanding of these mechanisms could help to refine clinical approaches to preserve or rescue the microbiota-immune system interplay and protect patients against lung infections.
Collapse
Affiliation(s)
- Laura Maschirow
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
41
|
Alcohol-dependent pulmonary inflammation: A role for HMGB-1. Alcohol 2019; 80:45-52. [PMID: 30287211 DOI: 10.1016/j.alcohol.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 01/29/2023]
Abstract
Previous studies have demonstrated that acute alcohol intoxication significantly impairs lung immune responses, which can lead to the tissue being undefended from microbial infection and resulting disease. Data suggest that acute intoxication presents an axis where simultaneously suppressing early pro-inflammatory cytokines while inducing anti-inflammatory signals contributes to alcohol-dependent immune suppression in the lung, and thus undeterred microbial replication. Interestingly, alcoholics and those with alcohol use disorder present with increased pneumonia and acute respiratory diseases (ARDs), suggesting a more active priming of inflammatory responses in the lungs. There is current research evaluating the acute effects of binge ethanol consumption on adolescents, which is of grave concern, though long-term effects of adolescent ethanol binge exposure are less studied. We hypothesize that adolescent binge drinking may prime the individual to severe pulmonary distress, when later challenged by a microbial pathogen. Herein, we evaluate a model of adolescent intermittent ethanol (AIE) exposure to investigate pulmonary pathology after microbial challenge. Ethanol was administered to adolescent mice using a binge exposure schedule, and mice were then rested to early adulthood. These mice were then challenged with a sub-lethal intranasal inoculation of Klebsiella pneumoniae and evaluated for severity of disease. We find that AIE exposure initially activates inflammatory mediators within the lung, which resolves over time. However, when challenged with a microbial pathogen after this resolution period, these animals present with more severity of inflammation, pulmonary tissue damage, and mortality when challenged with a pulmonary microbial infection. Interestingly, our data suggest a role for alcohol-dependent release of the protein HMGB-1 from host cells, for both morbidity and mortality in our model of microbial-dependent pulmonary inflammation.
Collapse
|
42
|
Samuelson DR, Siggins RW, Ruan S, Amedee AM, Sun J, Zhu QK, Marasco WA, Taylor CM, Luo M, Welsh DA, Shellito JE. Alcohol consumption increases susceptibility to pneumococcal pneumonia in a humanized murine HIV model mediated by intestinal dysbiosis. Alcohol 2019; 80:33-43. [PMID: 30213614 PMCID: PMC6449221 DOI: 10.1016/j.alcohol.2018.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use in persons living with HIV (PLWH) worsens the severity of bacterial pneumonia. However, the exact mechanism(s) by which this occurs remain ill-defined. We hypothesized that alcohol in the setting of HIV infection decreases Streptococcus pneumoniae clearance from the lung through mechanisms mediated by the gut microbiota. Humanized BLT (bone marrow, liver, thymus) mice were infected with 1 × 104 TCID50 of HIV (BAL and JRCSF strains) via intraperitoneal (i.p.) injection. One week post-HIV infection, animals were switched to a Lieber-DeCarli 5% ethanol diet or an isocaloric control diet for 10 days. Alcohol-fed animals were also given two binges of 2 g/kg ethanol on days 5 and 10. Feces were also collected, banked, and the community structures were analyzed. Mice were then infected with 1 × 105 CFU (colony-forming units) of S. pneumoniae and were sacrificed 48 h later. HIV-infected mice had viral loads of ∼2 × 104 copies/mL of blood 1 week post-infection, and exhibited an ∼57% decrease in the number of circulating CD4+ T cells at the time of sacrifice. Fecal microbial community structure was significantly different in each of the feeding groups, as well as with HIV infection. Alcohol-fed mice had a significantly higher burden of S. pneumoniae 48 h post-infection, regardless of HIV status. In follow-up experiments, female C57BL/6 mice were treated with a cocktail of antibiotics daily for 2 weeks and recolonized by gavage with intestinal microbiota from HIV+ ethanol-fed, HIV+ pair-fed, HIV- ethanol-fed, or HIV- pair-fed mice. Recolonized mice were then infected with S. pneumoniae and were sacrificed 48 h later. The intestinal microbiota from alcohol-fed mice (regardless of HIV status) significantly impaired clearance of S. pneumoniae. Collectively, these data indicate that alcohol feeding, as well as alcohol-associated intestinal dysbiosis, compromise pulmonary host defenses against pneumococcal pneumonia. Determining whether HIV infection acts synergistically with alcohol use in impairing pulmonary host defenses will require additional study.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Sanbao Ruan
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Angela M Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, United States
| | - Quan Karen Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, United States
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, United States
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David A Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States; Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Judd E Shellito
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States; Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.
| |
Collapse
|
43
|
Samuelson DR, Gu M, Shellito JE, Molina PE, Taylor CM, Luo M, Welsh DA. Intestinal Microbial Products From Alcohol-Fed Mice Contribute to Intestinal Permeability and Peripheral Immune Activation. Alcohol Clin Exp Res 2019; 43:2122-2133. [PMID: 31407808 DOI: 10.1111/acer.14176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcohol use causes significant disruption of intestinal microbial communities, yet exactly how these dysbiotic communities interact with the host is unclear. We sought to understand the role of microbial products associated with alcohol dysbiosis in mice on intestinal permeability and immune activation in an in vitro model system. METHODS Microbiota samples from binge-on-chronic alcohol-fed and pair-fed male and female mice were cultured in Gifu Anaerobic Broth for 24 hours under anaerobic conditions. Live/whole organisms were removed, and microbial products were collected and added to human peripheral blood mononuclear cells (PBMCs) or polarized C2BBe1 intestinal epithelial monolayers. Following stimulation, transepithelial electrical resistance (TEER) was measured using a volt/ohm meter and immune activation of PBMC was assessed via flow cytometry. RESULTS Microbial products from male and female alcohol-fed mice significantly decreased TEER (mean percentage change from baseline alcohol-fed 0.86 Ω/cm2 vs. pair-fed 1.10 Ω/cm2 ) compared to microbial products from control mice. Following ex vivo stimulation, immune activation of PBMC was assessed via flow cytometry. We found that microbial products from alcohol-fed mice significantly increased the percentage of CD38+ CD4+ (mean alcohol-fed 17.32% ± 0.683% standard deviation (SD) vs. mean pair-fed 14.2% ± 1.21% SD, p < 0.05) and CD8+ (mean alcohol-fed 20.28% ± 0.88% SD vs. mean pair-fed 12.58% ± 3.59% SD, p < 0.05) T cells. CONCLUSIONS Collectively, these data suggest that microbial products contribute to immune activation and intestinal permeability associated with alcohol dysbiosis. Further, utilization of these ex vivo microbial product assays will allow us to rapidly assess the impact of microbial products on intestinal permeability and immune activation and to identify probiotic therapies to ameliorate these defects.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Min Gu
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Judd E Shellito
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - David A Welsh
- Section of Pulmonary/Critical Care and Allergy/Immunology, Department of Internal Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
44
|
Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, Li X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019; 22:592-602. [PMID: 31124390 DOI: 10.1080/10253890.2019.1617267] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated that there are significant changes in the gut microbiota (GM) of humans with depression and animal models of depression and chronic stress. In our present study, we determined whether an alteration in GM is a decisive factor in anxiety-like and depression-like behavior and its impact on brain neurochemistry. An antibiotic cocktail was used to deplete the GM of mice before they were colonized, via fecal microbiota transplantation (FMT), by the GM of control mice or mice that had been exposed to chronic unpredictable mild stress (CUMS donors). The CUMS-donor group of mice and the mice that were colonized by their microbiota (the CUMS-recipient group) both showed higher levels of anxiety- and depression-like behavior compared to the controls. The GM community of the CUMS-donor and CUMS-recipient was distinctively different from the controls, with the CUMS group characterized by a lower relative abundance of Lactobacillus and a higher relative abundance of Akkermansia. Interestingly, FMT affected both behavior and neuroinflammation. Mice given the CUMS microbiota had significant elevations of interferon-γ (IFN-γ) and the tumor necrosis factor-alpha (TNF-α) in the hippocampus, which were accompanied by upregulated indoleamine 2,3-dioxygenase 1 (IDO1) in the hippocampus. These results suggest that GM modulates pro-inflammatory cytokines in the hippocampus through dysfunctional microbiota-gut-brain axis, exacerbating anxiety- and depression-like phenotypes. Key Points Chronic unpredictable mild stress increased anxiety- and depression-like behavior in mice. Mice colonized with gut microbiota (GM) from stressed mice showed similar behaviors. The GM composition of the donor and recipient mice was also comparable. Their relative pattern of two bacteria has been tied to neuroinflammatory activity. The results suggest a link between GM, brain function, and anxiety and depression.
Collapse
Affiliation(s)
- Nannan Li
- a Department of Geriatrics Cardiology, First Hospital of China Medical University , Shenyang , China
| | - Qi Wang
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yan Wang
- c Mental Health Center, China Medical University , Shenyang , China
| | - Anji Sun
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yiwei Lin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Ye Jin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Xiaobai Li
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
45
|
A potential role for the gut microbiome in substance use disorders. Psychopharmacology (Berl) 2019; 236:1513-1530. [PMID: 30982128 PMCID: PMC6599482 DOI: 10.1007/s00213-019-05232-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pathological substance use disorders represent a major public health crisis with limited effective treatment options. While much work has been done to understand the neuronal signaling networks and intracellular signaling cascades associated with prolonged drug use, these studies have yielded few successful treatment options for substance use disorders. In recent years, there has been a growing interest to explore interactions between the peripheral immune system, the gut microbiome, and the CNS. In this review, we will present a summary of existing evidence, suggesting a potential role for gut dysbiosis in the pathogenesis of substance use disorders. Clinical evidence of gut dysbiosis in human subjects with substance use disorder and preclinical evidence of gut dysbiosis in animal models of drug addiction are discussed in detail. Additionally, we examine how changes in the gut microbiome and its metabolites may not only be a consequence of substance use disorders but may in fact play a role in mediating behavioral response to drugs of abuse. While much work still needs to be done, understanding the interplay of gut microbiome in substance use disorders may offer a promising avenue for future therapeutic development.
Collapse
|
46
|
A mouse model of binge alcohol consumption and Burkholderia infection. PLoS One 2018; 13:e0208061. [PMID: 30485380 PMCID: PMC6261616 DOI: 10.1371/journal.pone.0208061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Binge drinking, an increasingly common form of alcohol consumption, is associated with increased mortality and morbidity; yet, its effects on the immune system's ability to defend against infectious agents are poorly understood. Burkholderia pseudomallei, the causative agent of melioidosis can occur in healthy humans, yet binge alcohol use is progressively being recognized as a major risk factor. Although our previous studies demonstrated that binge alcohol exposure results in reduced alveolar macrophage function and increased Burkholderia virulence in vitro, no experimental studies have investigated the outcomes of binge alcohol on Burkholderia spp. infection in vivo. PRINCIPAL FINDINGS In this study, we used the close genetic relatives of B. pseudomallei, B. thailandensis E264 and B. vietnamiensis, as useful BSL-2 model systems. Eight-week-old female C57BL/6 mice were administered alcohol comparable to human binge drinking episodes (4.4 g/kg) or PBS intraperitoneally 30 min before a non-lethal intranasal infection. In an initial B. thailandensis infection (3 x 105), bacteria accumulated in the lungs and disseminated to the spleen in alcohol administered mice only, compared with PBS treated mice at 24 h PI. The greatest bacterial load occurred with B. vietnamiensis (1 x 106) in lungs, spleen, and brain tissue by 72 h PI. Pulmonary cytokine expression (TNF-α, GM-CSF) decreased, while splenic cytokine (IL-10) increased in binge drunk mice. Increased lung and brain permeability was observed as early as 2 h post alcohol administration in vivo. Trans-epithelial electrical resistance (TEER) was significantly decreased, while intracellular invasion of non-phagocytic cells increased with 0.2% v/v alcohol exposure in vitro. CONCLUSIONS Our results indicate that a single binge alcohol dose suppressed innate immune functions and increased the ability of less virulent Burkholderia strains to disseminate through increased barrier permeability and intracellular invasion of non-phagocytic cells.
Collapse
|
47
|
Dumas A, Corral D, Colom A, Levillain F, Peixoto A, Hudrisier D, Poquet Y, Neyrolles O. The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis. Front Immunol 2018; 9:2656. [PMID: 30487801 PMCID: PMC6246741 DOI: 10.3389/fimmu.2018.02656] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), caused by the airborne bacterial pathogen Mycobacterium tuberculosis, remains a major source of morbidity and mortality worldwide. So far, the study of host-pathogen interactions in TB has mostly focused on the physiology and virulence of the pathogen, as well as, on the various innate and adaptive immune compartments of the host. Microbial organisms endogenous to our body, the so-called microbiota, interact not only with invading pathogens, but also with our immune system. Yet, the impact of the microbiota on host defense against M. tuberculosis remains poorly understood. In order to address this question, we adapted a robust and reproducible mouse model of microbial dysbiosis based on a combination of wide-spectrum antibiotics. We found that microbiota dysbiosis resulted in an increased early colonization of the lungs by M. tuberculosis during the first week of infection, correlating with an altered diversity of the gut microbiota during this time period. At the cellular level, no significant difference in the recruitment of conventional myeloid cells, including macrophages, dendritic cells and neutrophils, to the lungs could be detected during the first week of infection between microbiota-competent and -deficient mice. At the molecular level, microbiota depletion did not impact the global production of pro-inflammatory cytokines, such as interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)-1β in the lungs. Strikingly, a reduced number of mucosal-associated invariant T (MAIT) cells, a population of innate-like lymphocytes whose development is known to depend on the host microbiota, was observed in the lungs of the antibiotics-treated animals after 1week of infection. These cells produced less IL-17A in antibiotics-treated mice. Notably, dysbiosis correction through the inoculation of a complex microbiota in antibiotics-treated animals reversed these phenotypes and improved the ability of MAIT cells to proliferate. Altogether, our results demonstrate that the host microbiota contributes to early protection of lung colonization by M. tuberculosis, possibly through sustaining the function(s) of MAIT cells. Our study calls for a better understanding of the impact of the microbiota on host-pathogen interactions in TB. Ultimately, this study may help to develop novel therapeutic approaches based on the use of beneficial microbes, or components thereof, to boost anti-mycobacterial immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dan Corral
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Florence Levillain
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Antonio Peixoto
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denis Hudrisier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yannick Poquet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
48
|
Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol 2018; 20:e12966. [PMID: 30329198 DOI: 10.1111/cmi.12966] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/05/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022]
Abstract
The pulmonary microbial community, described only a few years ago, forms a discreet part of the human host microbiota. The airway microbiota has been found to be substantially altered in the context of numerous respiratory disorders; nonetheless, its role in health and disease is as yet only poorly understood. Another important parameter to consider is the gut-lung axis, where distal (gut) immune modulation during respiratory disease is mediated by the gut microbiota. The use of specific microbiota strains, termed "probiotics," with beneficial effects on the host immunity and/or against pathogens, has proven successful in the treatment of intestinal disorders and is also showing promise in the context of airway diseases. In this review, we highlight the beneficial role of the body's commensal bacteria during airway infectious diseases, including recent evidence highlighting their local (lung) or distal (gut) contribution in this process.
Collapse
Affiliation(s)
- Alexia Dumas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Bernard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yannick Poquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
49
|
Molina PE, Simon L, Amedee AM, Welsh DA, Ferguson TF. Impact of Alcohol on HIV Disease Pathogenesis, Comorbidities and Aging: Integrating Preclinical and Clinical Findings. Alcohol Alcohol 2018; 53:439-447. [PMID: 29546271 DOI: 10.1093/alcalc/agy016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Short Summary : Effective combined antiretroviral therapy regimens have extended survival of persons living with HIV (PLWH). Heavy alcohol consumption is common in PLWH. This overview integrates evidence from clinical and preclinical research to identify salient alcohol-related mechanisms and comorbidities contributing to disease pathogenesis and accelerated aging and senescence in PLWH.
Collapse
Affiliation(s)
- Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| |
Collapse
|
50
|
Wen ZT, Scott-Anne K, Liao S, De A, Luo M, Kovacs C, Narvaez BS, Faustoferri R, Yu Q, Taylor CM, Quivey RG. Deficiency of BrpA in Streptococcus mutans reduces virulence in rat caries model. Mol Oral Microbiol 2018; 33:353-363. [PMID: 29888871 PMCID: PMC6158100 DOI: 10.1111/omi.12230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 01/09/2023]
Abstract
Our recent studies have shown that BrpA in Streptococcus mutans plays a critical role in cell envelope biogenesis, stress responses, and biofilm formation. In this study, a 10-species consortium was used to assess how BrpA deficiency influences the establishment, persistence, and competitiveness of S. mutans during growth in a community under conditions typical of the oral cavity. Results showed that, like the wild-type, the brpA mutant was able to colonize and establish on the surfaces tested. Relative to the wild-type, however, the brpA mutant had a reduced ability to persist and grow in the 10-species consortium (P < .001). A rat caries model was also used to examine the effect of BrpA, as well as Psr, a BrpA paralog, on S. mutans cariogenicity. The results showed no major differences in infectivity between the wild-type and the brpA and psr mutants. Unlike the wild-type, however, infection with the brpA mutant, but not the psr mutant, showed no significant differences in both total numbers of carious lesions and caries severity, compared with the control group that received bacterial growth medium (P > .05). Metagenomic and quantitative polymerase chain reaction analysis showed that S. mutans infection caused major alterations in the composition of the rats' plaque microbiota and that significantly less S. mutans was identified in the rats infected with the brpA mutant compared with those infected with the wild-type and the psr mutant. These results further suggest that BrpA plays a critical role in S. mutans pathophysiology and that BrpA has potential as a therapeutic target in the modulation of S. mutans virulence.
Collapse
Affiliation(s)
- Zezhang T. Wen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kathy Scott-Anne
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Sumei Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Arpan De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher Kovacs
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Roberta Faustoferri
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Qingzhao Yu
- Department of Biostatistics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Robert G. Quivey
- Center of Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|