1
|
Beijen EPW, van Maanen MH, van den Bergh ES, Brouns R, Marian IM, de Vries TJ, Vonk PJ, Ohm RA. Transcription factors Fst8, Ftr3 and Gat1 are regulators of the immune system of the mushroom Schizophyllum commune. Fungal Genet Biol 2025; 179:103987. [PMID: 40311743 DOI: 10.1016/j.fgb.2025.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/03/2025]
Abstract
Mushroom-forming fungi encounter numerous competitors during their lifecycle and have developed strategies to defend themselves. However, the regulation of this fungal immune system is largely unknown. We studied the role of transcription factors Fst8, Ftr3 and Gat1 during the interaction between the mushroom-forming fungus Schizophyllum commune and the ascomycete mycoparasites Trichoderma harzianum and Trichoderma aggressivum. These proteins are conserved to varying degrees in basidiomycetes, with a high degree of conservation in Agaricales. We showed that the regulators Fst8 and Ftr3 play a role in regulating the immune system, similar to Gat1 which we previously identified. Deletion of the fst8 and ftr3 genes led to varying degrees of defensive impairment in S. commune. A Δgat1Δfst8 double knockout strain was most affected, indicating that these regulators are likely involved in different pathways. We identified putative (direct or indirect) targets of these transcription factors using a transcriptomics approach. These genes include small secreted proteins and transporters. Combining data from the single deletion strains, we identified a core group of 18 putative targets, including thaumatins, cell wall modifiers, and detoxifiers. Combined, we identified the regulatory network initiated by the regulators Fst8, Ftr3 and Gat1 during interaction with fungal competitors.
Collapse
Affiliation(s)
- Erik P W Beijen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marieke H van Maanen
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther S van den Bergh
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Rose Brouns
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ioana M Marian
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Thomas J de Vries
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
2
|
Perlin MH, Poulin R, de Bekker C. Invasion of the four kingdoms: the parasite journey across plant and non-plant hosts. Biol Rev Camb Philos Soc 2025; 100:936-968. [PMID: 39616537 DOI: 10.1111/brv.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 03/08/2025]
Abstract
Parasites have a rich and long natural history among biological entities, and it has been suggested that parasites are one of the most significant factors in the evolution of their hosts. However, it has been emphasized less frequently how co-evolution has undoubtedly also shaped the paths of parasites. It may seem safe to assume that specific differences among the array of potential hosts for particular parasites have restricted and diversified their evolutionary pathways and strategies for survival. Nevertheless, if one looks closely enough at host and parasite, one finds commonalities, both in terms of host defences and parasite strategies to out-manoeuvre them. While such analyses have been the source of numerous reviews, they are generally limited to interactions between, at most, one kingdom of parasite with two kingdoms of host (e.g. similarities in animal and plant host responses against fungi). With the aim of extending this view, we herein critically evaluate the similarities and differences across all four eukaryotic host kingdoms (plants, animals, fungi, and protists) and their parasites. In doing so, we show that hosts tend to share common strategies for defence, including both physical and behavioural barriers, and highly evolved immune responses, in particular innate immunity. Parasites have, similarly, evolved convergent strategies to counter these defences, including mechanisms of active penetration, and evading the host's innate and/or adaptive immune responses. Moreover, just as hosts have evolved behaviours to avoid parasites, many parasites have adaptations to manipulate host phenotype, physiologically, reproductively, and in terms of behaviour. Many of these strategies overlap in the host and parasite, even across wide phylogenetic expanses. That said, specific differences in host physiology and immune responses often necessitate different adaptations for parasites exploiting fundamentally different hosts. Taken together, this review facilitates hypothesis-driven investigations of parasite-host interactions that transcend the traditional kingdom-based research fields.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, Kentucky, 40208, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Charissa de Bekker
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584CH, Utrecht, the Netherlands
| |
Collapse
|
3
|
Tagirdzhanova G, Scharnagl K, Sahu N, Yan X, Bucknell A, Bentham AR, Jégousse C, Ament-Velásquez SL, Onuț-Brännström I, Johannesson H, MacLean D, Talbot NJ. Complexity of the lichen symbiosis revealed by metagenome and transcriptome analysis of Xanthoria parietina. Curr Biol 2025; 35:799-817.e5. [PMID: 39889699 DOI: 10.1016/j.cub.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Lichens are composite, symbiotic associations of fungi, algae, and bacteria that result in large, anatomically complex organisms adapted to many of the world's most challenging environments. How such intricate, self-replicating lichen architectures develop from simple microbial components remains unknown because of their recalcitrance to experimental manipulation. Here, we report a metagenomic and metatranscriptomic analysis of the lichen Xanthoria parietina at different developmental stages. We identified 168 genomes of symbionts and lichen-associated microbes across the sampled thalli, including representatives of green algae, three different classes of fungi, and 14 bacterial phyla. By analyzing the occurrence of individual species across lichen thalli from diverse environments, we defined both substrate-specific and core microbial components of the lichen. Metatranscriptomic analysis of the principal fungal symbiont from three different developmental stages of a lichen, compared with axenically grown fungus, revealed differential gene expression profiles indicative of lichen-specific transporter functions, specific cell signaling, transcriptional regulation, and secondary metabolic capacity. Putative immunity-related proteins and lichen-specific structurally conserved secreted proteins resembling fungal pathogen effectors were also identified, consistent with a role for immunity modulation in lichen morphogenesis.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK; University & Jepson Herbaria, University of California, Berkeley, Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Neha Sahu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Angus Bucknell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Adam R Bentham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | | | - Ioana Onuț-Brännström
- Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala 752 36, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden; The Royal Swedish Academy of Sciences, Lilla Frescativägen 4A, Stockholm 114 18, Sweden
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK.
| |
Collapse
|
4
|
Scholtmeijer K, Auxier B, Debets AJM, Aanen DK, Baars JJP, van Peer AF. An agar medium-based method for screening somatic incompatibility in Agaricus bisporus. Fungal Biol 2025; 129:101522. [PMID: 39826974 DOI: 10.1016/j.funbio.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To visualize the nonself recognition reaction in the cultivated mushroom Agaricus bisporus, we developed a method using the azo dye Evans blue. The use of Evans blue highlights dead mycelial sections, which are produced following nonself recognition in the interaction zone between two individuals. This method can differentiate between distinct heterokaryons, as well as between closely related heterokaryons constructed from siblings. As it is known that co-cultivation of mixed individuals leads to reduced yield, we compared small-scale cultivation experiments to the results of our laboratory assay. Co-cultivation of strains whose interaction produced noticeable Evans blue staining also produced low yield when mixed. However, a combination that did not produce noticeable Evans blue staining still produced an incompatible-like phenotype (reduced yield) when mixed under cultivation conditions. Together, these results suggest that while our Evans blue assay can discriminate between self and nonself pairings, it alone does not encompass all aspects of this interaction. However, this method can facilitate future research into the genetics and physiology of the incompatibility phenotype in this economically important fungus.
Collapse
Affiliation(s)
- Karin Scholtmeijer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands
| | - Arend F van Peer
- Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands.
| |
Collapse
|
5
|
Starke S, Velleman L, Dobbert B, Seibert L, Witte J, Jung S, Meyer V. The antifungal peptide AnAFP from Aspergillus niger promotes nutrient mobilization through autophagic recycling during asexual development. Front Microbiol 2025; 15:1490293. [PMID: 39925883 PMCID: PMC11802824 DOI: 10.3389/fmicb.2024.1490293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025] Open
Abstract
Antifungal peptides are promising drug candidates to fight fungal infections in the clinics and agriculture. However, recent data suggest that antifungal peptides might also play a role within their own producing organism to survive nutrient limiting conditions. We have therefore studied the function of the antifungal AnAFP in Aspergillus niger in more detail. To achieve this, we established a Tet-on controlled anafp expression system, which allowed us to study a null and an overexpression phenotype in the same isolate. We observed that increased intracellular AnAFP expression reduces growth of A. niger and prematurely activates autophagy. Comparative transcriptome analyses of glucose-starving mycelium demonstrated that increased anafp expression strongly impacts expression of genes important for cell wall integrity and remodeling, as well as genes with a predicted function in metabolism and transport of carbohydrates, proteins, and lipids. Notably, genes encoding regulators of conidiophore development such as flbC and flbD became induced upon anafp overexpression. Fluorescent analyses of a Tet-on driven AnAFP::eGFP fusion protein congruently unraveled that AnAFP localizes to cell walls and septa of A. niger. Moreover, AnAFP::eGFP expression is spatially restricted to selected compartments only and affected cells displayed a sudden reduction in hyphal diameter. From these data we conclude that AnAFP is important to drive vegetative growth and sporulation in A. niger during nutrient limitation through autophagic recycling. We predict that AnAFP drives nutrient mobilization through selective cell lysis to ensure the survival of the whole colony during phases of starvation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vera Meyer
- *Correspondence: Sascha Jung, ; Vera Meyer,
| |
Collapse
|
6
|
Stark FG, Torii-Karch M, Yuvaraj S, Bonometti L, Gladieux P, Glass NL, Krasileva K. Molecular Insights into Fungal Innate Immunity Using the Neurospora crassa - Pseudomonas syringae Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633611. [PMID: 39896647 PMCID: PMC11785063 DOI: 10.1101/2025.01.22.633611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Recent comparative genomics and mechanistic analyses support the existence of a fungal immune system. Fungi encode genes with features similar to non-self recognition systems in plants, animals, and bacteria. However, limited functional or mechanistic evidence exists for the surveillance-system recognition of heterologous microbes in fungi. We found that Neurospora species coexist with Pseudomonas in their natural environment. We leveraged two model organisms, Neurospora crassa and Pseudomonas syringae DC3000 (PSTDC3000) to observe immediate fungal responses to bacteria. PSTDC3000 preferentially surrounds N. crassa cells on a solid surface, causing environmental dependent growth responses, bacterial proliferation and varying fungal fitness. Specifically, the Type III secretion system (T3SS) ΔhrcC mutant of PSTDC3000 colonized N. crassa hyphae less well. To dissect initial cellular signaling events within the population of germinated asexual spores (germlings), we performed transcriptomics on N. crassa after PSTDC3000 inoculation. Upon contact with live bacteria, a subpopulation of fungal germlings initiate a response as early as ten minutes post-contact revealing transcriptional differentiation of Reactive Oxygen Species (ROS) mechanisms, trace metal warfare, cell wall remodeling dynamics, multidrug-efflux transporters, secondary metabolite synthesis, and excretion. We dissected mutants of plausible receptors, signaling pathways, and responses that N. crassa uses to detect and mount a defense against PSTDC3000 and found seven genes that influence resistant and susceptibility phenotypes of N. crassa to bacterial colonization. Mutants in genes encoding a ctr copper transporter ( tcu-1 ), ferric reductase ( fer-1 ), superoxide reductase ( sod-2 ), multidrug resistance transporter ( mdr-6 ), a secreted lysozyme-Glycoside hydrolase ( lyz ) and the Woronin body tether leashin (NCU02793, lah-1 and lah-2 ) showed a significant reduction of growth in the presence of bacteria, allowing the bacteria to fully take over the fungal mycelium faster than wildtype. In this study we provide a bacterial-fungal model system within Dikarya that allows us to begin to dissect signaling pathways of the putative fungal immune system.
Collapse
|
7
|
Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, Wu CH, Adachi H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. THE PLANT CELL 2024; 36:3344-3361. [PMID: 38833594 PMCID: PMC11371149 DOI: 10.1093/plcell/koae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. An NLR-REQUIRED FOR CELL DEATH (NRC) is a phylogenetically related node that functions downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. In this study, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in 4 divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Claudia Martinez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62110, México
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Schäfer Y, Palitzsch K, Leptin M, Whiteley AR, Wiehe T, Suurväli J. Copy number variation and population-specific immune genes in the model vertebrate zebrafish. eLife 2024; 13:e98058. [PMID: 38832644 PMCID: PMC11192531 DOI: 10.7554/elife.98058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024] Open
Abstract
Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.
Collapse
Affiliation(s)
| | | | - Maria Leptin
- Institute for Genetics, University of CologneCologneGermany
| | - Andrew R Whiteley
- WA Franke College of Forestry and Conservation, University of MontanaMissoulaUnited States
| | - Thomas Wiehe
- Institute for Genetics, University of CologneCologneGermany
| | - Jaanus Suurväli
- Institute for Genetics, University of CologneCologneGermany
- Department of Biological Sciences, University of ManitobaWinnipegCanada
| |
Collapse
|
9
|
Auxier B, Zhang J, Marquez FR, Senden K, van den Heuvel J, Aanen DK, Snelders E, Debets AJM. The Narrow Footprint of Ancient Balancing Selection Revealed by Heterokaryon Incompatibility Genes in Aspergillus fumigatus. Mol Biol Evol 2024; 41:msae079. [PMID: 38652808 PMCID: PMC11138114 DOI: 10.1093/molbev/msae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2,142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jianhua Zhang
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Kira Senden
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Duur K Aanen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Eveline Snelders
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
10
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
11
|
Yıldırım K, Miladinović D, Sweet J, Akin M, Galović V, Kavas M, Zlatković M, de Andrade E. Genome editing for healthy crops: traits, tools and impacts. FRONTIERS IN PLANT SCIENCE 2023; 14:1231013. [PMID: 37965029 PMCID: PMC10641503 DOI: 10.3389/fpls.2023.1231013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Crop cultivars in commercial use have often been selected because they show high levels of resistance to pathogens. However, widespread cultivation of these crops for many years in the environments favorable to a pathogen requires durable forms of resistance to maintain "healthy crops". Breeding of new varieties tolerant/resistant to biotic stresses by incorporating genetic components related to durable resistance, developing new breeding methods and new active molecules, and improving the Integrated Pest Management strategies have been of great value, but their effectiveness is being challenged by the newly emerging diseases and the rapid change of pathogens due to climatic changes. Genome editing has provided new tools and methods to characterize defense-related genes in crops and improve crop resilience to disease pathogens providing improved food security and future sustainable agricultural systems. In this review, we discuss the principal traits, tools and impacts of utilizing genome editing techniques for achieving of durable resilience and a "healthy plants" concept.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jeremy Sweet
- Sweet Environmental Consultants, Cambridge, United Kingdom
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır, Türkiye
| | - Vladislava Galović
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Milica Zlatković
- Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Novi Sad, Serbia
| | - Eugenia de Andrade
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
12
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|
13
|
Chia K, Carella P. Taking the lead: NLR immune receptor N-terminal domains execute plant immune responses. THE NEW PHYTOLOGIST 2023; 240:496-501. [PMID: 37525357 PMCID: PMC10952240 DOI: 10.1111/nph.19170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are important intracellular immune receptors that activate robust plant immune responses upon detecting pathogens. Canonical NLRs consist of a conserved tripartite architecture that includes a central regulatory nucleotide-binding domain, C-terminal leucine-rich repeats, and variable N-terminal domains that directly participate in immune execution. In flowering plants, the vast majority of NLR N-terminal domains belong to the coiled-coil, Resistance to Powdery Mildew 8, or Toll/interleukin-1 receptor subfamilies, with recent structural and biochemical studies providing detailed mechanistic insights into their functions. In this insight review, we focus on the immune-related biochemistries of known plant NLR N-terminal domains and discuss the evolutionary diversity of atypical NLR domains in nonflowering plants. We further contrast these observations against the known diversity of NLR-related receptors from microbes to metazoans across the tree of life.
Collapse
Affiliation(s)
- Khong‐Sam Chia
- Cell and Developmental BiologyJohn Innes CentreColney LaneNorwichNR4 7UHUK
| | - Philip Carella
- Cell and Developmental BiologyJohn Innes CentreColney LaneNorwichNR4 7UHUK
| |
Collapse
|
14
|
Adachi H, Sakai T, Kourelis J, Pai H, Gonzalez Hernandez JL, Utsumi Y, Seki M, Maqbool A, Kamoun S. Jurassic NLR: Conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. THE PLANT CELL 2023; 35:3662-3685. [PMID: 37467141 PMCID: PMC10533333 DOI: 10.1093/plcell/koad175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors generally exhibit hallmarks of rapid evolution, even at the intraspecific level. We used iterative sequence similarity searches coupled with phylogenetic analyses to reconstruct the evolutionary history of HOPZ-ACTIVATED RESISTANCE1 (ZAR1), an atypically conserved NLR that traces its origin to early flowering plant lineages ∼220 to 150 million yrs ago (Jurassic period). We discovered 120 ZAR1 orthologs in 88 species, including the monocot Colocasia esculenta, the magnoliid Cinnamomum micranthum, and most eudicots, notably the Ranunculales species Aquilegia coerulea, which is outside the core eudicots. Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition and cell death activation. We functionally reconstructed the cell death activity of ZAR1 and its partner receptor-like cytoplasmic kinase (RLCK) from distantly related plant species, experimentally validating the hypothesis that ZAR1 evolved to partner with RLCKs early in its evolution. In addition, ZAR1 acquired novel molecular features. In cassava (Manihot esculenta) and cotton (Gossypium spp.), ZAR1 carries a C-terminal thioredoxin-like domain, and in several taxa, ZAR1 duplicated into 2 paralog families, which underwent distinct evolutionary paths. ZAR1 stands out among angiosperm NLR genes for having experienced relatively limited duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 also gave rise to noncanonical NLRs with integrated domains and degenerated molecular features.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jose L Gonzalez Hernandez
- Agronomy, Horticulture and Plant Sciences Department, South Dakota State University, Brookings, SD 57007, USA
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
15
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
16
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
17
|
Garg G, Dienemann C, Farnung L, Schwarz J, Linden A, Urlaub H, Cramer P. Structural insights into human co-transcriptional capping. Mol Cell 2023:S1097-2765(23)00424-0. [PMID: 37369200 DOI: 10.1016/j.molcel.2023.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).
Collapse
Affiliation(s)
- Gaurika Garg
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Andreas Linden
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
18
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Gong Y, Tian L, Kontos I, Li J, Li X. Plant immune signaling network mediated by helper NLRs. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102354. [PMID: 37003229 DOI: 10.1016/j.pbi.2023.102354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/10/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular immune receptors for pathogen recognition and signaling. They include sensor NLRs (sNLRs) that detect pathogens, and helper NLRs, which transduce downstream immune signals. During immune responses, both membrane-localized pattern recognition receptors (PRRs) and sNLRs rely on helper NLRs for signal transduction. The Arabidopsis helper NLRs, ADR1s and NRG1s, along with their interacting lipase-like protein dimers, are differentially required by sNLRs. Recent structural and biochemical analyses suggest that they assemble into oligomeric resistosomes with lipase-like protein dimers upon perception of small molecules produced from enzymatic activities of upstream TIR-type sNLRs. As a result, ADR1s and NRG1s form membrane calcium channels to induce immune responses and cell death. In contrast, Solanaceous NRC clade helper NLRs transduce signals from many sNLRs and some PRRs. Here, we summarize the recent advances in plant helper NLR research, with a focus on their structural and biochemical mechanisms in immune signaling.
Collapse
Affiliation(s)
- Yihan Gong
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Canada
| | - Ilias Kontos
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Canada.
| |
Collapse
|
20
|
Kibby EM, Conte AN, Burroughs AM, Nagy TA, Vargas JA, Whalen LA, Aravind L, Whiteley AT. Bacterial NLR-related proteins protect against phage. Cell 2023; 186:2410-2424.e18. [PMID: 37160116 PMCID: PMC10294775 DOI: 10.1016/j.cell.2023.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.
Collapse
Affiliation(s)
- Emily M Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Amy N Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Toni A Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jose A Vargas
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lindsay A Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
21
|
Adachi H, Sakai T, Harant A, Pai H, Honda K, Toghani A, Claeys J, Duggan C, Bozkurt TO, Wu CH, Kamoun S. An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genet 2023; 19:e1010500. [PMID: 36656829 PMCID: PMC9851556 DOI: 10.1371/journal.pgen.1010500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/27/2022] [Indexed: 01/20/2023] Open
Abstract
The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- JST-PRESTO, Saitama, Japan
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kodai Honda
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jules Claeys
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Cian Duggan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tolga O. Bozkurt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chih-hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
22
|
Wojciechowski JW, Tekoglu E, Gąsior-Głogowska M, Coustou V, Szulc N, Szefczyk M, Kopaczyńska M, Saupe SJ, Dyrka W. Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins. PLoS Comput Biol 2022; 18:e1010787. [PMID: 36542665 PMCID: PMC9815663 DOI: 10.1371/journal.pcbi.1010787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/05/2023] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
NLR proteins are intracellular receptors constituting a conserved component of the innate immune system of cellular organisms. In fungi, NLRs are characterized by high diversity of architectures and presence of amyloid signaling. Here, we explore the diverse world of effector and signaling domains of fungal NLRs using state-of-the-art bioinformatic methods including MMseqs2 for fast clustering, probabilistic context-free grammars for sequence analysis, and AlphaFold2 deep neural networks for structure prediction. In addition to substantially improving the overall annotation, especially in basidiomycetes, the study identifies novel domains and reveals the structural similarity of MLKL-related HeLo- and Goodbye-like domains forming the most abundant superfamily of fungal NLR effectors. Moreover, compared to previous studies, we found several times more amyloid motif instances, including novel families, and validated aggregating and prion-forming properties of the most abundant of them in vitro and in vivo. Also, through an extensive in silico search, the NLR-associated amyloid signaling was identified in basidiomycetes. The emerging picture highlights similarities and differences in the NLR architectures and amyloid signaling in ascomycetes, basidiomycetes and other branches of life.
Collapse
Affiliation(s)
- Jakub W. Wojciechowski
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Emirhan Tekoglu
- Biyomühendislik Bölümü, Yıldız Teknik Üniversitesi, İstanbul, Turkey
- Wydział Chemiczny, Politechnika Wrocławska, Poland
| | - Marlena Gąsior-Głogowska
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Virginie Coustou
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux, France
| | - Natalia Szulc
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Monika Szefczyk
- Katedra Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław, Poland
| | - Marta Kopaczyńska
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
| | - Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux, France
- * E-mail: (SJS); (WD)
| | - Witold Dyrka
- Katedra Inżynierii Biomedycznej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska, Wrocław, Poland
- * E-mail: (SJS); (WD)
| |
Collapse
|
23
|
Ament-Velásquez SL, Vogan AA, Granger-Farbos A, Bastiaans E, Martinossi-Allibert I, Saupe SJ, de Groot S, Lascoux M, Debets AJM, Clavé C, Johannesson H. Allorecognition genes drive reproductive isolation in Podospora anserina. Nat Ecol Evol 2022; 6:910-923. [PMID: 35551248 PMCID: PMC9262711 DOI: 10.1038/s41559-022-01734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Granger-Farbos
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Suzette de Groot
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
25
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
26
|
Ren J, Zhang Y, Wang Y, Li C, Bian Z, Zhang X, Liu H, Xu JR, Jiang C. Deletion of all three MAP kinase genes results in severe defects in stress responses and pathogenesis in Fusarium graminearum. STRESS BIOLOGY 2022; 2:6. [PMID: 37676362 PMCID: PMC10441923 DOI: 10.1007/s44154-021-00025-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 09/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are activated by external stimuli and convert signals to cellular changes. Individual MAPKs have been characterized in a number of plant pathogenic fungi for their roles in pathogenesis and responses to biotic or abiotic stresses. However, mutants deleted of all the MAPK genes have not been reported in filamentous fungi. To determine the MAPK-less effects in a fungal pathogen, in this study we generated and characterized mutants deleted of all three MAPK genes in the wheat scab fungus Fusarium graminearum. The Gpmk1 mgv1 Fghog1 triple mutants had severe growth defects and was non-pathogenic. It was defective in infection cushion formation and DON production. Conidiation was reduced in the triple mutant, which often produced elongated conidia with more septa than the wild-type conidia. The triple mutant was blocked in sexual reproduction due to the loss of female fertility. Lack of any MAPKs resulted in an increased sensitivity to various abiotic stress including cell wall, osmotic, oxidative stresses, and phytoalexins, which are likely related to the defects of the triple mutant in environmental adaptation and plant infection. The triple mutant also had increased sensitivity to the biocontrol bacterium Bacillus velezensis and fungus Clonostachys rosea. In co-incubation assays with B. velezensis, the Gpmk1 mgv1 Fghog1 mutant had more severe growth limitation than the wild type and was defective in conidium germination and germ tube growth. In confrontation assays, the triple mutant was defective in defending against mycoparasitic activities of C. rosea and the latter could grow over the mutant but not wild-type F. graminearum. RNA-seq and metabolomics analyses showed that the MAPK triple mutant was altered in the expression of many ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes and the accumulation of metabolites related to arachidonic acid, linoleic acid, and alpha-linolenic acid metabolisms. Overall, as the first study on mutants deleted of all three MAPKs in fungal pathogens, our results showed that although MAPKs are not essential for growth and asexual reproduction, the Gpmk1 mgv1 Fghog1 triple mutant was blocked in plant infection and sexual reproductions. It also had severe defects in responses to various abiotic stresses and bacterial- or fungal-fungal interactions.
Collapse
Affiliation(s)
- Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengliang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Atriztán-Hernández K, Herrera-Estrella A. Drosophila attack inhibits hyphal regeneration and defense mechanisms activation for the fungus Trichoderma atroviride. THE ISME JOURNAL 2022; 16:149-158. [PMID: 34282283 PMCID: PMC8692604 DOI: 10.1038/s41396-021-01068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The capability to respond to wounding is a process shared by organisms of different kingdoms that can result in the regeneration of whole-body parts or lost structures or organs. Filamentous fungi constitute a rich food source that ensures survival and reproduction of their predators and are therefore continuously exposed to mechanical damage. Nevertheless, our understanding of how fungi respond to wounding and predators is scarce. Fungi like plants and animals respond to injury recognizing Damage- and Microbe-Associated Molecular Patterns (DAMPs/MAMPs) that activate Ca2+ and Mitogen-Activated Protein Kinase dependent signaling for the activation of defense mechanisms. During herbivory, plants, in addition to activating pathways related to injury, activate specific responses to combat their predators. Using a transcriptional approach, we studied the capacity of the filamentous fungus Trichoderma atroviride to activate specific responses to injury and attack by different arthropods. Attack by Drosophila melanogaster inhibited the transcriptional activation of genes required for hyphal regeneration, and the fungal innate immune and chemical defense responses. We also provide mechanistic insight of this inhibition involving components of the D. melanogaster salivary glands that repress the expression of a set of genes and block hyphal regeneration.
Collapse
|
28
|
Wang W, Chen L, Fengler K, Bolar J, Llaca V, Wang X, Clark CB, Fleury TJ, Myrvold J, Oneal D, van Dyk MM, Hudson A, Munkvold J, Baumgarten A, Thompson J, Cai G, Crasta O, Aggarwal R, Ma J. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat Commun 2021; 12:6263. [PMID: 34741017 PMCID: PMC8571336 DOI: 10.1038/s41467-021-26554-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Kevin Fengler
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Joy Bolar
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tomara J Fleury
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Jon Myrvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - David Oneal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | | | - Ashley Hudson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jesse Munkvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Andy Baumgarten
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jeff Thompson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Guohong Cai
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Oswald Crasta
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
- R&D, Equinom, Inc., Indianapolis, IN, 46268, USA
| | - Rajat Aggarwal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
29
|
Kourelis J, Sakai T, Adachi H, Kamoun S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol 2021; 19:e3001124. [PMID: 34669691 PMCID: PMC8559963 DOI: 10.1371/journal.pbio.3001124] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/01/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Reference datasets are critical in computational biology. They help define canonical biological features and are essential for benchmarking studies. Here, we describe a comprehensive reference dataset of experimentally validated plant nucleotide-binding leucine-rich repeat (NLR) immune receptors. RefPlantNLR consists of 481 NLRs from 31 genera belonging to 11 orders of flowering plants. This reference dataset has several applications. We used RefPlantNLR to determine the canonical features of functionally validated plant NLRs and to benchmark 5 NLR annotation tools. This revealed that although NLR annotation tools tend to retrieve the majority of NLRs, they frequently produce domain architectures that are inconsistent with the RefPlantNLR annotation. Guided by this analysis, we developed a new pipeline, NLRtracker, which extracts and annotates NLRs from protein or transcript files based on the core features found in the RefPlantNLR dataset. The RefPlantNLR dataset should also prove useful for guiding comparative analyses of NLRs across the wide spectrum of plant diversity and identifying understudied taxa. We hope that the RefPlantNLR resource will contribute to moving the field beyond a uniform view of NLR structure and function.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
30
|
Zhang X, Wang Z, Jiang C, Xu JR. Regulation of biotic interactions and responses to abiotic stresses by MAP kinase pathways in plant pathogenic fungi. STRESS BIOLOGY 2021; 1:5. [PMID: 37676417 PMCID: PMC10429497 DOI: 10.1007/s44154-021-00004-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Like other eukaryotes, fungi use MAP kinase (MAPK) pathways to mediate cellular changes responding to external stimuli. In the past two decades, three well-conserved MAP kinase pathways have been characterized in various plant pathogenic fungi for regulating responses and adaptations to a variety of biotic and abiotic stresses encountered during plant infection or survival in nature. The invasive growth (IG) pathway is homologous to the yeast pheromone response and filamentation pathways. In plant pathogens, the IG pathway often is essential for pathogenesis by regulating infection-related morphogenesis, such as appressorium formation, penetration, and invasive growth. The cell wall integrity (CWI) pathway also is important for plant infection although the infection processes it regulates vary among fungal pathogens. Besides its universal function in cell wall integrity, it often plays a minor role in responses to oxidative and cell wall stresses. Both the IG and CWI pathways are involved in regulating known virulence factors as well as effector genes during plant infection and mediating defenses against mycoviruses, bacteria, and other fungi. In contrast, the high osmolarity growth (HOG) pathway is dispensable for virulence in some fungi although it is essential for plant infection in others. It regulates osmoregulation in hyphae and is dispensable for appressorium turgor generation. The HOG pathway also plays a major role for responding to oxidative, heat, and other environmental stresses and is overstimulated by phenylpyrrole fungicides. Moreover, these three MAPK pathways crosstalk and coordinately regulate responses to various biotic and abiotic stresses. The IG and CWI pathways, particularly the latter, also are involved in responding to abiotic stresses to various degrees in different fungal pathogens, and the HOG pathway also plays a role in interactions with other microbes or fungi. Furthermore, some infection processes or stress responses are co-regulated by MAPK pathways with cAMP or Ca2+/CaM signaling. Overall, functions of individual MAP kinase pathways in pathogenesis and stress responses have been well characterized in a number of fungal pathogens, showing the conserved genetic elements with diverged functions, likely by rewiring transcriptional regulatory networks. In the near future, applications of genomics and proteomics approaches will likely lead to better understanding of crosstalk among the MAPKs and with other signaling pathways as well as roles of MAPKs in defense against other microbes (biotic interactions).
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
31
|
Auxier B, Scholtmeijer K, van Peer AF, Baars JJP, Debets AJM, Aanen DK. Cytoplasmic Mixing, Not Nuclear Coexistence, Can Explain Somatic Incompatibility in Basidiomycetes. Microorganisms 2021; 9:1248. [PMID: 34201361 PMCID: PMC8229728 DOI: 10.3390/microorganisms9061248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Nonself recognition leading to somatic incompatibility (SI) is commonly used by mycologists to distinguish fungal individuals. Despite this, the process remains poorly understood in basidiomycetes as all current models of SI are based on genetic and molecular research in ascomycete fungi. Ascomycete fungi are mainly found in a monokaryotic stage, with a single type of haploid nuclei, and only briefly during mating do two genomes coexist in heterokaryotic cells. The sister phylum, Basidiomycota, differs in several relevant aspects. Basidiomycete fungi have an extended heterokaryotic stage, and SI is generally observed between heterokaryons instead of between homokaryons. Additionally, considerable nuclear migration occurs during a basidiomycete mating reaction, introducing a nucleus into a resident homokaryon with cytoplasmic mixing limited to the fused or neighboring cells. To accommodate these differences, we describe a basidiomycete model for nonself recognition using post-translational modification, based on a reader-writer system as found in other organisms. This post-translational modification combined with nuclear migration allows for the coexistence of two genomes in one individual while maintaining nonself recognition during all life stages. Somewhat surprisingly, this model predicts localized cell death during mating, which is consistent with previous observations but differs from the general assumptions of basidiomycete mating. This model will help guide future research into the mechanisms behind basidiomycete nonself recognition.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
| | - Karin Scholtmeijer
- Mushroom Group, Plant Breeding Department, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (K.S.); (A.F.v.P.); (J.J.P.B.)
| | - Arend F. van Peer
- Mushroom Group, Plant Breeding Department, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (K.S.); (A.F.v.P.); (J.J.P.B.)
| | - Johan J. P. Baars
- Mushroom Group, Plant Breeding Department, Wageningen University and Research, 6708 PB Wageningen, The Netherlands; (K.S.); (A.F.v.P.); (J.J.P.B.)
- CNC Grondstoffen, P.O. Box 13, 6590 AA Gennep, The Netherlands
| | - Alfons J. M. Debets
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
| | - Duur K. Aanen
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
| |
Collapse
|
32
|
Fracchia F, Mangeot-Peter L, Jacquot L, Martin F, Veneault-Fourrey C, Deveau A. Colonization of Naive Roots from Populus tremula × alba Involves Successive Waves of Fungi and Bacteria with Different Trophic Abilities. Appl Environ Microbiol 2021; 87:e02541-20. [PMID: 33452025 PMCID: PMC8105020 DOI: 10.1128/aem.02541-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
Through their roots, trees interact with a highly complex community of microorganisms belonging to various trophic guilds and contributing to tree nutrition, development, and protection against stresses. Tree roots select for specific microbial species from the bulk soil communities. The root microbiome formation is a dynamic process, but little is known on how the different microorganisms colonize the roots and how the selection occurs. To decipher whether the final composition of the root microbiome is the product of several waves of colonization by different guilds of microorganisms, we planted sterile rooted cuttings of gray poplar obtained from plantlets propagated in axenic conditions in natural poplar stand soil. We analyzed the root microbiome at different time points between 2 and 50 days of culture by combining high-throughput Illumina MiSeq sequencing of the fungal ribosomal DNA internal transcribed spacer and bacterial 16S rRNA amplicons with confocal laser scanning microscopy observations. The microbial colonization of poplar roots took place in three stages, but bacteria and fungi had different dynamics. Root bacterial communities were clearly different from those in the soil after 2 days of culture. In contrast, if fungi were also already colonizing roots after 2 days, the initial communities were very close to that in the soil and were dominated by saprotrophs. They were slowly replaced by endophytes and ectomycorhizal fungi. The replacement of the most abundant fungal and bacterial community members observed in poplar roots over time suggest potential competition effect between microorganisms and/or a selection by the host.IMPORTANCE The tree root microbiome is composed of a very diverse set of bacterial and fungal communities. These microorganisms have a profound impact on tree growth, development, and protection against different types of stress. They mainly originate from the bulk soil and colonize the root system, which provides a unique nutrient-rich environment for a diverse assemblage of microbial communities. In order to better understand how the tree root microbiome is shaped over time, we observed the composition of root-associated microbial communities of naive plantlets of poplar transferred in natural soil. The composition of the final root microbiome relies on a series of colonization stages characterized by the dominance of different fungal guilds and bacterial community members over time. Our observations suggest an early stabilization of bacterial communities, whereas fungal communities are established following a more gradual pattern.
Collapse
Affiliation(s)
- F Fracchia
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | - L Jacquot
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - F Martin
- Université de Lorraine, INRAE, IAM, Nancy, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, China
| | | | - A Deveau
- Université de Lorraine, INRAE, IAM, Nancy, France
| |
Collapse
|
33
|
Dyrka W, Coustou V, Daskalov A, Lends A, Bardin T, Berbon M, Kauffmann B, Blancard C, Salin B, Loquet A, Saupe SJ. Identification of NLR-associated Amyloid Signaling Motifs in Bacterial Genomes. J Mol Biol 2020; 432:6005-6027. [PMID: 33058872 DOI: 10.1016/j.jmb.2020.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
In filamentous fungi, amyloid signaling sequences allow Nod-like receptors (NLRs) to activate downstream cell-death inducing proteins with HeLo and HeLo-like (HELL) domains and amyloid RHIM and RHIM-related motifs control immune defense pathways in mammals and flies. Herein, we show bioinformatically that analogous amyloid signaling motifs exist in bacteria. These short motifs are found at the N terminus of NLRs and at the C terminus of proteins with a domain we term BELL. The corresponding NLR and BELL proteins are encoded by adjacent genes. We identify 10 families of such bacterial amyloid signaling sequences (BASS), one of which (BASS3) is homologous to RHIM and a fungal amyloid motif termed PP. BASS motifs occur nearly exclusively in bacteria forming multicellular structures (mainly in Actinobacteria and Cyanobacteria). We analyze experimentally a subset of seven of these motifs (from the most common BASS1 family and the RHIM-related BASS3 family) and find that these sequences form fibrils in vitro. Using a fungal in vivo model, we show that all tested BASS-motifs form prions and that the NLR-side motifs seed prion-formation of the corresponding BELL-side motif. We find that BASS3 motifs show partial prion cross-seeding with mammalian RHIM and fungal PP-motifs and that proline mutations on key positions of the BASS3 core motif, conserved in RHIM and PP-motifs, abolish prion formation. This work expands the paradigm of prion amyloid signaling to multicellular prokaryotes and suggests a long-term evolutionary conservation of these motifs from bacteria, to fungi and animals.
Collapse
Affiliation(s)
- Witold Dyrka
- Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Virginie Coustou
- Non-self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Asen Daskalov
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248 CBMN, IECB, CNRS, Université de Bordeaux, Allee Geoffroy Saint-Hilaire, 33607 Pessac, France
| | - Alons Lends
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248 CBMN, IECB, CNRS, Université de Bordeaux, Allee Geoffroy Saint-Hilaire, 33607 Pessac, France
| | - Thierry Bardin
- Non-self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Mélanie Berbon
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Brice Kauffmann
- IECB, UMS 3033, US 001, CNRS, Université de Bordeaux, 2 Rue Robert Escarpit, 33607 Pessac, France
| | - Corinne Blancard
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Bénédicte Salin
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248 CBMN, IECB, CNRS, Université de Bordeaux, Allee Geoffroy Saint-Hilaire, 33607 Pessac, France
| | - Sven J Saupe
- Non-self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France.
| |
Collapse
|
34
|
Abstract
Amyloids are implicated in many protein misfolding diseases. Amyloid folds, however, also display a range of functional roles particularly in the microbial world. The templating ability of these folds endows them with specific properties allowing their self-propagation and protein-to-protein transmission in vivo. This property, the prion principle, is exploited by specific signaling pathways that use transmission of the amyloid fold as a way to convey information from a receptor to an effector protein. I describe here amyloid signaling pathways involving fungal nucleotide binding and oligomerization domain (NOD)-like receptors that were found to control nonself recognition and programmed cell death processes. Studies on these fungal amyloid signaling motifs stem from the characterization of the fungal [Het-s] prion protein and have led to the identification in fungi but also in multicellular bacteria of several distinct families of signaling motifs, one of which is related to RHIM [receptor-interacting protein (RIP) homotypic interaction motif], an amyloid motif regulating mammalian necroptosis.
Collapse
Affiliation(s)
- Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077 Bordeaux CEDEX, France
| |
Collapse
|
35
|
Abstract
Numerous cell death-controlling genes have been identified in fungi, especially in the context of conspecific nonself discrimination (allorecognition). However, our understanding of the molecular mechanisms by which these genes trigger programmed cell death (PCD) is limited, as is our knowledge about their relation to PCD pathways in other major eukaryotic kingdoms. Here, we show that the cell death-inducing RCD-1 protein from Neurospora crassa is related to the cytotoxic N-terminal domain of gasdermin, which is the executioner of inflammatory cell death reaction in mammals termed pyroptosis. Our work documents an evolutionary transkingdom relationship of cell death execution proteins between fungi and animals. Programmed cell death (PCD) in filamentous fungi prevents cytoplasmic mixing following fusion between conspecific genetically distinct individuals (allorecognition) and serves as a defense mechanism against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (i.e., senescence plasmids). Recently, we identified regulatorof cell death-1 (rcd-1), a gene controlling PCD in germinated asexual spores in the filamentous fungus Neurospora crassa. rcd-1 alleles are highly polymorphic and fall into two haplogroups in N. crassa populations. Coexpression of alleles from the two haplogroups, rcd-1–1 and rcd-1–2, is necessary and sufficient to trigger a cell death reaction. Here, we investigated the molecular bases of rcd-1-dependent cell death. Based on in silico analyses, we found that RCD-1 is a remote homolog of the N-terminal pore-forming domain of gasdermin, the executioner protein of a highly inflammatory cell death reaction termed pyroptosis, which plays a key role in mammalian innate immunity. We show that RCD-1 localizes to the cell periphery and that cellular localization of RCD-1 was correlated with conserved positively charged residues on predicted amphipathic α-helices, as shown for murine gasdermin-D. Similar to gasdermin, RCD-1 binds acidic phospholipids in vitro, notably, cardiolipin and phosphatidylserine, and interacts with liposomes containing such lipids. The RCD-1 incompatibility system was reconstituted in human 293T cells, where coexpression of incompatible rcd-1–1/rcd-1–2 alleles triggered pyroptotic-like cell death. Oligomers of RCD-1 were associated with the cell death reaction, further supporting the evolutionary relationship between gasdermin and rcd-1. This report documents an ancient transkingdom relationship of cell death execution modules involved in organismal defense.
Collapse
|
36
|
Arora S, Ligoxygakis P. Beyond Host Defense: Deregulation of Drosophila Immunity and Age-Dependent Neurodegeneration. Front Immunol 2020; 11:1574. [PMID: 32774336 PMCID: PMC7387716 DOI: 10.3389/fimmu.2020.01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Age-dependent neurodegenerative disorders are a set of diseases that affect millions of individuals worldwide. Apart from a small subset that are the result of well-defined inherited autosomal dominant gene mutations (e.g., those encoding the β-amyloid precursor protein and presenilins), our understanding of the genetic network that underscores their pathology, remains scarce. Genome-wide association studies (GWAS) especially in Alzheimer's disease patients and research in Parkinson's disease have implicated inflammation and the innate immune response as risk factors. However, even if GWAS etiology points toward innate immunity, untangling cause, and consequence is a challenging task. Specifically, it is not clear whether predisposition to de-regulated immunity causes an inadequate response to protein aggregation (such as amyloid or α-synuclein) or is the direct cause of this aggregation. Given the evolutionary conservation of the innate immune response in Drosophila and humans, unraveling whether hyperactive immune response in glia have a protective or pathological role in the brain could be a potential strategy in combating age-related neurological diseases.
Collapse
Affiliation(s)
- Srishti Arora
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Gonçalves AP, Heller J, Rico-Ramírez AM, Daskalov A, Rosenfield G, Glass NL. Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annu Rev Microbiol 2020; 74:693-712. [PMID: 32689913 DOI: 10.1146/annurev-micro-012420-080905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 115, Taiwan
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Perfect Day, Inc., Emeryville, California 94608, USA
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Asen Daskalov
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Gabriel Rosenfield
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
38
|
McCord JP, Grove TZ. Engineering repeat proteins of the immune system. Biopolymers 2020; 111:e23348. [PMID: 32031681 DOI: 10.1002/bip.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Limitations associated with immunoglobulins have motivated the search for novel binding scaffolds. Repeat proteins have emerged as one promising class of scaffolds, but often are limited to binding protein and peptide targets. An exception is the repeat proteins of the immune system, which have in recent years served as an inspiration for binding scaffolds which can bind glycans and other classes of biomolecule. Like other repeat proteins, these proteins can be very stable and have a monomeric mode of binding, with elongated and highly variable binding surfaces. The ability to target glycans and glycoproteins fill an important gap in current tools for research and biomedical applications.
Collapse
Affiliation(s)
- Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A
| | - Tijana Z Grove
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, U.S.A.,Zarkovic Grove Consulting, LLC, Blacksburg, VA, U.S.A
| |
Collapse
|
39
|
Muhammad S, Tan J, Deng P, Li T, He H, Bian J, Wu L. Pesticide application has little influence on coding and non-coding gene expressions in rice. BMC Genomics 2019; 20:1009. [PMID: 31870289 PMCID: PMC6927115 DOI: 10.1186/s12864-019-6381-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background Agricultural insects are one of the major threats to crop yield. It is a known fact that pesticide application is an extensive approach to eliminate insect pests, and has severe adverse effects on environment and ecosystem; however, there is lack of knowledge whether it could influence the physiology and metabolic processes in plants. Results Here, we systemically analyzed the transcriptomic changes in rice after a spray of two commercial pesticides, Abamectin (ABM) and Thiamethoxam (TXM). We found only a limited number of genes (0.91%) and (1.24%) were altered by ABM and TXM respectively, indicating that these pesticides cannot dramatically affect the performance of rice. Nevertheless, we characterized 1140 Differentially Expressed Genes (DEGs) interacting with 105 long non-coding RNAs (lncRNAs) that can be impacted by the two pesticides, suggesting their certain involvement in response to farm chemicals. Moreover, we detected 274 alternative splicing (AS) alterations accompanied by host genes expressions, elucidating a potential role of AS in control of gene transcription during insecticide spraying. Finally, we identified 488 transposons that were significantly changed with pesticides treatment, leading to a variation in adjacent coding or non-coding transcripts. Conclusion Altogether, our results provide valuable insights into pest management through appropriate timing and balanced mixture, these pesticides have no harmful effects on crop physiology over sustainable application of field drugs.
Collapse
Affiliation(s)
- Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jingai Tan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingchuan Deng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Tingting Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Liang Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Daskalov A, Gladieux P, Heller J, Glass NL. Programmed Cell Death in Neurospora crassa Is Controlled by the Allorecognition Determinant rcd-1. Genetics 2019; 213:1387-1400. [PMID: 31636083 PMCID: PMC6893366 DOI: 10.1534/genetics.119.302617] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Nonself recognition following cell fusion between genetically distinct individuals of the same species in filamentous fungi often results in a programmed cell death (PCD) reaction, where the heterokaryotic fusion cell is compartmentalized and rapidly killed. The allorecognition process plays a key role as a defense mechanism that restricts genome exploitation, resource plundering, and the spread of deleterious senescence plasmids and mycoviruses. Although a number of incompatibility systems have been described that function in mature hyphae, less is known about the PCD pathways in asexual spores, which represent the main infectious unit in various human and plant fungal pathogens. Here, we report the identification of regulator of cell death-1 (rcd-1), a novel allorecognition gene, controlling PCD in germinating asexual spores of Neurospora crassa; rcd-1 is one of the most polymorphic genes in the genomes of wild N. crassa isolates. The coexpression of two antagonistic rcd-1-1 and rcd-1-2 alleles was necessary and sufficient to trigger cell death in fused germlings and in hyphae. Based on analysis of wild populations of N. crassa and N. discreta, rcd-1 alleles appeared to be under balancing selection and associated with trans-species polymorphisms. We shed light on genomic rearrangements that could have led to the emergence of the incompatibility system in Neurospora and show that rcd-1 belongs to a much larger gene family in fungi. Overall, our work contributes toward a better understanding of allorecognition and PCD in an underexplored developmental stage of filamentous fungi.
Collapse
Affiliation(s)
- Asen Daskalov
- Plant and Microbial Biology Department, The University of California, Berkeley, California 94720
| | - Pierre Gladieux
- UMR BGPI, INRA, CIRAD, Montpellier SupAgro, University Montpellier, 34060, France
| | - Jens Heller
- Plant and Microbial Biology Department, The University of California, Berkeley, California 94720
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, California 94720
| | - N Louise Glass
- Plant and Microbial Biology Department, The University of California, Berkeley, California 94720
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, California 94720
| |
Collapse
|
41
|
Richter DJ, Levin TC. The origin and evolution of cell-intrinsic antibacterial defenses in eukaryotes. Curr Opin Genet Dev 2019; 58-59:111-122. [PMID: 31731216 DOI: 10.1016/j.gde.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
To survive in a world dominated by bacteria, eukaryotes have evolved numerous self-defense strategies. While some defenses are recent evolutionary innovations, others are ancient, with roots early in eukaryotic history. With a focus on antibacterial immunity, we highlight the evolution of pattern recognition receptors that detect bacteria, where diverse functional classes have been formed from the repeated use and reuse of a small set of protein domains. Next, we discuss core microbicidal strategies shared across eukaryotes, and how these systems may have been co-opted from ancient cellular mechanisms. We propose that studying antibacterial responses across diverse eukaryotes can reveal novel modes of defense, while highlighting the critical innovations that occurred early in the evolution of our own immune systems.
Collapse
Affiliation(s)
- Daniel J Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.
| | - Tera C Levin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
42
|
Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F. A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell 2019; 178:1260-1272.e14. [PMID: 31442410 PMCID: PMC6709784 DOI: 10.1016/j.cell.2019.07.038] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.
Collapse
Affiliation(s)
- Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Freddy Monteiro
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Oliver J Furzer
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Milner Centre for Evolution & Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
43
|
Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F. A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell 2019. [PMID: 31442410 DOI: 10.1101/537001v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.
Collapse
Affiliation(s)
- Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Freddy Monteiro
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Oliver J Furzer
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Milner Centre for Evolution & Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
44
|
The mitochondrial translocase of the inner membrane PaTim54 is involved in defense response and longevity in Podospora anserina. Fungal Genet Biol 2019; 132:103257. [PMID: 31351193 DOI: 10.1016/j.fgb.2019.103257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022]
Abstract
Fungi are very successful microorganisms capable of colonizing virtually any ecological niche where they must constantly cope with competitors including fungi, bacteria and nematodes. We have shown previously that the ascomycete Podopora anserina exhibits Hyphal Interference (HI), an antagonistic response triggered by direct contact of competing fungal hyphae. When challenged with Penicillium chrysogenum, P. anserina produces hydrogen peroxide at the confrontation and kills the hyphae of P. chrysogenum. Here, we report the characterization of the PDC2218 mutant affected in HI. When challenged with P. chrysogenum, the PDC2218 mutant produces a massive oxidative burst at the confrontation. However, this increased production of hydrogen peroxide is not correlated to increased cell death in P. chrysogenum. Hence, the oxidative burst and cell death in the challenger are uncoupled in PDC2218. The gene affected in PDC2218 is PaTim54, encoding the homologue of the budding yeast mitochondrial inner membrane import machinery component Tim54p. We show that PaTim54 is essential in P. anserina and that the phenotypes displayed by the PDC2218 mutant, renamed PaTim542218, are the consequence of a drastic reduction in the expression of PaTim54. Among these pleiotropic phenotypes, PDC2218-PaTim542218- displays increased lifespan, a phenotype in line with the observed mitochondrial defects in the mutant.
Collapse
|
45
|
Tan DX. Aging: An evolutionary competition between host cells and mitochondria. Med Hypotheses 2019; 127:120-128. [PMID: 31088635 DOI: 10.1016/j.mehy.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Here, a new theory of aging is proposed. This new theory is referred as the Host-Mitochondria Intracellular Innate Immune Theory of Aging (HMIIITA). The main point of this theory is that the aging is rooted from an evolutionary competition, that is, a never ending coevolutionary race between host cells and mitochondria. Mitochondria are the descendants of bacteria. The host cells will inevitably sense their bacterial origin, particularly their circular mtDNA. The host intracellular innate immune pressure (HIIIP) aims to eliminate mtDNA as more as possible while mitochondria have to adapt the HIIIP for survival. Co-evolution is required for both of them. From biological point of view, the larger, the mtDNA, the higher, the chance, it becomes the target of HIIIP. As a result, mitochondria have to reduce their mtDNA size via deletion. This process has last for 1.5-2 billion yeas and the result is that mitochondria have lost excessive 95% of their DNA. This mtDNA deletion is not associated with free radical attack but a unique trait acquired during evolution. In the postmitotic cells, the deletion is passively selected by the mitochondrial fission-fusion cycles. Eventually, the accumulation of deletion will significantly jeopardize the mitochondrial function. The dysfunctional mitochondria no longer provide sufficient ATP to support host cells' continuous demanding for growth. At this stage, the cell or the organism aging is inevitable.
Collapse
Affiliation(s)
- Dun-Xian Tan
- The Department of Cell System and Anatomy, The University of Texas, Health, San Antonio, TX 78229, USA.
| |
Collapse
|
46
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
47
|
Ancheeva E, Mándi A, Király SB, Kurtán T, Hartmann R, Akone SH, Weber H, Daletos G, Proksch P. Chaetolines A and B, Pyrano[3,2- f]isoquinoline Alkaloids from Cultivation of Chaetomium sp. in the Presence of Autoclaved Pseudomonas aeruginosa. JOURNAL OF NATURAL PRODUCTS 2018; 81:2392-2398. [PMID: 30343566 DOI: 10.1021/acs.jnatprod.8b00373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The first members of a new alkaloid class, chaetolines A (1) and B (2), which feature a pyrano[3,2- f]isoquinoline core structure, were obtained from a crude extract of the fungal endophyte Chaetomium sp. after cultivation in the presence of autoclaved Pseudomonas aeruginosa. The structures of the new compounds, including the absolute configuration of the major stereoisomer, were determined through detailed analysis of HRESIMS, 1D/2D NMR, and calculation of ECD data. The possible biosynthetic origin of the unprecedented scaffold of 1 and 2 is proposed. The current study provides further evidence for mixed fermentation as a powerful tool to induce the accumulation of cryptic fungal natural products even in the absence of viable bacterial cells.
Collapse
Affiliation(s)
- Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , PO Box 400, 4002 Debrecen , Hungary
| | - Sándor B Király
- Department of Organic Chemistry , University of Debrecen , PO Box 400, 4002 Debrecen , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , PO Box 400, 4002 Debrecen , Hungary
| | - Rudolf Hartmann
- Institute of Complex Systems: Strukturbiochemie (ICS-6) , Forschungszentrum Jülich , Wilhelm-Johnen-Strasse , 52428 Jülich , Germany
| | - Sergi H Akone
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
- Faculty of Science, Department of Chemistry , University of Douala , PO Box 24157, Douala , Cameroon
| | - Horst Weber
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
48
|
Kombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, van Heuvel Y, Dürig N, Lin CW, Kallio PT, Aebi M, Künzler M. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME JOURNAL 2018; 13:588-602. [PMID: 30301946 PMCID: PMC6461984 DOI: 10.1038/s41396-018-0293-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Bacteria are the main nutritional competitors of saprophytic fungi during colonization of their ecological niches. This competition involves the mutual secretion of antimicrobials that kill or inhibit the growth of the competitor. Over the last years it has been demonstrated that fungi respond to the presence of bacteria with changes of their transcriptome, but the significance of these changes with respect to competition for nutrients is not clear as functional proof of the antibacterial activity of the induced gene products is often lacking. Here, we report the genome-wide transcriptional response of the coprophilous mushroom Coprinopsis cinerea to the bacteria Bacillus subtilis and Escherichia coli. The genes induced upon co-cultivation with each bacterium were highly overlapping, suggesting that the fungus uses a similar arsenal of effectors against Gram-positive and -negative bacteria. Intriguingly, the induced genes appeare to encode predominantly secreted peptides and proteins with predicted antibacterial activities, which was validated by comparative proteomics of the C. cinerea secretome. Induced members of two putative antibacterial peptide and protein families in C. cinerea, the cysteine-stabilized αβ-defensins (Csαβ-defensins) and the GH24-type lysozymes, were purified, and their antibacterial activity was confirmed. These results provide compelling evidence that fungi are able to recognize the presence of bacteria and respond with the expression of an arsenal of secreted antibacterial peptides and proteins.
Collapse
Affiliation(s)
- Anja Kombrink
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Annageldi Tayyrov
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Andreas Essig
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Martina Stöckli
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.,rqmicro AG, Brandstrasse 24, 8952, Schlieren, Switzerland
| | - Sebastian Micheller
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - John Hintze
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.,Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Yasemin van Heuvel
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Natalia Dürig
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Chia-Wei Lin
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Pauli T Kallio
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
49
|
Zaidi SSEA, Mukhtar MS, Mansoor S. Genome Editing: Targeting Susceptibility Genes for Plant Disease Resistance. Trends Biotechnol 2018; 36:898-906. [PMID: 29752192 DOI: 10.1016/j.tibtech.2018.04.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
Plant pathogens pose a major threat to crop productivity. Typically, phytopathogens exploit plants' susceptibility (S) genes to facilitate their proliferation. Disrupting these S genes may interfere with the compatibility between the host and the pathogens and consequently provide broad-spectrum and durable disease resistance. In the past, genetic manipulation of such S genes has been shown to confer disease resistance in various economically important crops. Recent studies have accomplished this task in a transgene-free system using new genome editing tools, including clustered regularly interspaced palindromic repeats (CRISPR). In this Opinion article, we focus on the use of genome editing to target S genes for the development of transgene-free and durable disease-resistant crop varieties.
Collapse
Affiliation(s)
- Syed Shan-E-Ali Zaidi
- Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium; National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. http://twitter.com/@SyedShanZaidi
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA. http://twitter.com/@SMukhtarlab
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|