1
|
Zhou P, Zhang Q, Yang Y, Chen D, Jongkaewwattana A, Jin H, Zhou H, Luo R. Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation. Autophagy 2025; 21:754-770. [PMID: 39508267 DOI: 10.1080/15548627.2024.2426114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck Anas platyrhynchos domesticus TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.Abbreviation: 3-MA: 3-methyladenine; ATG5: autophagy related 5; baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; co-IP: co-immunoprecipitation; DEFs: duck embryonic fibroblasts; DTMUV: duck Tembusu virus; eGFP: enhanced green fluorescent protein; hpi: hours post infection; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; IP: immunoprecipitation; IRF7: interferon regulatory factor 7; ISRE: interferon-stimulated response element; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB: nuclear factor kappa B; pAb: polyclonal antibody; poly(I:C): Polyriboinosinic polyribocytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like-receptor; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious dose; TM: tansmembrane; TOLLIP: toll interacting protein; TRIM: tripartite motif containing; UBA: ubiquitin-associated domain; Ub: ubiquitin; VSV: vesicular stomatitis virus; WT: wild type.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Qingxiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Yueshan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Dong Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| |
Collapse
|
2
|
Zhou L, Cai X, Dong Q, Yin J, Liu Y, Gao X, Jiang Q, Zhang Y, Zhang X. The immune response and autophagy of Macrobrachium rosenbergii against Aeromonas veronii infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101488. [PMID: 40112606 DOI: 10.1016/j.cbd.2025.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Aeromonas is a bacterial pathogen that causes significant economic losses in the Macrobrachium rosenbergii industry. This study evaluated the transcriptome analysis of M. rosenbergii infected with A. veronii and examined the gene expression patterns associated with immunity in the gills, muscles, intestines, and hepatopancreas. Specifically, 47,988 unigenes and 15,604 differentially expressed genes (DEGs) were identified. The immune-related DEGs were primarily enriched in 20 innate immune signaling pathways, including the NOD-like receptor, Toll-like receptor, and RIG-I-like receptor signaling pathways, etc., as determined by KEGG enrichment analysis. Notably, autophagy-related genes ATG5, ATG12, ATG16L1, and ATG8 were enriched in the NOD-like receptor signaling pathways. Moreover, ATG12, ATG16L1, and ATG8 exhibited significantly up-regulated expression to varying degrees in the hepatopancreas, gills, muscles, and intestines at 12, 24, 36, and 48 h post-infection (hpi). In addition, many autolysosomes were observed in hepatopancreas cells of infected prawns using transmission electron microscopy (TEM). Ultimately, we identified the autophagy-related genes implicated in the immune response of M. rosenbergii, offering a theoretical foundation for elucidating the role of autophagy in the prawn's innate immune mechanisms.
Collapse
Affiliation(s)
- Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jia Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Zhang R, Yu C, Zeh HJ, Kroemer G, Klionsky DJ, Tang D, Kang R. TAX1BP1-dependent autophagic degradation of STING1 impairs anti-tumor immunity. Autophagy 2025:1-22. [PMID: 40000606 DOI: 10.1080/15548627.2025.2471736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/02/2024] [Accepted: 02/21/2025] [Indexed: 02/27/2025] Open
Abstract
The activation of STING1 can lead to the production and secretion of cytokines, initiating antitumor immunity. Here, we screened an ion channel ligand library and identified tetrandrine, a bis-benzylisoquinoline alkaloid, as an immunological adjuvant that enhances antitumor immunity by preventing the autophagic degradation of the STING1 protein. This tetrandrine effect is independent of its known function as a calcium or potassium channel blocker. Instead, tetrandrine inhibits lysosomal function, impairing cathepsin maturation, and autophagic degradation. Proteomic analysis of lysosomes identified TAX1BP1 as a novel autophagic receptor for the proteolysis of STING1. TAX1BP1 recognizes STING1 through the physical interaction of its coiled-coil domain with the cyclic dinucleotide binding domain of STING1. Systematic mutation of lysine (K) residues revealed that K63-ubiquitination of STING1 at the K224 site ignites TAX1BP1-dependent STING1 degradation. Combined treatment with tetrandrine and STING1 agonists promotes antitumor immunity by converting "cold" pancreatic cancers into "hot" tumors. This process is associated with enhanced cytokine release and increased infiltration of cytotoxic T-cells into the tumor microenvironment. The antitumor immunity mediated by tetrandrine and STING1 agonists is limited by neutralizing antibodies to the type I interferon receptor or CD8+ T cells. Thus, these findings establish a potential immunotherapeutic strategy against pancreatic cancer by preventing the autophagic degradation of STING1.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biology, Pôle de Biologie, Institut du Cancer Paris CARPEM, Paris, France
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Zhan Z, Liang H, Zhao Z, Pan L, Li J, Chen Y, Xie Z, Yan Z, Xiang Y, Liu W, Hong L. The Trim32-DPEP2 axis is an inflammatory switch in macrophages during intestinal inflammation. Cell Death Differ 2025:10.1038/s41418-025-01468-w. [PMID: 40021897 DOI: 10.1038/s41418-025-01468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
The mechanisms via which inflammatory macrophages mediate intestinal inflammation are not completely understood. Herein, using merged analysis of RNA sequencing and mass spectrometry-based quantitative proteomics, we detected differences between proteomic and transcriptomic data in activated macrophages. Dipeptidase-2 (DPEP2), a member of the DPEP family, was highly expressed and then downregulated sharply at the protein level but not at the mRNA level in macrophages in response to inflammatory stimulation. Suppression of DPEP2 not only enhanced macrophage-mediated intestinal inflammation in vivo but also promoted the transduction of inflammatory pathways in macrophages in vitro. Mechanistically, overexpressed DPEP2 inhibited the transduction of inflammatory signals by resisting MAK3K7 in inactivated macrophages, whereas DPEP2 degradation by activated Trim32 resulted in strong activation of NF-κB and p38 MAPK signaling via the release of MAK3K7 in proinflammatory macrophages during the development of intestinal inflammation. The Trim32-DPEP2 axis accumulates the potential energy of inflammation in macrophages. These results identify DPEP2 as a key regulator of macrophage-mediated intestinal inflammation. Thus, the Trim32-DPEP2 axis may be a potential therapeutic target for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Zhiyan Zhan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Clinical Research Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Huisheng Liang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Gynecology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China
| | - Zhuoqi Zhao
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liya Pan
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jing Li
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuyun Chen
- Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhoulonglong Xie
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhilong Yan
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Ying Xiang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wenxue Liu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Hong
- Department of Clinical Nutrition, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
5
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
6
|
Chen DD, Zhang JX, Li ZC, Zhang C, Xu X, Cui BJ, Xu N, Wang YY, Zhou CJ, Zhou L, Lu LF, Li S. Ammonium chloride mitigates the amplification of fish virus by blocking autophagy-dependent replication. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:265-277. [PMID: 40073239 DOI: 10.1093/jimmun/vkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Ammonia fertilizer, primarily composed of ammonium chloride, is widely used in pond fish farming throughout Asia. Despite the belief that it possesses antiviral properties, the underlying mechanisms remain unclear. Ammonium chloride (NH4Cl) has been demonstrated to act as a potent inhibitor of autophagy, which is used by many fish viruses to promote their proliferation during infection. It was therefore hypothesized that the antiviral effect of ammonia fertilizers was likely due to the inhibition of autophagy in viruses. The present study sought to evaluate the antiviral effect of NH4Cl in a model of several fish cells and zebrafish. The findings demonstrated that the administration of NH4Cl after viral infection inhibited the proliferation of a variety of fish viruses, encompassing both DNA and RNA viruses. Further studies have indicated that NH4Cl obstructed autophagy-dependent virus proliferation of spring viremia of carp virus (SVCV) by inhibiting autophagic flux. The molecular mechanism revealed that SVCV contributed to the polyubiquitination of interferon regulatory factor 3 (IRF3) and promoted the degradation of IRF3 through cargo receptor sequestosome 1 (SQSTM1/p62)-mediated selective autophagy. However, NH4Cl was observed to inhibit SVCV-mediated selective autophagy of IRF3, thereby facilitating the production of interferon. Furthermore, the SVCV N protein was of critical importance in this process. Nevertheless, NH4Cl impeded this degradation process by inhibiting the autophagy pathway. The study found that NH4Cl was highly efficacious in controlling fish virus infection both in vivo and in vitro. It can therefore be concluded that the antiviral effect of ammonia fertilizers was, at least in part, due to the inhibition of viral autophagy.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Xin Zhang
- School of Life Science, Hubei University, Wuhan, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Bao-Jie Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Na Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang-Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chu-Jing Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
7
|
Zhou X, Zhao Y, Huang S, Shu H, Zhang Y, Yang H, Ren Y, Zhou X, Liu W, Song T, Zhao J, Ma J. TRIM32 promotes neuronal ferroptosis by enhancing K63-linked ubiquitination and subsequent p62-selective autophagic degradation of GPX4. Int J Biol Sci 2025; 21:1259-1274. [PMID: 39897031 PMCID: PMC11781169 DOI: 10.7150/ijbs.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Ferroptosis, characterized by iron-dependent phospholipid peroxidation, is recognized as one of the cell death pathways activated following spinal cord injury (SCI). However, the precise regulatory mechanisms governing this process remain poorly understood. Here, this study identified TRIM32, an E3 ubiquitin ligase, as a key enhancer of neuronal ferroptosis. TRIM32 promoted neuronal ferroptosis by accelerating the degradation of GPX4, which is an essential inhibitor of ferroptosis. Conditional deletion of Trim32 in neurons markedly inhibited neuronal ferroptosis and promoted neuronal survival, eventually improving mouse locomotor functional recovery after SCI. However, overexpression of Trim32 showed aggravated neuronal loss and poor behavioral function, which could be attenuated by ferroptosis inhibitor Liproxstatin-1. Mechanistically, TRIM32 interacted with GPX4, promoted K63-linked ubiquitination modification of GPX4 at K107, thus enhanced p62-dependent autophagic degradation of GPX4. Moreover, ROS-ATM-Chk2 signaling pathway phosphorylates TRIM32 at S55, further contributing to GPX4 ubiquitination and degradation and subsequent neuronal ferroptosis after SCI, suggesting a positive feedback loop between ROS and TRIM32. Clinically, lipid peroxidation was significantly promoted in patients with SCI. These findings reveal that TRIM32 functions as a neuronal ferroptosis enhancer which is detrimental to neuronal survival and locomotor functional recovery in mice after SCI by promoting K63-linked ubiquitination and subsequent p62-dependent autophagic degradation of GPX4, suggesting a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yuqing Zhao
- Department of Neurosurgery, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shixue Huang
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Haoming Shu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yinuo Zhang
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Haiyuan Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yilong Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Liu
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Tengfei Song
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jianquan Zhao
- Department of Orthopedics, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Translational Research Centre of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Wang D, Li K. Emerging Roles of TRIM56 in Antiviral Innate Immunity. Viruses 2025; 17:72. [PMID: 39861861 PMCID: PMC11768893 DOI: 10.3390/v17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics.
Collapse
Affiliation(s)
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
9
|
White J, Choi YB, Zhang J, Vo MT, He C, Shaikh K, Harhaj EW. Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates. Autophagy 2025; 21:160-177. [PMID: 39193925 DOI: 10.1080/15548627.2024.2394306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that inhibits NFKB and RIGI-like receptor (RLR) signaling to prevent excessive inflammation and maintain homeostasis. Selective autophagy receptors such as SQSTM1/p62 and OPTN are phosphorylated by the kinase TBK1 to stimulate their selective autophagy function. However, it is unknown if TAX1BP1 is regulated by TBK1 or other kinases under basal conditions or during RNA virus infection. Here, we found that TBK1 and IKBKE/IKKi function redundantly to phosphorylate TAX1BP1 and regulate its autophagic turnover through canonical macroautophagy. TAX1BP1 phosphorylation promotes its localization to lysosomes, resulting in its degradation. Additionally, we found that during vesicular stomatitis virus infection, TAX1BP1 is targeted to lysosomes in an ATG8-family protein-independent manner. Furthermore, TAX1BP1 plays a critical role in the clearance of MAVS aggregates, and phosphorylation of TAX1BP1 controls its MAVS aggrephagy function. Together, our data support a model whereby TBK1 and IKBKE license TAX1BP1-selective autophagy function to inhibit MAVS and RLR signaling.Abbreviations: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2: calcium binding and coiled-coil domain 2; GFP: green fluorescent protein; IFA: indirect immunofluorescence assay; IFN: interferon; IκB: inhibitor of nuclear factor kappa B; IKK: IκB kinase; IRF: interferon regulatory factor; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; NFKB: nuclear factor kappa B; OPTN: optineurin; Poly(I:C): polyinosinic-polycytidylic acid; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SDD-AGE: semi-denaturing detergent-agarose gel electrophoresis; SeV: Sendai virus; SLR: SQSTM1-like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF: TNF receptor associated factor; VSV: vesicular stomatitis virus; ZnF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chaoxia He
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kashif Shaikh
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
10
|
He Z, Li F, Yan J, Liu M, Chen Y, Guo C. The dual role of autophagy during porcine reproductive and respiratory syndrome virus infection: A review. Int J Biol Macromol 2024; 282:136978. [PMID: 39471930 DOI: 10.1016/j.ijbiomac.2024.136978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Autophagy is a highly conserved catabolic process that transports cellular components to lysosomes for degradation and reuse. It impacts various cellular functions, including innate and adaptive immunity. It can exhibit a dual role in viral infections, either promoting or inhibiting viral replication depending on the virus and the stage of the infection cycle. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen impacting the sustainable development of the global pork industry. Recent research has shown that PRRSV has evolved specific mechanisms to facilitate or impede autophagosome maturation, thereby evading innate and adaptive immune responses. These primary mechanisms involve viral proteins that target multiple regulators of autophagosome formation, including autophagy receptors, tethering proteins, autophagy-related (ATG) genes, as well as the functional proteins of autophagosomes and late endosomes/lysosomes. Additionally, these mechanisms are related to the post-translational modification of key components, viral antigens for presentation to T lymphocytes, interferon production, and the biogenesis and function of lysosomes. This review discusses the specific mechanisms by which PRRSV targets autophagy in host defence and virus survival, summarizes the role of viral proteins in subverting the autophagic process, and examines how the host utilizes the antiviral functions of autophagy to prevent PRRSV infection.
Collapse
Affiliation(s)
- Zhan He
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Fangfang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Jiecong Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
11
|
Xie Y, Cao J, Gan S, Xu L, Zhang D, Qian S, Xu F, Ding Q, Schoggins JW, Fan W. TRIM32 inhibits Venezuelan equine encephalitis virus infection by targeting a late step in viral entry. PLoS Pathog 2024; 20:e1012312. [PMID: 39527628 PMCID: PMC11581401 DOI: 10.1371/journal.ppat.1012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.
Collapse
Affiliation(s)
- Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuyi Gan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Qian
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qiang Ding
- School of Medical Sciences, Tsinghua University, Beijing, China
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases of Children’s Hospital, Zhejiang University School of Medicine, National Clinical Center for Children’s Health, Hangzhou, China
| |
Collapse
|
12
|
Luo R, Wang T, Lan J, Lu Z, Chen S, Sun Y, Qiu HJ. The multifaceted roles of selective autophagy receptors in viral infections. J Virol 2024; 98:e0081424. [PMID: 39212450 PMCID: PMC11494948 DOI: 10.1128/jvi.00814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Selective autophagy is a protein clearance mechanism mediated by evolutionarily conserved selective autophagy receptors (SARs), which specifically degrades misfolded, misassembled, or metabolically regulated proteins. SARs help the host to suppress viral infections by degrading viral proteins. However, viruses have evolved sophisticated mechanisms to counteract, evade, or co-opt autophagic processes, thereby facilitating viral replication. Therefore, this review aims to summarize the complex mechanisms of SARs involved in viral infections, specifically focusing on how viruses exploit strategies to regulate selective autophagy. We present an updated understanding of the various critical roles of SARs in viral pathogenesis. Furthermore, newly discovered evasion strategies employed by viruses are discussed and the ubiquitination-autophagy-innate immune regulatory axis is proposed to be a crucial pathway to control viral infections. This review highlights the remarkable flexibility and plasticity of SARs in viral infections.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
| | - Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengmei Chen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- School of Life Science Engineering, Foshan University, Foshan, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
- School of Life Science Engineering, Foshan University, Foshan, China
| |
Collapse
|
13
|
Lamsal A, Andersen SB, Johansson I, Desgarnier MCD, Wolowczyk C, Engedal N, Vietri M, Bjørkøy G, Giambelluca MS, Pettersen K. Elucidating the power of arginine restriction: taming type I interferon response in breast cancer via selective autophagy. Cell Commun Signal 2024; 22:481. [PMID: 39380098 PMCID: PMC11462705 DOI: 10.1186/s12964-024-01858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Type I interferons (IFN-I) are potent alarm factors that initiate cancer cell elimination within tumors by the immune system. This critical immune response is often suppressed in aggressive tumors, thereby facilitating cancer immune escape and unfavorable patient outcome. The mechanisms underpinning IFN-I suppression in tumors are incompletely understood. Arginase-1 (ARG1)-expressing immune cells that infiltrate tumors can restrict arginine availability by ARG1-mediated arginine degradation. We hypothesized that arginine restriction suppresses the IFN-I response in tumors. METHODS Comprehensive, unbiased open approach omics analyses, various in vitro techniques, including microscopy, qPCR, immunoblotting, knock-down experiments, and flow cytometry were employed, as well as ex vivo analysis of tumor tissue from mice. Several functional bioassays were utilized to assess metabolic functions and autophagy activity in cancer cells. RESULTS Arginine restriction potently induced expression of selective autophagy receptors, enhanced bulk and selective autophagy and strongly suppressed the IFN-I response in cancer cells in an autophagy-dependent manner. CONCLUSION Our study proposes a mechanism for how tumor-infiltrating immune cells can promote cancer immune escape by dampening the IFN-I response. We suggest ARG1 and autophagy as putative therapeutic targets to activate the IFN-I response in tumors.
Collapse
Affiliation(s)
- Apsana Lamsal
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sonja Benedikte Andersen
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ida Johansson
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie-Catherine Drigeard Desgarnier
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nikolai Engedal
- Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Montebello, Oslo, Norway
| | - Marina Vietri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam S Giambelluca
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Clinical Medicine, Faculty of Health Science, UiT- The Arctic University of Norway, Tromsø, Norway.
| | - Kristine Pettersen
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
14
|
Nenasheva VV, Stepanenko EA, Tarantul VZ. Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1283-1299. [PMID: 39218025 DOI: 10.1134/s0006297924070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
The multigene TRIM family is an important component of the innate immune system. For a long time, the main function of the genes belonging to this family was believed to be an antiviral defense of the host organism. The issue of their participation in the immune system response to bacterial invasion has been less studied. This review is the first comprehensive analysis of the mechanisms of functioning of the TRIM family genes in response to bacterial infections, which expands our knowledge about the role of TRIM in the innate immune system. When infected with different types of bacteria, individual TRIM proteins regulate inflammatory, interferon, and other responses of the immune system in the cells, and also affect autophagy and apoptosis. Functioning of TRIM proteins in response to bacterial infection, as well as viral infection, often includes ubiquitination and various protein-protein interactions with both bacterial proteins and host cell proteins. At the same time, some TRIM proteins, on the contrary, contribute to the infection development. Different members of the TRIM family possess similar mechanisms of response to viral and bacterial infection, and the final impact of these proteins could vary significantly. New data on the effect of TRIM proteins on bacterial infections make an important contribution to a more detailed understanding of the innate immune system functioning in animals and humans when interacting with pathogens. This data could also be used for the search of new targets for antibacterial defense.
Collapse
|
15
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Interleukin 27, Similar to Interferons, Modulates Gene Expression of Tripartite Motif (TRIM) Family Members and Interferes with Mayaro Virus Replication in Human Macrophages. Viruses 2024; 16:996. [PMID: 38932287 PMCID: PMC11209095 DOI: 10.3390/v16060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce interferons (IFNs) and IL27. We recently published that IL27 and IFNs induce transcriptional changes in various genes, including those involved in JAK-STAT signaling. Furthermore, IL27 and IFNs share proinflammatory and antiviral pathways in monocyte-derived macrophages (MDMs), resulting in both common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs) encoding antiviral proteins. Interestingly, many TRIM proteins have been recognized as ISGs in recent years. Although it is already very well described that TRIM expression is induced by IFNs, it is not fully understood whether TRIM genes are induced in macrophages by IL27. Therefore, in this study, we examined the effect of stimulation with IL27 and type I, II, and III IFNs on the mRNA expression profiles of TRIM genes in MDMs. METHODS We used bulk RNA-seq to examine the TRIM expression profile of MDMs treated with IFNs or IL27. Initially, we characterized the expression patterns of different TRIM subfamilies using a heatmap. Subsequently, a volcano plot was employed to identify commonly differentially expressed TRIM genes. Additionally, we conducted gene ontology analysis with ClueGO to explore the biological processes of the regulated TRIMs, created a gene-gene interaction network using GeneMANIA, and examined protein-protein interactions with the STRING database. Finally, RNA-seq data was validated using RT-qPCR. Furthermore, the effect of IL27 on Mayaro virus replication was also evaluated. RESULTS We found that IL27, similar to IFNs, upregulates several TRIM genes' expression in human macrophages. Specifically, we identified three common TRIM genes (TRIM19, 21, and 22) induced by IL27 and all types of human IFNs. Additionally, we performed the first report of transcriptional regulation of TRIM19, 21, 22, and 69 genes in response to IL27. The TRIMs involved a broad range of biological processes, including defense response to viruses, viral life cycle regulation, and negative regulation of viral processes. In addition, we observed a decrease in Mayaro virus replication in MDMs previously treated with IL27. CONCLUSIONS Our results show that IL27, like IFNs, modulates the transcriptional expression of different TRIM-family members involved in the induction of innate immunity and an antiviral response. In addition, the functional analysis demonstrated that, like IFN, IL27 reduced Mayaro virus replication in MDMs. This implies that IL27 and IFNs share many similarities at a functional level. Moreover, identifying distinct TRIM groups and their differential expressions in response to IL27 provides new insights into the regulatory mechanisms underlying the antiviral response in human macrophages.
Collapse
Affiliation(s)
| | | | | | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050001, Colombia; (L.J.H.-S.); (Y.S.T.-M.); (J.F.V.-L.)
| |
Collapse
|
16
|
Zhang Y, Dong Z, Gu F, Xu Y, Li Y, Sun W, Rao W, Du S, Zhu C, Wang Y, Wei F, Cai Q. Degradation of TRIM32 is induced by RTA for Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 2024; 98:e0000524. [PMID: 38717113 PMCID: PMC11237441 DOI: 10.1128/jvi.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Gu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifei Xu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wutian Rao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
18
|
Wang J, Wu Y, Lin R, Zhang Y, Li L. TRAM deletion attenuates monocyte exhaustion and alleviates sepsis severity. Front Immunol 2023; 14:1297329. [PMID: 38162637 PMCID: PMC10756061 DOI: 10.3389/fimmu.2023.1297329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
19
|
Gu L, Jin F, Yang T, Ruan Y, Zhong R, Han Q, Huang Y. Mercuric chloride induced brain toxicity in mice: The protective effects of puerarin-loaded PLGA nanoparticles. J Biochem Mol Toxicol 2023; 37:e23425. [PMID: 37401655 DOI: 10.1002/jbt.23425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/22/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Mercury is a toxic, environmentally heavy metal that can cause severe damage to all organs, including the nervous system. The functions of puerarin include antioxidant, anti-inflammatory, nerve cell repair, regulation of autophagy, and so forth. But because of the limited oral absorption of puerarin, it affects the protective effect on brain tissue. The nano-encapsulation of Pue can improve its limitation. Therefore, this study investigated the protective effect of Pue drug-loaded PLGA nanoparticles (Pue-PLGA-nps) on brain injury induced by mercuric chloride (HgCl2 ) in mice. The mice were divided into normal saline (NS) group, HgCl2 (4 mg/kg) group, Pue-PLGA-nps (50 mg/kg) group, HgCl2 + Pue (4 mg/kg + 30 mg/kg) group, and HgCl2 + Pue-PLGA-nps (4 mg/kg + 50 mg/kg) group. After 28 days of treatment, the mice were observed for behavioral changes, antioxidant capacity, autophagy and inflammatory response, and mercury levels in the brain, blood, and urine were measured. The results showed that HgCl2 toxicity caused learning and memory dysfunction in mice, increased mercury content in brain and blood, and increased serum levels of interleukin (IL-6), IL-1β, and tumor necrosis factor-α in the mice. HgCl2 exposure decreased the activity of T-AOC, superoxide dismutase, and glutathione peroxidase, and increased the expression of malondialdehyde in the brain of mice. Moreover, the expression levels of TRIM32, toll-like receptor 4 (TLR4), and LC3 proteins were upregulated. Both Pue and Pue-PLGA-nps interventions mitigated the changes caused by HgCl2 exposure, and Pue-PLGA-nps further enhanced this effect. Our results suggest that Pue-PLGA-nps can ameliorate HgCl2 -induced brain injury and reduce Hg accumulation, which is associated with inhibition of oxidative stress, inflammatory response, and TLR4/TRIM32/LC3 signaling pathway.
Collapse
Affiliation(s)
- Lixiang Gu
- School of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Fan Jin
- School of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Tianlong Yang
- School of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Yuechuan Ruan
- School of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ruixin Zhong
- School of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu, People's Republic of China
| | - Yi Huang
- Medical Center Hospital of Qionglai, Chengdu, People's Republic of China
| |
Collapse
|
20
|
Romagnoli A, Di Rienzo M, Petruccioli E, Fusco C, Palucci I, Micale L, Mazza T, Delogu G, Merla G, Goletti D, Piacentini M, Fimia GM. The ubiquitin ligase TRIM32 promotes the autophagic response to Mycobacterium tuberculosis infection in macrophages. Cell Death Dis 2023; 14:505. [PMID: 37543647 PMCID: PMC10404268 DOI: 10.1038/s41419-023-06026-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to evade host immune responses and persist in macrophages for long periods. A mechanism that the host uses to combat Mtb is xenophagy, a selective form of autophagy that targets intracellular pathogens for degradation. Ubiquitination of Mtb or Mtb-containing compartments is a key event to recruit the autophagy machinery and mediate the bacterial delivery to the lysosome. This event relies on the coordinated and complementary activity of different ubiquitin ligases, including PARKIN, SMURF1, and TRIM16. Because each of these factors is responsible for the ubiquitination of a subset of the Mtb population, it is likely that additional ubiquitin ligases are employed by macrophages to trigger a full xenophagic response during Mtb infection. In this study, we investigated the role TRIM proteins whose expression is modulated in response to Mtb or BCG infection of primary macrophages. These TRIMs were ectopically expressed in THP1 macrophage cell line to assess their impact on Mtb replication. This screening identified TRIM32 as a novel player involved in the intracellular response to Mtb infection, which promotes autophagy-mediated Mtb degradation. The role of TRIM32 in xenophagy was further confirmed by silencing TRIM32 expression in THP1 cells, which causes increased intracellular growth of Mtb associated to impaired Mtb ubiquitination, reduced recruitment of the autophagy proteins NDP52/CALCOCO2 and BECLIN 1/BECN1 to Mtb and autophagosome formation. Overall, these findings suggest that TRIM32 plays an important role in the host response to Mtb infection through the induction of autophagy, representing a promising target for host-directed tuberculosis therapies.
Collapse
Affiliation(s)
- Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Elisa Petruccioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, 00168, Rome, Italy
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Mater Olbia Hospital, 07026, Olbia, Italy
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Delia Goletti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS 'L. Spallanzani', Rome, Italy.
- Department of Molecular Medicine, University of Rome "La Sapienza", Rome, Italy.
| |
Collapse
|
21
|
OuYang X, Liu P, Zheng Y, Jiang H, Lv Q, Huang W, Hao H, Pian Y, Kong D, Jiang Y. TRIM32 reduced the recruitment of innate immune cells and the killing capacity of Listeria monocytogenes by inhibiting secretion of chemokines. Gut Pathog 2023; 15:32. [PMID: 37415157 DOI: 10.1186/s13099-023-00558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Listeria monocytogenes (Lm) is a facultative, intracellular Gram-positive pathogenic bacterium that causes sepsis, a condition characterized by persistent excessive inflammation and organ dysfunction. However, the pathogenesis of Lm-induced sepsis is unknown. In this research, we discovered that TRIM32 is required for innate immune regulation during Lm infection. Trim32 deficiency remarkably reduced bacteremia and proinflammatory cytokine secretion in mice with severe Lm infection, preventing sepsis. Trim32-/- mice had a lower bacterial burden after Lm infection and survived significantly longer than wild-type (WT) mice, as well as lower serum levels of inflammatory cytokines TNF-α, IL-6, IL-18, IL-12p70, IFN-β, and IFN-γ at 1 day post infection (dpi) compared to WT mice. On the other hand, the chemokines CXCL1, CCL2, CCL7, and CCL5 were enhanced at 3 dpi in Trim32-/- mice than WT mice, reflecting increased recruitment of neutrophils and macrophages. Furthermore, Trim32-/- mice had higher levels of macrophage-associated iNOS to kill Lm. Collectively, our findings suggest that TRIM32 reduces innate immune cells recruitment and Lm killing capabilities via iNOS production.
Collapse
Affiliation(s)
- Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Huaijie Hao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China.
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
22
|
Shao S, Zhou D, Feng J, Liu Y, Baturuhu, Yin H, Zhan D. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne) 2023; 14:1124334. [PMID: 37465127 PMCID: PMC10351979 DOI: 10.3389/fendo.2023.1124334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression. Therefore, immune-modulatory therapies have great potential for novel sepsis therapies. Ubiquitination is an essential post-translational protein modification, which has been known to be intimately involved in innate and adaptive immune responses. Several E3 ubiquitin ligases have been implicated in innate immune signaling and T-cell activation and differentiation. In this article, we review the current literature and discuss the role of E3 ligases in the regulation of immune response and their effects on the course of sepsis to provide insights into the prevention and therapy for sepsis.
Collapse
Affiliation(s)
- Shasha Shao
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Obstetrics and Gynecology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baturuhu
- Department of Neurosurgery Intensive Care Unit (ICU), People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Huimei Yin
- Department of Emergency Medicine, People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Daqian Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Yang C, Wang Z, Kang Y, Yi Q, Wang T, Bai Y, Liu Y. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy 2023; 19:1934-1951. [PMID: 36692217 PMCID: PMC10283440 DOI: 10.1080/15548627.2022.2164427] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic stress granules (SGs) are highly dynamic assemblies of untranslated mRNAs and proteins that form through liquid-liquid phase separation (LLPS) under cellular stress. SG formation and elimination process is a conserved cellular strategy to promote cell survival, although the precise regulation of this process is poorly understood. Here, we screened six E3 ubiquitin ligases present in SGs and identified TRIM21 (tripartite motif containing 21) as a central regulator of SG homeostasis that is highly enriched in SGs of cells under arsenite-induced oxidative stress. Knockdown of TRIM21 promotes SG formation whereas overexpression of TRIM21 inhibits the formation of physiological and pathological SGs associated with neurodegenerative diseases. TRIM21 catalyzes K63-linked ubiquitination of the SG core protein, G3BP1 (G3BP stress granule assembly factor 1), and G3BP1 ubiquitination can effectively inhibit LLPS, in vitro. Recent reports suggested the involvement of macroautophagy/autophagy, as a stress response pathway, in the regulation of SG homeostasis. We systematically investigated well-defined autophagy receptors and identified SQSTM1/p62 (sequestosome 1) and CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2) as the primary receptors that directly interact with G3BP1 during arsenite-induced stress. Endogenous SQSTM1 and CALCOCO2 localize to the periphery of SGs under oxidative stress and mediate SG elimination, as single knockout of each receptor causes accumulation of physiological and pathological SGs. Collectively, our study broadens the understanding in the regulation of SG homeostasis by showing that TRIM21 and autophagy receptors modulate SG formation and elimination respectively, suggesting the possibility of clinical targeting of these molecules in therapeutic strategies for neurodegenerative diseases.Abbreviations: ACTB: actin beta; ALS: amyotrophic lateral sclerosis; BafA1: bafilomycin A1; BECN1: beclin 1; C9orf72: C9orf72-SMCR8 complex subunit; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; FTD: frontotemporal dementia; FUS: FUS RNA binding protein; G3BP1: G3BP stress granule assembly factor 1; GFP: green fluorescent protein; LLPS: liquid-liquid phase separation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NBR1: NBR1 autophagy cargo receptor; NES: nuclear export signal; OPTN: optineurin; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; SG: stress granule; TAX1BP1: Tax1 binding protein 1; TOLLIP: toll interacting protein; TRIM21: tripartite motif containing 21; TRIM56: tripartite motif containing 56; UB: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingjin Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qianqian Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Kinsella RL, Kimmey JM, Smirnov A, Woodson R, Gaggioli MR, Chavez SM, Kreamalmeyer D, Stallings CL. Autophagy prevents early proinflammatory responses and neutrophil recruitment during Mycobacterium tuberculosis infection without affecting pathogen burden in macrophages. PLoS Biol 2023; 21:e3002159. [PMID: 37319285 DOI: 10.1371/journal.pbio.3002159] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
The immune response to Mycobacterium tuberculosis infection determines tuberculosis disease outcomes, yet we have an incomplete understanding of what immune factors contribute to a protective immune response. Neutrophilic inflammation has been associated with poor disease prognosis in humans and in animal models during M. tuberculosis infection and, therefore, must be tightly regulated. ATG5 is an essential autophagy protein that is required in innate immune cells to control neutrophil-dominated inflammation and promote survival during M. tuberculosis infection; however, the mechanistic basis for how ATG5 regulates neutrophil recruitment is unknown. To interrogate what innate immune cells require ATG5 to control neutrophil recruitment during M. tuberculosis infection, we used different mouse strains that conditionally delete Atg5 in specific cell types. We found that ATG5 is required in CD11c+ cells (lung macrophages and dendritic cells) to control the production of proinflammatory cytokines and chemokines during M. tuberculosis infection, which would otherwise promote neutrophil recruitment. This role for ATG5 is autophagy dependent, but independent of mitophagy, LC3-associated phagocytosis, and inflammasome activation, which are the most well-characterized ways that autophagy proteins regulate inflammation. In addition to the increased proinflammatory cytokine production from macrophages during M. tuberculosis infection, loss of ATG5 in innate immune cells also results in an early induction of TH17 responses. Despite prior published in vitro cell culture experiments supporting a role for autophagy in controlling M. tuberculosis replication in macrophages, the effects of autophagy on inflammatory responses occur without changes in M. tuberculosis burden in macrophages. These findings reveal new roles for autophagy proteins in lung resident macrophages and dendritic cells that are required to suppress inflammatory responses that are associated with poor control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret R Gaggioli
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
25
|
Meng K, Yang J, Xue J, Lv J, Zhu P, Shi L, Li S. A host E3 ubiquitin ligase regulates Salmonella virulence by targeting an SPI-2 effector involved in SIF biogenesis. MLIFE 2023; 2:141-158. [PMID: 38817622 PMCID: PMC10989757 DOI: 10.1002/mlf2.12063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 06/01/2024]
Abstract
Salmonella Typhimurium creates an intracellular niche for its replication by utilizing a large cohort of effectors, including several that function to interfere with host ubiquitin signaling. Although the mechanism of action of many such effectors has been elucidated, how the interplay between the host ubiquitin network and bacterial virulence factors dictates the outcome of infection largely remains undefined. In this study, we found that the SPI-2 effector SseK3 inhibits SNARE pairing to promote the formation of a Salmonella-induced filament by Arg-GlcNAcylation of SNARE proteins, including SNAP25, VAMP8, and Syntaxin. Further study reveals that host cells counteract the activity of SseK3 by inducing the expression of the E3 ubiquitin ligase TRIM32, which catalyzes K48-linked ubiquitination on SseK3 and targets its membrane-associated portion for degradation. Hence, TRIM32 antagonizes SNAP25 Arg-GlcNAcylation induced by SseK3 to restrict Salmonella-induced filament biogenesis and Salmonella replication. Our study reveals a mechanism by which host cells inhibit bacterial replication by eliminating specific virulence factors.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jin Yang
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Juan Xue
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Jun Lv
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
| | - Liuliu Shi
- School of Basic Medical ScienceHubei University of MedicineShiyanChina
| | - Shan Li
- Institute of Infection and Immunity, Taihe HospitalHubei University of MedicineShiyanChina
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
26
|
Zhou HQ, Zhang LM, Li X, Huang ZH. Crosstalk Between Autophagy and Inflammation in Chronic Cerebral Ischaemia. Cell Mol Neurobiol 2023:10.1007/s10571-023-01336-6. [PMID: 36952071 DOI: 10.1007/s10571-023-01336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/04/2023] [Indexed: 03/24/2023]
Abstract
Chronic cerebral ischaemia (CCI) is a high-incidence cardiovascular and cerebrovascular disease that is very common in clinical practice. Although many pathogenic mechanisms have been explored, there is still great controversy among neuroscientists regarding the pathogenesis of CCI. Therefore, it is important to elucidate the mechanisms of CCI occurrence and progression for the prevention and treatment of ischaemic cerebrovascular disorders. Autophagy and inflammation play vital roles in CCI, but the relationship between these two processes in this disease remains unknown. Here, we review the progression and discuss the functions, actions and pathways of autophagy and inflammation in CCI, including a comprehensive view of the transition from acute disease to CCI through ischaemic repair mechanisms. This review may provide a reference for future research and treatment of CCI. Schematic diagram of the interplay between autophagy and inflammation in CCI. CCI lead to serious, life-threatening complications. This review summarizes two factors in CCI, including autophagy and inflammation, which have been focused for the mechanisms of CCI. In short, the possible points of intersection are shown in the illustration. CCI, Chronic cerebral ischaemia; ER stress, Endoplasmic reticulum stress; ROS, Reactive oxygen species.
Collapse
Affiliation(s)
- Hai-Qian Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
| | - Li-Mei Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China
| | - Xiao Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
| | - Zhi-Hua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, 1st Hexie Road, Ganzhou, 341000, China.
| |
Collapse
|
27
|
Guo Y, Zhang XN, Su S, Ruan ZL, Hu MM, Shu HB. β-adrenoreceptor-triggered PKA activation negatively regulates the innate antiviral response. Cell Mol Immunol 2023; 20:175-188. [PMID: 36600052 PMCID: PMC9886936 DOI: 10.1038/s41423-022-00967-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Upon viral infection, cytoplasmic pattern recognition receptors detect viral nucleic acids and activate the adaptor protein VISA/MAVS- or MITA/STING-mediated innate antiviral response. Whether and how the innate antiviral response is regulated by neuronal endocrine functions is unclear. Here, we show that viral infection reduced the serum levels of the β-adrenergic hormones epinephrine and norepinephrine as well as the cellular levels of their receptors ADRB1 and ADRB2. We further show that an increase in epinephrine/norepinephrine level inhibited the innate antiviral response in an ADRB1-/2-dependent manner. Mechanistically, epinephrine/norepinephrine stimulation activated the downstream kinase PKA, which catalyzed the phosphorylation of MITA at S241, S243 and T263, inhibiting MITA activation and suppressing the innate immune response to DNA virus. In addition, phosphorylation of VISA at T54 by PKA antagonized the innate immune response to RNA virus. These findings reveal the regulatory mechanisms of innate antiviral responses by epinephrine/norepinephrine and provide a possible explanation for increased host susceptibility to viral infection in stressful and anxiety-promoting situations.
Collapse
Affiliation(s)
- Yi Guo
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xia-Nan Zhang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shan Su
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
28
|
Chen T, Tu S, Ding L, Jin M, Chen H, Zhou H. The role of autophagy in viral infections. J Biomed Sci 2023; 30:5. [PMID: 36653801 PMCID: PMC9846652 DOI: 10.1186/s12929-023-00899-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.
Collapse
Affiliation(s)
- Tong Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Shaoyu Tu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Ling Ding
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Meilin Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Hongbo Zhou
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| |
Collapse
|
29
|
Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes the NDP52/CALCOCO2 selective autophagy receptor to disassemble processing bodies. PLoS Pathog 2023; 19:e1011080. [PMID: 36634147 PMCID: PMC9876383 DOI: 10.1371/journal.ppat.1011080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/25/2023] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes the inflammatory and angiogenic endothelial cell neoplasm, Kaposi's sarcoma (KS). We previously demonstrated that the KSHV Kaposin B (KapB) protein promotes inflammation via the disassembly of cytoplasmic ribonucleoprotein granules called processing bodies (PBs). PBs modify gene expression by silencing or degrading labile messenger RNAs (mRNAs), including many transcripts that encode inflammatory or angiogenic proteins associated with KS disease. Although our work implicated PB disassembly as one of the causes of inflammation during KSHV infection, the precise mechanism used by KapB to elicit PB disassembly was unclear. Here we reveal a new connection between the degradative process of autophagy and PB disassembly. We show that both latent KSHV infection and KapB expression enhanced autophagic flux via phosphorylation of the autophagy regulatory protein, Beclin. KapB was necessary for this effect, as infection with a recombinant virus that does not express the KapB protein did not induce Beclin phosphorylation or autophagic flux. Moreover, we showed that PB disassembly mediated by KSHV or KapB, depended on autophagy genes and the selective autophagy receptor NDP52/CALCOCO2 and that the PB scaffolding protein, Pat1b, co-immunoprecipitated with NDP52. These studies reveal a new role for autophagy and the selective autophagy receptor NDP52 in promoting PB turnover and the concomitant synthesis of inflammatory molecules during KSHV infection.
Collapse
|
30
|
Xu L, Gao X, Xing J, Guo Z. Identification of a necroptosis-related gene signature as a novel prognostic biomarker of cholangiocarcinoma. Front Immunol 2023; 14:1118816. [PMID: 36936916 PMCID: PMC10017743 DOI: 10.3389/fimmu.2023.1118816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Cholangiocarcinoma (CHOL) is the most prevalent type of malignancy and the second most common form of primary liver cancer, resulting in high rates of morbidity and mortality. Necroptosis is a type of regulated cell death that appears to be involved in the regulation of several aspects of cancer biology, including tumorigenesis, metastasis, and cancer immunity. This study aimed to construct a necroptosis-related gene (NRG) signature to investigate the prognosis of CHOL patients using an integrated bioinformatics analysis. Methods CHOL patient data were acquired from the Gene Expression Omnibus (GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases, with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Univariate and multivariate regression analyses were performed to establish the NRG signatures. Kaplan-Meier (KM) curves were used to evaluate the prognosis of patients with CHOL. Functional enrichment analysis was performed to identify key NRG-associated biological signaling pathways. We also applied integrative multi-omics analysis to the high- and low-risk score groups. Spearman's rank correlation was used to clarify the relationship between the NRG signature and immune infiltration. Results 65 differentially expressed (DE) NRGs were screened, five of which were selected to establish the prognostic signature of NRGS based on multivariate Cox regression analysis. We observed that low-risk patients survived significantly longer than high-risk patients. We found that patients with high-risk scores experienced higher immune cell infiltration, drug resistance, and more somatic mutations than patients with low-risk scores. We further found that sensitivities to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were significantly higher in the low-risk group than in the high-risk group. Finally, we validated the expression of five NRGs in CHOL tissues using the TCGA database, HPA database and our clinical data. Conclusion These findings demonstrate that the five-NRG prognostic signature for CHOL patients is reasonably accurate and valid, and it may prove to be of considerable value for the treatment and prognosis of CHOL patients in the future.
Collapse
Affiliation(s)
- Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xueping Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan, Chongqing, China
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhixian Guo,
| |
Collapse
|
31
|
White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy. Autophagy 2023; 19:44-53. [PMID: 35470757 PMCID: PMC9809930 DOI: 10.1080/15548627.2022.2070331] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that plays a central role in host defense to pathogens and in regulating the innate immune system. TAX1BP1 facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis and regulates TLR3 (toll-like receptor 3)-TLR4 and DDX58/RIG-I-like receptor (RLR) signaling by targeting TICAM1 and MAVS for autophagic degradation respectively. In addition to these canonical autophagy receptor functions, TAX1BP1 can also exert multiple accessory functions that influence the biogenesis and maturation of autophagosomes. In this review, we will discuss and integrate recent findings related to the autophagy function of TAX1BP1 and highlight outstanding questions regarding its functions in autophagy and regulation of innate immunity and host defense.Abbreviations: ATG: autophagy related; CALCOCO: calcium binding and coiled-coil domain; CC: coiled-coil; CHUK/IKKα: conserved helix-loop-helix ubiquitous kinase; CLIR: noncanonical LC3-interacting region; GABARAP: gamma-aminobutyric acid receptor associated protein; HTLV-1: human T-lymphotropic virus 1; IFN: interferon; IL1B/IL1β: interleukin 1 beta; LIR: LC3-interacting region; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase; mATG8: mammalian Atg8 homolog; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MTB: Mycobacterium tuberculosis; MYD88: myeloid differentiation primary response gene 88; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; OPTN: optineurin; Poly(I:C): polyinosinic:polycytidylic acid; PTM: post-translational modification; RB1CC1: RB1-inducible coiled-coil 1; RIPK: receptor (TNFRSF)-interacting serine-threonine kinase; RLR: DDX58/RIG-I-like receptor; RSV: respiratory syncytia virus; SKICH: SKIP carboxyl homology; SLR: SQSTM1 like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TBK1: TANK-binding kinase 1; TICAM1: toll-like receptor adaptor molecule 1; TLR: toll-like receptor; TNF: tumor necrosis factor; TNFAIP3: TNF alpha induced protein 3; TNFR: tumor necrosis factor receptor; TOM1: target of myb1 trafficking protein; TRAF: TNF receptor-associated factor; TRIM32: tripartite motif-containing 32; UBD: ubiquitin binding domain; ZF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
32
|
Faber E, Tshilwane SI, Van Kleef M, Pretorius A. The impact of Escherichia coli contamination products present in recombinant African horse sickness virus serotype 4 proteins on the innate and humoral immune responses. Mol Immunol 2022; 152:1-13. [DOI: 10.1016/j.molimm.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
33
|
Lin Y, Lv X, Sun C, Sun Y, Yang M, Ma D, Jing W, Zhao Y, Cheng Y, Xuan H, Han L. TRIM50 promotes NLRP3 inflammasome activation by directly inducing NLRP3 oligomerization. EMBO Rep 2022; 23:e54569. [PMID: 36178239 PMCID: PMC9638864 DOI: 10.15252/embr.202154569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 09/05/2023] Open
Abstract
Tripartite motif protein (TRIM) 50 is a new member of the tripartite motif family, and its biological function and the molecular mechanism it is involved in remain largely unknown. The NOD-like receptor family protein (NLRP)3 inflammasome is actively involved in a wide array of biological processes while mechanisms of its regulation remain to be fully clarified. Here, we demonstrate the role of TRIM50 in NLRP3 inflammasome activation. In contrast to the conventional E3 ligase functions of TRIM proteins, TRIM50 mediates direct oligomerization of NLRP3, thereby suppressing its ubiquitination and promoting inflammasome activation. Mechanistically, TRIM50 directly interacts with NLRP3 through its RING domain and induces NLRP3 oligomerization via its coiled-coil domain. Finally, we show that TRIM50 promotes NLRP3 inflammasome-mediated diseases in mice. We thus reveal a novel regulatory mechanism of NLRP3 via TRIM50 and suggest that modulating TRIM50 might represent a therapeutic strategy for NLRP3-dependent pathologies.
Collapse
Affiliation(s)
- Yueke Lin
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| | - Xiaoting Lv
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| | - Caiyu Sun
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| | - Yanlin Sun
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Min Yang
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Dapeng Ma
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yeping Cheng
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haocheng Xuan
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Lihui Han
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| |
Collapse
|
34
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
35
|
Wu QQ, Yao Q, Hu TT, Wan Y, Xie QW, Zhao JH, Yuan Y, Tang QZ. Tax1 banding protein 1 exacerbates heart failure in mice by activating ITCH-P73-BNIP3-mediated cardiomyocyte apoptosis. Acta Pharmacol Sin 2022; 43:2562-2572. [PMID: 35948751 PMCID: PMC9525615 DOI: 10.1038/s41401-022-00950-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Tax1 banding protein 1 (Tax1bp1) was originally identified as an NF-κB regulatory protein that participated in inflammatory, antiviral and innate immune processes. Tax1bp1 also functions as an autophagy receptor that plays a role in autophagy. Our previous study shows that Tax1bp1 protects against cardiomyopathy in STZ-induced diabetic mice. In this study we investigated the role of Tax1bp1 in heart failure. Pressure overload-induced heart failure model was established in mice by aortic banding (AB) surgery, and angiotensin II (Ang II)-induced heart failure model was established by infusion of Ang II through osmotic minipump for 4 weeks. We showed that the expression levels of Tax1bp1 in the heart were markedly increased 2 and 4 weeks after AB surgery. Knockdown of Tax1bp1 in mouse hearts significantly ameliorated both AB- and Ang II infusion-induced heart failure parameters. On the contrary, AB-induced heart failure was aggravated in cardiac-specific Tax1bp1 transgenic mice. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) under Ang II insult. We demonstrated that the pro-heart failure effect of Tax1bp1 resulted from its interaction with the E3 ligase ITCH to promote the transcription factor P73 ubiquitination and degradation, causing enhanced BCL2 interacting protein 3 (BNIP3)-mediated cardiomyocyte apoptosis. Knockdown ITCH or BNIP3 in NRCMs significantly reduced Ang II-induced apoptosis in vitro. Similarly, BNIP3 knockdown attenuated heart failure in cardiac-specific Tax1bp1 transgenic mice. In the left ventricles of heart failure patients, Tax1bp1 expression level was significantly increased; Tax1bp1 gene expression was negatively correlated with left ventricular ejection fraction in heart failure patients. Collectively, the Tax1bp1 increase in heart failure enhances ITCH-P73-BNIP3-mediated cardiomyocyte apoptosis and induced cardiac injury. Tax1bp1 may serve as a potent therapeutic target for the treatment of heart failure.• Cardiac Tax1bp1 transgene mice were more vulnerable to cardiac dysfunction under stress.• Cardiac Tax1bp1 transgene mice were more vulnerable to cardiac dysfunction under stress.• Knockout of Tax1bp1 in mouse hearts ameliorated heart failure induced by pressure overload.• Tax1bp1 interacts with the E3 ligase Itch to promote P73 ubiquitination and degradation, causing enhanced BNIP3-mediated apoptosis.• Tax1bp1 may become a target of new therapeutic methods for treating heart failure.
Collapse
Affiliation(s)
- Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Tong-Tong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ying Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Qing-Wen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Jin-Hua Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
36
|
Tozawa T, Matsunaga K, Izumi T, Shigehisa N, Uekita T, Taoka M, Ichimura T. Ubiquitination-coupled liquid phase separation regulates the accumulation of the TRIM family of ubiquitin ligases into cytoplasmic bodies. PLoS One 2022; 17:e0272700. [PMID: 35930602 PMCID: PMC9355226 DOI: 10.1371/journal.pone.0272700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Many members of the tripartite motif (TRIM) family of ubiquitin ligases localize in spherical, membrane-free structures collectively referred to as cytoplasmic bodies (CBs) in a concentration-dependent manner. These CBs may function as aggresome precursors or storage compartments that segregate potentially harmful excess TRIM molecules from the cytosolic milieu. However, the manner in which TRIM proteins accumulate into CBs is unclear. In the present study, using TRIM32, TRIM5α and TRIM63 as examples, we demonstrated that CBs are in a liquid droplet state, resulting from liquid-liquid phase separation (LLPS). This finding is based on criteria that defines phase-separated structures, such as recovery after photobleaching, sensitivity to hexanediol, and the ability to undergo fusion. CB droplets, which contain cyan fluorescent protein (CFP)-fused TRIM32, were purified from HEK293 cells using a fluorescence-activated cell sorter and analyzed by LC-MS/MS. We found that in addition to TRIM32, these droplets contain a variety of endogenous proteins and enzymes including ubiquitin. Localization of ubiquitin within CBs was further verified by fluorescence microscopy. We also found that the activation of the intracellular ubiquitination cascade promotes the assembly of TRIM32 molecules into CBs, whereas inhibition causes suppression. Regulation is dependent on the intrinsic E3 ligase activity of TRIM32. Similar regulation by ubiquitination on the TRIM assembly was also observed with TRIM5α and TRIM63. Our findings provide a novel mechanical basis for the organization of CBs that couples compartmentalization through LLPS with ubiquitination.
Collapse
Affiliation(s)
- Takafumi Tozawa
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Kohichi Matsunaga
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuro Izumi
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Naotake Shigehisa
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
37
|
Guan K, Su Q, Kuang K, Meng X, Zhou X, Liu B. MiR-142-5p/FAM134B Axis Manipulates ER-Phagy to Control PRRSV Replication. Front Immunol 2022; 13:842077. [PMID: 35795666 PMCID: PMC9251429 DOI: 10.3389/fimmu.2022.842077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can replicate its RNA genome in endoplasmic reticulum (ER) and utilize ER to facilitate its assembly and maturation. To maintain ER homeostasis, host cells initiate reticulophagy (known as ER-phagy) to effectively digest the stressed ER. In this study, we found that PRRSV infection subverted ER-phagy by downregulating ER-phagy receptor FAM134B. PRRSV-induced miR-142-5p directly targeted FAM134B and significantly promoted PRRSV replication. Meanwhile, siRNA-mediated depletion of FAM134B protein and overexpression of FAM134B mutant protein significantly disrupted ER-phagy and facilitated PRRSV replication. Furthermore, our results showed that FAM134B-mediated ER-phagy activated type I interferon signaling to inhibit PRRSV replication. Overall, this study reveals the important role of ER-phagy in PRRSV replication in a FAM134B-dependent manner. Our findings provide an insight into the pathogenesis of PRRSV and offer a theoretical basis for further development of antiviral therapeutic targets.
Collapse
Affiliation(s)
- Kaifeng Guan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Qiuju Su
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Kailin Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiang Zhou, ; Bang Liu,
| |
Collapse
|
38
|
Khan A, Zhang K, Singh VK, Mishra A, Kachroo P, Bing T, Won JH, Mani A, Papanna R, Mann LK, Ledezma-Campos E, Aguillon-Duran G, Canaday DH, David SA, Restrepo BI, Viet NN, Phan H, Graviss EA, Musser JM, Kaushal D, Gauduin MC, Jagannath C. Human M1 macrophages express unique innate immune response genes after mycobacterial infection to defend against tuberculosis. Commun Biol 2022; 5:480. [PMID: 35590096 PMCID: PMC9119986 DOI: 10.1038/s42003-022-03387-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is responsible for approximately 1.5 million deaths each year. Though 10% of patients develop tuberculosis (TB) after infection, 90% of these infections are latent. Further, mice are nearly uniformly susceptible to Mtb but their M1-polarized macrophages (M1-MΦs) can inhibit Mtb in vitro, suggesting that M1-MΦs may be able to regulate anti-TB immunity. We sought to determine whether human MΦ heterogeneity contributes to TB immunity. Here we show that IFN-γ-programmed M1-MΦs degrade Mtb through increased expression of innate immunity regulatory genes (Inregs). In contrast, IL-4-programmed M2-polarized MΦs (M2-MΦs) are permissive for Mtb proliferation and exhibit reduced Inregs expression. M1-MΦs and M2-MΦs express pro- and anti-inflammatory cytokine-chemokines, respectively, and M1-MΦs show nitric oxide and autophagy-dependent degradation of Mtb, leading to increased antigen presentation to T cells through an ATG-RAB7-cathepsin pathway. Despite Mtb infection, M1-MΦs show increased histone acetylation at the ATG5 promoter and pro-autophagy phenotypes, while increased histone deacetylases lead to decreased autophagy in M2-MΦs. Finally, Mtb-infected neonatal macaques express human Inregs in their lymph nodes and macrophages, suggesting that M1 and M2 phenotypes can mediate immunity to TB in both humans and macaques. We conclude that human MФ subsets show unique patterns of gene expression that enable differential control of TB after infection. These genes could serve as targets for diagnosis and immunotherapy of TB.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Priyanka Kachroo
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Tian Bing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jong Hak Won
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Lovepreet K Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | | | | | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University Cleveland VA, Cleveland, OH, USA
| | - Sunil A David
- Virovax, LLC, Adjuvant Division, Lawrence, Kansas, USA
| | - Blanca I Restrepo
- UT School of Public Health, Brownsville, and STDOI, UT Rio Grande Valley, Brownsville, TX, USA
| | | | - Ha Phan
- Center for Promotion of Advancement of Society, Ha Noi, Vietnam
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marie Claire Gauduin
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Chen Y, Cao B, Zheng W, Sun Y, Xu T. eIF3k inhibits NF-κB signaling by targeting MyD88 for ATG5-mediated autophagic degradation in teleost fish. J Biol Chem 2022; 298:101730. [PMID: 35176284 PMCID: PMC8914388 DOI: 10.1016/j.jbc.2022.101730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
Optimal activation of NF-κB signaling is crucial for the initiation of inflammatory responses and eliminating invading bacteria. Bacteria have likewise evolved the ability to evade immunity; however, mechanisms by which bacteria dysregulate host NF-κB signaling are unclear. In this study, we identify eukaryotic translation initiation factor eIF3k, a nonessential member of the eIF3 translation initiation complex, as a suppressor of the NF-κB pathway. Mechanistically, we show that eIF3k expression induced by Vibrio harveyi enhances E3 ligase Nrdp1-mediated K27-linked ubiquitination of MyD88, an upstream regulator of NF-κB pathway activation. Furthermore, we show that eIF3k acts as a bridge linking ubiquitin-tagged MyD88 and ATG5, an important mediator of autophagy. We demonstrate that the MyD88-eIF3k-ATG5 complex is transported to the autophagosome for degradation, and that innate immune signaling is subsequently terminated and does not attack invading V. harveyi. Therefore, our study identifies eIF3k as a specific inhibitor of the MyD88-dependent NF-κB pathway and suggests that eIF3k may act as a selective autophagic receptor that synergizes with ATG5 to promote the autophagic degradation of MyD88, which helps V. harveyi to evade innate immunity. We conclude that V. harveyi can manipulate a host's autophagy process to evade immunity in fish and also provide a new perspective on mammalian resistance to bacterial invasion.
Collapse
Affiliation(s)
- Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Baolan Cao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
40
|
Zhang ZD, Zhong B. Regulation and function of the cGAS-MITA/STING axis in health and disease. CELL INSIGHT 2022; 1:100001. [PMID: 37192983 PMCID: PMC10120319 DOI: 10.1016/j.cellin.2021.100001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 05/18/2023]
Abstract
The innate immune systems detect pathogens via pattern-recognition receptors including nucleic acid sensors and non-nucleic acid sensors. Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS, also known as MB21D1) is a cytosolic DNA sensor that recognizes double-stranded DNA (dsDNA) and catalyzes the synthesis of 2',3'-cGAMP. Subsequently, 2',3'-cGAMP binds to the adaptor protein mediator of IRF3 activation (MITA, also known as STING, MPYS, ERIS, and TMEM173) to activate downstream signaling cascades. The cGAS-MITA/STING signaling critically mediates immune responses against DNA viruses, retroviruses, bacteria, and protozoan parasites. In addition, recent discoveries have extended our understanding of the roles of the cGAS-MITA/STING pathway in autoimmune diseases and cancers. Here, we summarize the identification and activation of cGAS and MITA/STING, present the updated functions and regulatory mechanisms of cGAS-MITA/STING signaling and provide a comprehensive understanding of the cGAS-MITA/STING axis in autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
41
|
Impaired Antiviral Responses to Extracellular Double-Stranded RNA and Cytosolic DNA, but Not to Interferon-α Stimulation, in TRIM56-Deficient Cells. Viruses 2022; 14:v14010089. [PMID: 35062293 PMCID: PMC8777648 DOI: 10.3390/v14010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The physiologic function of tripartite motif protein 56 (TRIM56), a ubiquitously expressed E3 ligase classified within the large TRIM protein family, remains elusive. Gene knockdown studies have suggested TRIM56 as a positive regulator of the type I interferon (IFN-I) antiviral response elicited via the Toll-like receptor 3 (TLR3) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathways, which detect and respond to danger signals-extracellular double-stranded (ds) RNA and cytosolic dsDNA, respectively. However, to what extent these pathways depend on TRIM56 in human cells is unclear. In addition, it is debatable whether TRIM56 plays a part in controlling the expression of IFN-stimulated genes (ISGs) resulting from IFN-I based antiviral treatment. In this study, we created HeLa-derived TRIM56 null cell lines by gene editing and used these cell models to comprehensively examine the impact of endogenous TRIM56 on innate antiviral responses. Our results showed that TRIM56 knockout severely undermined the upregulation of ISGs by extracellular dsRNA and that loss of TRIM56 weakened the response to cytosolic dsDNA. ISG induction and ISGylation following IFN-α stimulation, however, were not compromised by TRIM56 deletion. Using a vesicular stomatitis virus-based antiviral bioactivity assay, we demonstrated that IFN-α could efficiently establish an antiviral state in TRIM56 null cells, providing direct evidence that TRIM56 is not required for the general antiviral action of IFN-I. Altogether, these data ascertain the contributions of TRIM56 to TLR3- and cGAS-STING-dependent antiviral pathways in HeLa cells and add to our understanding of the roles this protein plays in innate immunity.
Collapse
|
42
|
Xie W, Jin S, Zhang C, Yang S, Wu Y, Zhao Y, Songyang Z, Cui J. Selective autophagy controls the stability of TBK1 via NEDD4 to balance host defense. Cell Death Differ 2022; 29:40-53. [PMID: 34257412 PMCID: PMC8738727 DOI: 10.1038/s41418-021-00833-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
As a core kinase of antiviral immunity, the activity and stability of TANK-binding kinase 1 (TBK1) is tightly controlled by multiple post-translational modifications. Although it has been demonstrated that TBK1 stability can be regulated by ubiquitin-dependent proteasome pathway, it is unclear whether another important protein degradation pathway, autophagosome pathway, can specifically affect TBK1 degradation by cargo receptors. Here we report that E3 ubiquitin ligase NEDD4 functions as a negative regulator of type I interferon (IFN) signaling by targeting TBK1 for degradation at the late stage of viral infection, to prevent the host from excessive immune response. Mechanically NEDD4 catalyzes the K27-linked poly-ubiquitination of TBK1 at K344, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Taken together, our study reveals the regulatory role of NEDD4 in balancing TBK1-centered type I IFN activation and provides insights into the crosstalk between selective autophagy and antiviral signaling.
Collapse
Affiliation(s)
- Weihong Xie
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Shouheng Jin
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Chenqiu Zhang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Shuai Yang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Yaoxing Wu
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Yong Zhao
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Zhou Songyang
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| | - Jun Cui
- grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong P. R. China
| |
Collapse
|
43
|
Chauhan S, Jena KK, Mehto S, Chauhan NR, Sahu R, Dhar K, Yadav R, Krishna S, Jaiswal P, Chauhan S. Innate immunity and inflammophagy: balancing the defence and immune homeostasis. FEBS J 2021; 289:4112-4131. [PMID: 34826185 DOI: 10.1111/febs.16298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
Extensive crosstalk exists between autophagy and innate immune signalling pathways. The stimuli that induce pattern recognition receptor (PRR)-mediated innate immune signalling pathways, also upregulate autophagy. The purpose of this increased autophagy is to eliminate the stimuli and/or suppress the inflammatory pathways by targeted degradation of PRRs or intermediary proteins (termed 'inflammophagy'). By executing these functions, autophagy dampens excess inflammation triggered by the innate immune signalling pathways. Thus, autophagy helps in the maintenance of the body's innate immune homeostasis to protect from inflammatory and autoimmune diseases. Many autophagy-dependent mechanisms that could control innate immune signalling have been studied over the last few years. However, still, the understanding is incomplete, and studies that are more systematic should be undertaken to delineate the mechanisms of inflammophagy. Here, we discuss the available knowledge of crosstalk between autophagy and PRR signalling pathways.
Collapse
Affiliation(s)
- Swati Chauhan
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kollori Dhar
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pundrik Jaiswal
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
44
|
Peng C, Zhao C, Wang PF, Yan LL, Fan SG, Qiu LH. Identification of a TRIM32 from Penaeus monodon is involved in autophagy and innate immunity during white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104169. [PMID: 34118280 DOI: 10.1016/j.dci.2021.104169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Many tripartite motif (TRIM) family proteins played an important role in regulating innate immune and autophagy pathway and were important for host defenses against viral pathogens. However, the role of TRIM proteins in autophagy and innate immunity during virus infection was seldom studied in crustaceans. In this study, a novel TRIM32 homolog was identified from Penaeus monodon (named PmTRIM32). PmTRIM32 was significantly upregulated by rapamycin stimulation and WSSV infection. RNA interference experiments showed that PmTRIM32 could restrict WSSV replication and lead P. monodon more resistance to WSSV challenge. Autophagy could be induced by WSSV or rapamycin challenge and has been proved to play a positive role in restricting WSSV replication in P. monodon. The autophagy activity induced by WSSV or rapamycin challenge could be obviously inhibited by silence of PmTRIM32 in P. monodon. Further studies revealed that PmTRIM32 positively regulated the expression of nuclear transcription factor (NF-κB) and it mediated antimicrobial peptides. Moreover, Pull-down and in vitro ubiquitination assay demonstrated that PmTRIM32 could interact with WSSV envelope protein and target it for ubiquitination in vitro. Collectively, this study demonstrated that PmTRIM32 restricted WSSV replication and was involved in positively regulating autophagy and NF-κB pathway during WSSV infection in P. monodon.
Collapse
Affiliation(s)
- Chao Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Key Laboratory of Exploration and Utilization of Aquatic Resources, Ministry of Education; National Demonstration Center for Experimental Fisheries Science Education; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Peng-Fei Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Lu-Lu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China
| | - Li-Hua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Guangzhou, Guangdong Province, China.
| |
Collapse
|
45
|
Shang M, Weng L, Xu G, Wu S, Liu B, Yin X, Mao A, Zou X, Wang Z. TRIM11 suppresses ferritinophagy and gemcitabine sensitivity through UBE2N/TAX1BP1 signaling in pancreatic ductal adenocarcinoma. J Cell Physiol 2021; 236:6868-6883. [PMID: 33629745 DOI: 10.1002/jcp.30346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Gemcitabine is first-line chemotherapy for pancreatic cancer, however, the development of resistance limits its effectiveness. The tripartite motif-containing 11 (TRIM11) protein plays crucial roles in tumor development and undergoes auto-polyubiquitination to promote interactions in selective autophagy. Therefore, Understanding whether TRIM11 is involved in ferritinophagy and gemcitabine resistance in pancreatic cancer is critical in developing pancreatic cancer therapeutics. TRIM11 expression was validated by Western blot analysis, real-time polymease chain reaction, and immunohistochemical staining. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Colony formation assays were performed to investigate pancreatic ductal adenocarcinomas (PDAC) cell viability. Mouse xenograft model of PDAC cells was established to verify the role of TRIM11 in vivo. Coimmunoprecipitation was used to identify the reciprocal regulation between TRIM11 and UBE2N. In this study, we found that TRIM11 expression were higher in PDAC cells and tissues. TRIM11 overexpression promotes PDAC cell proliferation in vitro and tumor growth in vivo. Decreased expression of TRIM11 in PDAC patients is associated with decreased UBE2N and increased TAX1BP1 expression. Coimmunoprecipitation established that TRIM11 interacts and colocalizes with UBE2N. Mechanistically, TRIM11 promoted gemcitabine resistance and suppressed ferritinophagy through UBE2N-TAX1BP1 signaling. Our findings identify TRIM11 as a key regulator of TAX1BP1 signaling with a crucial role in ferritinophagy and gemcitabine resistance in PDAC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Autophagy/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Signal Transduction
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tumor Burden/drug effects
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guifang Xu
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shaoqiu Wu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Yin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoping Zou
- Department of interventional radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongmin Wang
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
46
|
Wan SW, Lee YR, Ho TS, Chang CP. Regulation of innate immune signaling pathways by autophagy in dengue virus infection. IUBMB Life 2021; 74:170-179. [PMID: 34553486 DOI: 10.1002/iub.2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022]
Abstract
Autophagy is not only an intracellular recycling degradation system that maintains cellular homeostasis but is also a component of innate immunity that contributes to host defense against viral infection. The viral components as well as viral particles trapped in autophagosomes can be delivered to lysosomes for degradation. Abundant evidence indicates that dengue virus (DENV) has evolved the potent ability to hijack or subvert autophagy process for escaping host immunity and promoting viral replication. Moreover, autophagy is often required to deliver viral components to pattern recognition receptors signaling for interferon (IFN)-mediated viral elimination. Hence, this review summarizes DENV-induced autophagy, which exhibits dual effects on proviral activity of promoting replication and antiviral activity to eliminating viral particles.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.,The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
47
|
Roy M, Singh R. TRIMs: selective recruitment at different steps of the NF-κB pathway-determinant of activation or resolution of inflammation. Cell Mol Life Sci 2021; 78:6069-6086. [PMID: 34283248 PMCID: PMC11072854 DOI: 10.1007/s00018-021-03900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
TNF-α-induced NF-κB pathway is an essential component of innate and adaptive immune pathway, and it is tightly regulated by various post-translational modifications including ubiquitination. Oscillations in NF-κB activation and temporal gene expression are emerging as critical determinants of inflammatory response, however, the regulators of unique outcomes in different patho-physiological conditions are not well understood. Tripartite Motif-containing proteins (TRIMs) are RING domain-containing E3 ligases involved in the regulation of cellular homeostasis, metabolism, cell death, inflammation, and host defence. Emerging reports suggest that TRIMs are recruited at different steps of TNF-α-induced NF-κB pathway and modulate via their E3 ligase activity. TRIMs show synergy and antagonism in the regulation of the NF-κB pathway and also regulate it in a feedback manner. TRIMs also regulate pattern recognition receptors (PRRs) mediated inflammatory pathways and may have evolved to directly regulate a specific arm of immune signalling. The review emphasizes TRIM-mediated ubiquitination and modulation of TNF-α-regulated temporal and NF-κB signaling and its possible impact on unique transcriptional and functional outcomes.
Collapse
Affiliation(s)
- Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
48
|
Xu H, Yu W, Sun S, Li C, Ren J, Zhang Y. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66:1669-1683. [PMID: 36654301 DOI: 10.1016/j.scib.2021.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/03/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
Acute myocardial infarction (MI), one of the most common cardiovascular emergencies, is a leading cause of morbidity and mortality. Ample evidence has revealed an essential role for inflammasome activation and autophagy in the pathogenesis of acute MI. Tax1-binding protein 1 (TAX1BP1), an adaptor molecule involved in termination of proinflammatory signaling, serves as an important selective autophagy adaptor, but its role in cardiac ischemia remains elusive. This study examined the role of TAX1BP1 in myocardial ischemic stress and the underlying mechanisms involved. Levels of TAX1BP1 were significantly downregulated in heart tissues of patients with ischemic heart disease and in a left anterior descending (LAD) ligation-induced model of acute MI. Adenovirus carrying TAX1BP1 was delivered into the myocardium. The acute MI induced procedure elicited an infarct and cardiac dysfunction, the effect of which was mitigated by TAX1BP1 overexpression with little effect from viral vector alone. TAX1BP1 nullified acute MI-induced activation of the NLRP3 inflammasome and associated mitochondrial dysfunction. TAX1BP1 overexpression suppressed NLRP3 mitochondrial localization by inhibiting the interaction of NLRP3 with mitochondrial antiviral signaling protein (MAVS). Further investigation revealed that ring finger protein 34 (RNF34) was recruited to interact with TAX1BP1 thereby facilitating autophagic degradation of MAVS through K27-linked polyubiquitination of MAVS. Knockdown of RNF34 using siRNA nullified TAX1BP1 yielded protection against hypoxia-induced MAVS mitochondrial accumulation, NLRP3 inflammasome activation and associated loss of mitochondrial membrane potential. Taken together, our results favor a cardioprotective role for TAX1BP1 in acute MI through repression of inflammasome activation in a RNF34/MAVS-dependent manner.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiqun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Pathology, University of Washington, Seattle WA 98195, USA.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
49
|
Zang R, Lian H, Zhong X, Yang Q, Shu HB. ZCCHC3 modulates TLR3-mediated signaling by promoting recruitment of TRIF to TLR3. J Mol Cell Biol 2021; 12:251-262. [PMID: 32133501 PMCID: PMC7232131 DOI: 10.1093/jmcb/mjaa004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 3 (TLR3)-mediated signaling is important for host defense against RNA virus. Upon viral RNA stimulation, toll and interleukin-1 receptor domain-containing adaptor inducing IFN-β (TRIF) is recruited to TLR3 and then undergoes oligomerization, which is required for the recruitment of downstream molecules to transmit signals. Here, we identified zinc finger CCHC-type containing 3 (ZCCHC3) as a positive regulator of TLR3-mediated signaling. Overexpression of ZCCHC3 promoted transcription of downstream antiviral genes stimulated by the synthetic TLR3 ligand poly(I:C). ZCCHC3-deficiency markedly inhibited TLR3- but not TLR4-mediated induction of type I interferons (IFNs) and proinflammatory cytokines. Zcchc3−/− mice were more resistant to poly(I:C)- but not lipopolysaccharide-induced inflammatory death. Mechanistically, ZCCHC3 promoted recruitment of TRIF to TLR3 after poly(I:C) stimulation. Our findings reveal that ZCCHC3 plays an important role in TLR3-mediated innate immune response by promoting the recruitment of TRIF to TLR3 after ligand stimulation.
Collapse
Affiliation(s)
- Ru Zang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Huan Lian
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xuan Zhong
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qing Yang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Correspondence to: Qing Yang, E-mail:
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Hong-Bing Shu, E-mail:
| |
Collapse
|
50
|
FIP200 controls the TBK1 activation threshold at SQSTM1/p62-positive condensates. Sci Rep 2021; 11:13863. [PMID: 34226595 PMCID: PMC8257712 DOI: 10.1038/s41598-021-92408-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
The protein kinase TBK1 is a central regulator of innate immune responses and autophagy, and ablation of either function has been linked to neuroinflammatory or degenerative diseases. Autophagy is an intracellular process that recycles old or damaged proteins and organelles. In recent years, the TBK1-dependent regulation of autophagy pathways has been characterized. However, the autophagy-dependent regulation of TBK1 activity awaits further clarification. Here, we observed that TBK1 is recruited to SQSTM1/p62-containing aggregates via the selective autophagy receptor TAX1BP1. In these aggregates, TBK1 phosphorylates SQSTM1/p62 at serine 403 and thus presumably regulates the efficient engulfment and clearance of these structures. We found that TBK1 activation is strongly increased if FIP200, a component of the autophagy-inducing ULK1 complex, is not present or cannot bind to TAX1BP1. Given our collective findings, we hypothesize that FIP200 ensures the inducible activation of TBK1 at SQSTM1/p62 condensates.
Collapse
|