1
|
Li C, Meliopoulos V, Rendahl A, Schultz-Cherry S, Torremorell M. Naturally occurring influenza reassortment in pigs facilitates the emergence of intrahost virus subpopulations with distinct genotypes and replicative fitness. mBio 2025; 16:e0192424. [PMID: 39611844 PMCID: PMC11708028 DOI: 10.1128/mbio.01924-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Pigs are recognized as amplifying hosts for influenza A virus (IAV) reassortant viruses. Understanding the extent of IAV reassortment occurring at the individual pig level in naturally infected pigs and how reassortment impacts virus diversity, persistence, and replicative fitness is essential for countering IAV threats to humans and animals. Here, 244 IAV plaques were isolated from 24 commercial pigs, resulting in 26 distinct genome segment constellations. About 33% (8/24) of pigs were infected with two or more different genotypes, with two pigs harboring two or more different subtypes. Our results indicate that few pigs in a population harbor significantly more genotypes than other pigs and generate most of the diversity, including the emergence of reassortants. However, detecting distinct genotypes during surveillance was dynamic, with most of the genotypes subsiding over time. All the IAV genotypes could replicate in various swine and human-sourced respiratory epithelial cells, and we observed that distinct reassortant genotypes recovered from a single pig could exhibit different growth abilities, especially in human cells. Overall, we demonstrated that multiple distinct IAV genotypes with distinct antigenic profiles and varying growth abilities on swine and human respiratory tracts can be shed simultaneously from a single pig, which contributes to the dynamic nature of IAV prevalence. The striking magnitude of IAV reassortment at the single pig level revealed in this study highlights the need to strengthen surveillance efforts and plans to eliminate IAV from swine farms because pigs have a high potential to produce diverse and potentially zoonotic influenza reassortant viruses. IMPORTANCE Pigs play a crucial role in driving influenza A virus (IAV) diversification and evolution by reassorting the viruses originating from different hosts. Despite IAV reassortment and diversity being well documented in pig populations at different scales (e.g., farm, region, country), limited field research has explored the extent of reassortment happening at the single pig level and how that contributes to the overall genetic and biological variation observed in populations. We provide initial information on levels of reassortment happening at the single pig level in naturally infected pigs, and that particular pigs can shed a plethora of distinct genotypes, with certain genotypes having distinct replicative fitness on swine and human respiratory tracts, which preserves the potential for IAV long-term evolution and facilitates the emergence of zoonotic/pandemic-capable reassortants.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Victoria Meliopoulos
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Aaron Rendahl
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Stacey Schultz-Cherry
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | |
Collapse
|
2
|
Dorji T, Dorji K, Gyeltshen S. Evolution of Influenza A(H3N2) Viruses in Bhutan for Two Consecutive Years, 2022 and 2023. Influenza Other Respir Viruses 2024; 18:e70028. [PMID: 39443295 PMCID: PMC11498999 DOI: 10.1111/irv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Influenza A viruses pose a significant public health threat globally and are characterized by rapid evolution of the hemagglutinin (HA) gene causing seasonal epidemics. The aim of this study was to investigate the evolutionary dynamics of A(H3N2) circulating in Bhutan during 2022 and 2023. METHODS We analysed 166 whole-genome sequences of influenza A(H3N2) from Bhutan, obtained from the GISAID database. We employed a Bayesian Markov Chain Monte Carlo (MCMC) framework, with a curated global dataset of HA sequences from regions with significant migration links to Bhutan. Phylogenetic, temporal, and phylogeographic analyses were conducted to elucidate the evolutionary dynamics and spatial dissemination of the viruses. RESULTS Our phylogenetic analysis identified the circulation of influenza A(H3N2) Clade 3C.2a1b.2a.2 in Bhutan during 2022 and 2023, with viruses further classified into three subclades: 2a.3 (39/166), 2a.3a.1 (58/166) and 2a.3b (69/166). The TMRCA estimates suggest that these viral lineages originated approximately 1.93 years prior to their detection. Phylogeographic analysis indicates introductions from the United States in 2022 and Australia in 2023. The mean evolutionary rate across all gene segments was calculated to be 4.42 × 10-3 substitutions per site per year (95% HPD: 3.19 × 10-3 to 5.84 × 10-3), with evidence of purifying selection and limited genetic diversity. Furthermore, reassortment events were rare, with an estimated rate of 0.045 events per lineage per year. CONCLUSION Our findings show that primary forces shaping the local evolution of the influenza A(H3N2) in Bhutan are largely stochastic, with only sporadic instances of adaptive change, and thus underscore the importance of continuous surveillance to mitigate the impact of evolving strains.
Collapse
Affiliation(s)
- Tshering Dorji
- National Influenza Centre (NIC), Royal Centre for Disease Control, Ministry of HealthRoyal Government of BhutanThimphuBhutan
| | - Kunzang Dorji
- National Influenza Centre (NIC), Royal Centre for Disease Control, Ministry of HealthRoyal Government of BhutanThimphuBhutan
| | - Sonam Gyeltshen
- National Influenza Centre (NIC), Royal Centre for Disease Control, Ministry of HealthRoyal Government of BhutanThimphuBhutan
| |
Collapse
|
3
|
Tiwari A, Meriläinen P, Lindh E, Kitajima M, Österlund P, Ikonen N, Savolainen-Kopra C, Pitkänen T. Avian Influenza outbreaks: Human infection risks for beach users - One health concern and environmental surveillance implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173692. [PMID: 38825193 DOI: 10.1016/j.scitotenv.2024.173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Päivi Meriläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland
| | - Erika Lindh
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Niina Ikonen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| |
Collapse
|
4
|
Owuor DC, de Laurent ZR, Oketch JW, Murunga N, Otieno JR, Nabakooza G, Chaves SS, Nokes DJ, Agoti CN. Phylogeography and reassortment patterns of human influenza A viruses in sub-Saharan Africa. Sci Rep 2024; 14:18987. [PMID: 39152215 PMCID: PMC11329769 DOI: 10.1038/s41598-024-70023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The role of sub-Saharan Africa in the global spread of influenza viruses remains unclear due to insufficient spatiotemporal sequence data. Here, we analyzed 222 codon-complete sequences of influenza A viruses (IAVs) sampled between 2011 and 2013 from five countries across sub-Saharan Africa (Kenya, Zambia, Mali, Gambia, and South Africa); these genomes were compared with 1209 contemporaneous global genomes using phylogeographical approaches. The spread of influenza in sub-Saharan Africa was characterized by (i) multiple introductions of IAVs into the region over consecutive influenza seasons, with viral importations originating from multiple global geographical regions, some of which persisted in circulation as intra-subtype reassortants for multiple seasons, (ii) virus transfer between sub-Saharan African countries, and (iii) virus export from sub-Saharan Africa to other geographical regions. Despite sparse data from influenza surveillance in sub-Saharan Africa, our findings support the notion that influenza viruses persist as temporally structured migrating metapopulations in which new virus strains can emerge in any geographical region, including in sub-Saharan Africa; these lineages may have been capable of dissemination to other continents through a globally migrating virus population. Further knowledge of the viral lineages that circulate within understudied sub-Saharan Africa regions is required to inform vaccination strategies in those regions.
Collapse
Affiliation(s)
- D Collins Owuor
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Zaydah R de Laurent
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - John W Oketch
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nickson Murunga
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Grace Nabakooza
- Makerere University/UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Sandra S Chaves
- Influenza Division, Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
- Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, GA, USA
| | - D James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
- School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, UK
| | - Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
- School of Public Health and Human Sciences, Pwani University, Kilifi, Kenya
| |
Collapse
|
5
|
Paremskaia AI, Volchkov PY, Deviatkin AA. IAVCP (Influenza A Virus Consensus and Phylogeny): Automatic Identification of the Genomic Sequence of the Influenza A Virus from High-Throughput Sequencing Data. Viruses 2024; 16:873. [PMID: 38932165 PMCID: PMC11209090 DOI: 10.3390/v16060873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, high-throughput sequencing of influenza A viruses has become a routine test. It should be noted that the extremely high diversity of the influenza A virus complicates the task of determining the sequences of all eight genome segments. For a fast and accurate analysis, it is necessary to select the most suitable reference for each segment. At the same time, there is no standardized method in the field of decoding sequencing results that allows the user to update the sequence databases to which the reads obtained by virus sequencing are compared. The IAVCP (influenza A virus consensus and phylogeny) was developed with the goal of automatically analyzing high-throughput sequencing data of influenza A viruses. Its goals include the extraction of a consensus genome directly from paired raw reads. In addition, the pipeline enables the identification of potential reassortment events in the evolutionary history of the virus of interest by analyzing the topological structure of phylogenetic trees that are automatically reconstructed.
Collapse
Affiliation(s)
- Anastasiia Iu. Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia;
| | - Pavel Yu. Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia;
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- The MCSC Named after A. S. Loginov, 111123 Moscow, Russia
| | - Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
7
|
Crespo-Bellido A, Duffy S. The how of counter-defense: viral evolution to combat host immunity. Curr Opin Microbiol 2023; 74:102320. [PMID: 37075547 DOI: 10.1016/j.mib.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
8
|
Delima GK, Ganti K, Holmes KE, Shartouny JR, Lowen AC. Influenza A virus coinfection dynamics are shaped by distinct virus-virus interactions within and between cells. PLoS Pathog 2023; 19:e1010978. [PMID: 36862762 PMCID: PMC10013887 DOI: 10.1371/journal.ppat.1010978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/14/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
When multiple viral populations propagate within the same host environment, they often shape each other's dynamics. These interactions can be positive or negative and can occur at multiple scales, from coinfection of a cell to co-circulation at a global population level. For influenza A viruses (IAVs), the delivery of multiple viral genomes to a cell substantially increases burst size. However, despite its relevance for IAV evolution through reassortment, the implications of this positive density dependence for coinfection between distinct IAVs has not been explored. Furthermore, the extent to which these interactions within the cell shape viral dynamics at the level of the host remains unclear. Here we show that, within cells, diverse coinfecting IAVs strongly augment the replication of a focal strain, irrespective of their homology to the focal strain. Coinfecting viruses with a low intrinsic reliance on multiple infection offer the greatest benefit. Nevertheless, virus-virus interactions at the level of the whole host are antagonistic. This antagonism is recapitulated in cell culture when the coinfecting virus is introduced several hours prior to the focal strain or under conditions conducive to multiple rounds of viral replication. Together, these data suggest that beneficial virus-virus interactions within cells are counterbalanced by competition for susceptible cells during viral propagation through a tissue. The integration of virus-virus interactions across scales is critical in defining the outcomes of viral coinfection.
Collapse
Affiliation(s)
- Gabrielle K. Delima
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jessica R. Shartouny
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wong KH, Lal SK. Alternative antiviral approaches to combat influenza A virus. Virus Genes 2023; 59:25-35. [PMID: 36260242 PMCID: PMC9832087 DOI: 10.1007/s11262-022-01935-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 01/14/2023]
Abstract
Influenza A (IAV) is a major human respiratory pathogen that contributes to a significant threat to health security, worldwide. Despite vaccinations and previous immunisations through infections, humans can still be infected with influenza several times throughout their lives. This phenomenon is attributed to the antigenic changes of hemagglutinin (HA) and neuraminidase (NA) proteins in IAV via genetic mutation and reassortment, conferring antigenic drift and antigenic shift, respectively. Numerous findings indicate that slow antigenic drift and reassortment-derived antigenic shift exhibited by IAV are key processes that allow IAVs to overcome the previously acquired host immunity, which eventually leads to the annual re-emergence of seasonal influenza and even pandemic influenza, in rare occasions. As a result, current therapeutic options hit a brick wall quickly. As IAV remains a constant threat for new outbreaks worldwide, the underlying processes of genetic changes and alternative antiviral approaches for IAV should be further explored to improve disease management. In the light of the above, this review discusses the characteristics and mechanisms of mutations and reassortments that contribute to IAV's evolution. We also discuss several alternative RNA-targeting antiviral approaches, namely the CRISPR/Cas13 systems, RNA interference (RNAi), and antisense oligonucleotides (ASO) as potential antiviral approaches against IAV.
Collapse
Affiliation(s)
- Ka Heng Wong
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor DE, Malaysia.
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia.
| |
Collapse
|
10
|
Thoner TW, Meloy MM, Long JM, Diller JR, Slaughter JC, Ogden KM. Reovirus Efficiently Reassorts Genome Segments during Coinfection and Superinfection. J Virol 2022; 96:e0091022. [PMID: 36094315 PMCID: PMC9517712 DOI: 10.1128/jvi.00910-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline M. Meloy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob M. Long
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James C. Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Vaccination decreases the risk of influenza A virus reassortment but not genetic variation in pigs. eLife 2022; 11:78618. [PMID: 36052992 PMCID: PMC9439680 DOI: 10.7554/elife.78618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential. Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | | | | | | |
Collapse
|
12
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
13
|
Barrat-Charlaix P, Vaughan TG, Neher RA. TreeKnit: Inferring ancestral reassortment graphs of influenza viruses. PLoS Comput Biol 2022; 18:e1010394. [PMID: 35984845 PMCID: PMC9447925 DOI: 10.1371/journal.pcbi.1010394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 09/06/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
When two influenza viruses co-infect the same cell, they can exchange genome segments in a process known as reassortment. Reassortment is an important source of genetic diversity and is known to have been involved in the emergence of most pandemic influenza strains. However, because of the difficulty in identifying reassortment events from viral sequence data, little is known about their role in the evolution of the seasonal influenza viruses. Here we introduce TreeKnit, a method that infers ancestral reassortment graphs (ARG) from two segment trees. It is based on topological differences between trees, and proceeds in a greedy fashion by finding regions that are compatible in the two trees. Using simulated genealogies with reassortments, we show that TreeKnit performs well in a wide range of settings and that it is as accurate as a more principled bayesian method, while being orders of magnitude faster. Finally, we show that it is possible to use the inferred ARG to better resolve segment trees and to construct more informative visualizations of reassortments. Influenza viruses evolve quickly and escape immune defenses which requires frequent update of vaccines. Understanding this evolution is key to an effective public health response. The genome of influenza viruses is made up of 8 pieces called segments, each coding for different viral proteins. Within each segment, evolution is an asexual process in which genetic diversity is generated by mutations. But influenza also diversifies through reassortment which can occur when two different viruses infect the same cell: offsprings can then contain a combination of segments from both viruses. Reassortment is akin to sexual reproduction and can generate viruses that combine segments from diverged viral lineages. Reassortment is a crucial component of viral evolution, but it is challenging to reconstruct where reassortments happened and which segments share history. Here, we develop a method called TreeKnit to detect reassortment events. TreeKnit is based on genealogical trees of single segments that can be reconstructed using standard bioinformatics tools. Inconsistencies between these trees are then used as signs of reassortment. We show that TreeKnit is as accurate as other recent methods, but runs much faster. Our method will facilitate the study of reassortment and its consequences for influenza evolution.
Collapse
Affiliation(s)
- Pierre Barrat-Charlaix
- Biozentrum, Universität Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Timothy G. Vaughan
- Swiss Institute of Bioinformatics, Basel, Switzerland
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Richard A. Neher
- Biozentrum, Universität Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
14
|
He D, Wang X, Wu H, Wang X, Yan Y, Li Y, Zhan T, Hao X, Hu J, Hu S, Liu X, Ding C, Su S, Gu M, Liu X. Genome-Wide Reassortment Analysis of Influenza A H7N9 Viruses Circulating in China during 2013-2019. Viruses 2022; 14:v14061256. [PMID: 35746727 PMCID: PMC9230085 DOI: 10.3390/v14061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Reassortment with the H9N2 virus gave rise to the zoonotic H7N9 avian influenza virus (AIV), which caused more than five outbreak waves in humans, with high mortality. The frequent exchange of genomic segments between H7N9 and H9N2 has been well-documented. However, the reassortment patterns have not been described and are not yet fully understood. Here, we used phylogenetic analyses to investigate the patterns of intersubtype and intrasubtype/intralineage reassortment across the eight viral segments. The H7N9 virus and its progeny frequently exchanged internal genes with the H9N2 virus but rarely with the other AIV subtypes. Before beginning the intrasubtype/intralineage reassortment analyses, five Yangtze River Delta (YRD A-E) and two Pearl River Delta (PRD A-B) clusters were divided according to the HA gene phylogeny. The seven reset segment genes were also nomenclatured consistently. As revealed by the tanglegram results, high intralineage reassortment rates were determined in waves 2–3 and 5. Additionally, the clusters of PB2 c05 and M c02 were the most dominant in wave 5, which could have contributed to the onset of the largest H7N9 outbreak in 2016–2017. Meanwhile, a portion of the YRD-C cluster (HP H7N9) inherited their PB2, PA, and M segments from the co-circulating YRD-E (LP H7N9) cluster during wave 5. Untanglegram results revealed that the reassortment rate between HA and NA was lower than HA with any of the other six segments. A multidimensional scaling plot revealed a robust genetic linkage between the PB2 and PA genes, indicating that they may share a co-evolutionary history. Furthermore, we observed relatively more robust positive selection pressure on HA, NA, M2, and NS1 proteins. Our findings demonstrate that frequent reassortment, particular reassorted patterns, and adaptive mutations shaped the H7N9 viral genetic diversity and evolution. Increased surveillance is required immediately to better understand the current state of the HP H7N9 AIV.
Collapse
Affiliation(s)
- Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiyue Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Huiguang Wu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yayao Yan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Yang Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Tiansong Zhan
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shuo Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.H.); (X.W.); (H.W.); (X.W.); (Y.Y.); (Y.L.); (T.Z.); (X.H.); (J.H.); (S.H.); (X.L.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (M.G.); (X.L.)
| |
Collapse
|
15
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
16
|
Nabakooza G, Pastusiak A, Kateete DP, Lutwama JJ, Kitayimbwa JM, Frost SDW. Whole-genome analysis to determine the rate and patterns of intra-subtype reassortment among influenza type-A viruses in Africa. Virus Evol 2022; 8:veac005. [PMID: 35317349 PMCID: PMC8933723 DOI: 10.1093/ve/veac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Influenza type-A viruses (IAVs) present a global burden of human respiratory infections and mortality. Genome reassortment is an important mechanism through which epidemiologically novel influenza viruses emerge and a core step in the safe reassortment-incompetent live-attenuated influenza vaccine development. Currently, there are no data on the rate, spatial and temporal distribution, and role of reassortment in the evolution and diversification of IAVs circulating in Africa. We aimed to detect intra-subtype reassortment among Africa pandemic H1N1pdm09 (2009-10), seasonal H1N1pdm09 (2011-20), and seasonal H3N2 viruses and characterize the genomic architecture and temporal and spatial distribution patterns of the resulting reassortants. Our study was nested within the Uganda National Influenza Surveillance Programme. Next-generation sequencing was used to generate whole genomes (WGs) from 234 H1N1pdm09 (n = 116) and H3N2 (n = 118) viruses sampled between 2010 and 2018 from seven districts in Uganda. We combined our newly generated WGs with 658 H1N1pdm09 and 1131 H3N2 WGs sampled between 1994 and 2020 across Africa and identified reassortants using an automated Graph Incompatibility Based Reassortment Finder software. Viral reassortment rates were estimated using a coalescent reassortant constant population model. Phylogenetic analysis was used to assess the effect of reassortment on viral genetic evolution. We observed a high frequency of intra-subtype reassortment events, 12 · 4 per cent (94/758) and 20 · 9 per cent (256/1,224), and reassortants, 13 · 3 per cent (101/758) and 38 · 6 per cent (472/1,224), among Africa H1N1pdm09 and H3N2 viruses, respectively. H1N1pdm09 reassorted at higher rates (0.1237-0.4255) than H3N2 viruses (0 · 00912-0.0355 events/lineage/year), a case unique to Uganda. Viral reassortants were sampled in 2009 through 2020, except in 2012. 78 · 2 per cent (79/101) of H1N1pdm09 reassortants acquired new non-structural, while 57 · 8 per cent (273/472) of the H3N2 reassortants had new hemagglutinin (H3) genes. Africa H3N2 viruses underwent more reassortment events involving larger reassortant sets than H1N1pdm09 viruses. Viruses with a specific reassortment architecture circulated for up to five consecutive years in specific countries and regions. The Eastern (Uganda and Kenya) and Western Africa harboured 84 · 2 per cent (85/101) and 55 · 9 per cent (264/472) of the continent's H1N1pdm09 and H3N2 reassortants, respectively. The frequent reassortment involving multi-genes observed among Africa IAVs showed the intracontinental viral evolution and diversification possibly sustained by viral importation from outside Africa and/or local viral genomic mixing and transmission. Novel reassortant viruses emerged every year, and some persisted in different countries and regions, thereby presenting a risk of influenza outbreaks in Africa. Our findings highlight Africa as part of the global influenza ecology and the advantage of implementing routine whole-over partial genome sequencing and analyses to monitor circulating and detect emerging viruses. Furthermore, this study provides evidence and heightens our knowledge on IAV evolution, which is integral in directing vaccine strain selection and the update of master donor viruses used in recombinant vaccine development.
Collapse
Affiliation(s)
- Grace Nabakooza
- Department of Immunology and Molecular Biology, Makerere University, Old Mulago Hill Road, P.O Box 7072, Kampala, Uganda
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe, Uganda
- Centre for Computational Biology, Uganda Christian University, Plot 67-173, Bishop Tucker Rd, P.O BOX 4, Mukono, Uganda
| | | | - David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University, Old Mulago Hill Road, P.O Box 7072, Kampala, Uganda
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe, Uganda
| | - Julius Julian Lutwama
- Department of Arbovirology Emerging & Re-Emerging Infectious Diseases, Uganda Virus Research Institute (UVRI), Plot No: 51-59, Nakiwogo Road, P.O. Box 49, Entebbe, Uganda
| | - John Mulindwa Kitayimbwa
- UVRI Centre of Excellence in Infection and Immunity Research and Training (MUII-Plus), Makerere University, Plot No: 51-59 Nakiwogo Road, P.O. Box 49, Entebbe, Uganda
- Centre for Computational Biology, Uganda Christian University, Plot 67-173, Bishop Tucker Rd, P.O BOX 4, Mukono, Uganda
| | - Simon David William Frost
- Microsoft Research, 14820 NE 36th Street, Redmond, WA 98052, USA
- London School of Hygiene & Tropical Medicine (LSHTM), Keppel St, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
17
|
Sandor AM, Sturdivant MS, Ting JPY. Influenza Virus and SARS-CoV-2 Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2509-2520. [PMID: 34021048 PMCID: PMC8722349 DOI: 10.4049/jimmunol.2001287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Seasonal influenza and the current COVID-19 pandemic represent looming global health challenges. Efficacious and safe vaccines remain the frontline tools for mitigating both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced diseases. This review will discuss the existing strategies for influenza vaccines and how these strategies have informed SARS-CoV-2 vaccines. It will also discuss new vaccine platforms and potential challenges for both viruses.
Collapse
Affiliation(s)
- Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC; and
| | - Michael S Sturdivant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
18
|
Postnikova Y, Treshchalina A, Boravleva E, Gambaryan A, Ishmukhametov A, Matrosovich M, Fouchier RAM, Sadykova G, Prilipov A, Lomakina N. Diversity and Reassortment Rate of Influenza A Viruses in Wild Ducks and Gulls. Viruses 2021; 13:v13061010. [PMID: 34072256 PMCID: PMC8230314 DOI: 10.3390/v13061010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza A viruses (IAVs) evolve via point mutations and reassortment of viral gene segments. The patterns of reassortment in different host species differ considerably. We investigated the genetic diversity of IAVs in wild ducks and compared it with the viral diversity in gulls. The complete genomes of 38 IAVs of H1N1, H1N2, H3N1, H3N2, H3N6, H3N8, H4N6, H5N3, H6N2, H11N6, and H11N9 subtypes isolated from wild mallard ducks and gulls resting in a city pond in Moscow, Russia were sequenced. The analysis of phylogenetic trees showed that stable viral genotypes do not persist from year to year in ducks owing to frequent gene reassortment. For comparison, similar analyses were carried out using sequences of IAVs isolated in the same period from ducks and gulls in The Netherlands. Our results revealed a significant difference in diversity and rates of reassortment of IAVs in ducks and gulls.
Collapse
Affiliation(s)
- Yulia Postnikova
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Anastasia Treshchalina
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
- Correspondence: ; Tel.: +7-985-136-3586
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for the Research and Development of Immune-and-Biological Products, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia; (Y.P.); (A.T.); (E.B.); (A.I.)
| | - Mikhail Matrosovich
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, D-35043 Marburg, Germany;
| | - Ron A. M. Fouchier
- Department of Virology, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands;
| | - Galina Sadykova
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| | - Alexey Prilipov
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| | - Natalia Lomakina
- The Gamaleya National Center of Epidemiology and Microbiology of the Russian Ministry of Health, 123098 Moscow, Russia; (G.S.); (A.P.); (N.L.)
| |
Collapse
|
19
|
Ding X, Qin L, Meng J, Peng Y, Wu A, Jiang T. Progress and Challenge in Computational Identification of Influenza Virus Reassortment. Virol Sin 2021; 36:1273-1283. [PMID: 34037948 DOI: 10.1007/s12250-021-00392-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Genomic reassortment is an important evolutionary mechanism for influenza viruses. In this process, the novel viruses acquire new characteristics by the exchange of the intact gene segments among multiple influenza virus genomes, which may cause flu endemics and epidemics within or even across hosts. Due to the safety and ethical limitations of the experimental studies on influenza virus reassortment, numerous computational researches on the influenza virus reassortment have been done with the explosion of the influenza virus genomic data. A great amount of computational methods and bioinformatics databases were developed to facilitate the identification of influenza virus reassortments. In this review, we summarized the progress and challenge of the bioinformatics research on influenza virus reassortment, which can guide the researchers to investigate the influenza virus reassortment events reasonably and provide valuable insight to develop the related computational identification tools.
Collapse
Affiliation(s)
- Xiao Ding
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Luyao Qin
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Jing Meng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Yousong Peng
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, 410082, China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China. .,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
20
|
Ganti K, Bagga A, DaSilva J, Shepard SS, Barnes JR, Shriner S, Koelle K, Lowen AC. Avian Influenza A Viruses Reassort and Diversify Differently in Mallards and Mammals. Viruses 2021; 13:v13030509. [PMID: 33808674 PMCID: PMC8003500 DOI: 10.3390/v13030509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Reassortment among co-infecting influenza A viruses (IAVs) is an important source of viral diversity and can facilitate expansion into novel host species. Indeed, reassortment played a key role in the evolution of the last three pandemic IAVs. Observed patterns of reassortment within a coinfected host are likely to be shaped by several factors, including viral load, the extent of viral mixing within the host and the stringency of selection. These factors in turn are expected to vary among the diverse host species that IAV infects. To investigate host differences in IAV reassortment, here we examined reassortment of two distinct avian IAVs within their natural host (mallards) and a mammalian model system (guinea pigs). Animals were co-inoculated with A/wildbird/California/187718-36/2008 (H3N8) and A/mallard/Colorado/P66F1-5/2008 (H4N6) viruses. Longitudinal samples were collected from the cloaca of mallards or the nasal tract of guinea pigs and viral genetic exchange was monitored by genotyping clonal isolates from these samples. Relative to those in guinea pigs, viral populations in mallards showed higher frequencies of reassortant genotypes and were characterized by higher genotype richness and diversity. In line with these observations, analysis of pairwise segment combinations revealed lower linkage disequilibrium in mallards as compared to guinea pigs. No clear longitudinal patterns in richness, diversity or linkage disequilibrium were present in either host. Our results reveal mallards to be a highly permissive host for IAV reassortment and suggest that reduced viral mixing limits avian IAV reassortment in a mammalian host.
Collapse
Affiliation(s)
- Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Anish Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Juliana DaSilva
- Center for Disease Control and Prevention, Influenza Division, Atlanta, GA 30322, USA; (J.D.); (S.S.S.); (J.R.B.)
| | - Samuel S. Shepard
- Center for Disease Control and Prevention, Influenza Division, Atlanta, GA 30322, USA; (J.D.); (S.S.S.); (J.R.B.)
| | - John R. Barnes
- Center for Disease Control and Prevention, Influenza Division, Atlanta, GA 30322, USA; (J.D.); (S.S.S.); (J.R.B.)
| | - Susan Shriner
- National Wildlife Research Center, US Department of Agriculture-Animal and Plant Health Inspection Service, Fort Collins, CO 80521, USA;
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA 30322, USA
- Correspondence: (K.K.); , (A.C.L.)
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA 30322, USA
- Correspondence: (K.K.); , (A.C.L.)
| |
Collapse
|
21
|
Identifying Potentially Beneficial Genetic Mutations Associated with Monophyletic Selective Sweep and a Proof-of-Concept Study with Viral Genetic Data. mSystems 2021; 6:6/1/e01151-20. [PMID: 33622855 PMCID: PMC8573955 DOI: 10.1128/msystems.01151-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic mutations play a central role in evolution. For a significantly beneficial mutation, a one-time mutation event suffices for the species to prosper and predominate through the process called “monophyletic selective sweep.” However, existing methods that rely on counting the number of mutation events to detect selection are unable to find such a mutation in selective sweep. We here introduce a method to detect mutations at the single amino acid/nucleotide level that could be responsible for monophyletic selective sweep evolution. The method identifies a genetic signature associated with selective sweep using the population genetic test statistic Tajima’s D. We applied the algorithm to ebolavirus, influenza A virus, and severe acute respiratory syndrome coronavirus 2 to identify known biologically significant mutations and unrecognized mutations associated with potential selective sweep. The method can detect beneficial mutations, possibly leading to discovery of previously unknown biological functions and mechanisms related to those mutations. IMPORTANCE In biology, research on evolution is important to understand the significance of genetic mutation. When there is a significantly beneficial mutation, a population of species with the mutation prospers and predominates, in a process called “selective sweep.” However, there are few methods that can find such a mutation causing selective sweep from genetic data. We here introduce a novel method to detect such mutations. Applying the method to the genomes of ebolavirus, influenza viruses, and the novel coronavirus, we detected known biologically significant mutations and identified mutations the importance of which is previously unrecognized. The method can deepen our understanding of molecular and evolutionary biology.
Collapse
|
22
|
Clements AL, Sealy JE, Peacock TP, Sadeyen JR, Hussain S, Lycett SJ, Shelton H, Digard P, Iqbal M. Contribution of Segment 3 to the Acquisition of Virulence in Contemporary H9N2 Avian Influenza Viruses. J Virol 2020; 94:e01173-20. [PMID: 32727875 PMCID: PMC7527061 DOI: 10.1128/jvi.01173-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
H9N2 avian influenza viruses (AIVs) circulate in poultry throughout much of Asia, the Middle East, and Africa. These viruses cause huge economic damage to poultry production systems and pose a zoonotic threat both in their own right and in the generation of novel zoonotic viruses, for example, H7N9. In recent years, it has been observed that H9N2 viruses have further adapted to gallinaceous poultry, becoming more highly transmissible and causing higher morbidity and mortality. Here, we investigate the molecular basis for this increased virulence, comparing a virus from the 1990s and a contemporary field strain. The modern virus replicated to higher titers in various systems, and this difference mapped to a single amino acid polymorphism at position 26 of the endonuclease domain shared by the PA and PA-X proteins. This change was responsible for increased replication and higher morbidity and mortality rates along with extended tissue tropism seen in chickens. Although the PA K26E change correlated with increased host cell shutoff activity of the PA-X protein in vitro, it could not be overridden by frameshift site mutations that block PA-X expression and therefore increased PA-X activity could not explain the differences in replication phenotype. Instead, this indicates that these differences are due to subtle effects on PA function. This work gives insight into the ongoing evolution and poultry adaptation of H9N2 and other avian influenza viruses and helps us understand the striking morbidity and mortality rates in the field, as well as the rapidly expanding geographical range seen in these viruses.IMPORTANCE Avian influenza viruses, such as H9N2, cause huge economic damage to poultry production worldwide and are additionally considered potential pandemic threats. Understanding how these viruses evolve in their natural hosts is key to effective control strategies. In the Middle East and South Asia, an older H9N2 virus strain has been replaced by a new reassortant strain with greater fitness. Here, we take representative viruses and investigate the genetic basis for this "fitness." A single mutation in the virus was responsible for greater fitness, enabling high growth of the contemporary H9N2 virus in cells, as well as in chickens. The genetic mutation that modulates this change is within the viral PA protein, a part of the virus polymerase gene that contributes to viral replication as well as to virus accessory functions-however, we find that the fitness effect is specifically due to changes in the protein polymerase activity.
Collapse
Affiliation(s)
- Anabel L Clements
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua E Sealy
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Thomas P Peacock
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | | | - Saira Hussain
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Samantha J Lycett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Paul Digard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| |
Collapse
|
23
|
Huddleston J, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Whittaker L, Ermetal B, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Barr I, Subbarao K, Barrat-Charlaix P, Neher RA, Bedford T. Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. eLife 2020; 9:e60067. [PMID: 32876050 PMCID: PMC7553778 DOI: 10.7554/elife.60067] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses to escape adaptive immunity. This antigenic drift necessitates regular vaccine updates. Effective vaccine strains need to represent H3N2 populations circulating one year after strain selection. Experts select strains based on experimental measurements of antigenic drift and predictions made by models from hemagglutinin sequences. We developed a novel influenza forecasting framework that integrates phenotypic measures of antigenic drift and functional constraint with previously published sequence-only fitness estimates. Forecasts informed by phenotypic measures of antigenic drift consistently outperformed previous sequence-only estimates, while sequence-only estimates of functional constraint surpassed more comprehensive experimentally-informed estimates. Importantly, the best models integrated estimates of both functional constraint and either antigenic drift phenotypes or recent population growth.
Collapse
Affiliation(s)
- John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cell Biology Program, University of WashingtonSeattleUnited States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Ian Barr
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Pierre Barrat-Charlaix
- Biozentrum, University of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Richard A Neher
- Biozentrum, University of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
24
|
Hockman MR, Phipps KL, Holmes KE, Lowen AC. A method for the unbiased quantification of reassortment in segmented viruses. J Virol Methods 2020; 280:113878. [PMID: 32353455 PMCID: PMC7296281 DOI: 10.1016/j.jviromet.2020.113878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 11/26/2022]
Abstract
Reassortment of segmented viruses can be an important source of genetic diversity underlying viral evolution and emergence. Methods for the quantification of reassortment have been described but are often cumbersome and best suited for the analysis of reassortment between highly divergent parental strains. While it is useful to understand the potential of divergent parents to reassort, outcomes of such heterologous reassortment are driven by differential selection acting on the progeny and are typically strain specific. To quantify reassortment robustly, a system free of differential selection is needed. We have generated such a system for influenza A virus and for mammalian orthoreovirus by constructing well-matched parental viruses carrying small genetic tags. The method utilizes high-resolution melt technology for the identification of reassortant viruses. Ease of sample preparation and data analysis enables streamlined genotyping of a large number of virus clones. The method described here thereby allows quantification of the efficiency of reassortment and can be applied to diverse segmented viruses.
Collapse
Affiliation(s)
- Megan R Hockman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kara L Phipps
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katie E Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), United States.
| |
Collapse
|
25
|
Yin R, Zhou X, Rashid S, Kwoh CK. HopPER: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC Med Genomics 2020; 13:9. [PMID: 31973709 PMCID: PMC6979075 DOI: 10.1186/s12920-019-0656-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022] Open
Abstract
Background Influenza reassortment, a mechanism where influenza viruses exchange their RNA segments by co-infecting a single cell, has been implicated in several major pandemics since 19th century. Owing to the significant impact on public health and social stability, great attention has been received on the identification of influenza reassortment. Methods We proposed a novel computational method named HopPER (Host-prediction-based Probability Estimation of Reassortment), that sturdily estimates reassortment probabilities through host tropism prediction using 147 new features generated from seven physicochemical properties of amino acids. We conducted the experiments on a range of real and synthetic datasets and compared HopPER with several state-of-the-art methods. Results It is shown that 280 out of 318 candidate reassortants have been successfully identified. Additionally, not only can HopPER be applied to complete genomes but its effectiveness on incomplete genomes is also demonstrated. The analysis of evolutionary success of avian, human and swine viruses generated through reassortment across different years using HopPER further revealed the reassortment history of the influenza viruses. Conclusions Our study presents a novel method for the prediction of influenza reassortment. We hope this method could facilitate rapid reassortment detection and provide novel insights into the evolutionary patterns of influenza viruses.
Collapse
Affiliation(s)
- Rui Yin
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Xinrui Zhou
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shamima Rashid
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Potter BI, Kondor R, Hadfield J, Huddleston J, Barnes J, Rowe T, Guo L, Xu X, Neher RA, Bedford T, Wentworth DE. Evolution and rapid spread of a reassortant A(H3N2) virus that predominated the 2017-2018 influenza season. Virus Evol 2019; 5:vez046. [PMID: 33282337 DOI: 10.1093/ve/vez046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 2017-2018 North American influenza season caused more hospitalizations and deaths than any year since the 2009 H1N1 pandemic. The majority of recorded influenza infections were caused by A(H3N2) viruses, with most of the virus's North American diversity falling into the A2 clade. Within A2, we observe a subclade which we call A2/re that rose to comprise almost 70 per cent of A(H3N2) viruses circulating in North America by early 2018. Unlike most fast-growing clades, however, A2/re contains no amino acid substitutions in the hemagglutinin (HA) segment. Moreover, hemagglutination inhibition assays did not suggest substantial antigenic differences between A2/re viruses and viruses sampled during the 2016-2017 season. Rather, we observe that the A2/re clade was the result of a reassortment event that occurred in late 2016 or early 2017 and involved the combination of the HA and PB1 segments of an A2 virus with neuraminidase (NA) and other segments a virus from the clade A1b. The success of this clade shows the need for antigenic analysis that targets NA in addition to HA. Our results illustrate the potential for non-HA drivers of viral success and necessitate the need for more thorough tracking of full viral genomes to better understand the dynamics of influenza epidemics.
Collapse
Affiliation(s)
- Barney I Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, 4109 E Stevens Way NE, Seattle, WA 98105, USA
| | - John Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Lizheng Guo
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Richard A Neher
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, Atlanta, GA 30333, USA
| |
Collapse
|
27
|
Pepin KM, Hopken MW, Shriner SA, Spackman E, Abdo Z, Parrish C, Riley S, Lloyd-Smith JO, Piaggio AJ. Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180346. [PMID: 31401963 PMCID: PMC6711309 DOI: 10.1098/rstb.2018.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reassortment is an evolutionary mechanism by which influenza A viruses (IAV) generate genetic novelty. Reassortment is an important driver of host jumps and is widespread according to retrospective surveillance studies. However, predicting the epidemiological risk of reassortant emergence in novel hosts from surveillance data remains challenging. IAV strains persist and co-occur in the environment, promoting co-infection during environmental transmission. These conditions offer opportunity to understand reassortant emergence in reservoir and spillover hosts. Specifically, environmental RNA could provide rich information for understanding the evolutionary ecology of segmented viruses, and transform our ability to quantify epidemiological risk to spillover hosts. However, significant challenges with recovering and interpreting genomic RNA from the environment have impeded progress towards predicting reassortant emergence from environmental surveillance data. We discuss how the fields of genomics, experimental ecology and epidemiological modelling are well positioned to address these challenges. Coupling quantitative disease models and natural transmission studies with new molecular technologies, such as deep-mutational scanning and single-virus sequencing of environmental samples, should dramatically improve our understanding of viral co-occurrence and reassortment. We define observable risk metrics for emerging molecular technologies and propose a conceptual research framework for improving accuracy and efficiency of risk prediction. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- e-mail:
| | - Matthew W. Hopken
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- Colorado State University, Fort Collins, CO 80523, USA
| | - Susan A. Shriner
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research, USDA-ARS, Athens, GA 30605, USA
| | - Zaid Abdo
- Colorado State University, Fort Collins, CO 80523, USA
| | - Colin Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, SW7 2AZ, UK
| | - James O. Lloyd-Smith
- UCLA, Los Angeles, CA 90095, USA
- Department of Ecology and Evolutionary Biology, Fogarty International Center, National Institutes of Health, Bethesda MD 20892, USA
| | | |
Collapse
|
28
|
Karo-Karo D, Bodewes R, Wibawa H, Artika M, Pribadi ES, Diyantoro D, Pratomo W, Sugama A, Hendrayani N, Indasari I, Wibowo MH, Muljono DH, Stegeman JA, Koch G. Reassortments among Avian Influenza A(H5N1) Viruses Circulating in Indonesia, 2015-2016. Emerg Infect Dis 2019; 25:465-472. [PMID: 30789142 PMCID: PMC6390736 DOI: 10.3201/eid2503.180167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) A(H5N1) viruses have been circulating since 2003 in Indonesia, with major impacts on poultry health, severe economic losses, and 168 fatal laboratory-confirmed human cases. We performed phylogenetic analysis on 39 full-genome H5N1 virus samples collected during outbreaks among poultry in 2015-2016 in West Java and compared them with recently published sequences from Indonesia. Phylogenetic analysis revealed that the hemagglutinin gene of all samples belonged to 2 genetic groups in clade 2.3.2.1c. We also observed these groups for the neuraminidase, nucleoprotein, polymerase, and polymerase basic 1 genes. Matrix, nonstructural protein, and polymerase basic 2 genes of some HPAI were most closely related to clade 2.1.3 instead of clade 2.3.2.1c, and a polymerase basic 2 gene was most closely related to Eurasian low pathogenicity avian influenza. Our results detected a total of 13 reassortment types among HPAI in Indonesia, mostly in backyard chickens in Indramayu.
Collapse
|
29
|
Jacobs NT, Onuoha NO, Antia A, Steel J, Antia R, Lowen AC. Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nat Commun 2019; 10:3526. [PMID: 31387995 PMCID: PMC6684657 DOI: 10.1038/s41467-019-11428-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
Abstract
Segmentation of viral genomes into multiple RNAs creates the potential for replication of incomplete viral genomes (IVGs). Here we use a single-cell approach to quantify influenza A virus IVGs and examine their fitness implications. We find that each segment of influenza A/Panama/2007/99 (H3N2) virus has a 58% probability of being replicated in a cell infected with a single virion. Theoretical methods predict that IVGs carry high costs in a well-mixed system, as 3.6 virions are required for replication of a full genome. Spatial structure is predicted to mitigate these costs, however, and experimental manipulations of spatial structure indicate that local spread facilitates complementation. A virus entirely dependent on co-infection was used to assess relevance of IVGs in vivo. This virus grows robustly in guinea pigs, but is less infectious and does not transmit. Thus, co-infection allows IVGs to contribute to within-host spread, but complete genomes may be critical for transmission.
Collapse
Affiliation(s)
- Nathan T Jacobs
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina O Onuoha
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Antia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
30
|
Petrzik K. Evolutionary forces at work in partitiviruses. Virus Genes 2019; 55:563-573. [PMID: 31230256 DOI: 10.1007/s11262-019-01680-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
The family Partitiviridae consists of dsRNA viruses with genome separated into two segments and encoding replicase and capsid protein only. We examined the nucleotide diversity expressed as the ratio dN/dS of nonsynonymous and synonymous substitutions, which has been calculated for 12 representative viruses of all five genera of partitiviruses. We can state that strong purifying selection works on both the RdRp and CP genes and propose that putative positive selection occurs also on the RdRp genes in two viruses. Among the 95 evaluated viruses, wherein both segments had been sequenced, 8 viruses in betapartitiviruses and 9 in alphapartitiviruses were identified as reassortment candidates because they differ extremely in their CP identity even as they are related in terms of RdRp. Furthermore, there are indications that reassortants are present among isolates of different viruses.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, Czech Republic.
| |
Collapse
|
31
|
Melville K, Rodriguez T, Dobrovolny HM. Investigating Different Mechanisms of Action in Combination Therapy for Influenza. Front Pharmacol 2018; 9:1207. [PMID: 30405419 PMCID: PMC6206389 DOI: 10.3389/fphar.2018.01207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/03/2018] [Indexed: 01/15/2023] Open
Abstract
Combination therapy for influenza can have several benefits, from reducing the emergence of drug resistant virus strains to decreasing the cost of antivirals. However, there are currently only two classes of antivirals approved for use against influenza, limiting the possible combinations that can be considered for treatment. However, new antivirals are being developed that target different parts of the viral replication cycle, and their potential for use in combination therapy should be considered. The role of antiviral mechanism of action in the effectiveness of combination therapy has not yet been systematically investigated to determine whether certain antiviral mechanisms of action pair well in combination. Here, we use a mathematical model of influenza to model combination treatment with antivirals having different mechanisms of action to measure peak viral load, infection duration, and synergy of different drug combinations. We find that antivirals that lower the infection rate and antivirals that increase the duration of the eclipse phase perform poorly in combination with other antivirals.
Collapse
Affiliation(s)
- Kelli Melville
- Physics Department, East Carolina University, Greenville, NC, United States
| | - Thalia Rodriguez
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - Hana M. Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
32
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
33
|
|
34
|
Ziegler T, Mamahit A, Cox NJ. 65 years of influenza surveillance by a World Health Organization-coordinated global network. Influenza Other Respir Viruses 2018; 12:558-565. [PMID: 29727518 PMCID: PMC6086847 DOI: 10.1111/irv.12570] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
The 1918 devastating influenza pandemic left a lasting impact on influenza experts and the public, and the importance of global influenza surveillance was soon recognized. The World Health Organization (WHO) Global Influenza Surveillance Network (GISN) was founded in 1952 and renamed to Global Influenza Surveillance and Response System in 2011 upon the adoption by the World Health Assembly, of the Pandemic Influenza Preparedness Framework for the Sharing of Influenza Viruses and Access to Vaccines and Other Benefits ("PIP Framework"). The importance of influenza surveillance had been recognized and promoted by experts prior to the years leading up to the establishment of WHO. In the 65 years of its existence, the Network has grown to comprise 143 National Influenza Centers recognized by WHO, 6 WHO Collaborating Centers, 4 Essential Regulatory Laboratories, and 13 H5 Reference Laboratories. The Network has proven its excellence throughout these 65 years, providing detailed information on circulating seasonal influenza viruses, as well as immediate response to the influenza pandemics in 1957, 1968, and 2009, and to threats caused by animal influenza viruses and by zoonotic transmission of coronaviruses. For its central role in global public health, the Network has been highly recognized by its many partners and by international bodies. Several generations of world-renowned influenza scientists have brought the Network to where it is now and they will take it forward to the future, as influenza will remain a preeminent threat to humans and to animals.
Collapse
Affiliation(s)
- Thedi Ziegler
- Research Center for Child PsychiatryUniversity of TurkuTurkuFinland
| | - Awandha Mamahit
- Global Influenza ProgrammeInfectious Hazards ManagementWHO Emergency ProgrammeWorld Health OrganizationGenevaSwitzerland
| | - Nancy J. Cox
- Consultant and retired affiliate of the Centers for Disease Control and PreventionAtlantaGAUSA
| |
Collapse
|
35
|
Lyons DM, Lauring AS. Mutation and Epistasis in Influenza Virus Evolution. Viruses 2018; 10:E407. [PMID: 30081492 PMCID: PMC6115771 DOI: 10.3390/v10080407] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza remains a persistent public health challenge, because the rapid evolution of influenza viruses has led to marginal vaccine efficacy, antiviral resistance, and the annual emergence of novel strains. This evolvability is driven, in part, by the virus's capacity to generate diversity through mutation and reassortment. Because many new traits require multiple mutations and mutations are frequently combined by reassortment, epistatic interactions between mutations play an important role in influenza virus evolution. While mutation and epistasis are fundamental to the adaptability of influenza viruses, they also constrain the evolutionary process in important ways. Here, we review recent work on mutational effects and epistasis in influenza viruses.
Collapse
Affiliation(s)
- Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Adam S Lauring
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Goneau LW, Mehta K, Wong J, L'Huillier AG, Gubbay JB. Zoonotic Influenza and Human Health-Part 1: Virology and Epidemiology of Zoonotic Influenzas. Curr Infect Dis Rep 2018; 20:37. [PMID: 30069735 DOI: 10.1007/s11908-018-0642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Zoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of infection, and also discuss history and epidemiology. RECENT FINDINGS We are currently witnessing the fifth and the largest wave of the avian influenza A(H7N9) epidemic. Also in circulation are a number of other zoonotic influenza viruses, including avian influenza A(H5N1) and A(H5N6); avian influenza A(H7N2); and swine influenza A(H1N1)v, A(H1N2)v, and A(H3N2)v viruses. Most recently, the first human case of avian influenza A(H7N4) infection has been documented. By understanding the virology and epidemiology of emerging zoonotic influenzas, we are better prepared to face a new pandemic. However, continued effort is warranted to build on this knowledge in order to efficiently combat the constant threat posed by the zoonotic influenza viruses.
Collapse
Affiliation(s)
- L W Goneau
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada
- University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada
| | - K Mehta
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Wong
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, North York General Hospital, Toronto, ON, Canada
| | - A G L'Huillier
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J B Gubbay
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada.
- University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada.
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
37
|
Wang X, Zeng Z, Zhang Z, Zheng Y, Li B, Su G, Li H, Huang L, Qi W, Liao M. The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds. Front Microbiol 2018; 9:1088. [PMID: 29896169 PMCID: PMC5987672 DOI: 10.3389/fmicb.2018.01088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.
Collapse
Affiliation(s)
- Xiuhui Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyong Zeng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zaoyue Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guanming Su
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huanan Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Huang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
38
|
Abstract
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity.
Collapse
Affiliation(s)
- Maria C White
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|