1
|
Ye S, Liang Y, Chang Y, Lai B, Zhong J. Dengue Virus Replicative-Form dsRNA Is Recognized by Both RIG-I and MDA5 to Activate Innate Immunity. J Med Virol 2025; 97:e70194. [PMID: 39873327 DOI: 10.1002/jmv.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases. Despite extensive investigations, the molecular basis of the DENV PAMP recognized by the host RLR has been poorly defined. Here, we demonstrated that the DENV infection-induced interferon response is dependent upon both RIG-I and MDA5, with RIG-I playing a predominant role. Next we purified the DENV PAMP RNA from the DENV-infected cells, and demonstrated that the purified DENV PAMP is viral full-length double-stranded RNA bearing 5'ppp modifications, likely representing the viral replicative-form RNA. Finally, we confirmed the nature of the DENV PAMP by reconstituting the viral replicative-form RNA from in vitro synthesized DENV genomic RNA. In conclusion, our work not only defined the molecular basis of the RLR-PAMP interaction during DENV infection, but also revealed the previously underappreciated recognition of a distinct moiety of the same PAMP by different RLRs in innate immunity against RNA viruses.
Collapse
Affiliation(s)
- Sichao Ye
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yisha Liang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Chang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bailiang Lai
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
2
|
Dash MK, Samal S, Rout S, Behera CK, Sahu MC, Das B. Immunomodulation in dengue: towards deciphering dengue severity markers. Cell Commun Signal 2024; 22:451. [PMID: 39327552 PMCID: PMC11425918 DOI: 10.1186/s12964-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Shailesh Rout
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | | | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
3
|
Cloherty APM, Rader AG, Patel KS, Eisden TJTHD, van Piggelen S, Schreurs RRCE, Ribeiro CMS. Dengue virus exploits autophagy vesicles and secretory pathways to promote transmission by human dendritic cells. Front Immunol 2024; 15:1260439. [PMID: 38863700 PMCID: PMC11165123 DOI: 10.3389/fimmu.2024.1260439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.
Collapse
Affiliation(s)
- Alexandra P. M. Cloherty
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Anusca G. Rader
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Kharishma S. Patel
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Tracy-Jane T. H. D. Eisden
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sterre van Piggelen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Renée R. C. E. Schreurs
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Carla M. S. Ribeiro
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| |
Collapse
|
4
|
Oliveira FBCD, Freire VPASDS, Coelho SVA, Meuren LM, Palmeira JDF, Cardoso AL, Neves FDAR, Ribeiro BM, Argañaraz GA, Arruda LBD, Argañaraz ER. ZIKV Strains Elicit Different Inflammatory and Anti-Viral Responses in Microglia Cells. Viruses 2023; 15:1250. [PMID: 37376550 DOI: 10.3390/v15061250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, the Zika Virus (ZIKV) has caused pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZS). Although all strains associated with worldwide outbreaks derive from the Asian lineage, the reasons for their enhanced spread and severity are not fully understood. In this study, we conducted a comparative analysis of miRNAs (miRNA-155/146a/124) and their cellular targets (SOCS1/3, SHP1, TRAF6, IRAK1), as well as pro- and anti-inflammatory and anti-viral cytokines (IL-6, TNF-α, IFN-γ, IL-10, and IFN-β) and peroxisome proliferator-activated receptor γ (PPAR-γ) expression in BV2 microglia cells infected with ZIKV strains derived from African and Asian lineages (ZIKVMR766 and ZIKVPE243). BV2 cells were susceptible to both ZIKV strains, and showed discrete levels of viral replication, with delayed release of viral particles without inducing significant cytopathogenic effects. However, the ZIKVMR766 strain showed higher infectivity and replicative capacity, inducing a higher expression of microglial activation markers than the ZIKVPE243 strain. Moreover, infection with the ZIKVMR766 strain promoted both a higher inflammatory response and a lower expression of anti-viral factors compared to the ZIKVPE243 strain. Remarkably, the ZIKKPE243 strain induced significantly higher levels of the anti-inflammatory nuclear receptor-PPAR-γ. These findings improve our understanding of ZIKV-mediated modulation of inflammatory and anti-viral innate immune responses and open a new avenue to explore underlining mechanisms involved in the pathogenesis of ZIKV-associated diseases.
Collapse
Affiliation(s)
| | | | - Sharton Vinicius Antunes Coelho
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lana Monteiro Meuren
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Ana Luísa Cardoso
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | - Bergmann Morais Ribeiro
- Laboratory of Bacuolovirus, Cell Biology Department, University of Brasilia, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Luciana Barros de Arruda
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasília 70910-900, DF, Brazil
| |
Collapse
|
5
|
Vlaming KE, van Wijnbergen K, Kaptein TM, Nijhuis M, Kootstra NJ, de Bree GJ, Geijtenbeek TB. Crosstalk between TLR8 and RIG-I-like receptors enhances antiviral immune responses. Front Med (Lausanne) 2023; 10:1146457. [PMID: 37261119 PMCID: PMC10227620 DOI: 10.3389/fmed.2023.1146457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Background Toll-like receptor (TLR) agonists have been investigated due to their potential dual effects as latency reverting agents and immune modulatory compounds in people living with HIV (PLWH). Here, we investigated whether co-stimulation of TLR7/8 agonists with RIG-I-like receptor (RLR) agonists enhances antiviral immunity. Methods Peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (DCs) were incubated with TLR and RLR-agonists for 24 h and innate and adaptive immune responses were determined (maturation markers, cytokines in supernatant, ISG expression). Results Both TLR7 and TLR8 agonists induced pro-inflammatory cytokines in DCs as well as PBMCs. TLR8 agonists were more potent in inducing cytokine responses and had a stronger effect on DC-induced immunity. Notably, while all compounds induced IL-12p70, co-stimulation with TLR8 agonists and RLR agonist polyI: C induced significantly higher levels of IL-12p70 in PBMCs. Moreover, crosstalk between TLR8 and RLR agonists induced a strong type I Interferon (IFN) response as different antiviral IFN-stimulated genes were upregulated by the combination compared to the agonists alone. Conclusion Our data strongly suggest that TLR crosstalk with RLRs leads to strong antiviral immunity as shown by induction of IL-12 and type I IFN responses in contrast to TLRs alone. Thus, co-stimulation of TLRs and RLRs might be a powerful strategy to induce reactivation of latent reservoir as well as antiviral immunity that eliminates the reactivated cells.
Collapse
Affiliation(s)
- Killian E. Vlaming
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Kelly van Wijnbergen
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Neeltje J. Kootstra
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
6
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
7
|
Eder J, Zijlstra-Willems E, Koen G, Kootstra NA, Wolthers KC, Geijtenbeek TB. Transmission of Zika virus by dendritic cell subsets in skin and vaginal mucosa. Front Immunol 2023; 14:1125565. [PMID: 36949942 PMCID: PMC10025456 DOI: 10.3389/fimmu.2023.1125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Zika virus is a member of the Flaviviridae family that has caused recent outbreaks associated with neurological malformations. Transmission of Zika virus occurs primarily via mosquito bite but also via sexual contact. Dendritic cells (DCs) and Langerhans cells (LCs) are important antigen presenting cells in skin and vaginal mucosa and paramount to induce antiviral immunity. To date, little is known about the first cells targeted by Zika virus in these tissues as well as subsequent dissemination of the virus to other target cells. We therefore investigated the role of DCs and LCs in Zika virus infection. Human monocyte derived DCs (moDCs) were isolated from blood and primary immature LCs were obtained from human skin and vaginal explants. Zika virus exposure to moDCs but not skin and vaginal LCs induced Type I Interferon responses. Zika virus efficiently infected moDCs but neither epidermal nor vaginal LCs became infected. Infection of a human full skin model showed that DC-SIGN expressing dermal DCs are preferentially infected over langerin+ LCs. Notably, not only moDCs but also skin and vaginal LCs efficiently transmitted Zika virus to target cells. Transmission by LCs was independent of direct infection of LCs. These data suggest that DCs and LCs are among the first target cells for Zika virus not only in the skin but also the genital tract. The role of vaginal LCs in dissemination of Zika virus from the vaginal mucosa further emphasizes the threat of sexual transmission and supports the investigation of prophylaxes that go beyond mosquito control.
Collapse
Affiliation(s)
- Julia Eder
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Esther Zijlstra-Willems
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Katja C. Wolthers
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- *Correspondence: Teunis B. Geijtenbeek,
| |
Collapse
|
8
|
Targeting Signaling Pathway Downstream of RIG-I/MAVS in the CNS Stimulates Production of Endogenous Type I IFN and Suppresses EAE. Int J Mol Sci 2022; 23:ijms231911292. [PMID: 36232593 PMCID: PMC9570082 DOI: 10.3390/ijms231911292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Type I interferons (IFN), including IFNβ, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNβ and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNβ/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNβ expression within the CNS. IFNβ expression was significantly increased for 7 days. Immunofluorescent staining in IFNβ-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNβ. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.
Collapse
|
9
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
10
|
Solstad A, Hogaboam O, Forero A, Hemann EA. RIG-I-like Receptor Regulation of Immune Cell Function and Therapeutic Implications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:845-854. [PMID: 36130131 PMCID: PMC9512390 DOI: 10.4049/jimmunol.2200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 01/04/2023]
Abstract
Retinoic acid-inducible gene I-like receptors (RLRs) are cytosolic RNA sensors critical for initiation of antiviral immunity. Activation of RLRs following RNA recognition leads to production of antiviral genes and IFNs for induction of broad antiviral immunity. Although the RLRs are ubiquitously expressed, much of our understanding of these molecules comes from their study in epithelial cells and fibroblasts. However, RLR activation is critical for induction of immune function and long-term protective immunity. Recent work has focused on the roles of RLRs in immune cells and their contribution to programming of effective immune responses. This new understanding of RLR function in immune cells and immune programming has led to the development of vaccines and therapeutics targeting the RLRs. This review covers recent advances in our understanding of the contribution of RLRs to immune cell function during infection and the emerging RLR-targeting strategies for induction of immunity against cancer and viral infection.
Collapse
Affiliation(s)
- Abigail Solstad
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH
| | - Octavia Hogaboam
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH
- Infectious Diseases Institute, The Ohio State University, Columbus, OH; and
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH;
- Infectious Diseases Institute, The Ohio State University, Columbus, OH; and
| |
Collapse
|
11
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
12
|
Teixeira AR, Pérez-Cabezas B, Costa DM, Sá M, Golba S, Sefiane-Djemaoune H, Ribeiro J, Kaneko I, Iwanaga S, Yuda M, Tsuji M, Boscardin SB, Amino R, Cordeiro-da-Silva A, Tavares J. Immunization with CSP and a RIG-I Agonist is Effective in Inducing a Functional and Protective Humoral Response Against Plasmodium. Front Immunol 2022; 13:868305. [PMID: 35669785 PMCID: PMC9163323 DOI: 10.3389/fimmu.2022.868305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is a major public health concern, as a highly effective human vaccine remains elusive. The efficacy of a subunit vaccine targeting the most abundant protein of the sporozoite surface, the circumsporozoite protein (CSP) has been hindered by difficulties in generating an effective humoral response in both quantity and quality. Using the rodent Plasmodium yoelii model we report here that immunization with CSP adjuvanted with 5’ppp-dsRNA, a RIG-I agonist, confers early and long-lasting sterile protection in mice against stringent sporozoite and mosquito bite challenges. The immunization induced high levels of antibodies, which were functional in targeting and killing the sporozoites and were sustained over time through the accumulation of long-lived plasma cells in the bone marrow. Moreover, 5’ppp-dsRNA-adjuvanted immunization with the CSP of P. falciparum was also significantly protective against challenges using a transgenic PfCSP-expressing P. yoelii parasite. Conversely, using the TLR3 agonist poly(A:U) as adjuvant resulted in a formulation that despite inducing high antibody levels was unable to generate equally functional antibodies and was, consequently, less protective. In conclusion, we demonstrate that using 5’ppp-dsRNA as an adjuvant to vaccines targeting CSP induces effective anti-Plasmodium humoral immunity.
Collapse
Affiliation(s)
- Ana Rafaela Teixeira
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Begoña Pérez-Cabezas
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - David M. Costa
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mónica Sá
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sylvain Golba
- Center for Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | | | - Joana Ribeiro
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University Graduate School of Medicine, Mie, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University Graduate School of Medicine, Mie, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii)-INCT, São Paulo, Brazil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France
| | - Anabela Cordeiro-da-Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Host-Parasite Interactions Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- *Correspondence: Joana Tavares,
| |
Collapse
|
13
|
Amsden H, Kourko O, Roth M, Gee K. Antiviral Activities of Interleukin-27: A Partner for Interferons? Front Immunol 2022; 13:902853. [PMID: 35634328 PMCID: PMC9134790 DOI: 10.3389/fimmu.2022.902853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Emergence of new, pandemic-level viral threats has brought to the forefront the importance of viral immunology and continued improvement of antiviral therapies. Interleukin-27 (IL-27) is a pleiotropic cytokine that regulates both innate and adaptive immune responses. Accumulating evidence has revealed potent antiviral activities of IL-27 against numerous viruses, including HIV, influenza, HBV and more. IL-27 contributes to the immune response against viruses indirectly by increasing production of interferons (IFNs) which have various antiviral effects. Additionally, IL-27 can directly interfere with viral infection both by acting similarly to an IFN itself and by modulating the differentiation and function of various immune cells. This review discusses the IFN-dependent and IFN-independent antiviral mechanisms of IL-27 and highlights the potential of IL-27 as a therapeutic cytokine for viral infection.
Collapse
Affiliation(s)
| | | | | | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
14
|
Pan Y, Cai W, Cheng A, Wang M, Yin Z, Jia R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front Immunol 2022; 13:829433. [PMID: 35154151 PMCID: PMC8835115 DOI: 10.3389/fimmu.2022.829433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the host’s first line of defense against the invasion of pathogens including flavivirus. The programmed cell death controlled by genes plays an irreplaceable role in resisting pathogen invasion and preventing pathogen infection. However, the inflammatory cell death, which can trigger the overflow of a large number of pro-inflammatory cytokines and cell contents, will initiate a severe inflammatory response. In this review, we summarized the current understanding of the innate immune response, inflammatory cell death pathway and cytokine secretion regulation during Dengue virus, West Nile virus, Zika virus, Japanese encephalitis virus and other flavivirus infections. We also discussed the impact of these flavivirus and viral proteins on these biological processes. This not only provides a scientific basis for elucidating the pathogenesis of flavivirus, but also lays the foundation for the development of effective antiviral therapies.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Renyong Jia, ; Anchun Cheng,
| |
Collapse
|
15
|
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses 2022; 14:v14020242. [PMID: 35215836 PMCID: PMC8878350 DOI: 10.3390/v14020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Arboviral infections such as Chikungunya (CHIKV), Dengue (DENV) and Zika (ZIKV) are a major disease burden in tropical and sub-tropical countries, and there are no effective vaccinations or therapeutic drugs available at this time. Understanding the role of the T cell response is very important when designing effective vaccines. Currently, comprehensive identification of T cell epitopes during a DENV infection shows that CD8 and CD4 T cells and their specific phenotypes play protective and pathogenic roles. The protective role of CD8 T cells in DENV is carried out through the killing of infected cells and the production of proinflammatory cytokines, as CD4 T cells enhance B cell and CD8 T cell activities. A limited number of studies attempted to identify the involvement of T cells in CHIKV and ZIKV infection. The identification of human immunodominant ZIKV viral epitopes responsive to specific T cells is scarce, and none have been identified for CHIKV. In CHIKV infection, CD8 T cells are activated during the acute phase in the lymph nodes/blood, and CD4 T cells are activated during the chronic phase in the joints/muscles. Studies on the role of T cells in ZIKV-neuropathogenesis are limited and need to be explored. Many studies have shown the modulating actions of T cells due to cross-reactivity between DENV-ZIKV co-infections and have repeated heterologous/homologous DENV infection, which is an important factor to consider when developing an effective vaccine.
Collapse
Affiliation(s)
- Maheshi Mapalagamage
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00700, Sri Lanka;
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Aruna Dharshan De Silva
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; (D.W.); (A.S.)
- Department of Paraclinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo 10390, Sri Lanka
- Correspondence:
| |
Collapse
|
16
|
Petit MJ, Kenaston MW, Pham OH, Nagainis AA, Fishburn AT, Shah PS. Nuclear dengue virus NS5 antagonizes expression of PAF1-dependent immune response genes. PLoS Pathog 2021; 17:e1010100. [PMID: 34797876 PMCID: PMC8641875 DOI: 10.1371/journal.ppat.1010100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) disruption of the innate immune response is critical to establish infection. DENV non-structural protein 5 (NS5) plays a central role in this disruption, such as antagonism of STAT2. We recently found that DENV serotype 2 (DENV2) NS5 interacts with Polymerase associated factor 1 complex (PAF1C). The primary members of PAF1C are PAF1, LEO1, CTR9, and CDC73. This nuclear complex is an emerging player in the immune response. It promotes the expression of many genes, including genes related to the antiviral, antimicrobial and inflammatory responses, through close association with the chromatin of these genes. Our previous work demonstrated that NS5 antagonizes PAF1C recruitment to immune response genes. However, it remains unknown if NS5 antagonism of PAF1C is complementary to its antagonism of STAT2. Here, we show that knockout of PAF1 enhances DENV2 infectious virion production. By comparing gene expression profiles in PAF1 and STAT2 knockout cells, we find that PAF1 is necessary to express immune response genes that are STAT2-independent. Finally, we mapped the viral determinants for the NS5-PAF1C protein interaction. We found that NS5 nuclear localization and the C-terminal region of the methyltransferase domain are required for its interaction with PAF1C. Mutation of these regions rescued the expression of PAF1-dependent immune response genes that are antagonized by NS5. In sum, our results support a role for PAF1C in restricting DENV2 replication that NS5 antagonizes through its protein interaction with PAF1C. Dengue virus (DENV) is a pathogen that infects nearly 400 million people a year and thus represents a major challenge for public health. Productive infection by DENV relies on the effective evasion of intrinsic antiviral defenses and is often accomplished through virus-host protein interactions. Here, we investigate the recently discovered interaction between DENV non-structural protein 5 (NS5) and the transcriptional regulator Polymerase associated factor 1 complex (PAF1C). Our work demonstrates PAF1C member PAF1 acts as an antiviral factor and inhibits DENV replication. In parallel, we identified immune response genes involved in intrinsic antiviral defense that depend on PAF1 for expression. We further identified the regions of NS5 required for the protein interaction with PAF1C. Breaking the NS5-PAF1C protein interaction restores the expression of PAF1-dependent immune response genes. Together, our work establishes the antiviral role of PAF1C in DENV infection and NS5 antagonism of PAF1-dependent gene expression through a virus-host protein interaction.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Ariana A. Nagainis
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Li Y, Guo T, Wang X, Ni W, Hu R, Cui Y, Mi T, Hu S. ITRAQ-based quantitative proteomics reveals the proteome profiles of MDBK cells infected with bovine viral diarrhea virus. Virol J 2021; 18:119. [PMID: 34092256 PMCID: PMC8183066 DOI: 10.1186/s12985-021-01592-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Background Bovine viral diarrhea (BVD) which is caused by Bovine viral diarrhea virus (BVDV), is an acute, contagious disease. In spite of the use of vaccines and elimination projects, BVDV still causes severe economic losses to the cattle industry for the past few years. The current study presents a preliminary analysis of the pathogenic mechanisms from the perspective of protein expression levels in infected host cells at different points in time to elucidate the infection process associated with BVDV. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with liquid chromatography-tandem mass spectrometric (LC–MS/MS) approach for a quantitative proteomics comparison of BVDV NADL-infected MDBK cells and non-infected cells. The functions of the proteins were deduced by functional annotation and their involvement in metabolic processes explored by KEGG pathway analysis to identify their interactions. Results There were 357 (47.6% downregulated, 52.4% upregulated infected vs. control), 101 (52.5% downregulated, 47.5% upregulated infected vs. control), and 66 (21.2% downregulated, 78.8% upregulated infected vs. control) proteins were differentially expressed (fold change > 1.5 or < 0.67) in the BVDV NADL-infected MDBK cells at 12, 24, and 48 h after infection. GO analysis showed that the differentially expressed proteins (DEPs) are mainly involved in metabolic processes, biological regulation and localization. KEGG enrichment analysis showed that some signaling pathways that involved in the regulation of BVDV NADL-infection and host resistance are significantly (P < 0.05) enriched at different stages of the BVDV NADL-infection, such as Endocytosis signaling pathway, FoxO signaling pathway, Homologous recombination signaling pathway and Lysosome pathway. Conclusions These results revealed that the DEPs in BVDV NADL-infected MDBK cells have a wide range of regulatory effects; in addition, they provide a lot of resources for the study of host cell proteomics after BVDV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01592-2.
Collapse
Affiliation(s)
- Yaxin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Tao Guo
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiaokui Wang
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yuying Cui
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Taotao Mi
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
18
|
Bates FA, Duncan EH, Simmons M, Robinson T, Samineni S, Strbo N, Villasante E, Bergmann-Leitner E, Wijayalath W. Exposure-related, global alterations in innate and adaptive immunity; a consideration for re-use of non-human primates in research. PeerJ 2021; 9:e10955. [PMID: 33732548 PMCID: PMC7950202 DOI: 10.7717/peerj.10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Non-human primates (NHPs) play an important role in biomedical research, where they are often being re-used in multiple research studies over the course of their life-time. Researchers employ various study-specific screening criteria to reduce potential variables associated with subsequent re-use of NHPs. However, criteria set for NHP re-assignments largely neglect the impact of previous exposures on overall biology. Since the immune system is a key determinant of overall biological outcome, an altered biological state could be predicted by monitoring global changes in the immune profile. We postulate that every different exposure or a condition can generate a unique global immune profile in NHPs. Methods Changes in the global immune profile were evaluated in three different groups of rhesus macaques previously enrolled in dengue or malaria vaccine studies over six months after their last exposure. Naïve animals served as the baseline. Fresh blood samples were stained with various immune cell surface markers and analyzed by multi-color flow-cytometry to study immune cell dynamics in the peripheral blood. Serum cytokine profile in the pre-exposed animals were analyzed by mesoscale assay using a customized U-PLEX NHP biomarker panel of 12 cytokines/chemokines. Results Pre-exposed macaques showed altered dynamics in circulating cytokines and certain innate and adaptive immune cell subsets such as monocytes, HLA-DR+NKT cells, B cells and T cells. Some of these changes were transient, while some lasted for more than six months. Each group seemed to develop a global immune profile unique to their particular exposure. Conclusion Our data strongly suggest that re-used NHPs should be evaluated for long-term, overall immunological changes and randomly assigned to new studies to avoid study bias.
Collapse
Affiliation(s)
- François A Bates
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Elizabeth H Duncan
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monika Simmons
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Tanisha Robinson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, United States of America
| | - Sridhar Samineni
- Veterinary Services Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America.,SoBran, Inc, Falls Church, VA, United States of America
| | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine University of Miami, Miami, FL, United States of America
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Elke Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Wathsala Wijayalath
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America.,CAMRIS International, Bethesda, MD, United States of America
| |
Collapse
|
19
|
Sato Y, Yoshino H, Kashiwakura I, Tsuruga E. DAP3 Is Involved in Modulation of Cellular Radiation Response by RIG-I-Like Receptor Agonist in Human Lung Adenocarcinoma Cells. Int J Mol Sci 2021; 22:E420. [PMID: 33401559 PMCID: PMC7795940 DOI: 10.3390/ijms22010420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation response. However, it remains unclear how mitochondria are involved in the modulation of this response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma cells by downregulating DAP3 expression.
Collapse
Affiliation(s)
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan; (Y.S.); (I.K.); (E.T.)
| | | | | |
Collapse
|
20
|
Beauclair G, Streicher F, Chazal M, Bruni D, Lesage S, Gracias S, Bourgeau S, Sinigaglia L, Fujita T, Meurs EF, Tangy F, Jouvenet N. Retinoic Acid Inducible Gene I and Protein Kinase R, but Not Stress Granules, Mediate the Proinflammatory Response to Yellow Fever Virus. J Virol 2020; 94:e00403-20. [PMID: 32878892 PMCID: PMC7592215 DOI: 10.1128/jvi.00403-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Yellow fever virus (YFV) is an RNA virus primarily targeting the liver. Severe YF cases are responsible for hemorrhagic fever, plausibly precipitated by excessive proinflammatory cytokine response. Pathogen recognition receptors (PRRs), such as the cytoplasmic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), and the viral RNA sensor protein kinase R (PKR), are known to initiate a proinflammatory response upon recognition of viral genomes. Here, we sought to reveal the main determinants responsible for the acute cytokine expression occurring in human hepatocytes following YFV infection. Using a RIG-I-defective human hepatoma cell line, we found that RIG-I largely contributes to cytokine secretion upon YFV infection. In infected RIG-I-proficient hepatoma cells, RIG-I was localized in stress granules. These granules are large aggregates of stalled translation preinitiation complexes known to concentrate RLRs and PKR and are so far recognized as hubs orchestrating RNA virus sensing. Stable knockdown of PKR in hepatoma cells revealed that PKR contributes to both stress granule formation and cytokine induction upon YFV infection. However, stress granule disruption did not affect the cytokine response to YFV infection, as assessed by small interfering RNA (siRNA)-knockdown-mediated inhibition of stress granule assembly. Finally, no viral RNA was detected in stress granules using a fluorescence in situ hybridization approach coupled with immunofluorescence. Our findings suggest that both RIG-I and PKR mediate proinflammatory cytokine induction in YFV-infected hepatocytes, in a stress granule-independent manner. Therefore, by showing the uncoupling of the cytokine response from the stress granule formation, our model challenges the current view in which stress granules are required for the mounting of the acute antiviral response.IMPORTANCE Yellow fever is a mosquito-borne acute hemorrhagic disease caused by yellow fever virus (YFV). The mechanisms responsible for its pathogenesis remain largely unknown, although increased inflammation has been linked to worsened outcome. YFV targets the liver, where it primarily infects hepatocytes. We found that two RNA-sensing proteins, RIG-I and PKR, participate in the induction of proinflammatory mediators in human hepatocytes infected with YFV. We show that YFV infection promotes the formation of cytoplasmic structures, termed stress granules, in a PKR- but not RIG-I-dependent manner. While stress granules were previously postulated to be essential platforms for immune activation, we found that they are not required for the production of proinflammatory mediators upon YFV infection. Collectively, our work uncovered molecular events triggered by the replication of YFV, which could prove instrumental in clarifying the pathogenesis of the disease, with possible repercussions for disease management.
Collapse
Affiliation(s)
| | - Felix Streicher
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Maxime Chazal
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Daniela Bruni
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Sarah Lesage
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
- Université de Paris, Paris, France
| | - Ségolène Gracias
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Salomé Bourgeau
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Laura Sinigaglia
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Takashi Fujita
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Eliane F Meurs
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Frédéric Tangy
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Nolwenn Jouvenet
- Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France
| |
Collapse
|
21
|
Reed SG, Tomai M, Gale MJ. New horizons in adjuvants for vaccine development. Curr Opin Immunol 2020; 65:97-101. [PMID: 33038865 PMCID: PMC7542129 DOI: 10.1016/j.coi.2020.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
Adjuvant molecules, particularly toll like receptor (TLR) agonists have been in development for decades, though until now only a natural TLR 4 ligand (mono-phosphoryl lipid A, MPL) has been incorporated into licensed vaccine products, in formulations than enhance and complement the MPL activity. The inclusion of MPL-based formulations into vaccines has been based on enhancing antibody responses to subunit antigens, and has provided important proof-of-concept for enhancing desired immune responses to defined molecular targets. Challenges remain in adjuvant development, particularly for those that stimulated effective T cell responses for both preventative and therapeutic vaccines. The discovery of molecules, many based on RNA, that stimulate innate and adaptive immune responses and have the ability to stimulate potent CD8 T cell responses, has opened the door for development of a new generation of vaccines.
Collapse
Affiliation(s)
- Steven G Reed
- HDT Bio, Seattle, WA, United States; Center for Innate Immunity and Immune Disease, Department of Immunology, U of Washington School of Medicine, Seattle, WA, United States
| | | | - Michael J Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, U of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
22
|
Wong PT, Goff PH, Sun RJ, Ruge MJ, Ermler ME, Sebring A, O'Konek JJ, Landers JJ, Janczak KW, Sun W, Baker JR. Combined Intranasal Nanoemulsion and RIG-I Activating RNA Adjuvants Enhance Mucosal, Humoral, and Cellular Immunity to Influenza Virus. Mol Pharm 2020; 18:679-698. [PMID: 32491861 DOI: 10.1021/acs.molpharmaceut.0c00315] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced TH1/TH2/TH17 response when administered intranasally. RIG-I agonists included RNAs derived from Sendai and influenza viral defective interfering RNAs (IVT DI, 3php, respectively) and RIG-I/TLR3 agonist, poly(I:C) (pIC), which induce IFN-Is and TH1-polarized responses. NE/RNA combined adjuvants potentially allow for costimulation of multiple innate immune receptor pathways, more closely mimicking patterns of activation occurring during natural viral infection. Mice intranasally immunized with inactivated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjuvanted with NE/IVT DI or NE/3php (but not NE/pIC) showed synergistic enhancement of systemic PR/8-specific IgG with significantly greater avidity and virus neutralization activity than the individual adjuvants. Notably, NE/IVT DI induced protective neutralizing titers after a single immunization. Hemagglutinin stem-specific antibodies were also improved, allowing recognition of heterologous and heterosubtypic hemagglutinins. All NE/RNAs elicited substantial PR/8-specific sIgA. Finally, a unique cellular response with enhanced TH1/TH17 immunity was induced with the NE/RNAs. These results demonstrate that the enhanced immunogenicity of the adjuvant combinations was synergistic and not simply additive, highlighting the potential value of a combined adjuvant approach for improving the efficacy of vaccination against the influenza virus.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter H Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Rachel J Sun
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Matthew J Ruge
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Megan E Ermler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Alyssa Sebring
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jeffrey J Landers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Katarzyna W Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - James R Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Wijesinghe A, Gamage J, Goonewardena H, Gomes L, Jayathilaka D, Wijeratne DT, de Alwis R, Jeewandara C, Wijewickrama A, Ogg GS, Malavige GN. Phenotype and functionality of follicular helper T cells in patients with acute dengue infection. J Biomed Sci 2020; 27:50. [PMID: 32264870 PMCID: PMC7140349 DOI: 10.1186/s12929-020-00641-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background The association of functionality and phenotype of follicular helper T cells (Tfh) with dengue virus (DENV) specific antibody responses and clinical disease severity has not been well studied. Methods We investigated the phenotype and functionality of Tfh cells and plasmablasts in adult patients (DF = 18, DHF = 22) with acute dengue (day 4 to 8 since onset of fever) of varying severity using multiparametric flowcytometry. The properties of Tfh cells were correlated with viraemia, disease severity, plasmablast responses and DENV-specific serum antibody responses. We further evaluated the kinetics of neutralizing antibodies (Neut50) throughout the course of illness in order to evaluate their association with clinical disease severity and viraemia. Results Tfh cells (especially those producing IL-21 and co-expressing PD-1 and ICOS) were found to be significantly expanded (p < 0.0001) and highly activated in patients with DHF compared to those with DF. The frequency of Tfh cells significantly correlated with DENV-specific IgG, NS1-specific antibodies and Neut50 antibody titres in patients with DHF but not in those with DF. Although the Neut50 titres increased during the course of acute secondary DENV infection, they showed differences based on serotype. For instance, the Neut50 titres were significantly higher during the latter part of illness in patients with DF compared to DHF in DENV1 infection, while in DENV2, patients with DHF had significantly higher titres. The viral loads during early illness did not correlate with the subsequent rise in the Neut50 antibody titres during any time point of illness. Conclusions The expansion of Tfh cells is associated with DHF and DENV-specific IgG, NS1-specific and neutralizing antibodies. Neut50 titres did not associate with disease severity or viraemia at the point of first presentation during the febrile phase, but later titres do show differential association with severity in patients with DENV1 compared to DENV2.
Collapse
Affiliation(s)
- Ayesha Wijesinghe
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jayani Gamage
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Laksiri Gomes
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Deshni Jayathilaka
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dulharie T Wijeratne
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Viral Research & Experimental Medicine Centre, SingHealth/Duke-NUS, Singapore, Singapore
| | - Chandima Jeewandara
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Graham S Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka. .,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Irving AT, Rozario P, Kong PS, Luko K, Gorman JJ, Hastie ML, Chia WN, Mani S, Lee BPH, Smith GJD, Mendenhall IH, Larman HB, Elledge SJ, Wang LF. Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. Cell Mol Life Sci 2020; 77:1607-1622. [PMID: 31352533 PMCID: PMC11104837 DOI: 10.1007/s00018-019-03242-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey J Gorman
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Marcus L Hastie
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Wan Ni Chia
- Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | | | | | - Stephen J Elledge
- Harvard University Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Lin-Fa Wang
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
25
|
Sukumaran A, Coish J, Yeung J, Muselius B, Gadjeva M, MacNeil A, Geddes-McAlister J. Decoding communication patterns of the innate immune system by quantitative proteomics. J Leukoc Biol 2019; 106:1221-1232. [PMID: 31556465 PMCID: PMC7309189 DOI: 10.1002/jlb.2ri0919-302r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
The innate immune system is a collective network of cell types involved in cell recruitment and activation using a robust and refined communication system. Engagement of receptor-mediated intracellular signaling initiates communication cascades by conveying information about the host cell status to surrounding cells for surveillance and protection. Comprehensive profiling of innate immune cells is challenging due to low cell numbers, high dynamic range of the cellular proteome, low abundance of secreted proteins, and the release of degradative enzymes (e.g., proteases). However, recent advances in mass spectrometry-based proteomics provides the capability to overcome these limitations through profiling the dynamics of cellular processes, signaling cascades, post-translational modifications, and interaction networks. Moreover, integration of technologies and molecular datasets provide a holistic view of a complex and intricate network of communications underscoring host defense and tissue homeostasis mechanisms. In this Review, we explore the diverse applications of mass spectrometry-based proteomics in innate immunity to define communication patterns of the innate immune cells during health and disease. We also provide a technical overview of mass spectrometry-based proteomic workflows, with a focus on bottom-up approaches, and we present the emerging role of proteomics in immune-based drug discovery while providing a perspective on new applications in the future.
Collapse
Affiliation(s)
- A. Sukumaran
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - J.M. Coish
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1
| | - J. Yeung
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - B. Muselius
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M. Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - A.J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1
| | - J. Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
26
|
Haltaufderhyde K, Srikiatkhachorn A, Green S, Macareo L, Park S, Kalayanarooj S, Rothman AL, Mathew A. Activation of Peripheral T Follicular Helper Cells During Acute Dengue Virus Infection. J Infect Dis 2019; 218:1675-1685. [PMID: 29917084 DOI: 10.1093/infdis/jiy360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Follicular helper T cells (TFH) are specialized CD4 T cells required for B-cell help and antibody production. Methods Given the postulated role of immune activation in dengue disease, we measured the expansion and activation of TFH in the circulation (peripheral TFH [pTFH]) collected from Thai children with laboratory-confirmed acute dengue virus (DENV) infection. Results We found significant expansion and activation of pTFH subsets during acute infection with the highest frequencies of activated pTFH (PD1hi pTFH and PD1+CD38+ pTFH) detected during the critical phase of illness. Numbers of activated pTFH were higher in patients with secondary compared with primary infections and in patients with more severe disease. We also found a positive correlation between the frequencies of activated pTFH and the frequencies of plasmablasts. Conclusions To our knowledge, this is the first ex vivo analysis of pTFH activation during acute DENV infection. Overall, our study supports the model that pTFH contribute to disease evolution during the critical stage of illness.
Collapse
Affiliation(s)
- Kirk Haltaufderhyde
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence
| | - Anon Srikiatkhachorn
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence
| | - Sharone Green
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence.,Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence
| |
Collapse
|
27
|
Ho V, Yong HY, Chevrier M, Narang V, Lum J, Toh YX, Lee B, Chen J, Tan EY, Luo D, Fink K. RIG-I Activation by a Designer Short RNA Ligand Protects Human Immune Cells against Dengue Virus Infection without Causing Cytotoxicity. J Virol 2019; 93:e00102-19. [PMID: 31043531 PMCID: PMC6600207 DOI: 10.1128/jvi.00102-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Virus-derived double-stranded RNA (dsRNA) molecules containing a triphosphate group at the 5' end are natural ligands of retinoic acid-inducible gene I (RIG-I). The cellular pathways and proteins induced by RIG-I are an essential part of the innate immune response against viral infections. Starting from a previously published RNA scaffold (3p10L), we characterized an optimized small dsRNA hairpin (called 3p10LG9, 25 nucleotides [nt] in length) as a highly efficient RIG-I activator. Dengue virus (DENV) infection in cell lines and primary human skin cells could be prevented and restricted through 3p10LG9-mediated activation of RIG-I. This antiviral effect was RIG-I and interferon signal dependent. The effect was temporary and was reversed above a saturating concentration of RIG-I ligand. This finding revealed an effective feedback loop that controls potentially damaging inflammatory effects of the RIG-I response, at least in immune cells. Our results show that the small RIG-I activator 3p10LG9 can confer short-term protection against DENV and can be further explored as an antiviral treatment in humans.IMPORTANCE Short hairpin RNA ligands that activate RIG-I induce antiviral responses in infected cells and prevent or control viral infections. Here, we characterized a new short hairpin RNA molecule with high efficacy in antiviral gene activation and showed that this molecule is able to control dengue virus infection. We demonstrate how structural modifications of minimal RNA ligands can lead to increased potency and a wider window of RIG-I-activating concentrations before regulatory mechanisms kick in at high concentrations. We also show that minimal RNA ligands induce an effective antiviral response in human skin dendritic cells and macrophages, which are the target cells of initial infection after the mosquito releases virus into the skin. Using short hairpin RNA as RIG-I ligands could therefore be explored as antiviral therapy.
Collapse
Affiliation(s)
- Victor Ho
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hui Yee Yong
- School of Biological Sciences, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Marion Chevrier
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Vipin Narang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Ying-Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
28
|
Esser-Nobis K, Aarreberg LD, Roby JA, Fairgrieve MR, Green R, Gale M. Comparative Analysis of African and Asian Lineage-Derived Zika Virus Strains Reveals Differences in Activation of and Sensitivity to Antiviral Innate Immunity. J Virol 2019; 93:e00640-19. [PMID: 31019057 PMCID: PMC6580957 DOI: 10.1128/jvi.00640-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
In recent years, Asian lineage Zika virus (ZIKV) strains emerged to cause pandemic outbreaks associated with a high rate of congenital ZIKV syndrome (CZVS). The reasons for the enhanced spread and severe disease caused by newly emerging strains are not fully understood. Here we compared viral sequences, viral replication, and innate immune signaling induction of three different ZIKV strains derived from African and Asian lineages and West Nile virus, another flavivirus. We found pronounced differences in activation of innate immune signaling and inhibition of viral replication across ZIKV strains. The newly emerged Asian ZIKV strain Brazil Fortaleza 2015, which is associated with a higher rate of neurodevelopmental disorders like microcephaly, induced much weaker and delayed innate immune signaling in infected cells. However, superinfection studies to assess control of innate immune signaling induced by Sendai virus argue against an active block of IRF3 activation by the Brazilian strain of ZIKV and rather suggest an evasion of detection by host cell pattern recognition receptors. Compared to the Asian strain FSS13025 isolated in Cambodia, both ZIKV Uganda MR766 and ZIKV Brazil Fortaleza appear less sensitive to the interferon-induced antiviral response. ZIKV infection studies of cells lacking the different RIG-I-like receptors identified RIG-I as the major cytosolic pattern recognition receptor for detection of ZIKV.IMPORTANCE Zika Virus (ZIKV), discovered in 1947, is divided into African and Asian lineages. Pandemic outbreaks caused by currently emerging Asian lineage strains are accompanied by high rates of neurological disorders and exemplify the global health burden associated with this virus. Here we compared virological and innate immunological aspects of two ZIKV strains from the Asian lineage, an emerging Brazilian strain and a less-pathogenic Cambodian strain, and the prototypic African lineage ZIKV strain from Uganda. Compared to the replication of other ZIKV strains, the replication of ZIKV Brazil was less sensitive to the antiviral actions of interferon (IFN), while infection with this strain induced weaker and delayed innate immune responses in vitro Our data suggest that ZIKV Brazil directs a passive strategy of innate immune evasion that is reminiscent of a stealth virus. Such strain-specific properties likely contribute to differential pathogenesis and should be taken into consideration when choosing virus strains for future molecular studies.
Collapse
Affiliation(s)
- Katharina Esser-Nobis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lauren D Aarreberg
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Justin A Roby
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Marian R Fairgrieve
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
29
|
Georg P, Sander LE. Innate sensors that regulate vaccine responses. Curr Opin Immunol 2019; 59:31-41. [PMID: 30978666 DOI: 10.1016/j.coi.2019.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 02/08/2023]
Abstract
Pattern recognition receptors (PRRs) control elemental functions of antigen presenting cells (APCs) and critically shape adaptive immune responses. Wielding a natural adjuvanticity, live attenuated vaccines elicit exceptionally efficient and durable immunity. Commonly used vaccine adjuvants target individual PRRs or bolster the immunogenicity of vaccines via indirect mechanisms of inflammation. Here, we review the impact of innate sensors on immune responses to live attenuated vaccines and commonly used vaccine adjuvants, with a focus on human vaccine responses. We discuss the unique potential of microbial nucleic acids and their corresponding sensing receptors to mimic live attenuated vaccines and promote protective immunity.
Collapse
Affiliation(s)
- Philipp Georg
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
30
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
31
|
Sánchez-Vargas LA, Mathew A. Peripheral follicular helper T cells in acute viral diseases: a perspective on dengue. Future Virol 2019; 14:161-169. [PMID: 31073324 DOI: 10.2217/fvl-2018-0197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/06/2019] [Indexed: 11/21/2022]
Abstract
Follicular helper T cells (TFH) are a predominant subset of CD4+ T cells specialized in providing help to B cells in germinal centers and necessary to generate T cell-dependent antibody responses. Peripheral TFH (pTFH) are the counterpart of TFH found in the circulation, which resemble TFH in many aspects of their phenotype and function. The CD4+ pTFH subset has received a lot of interest recently because they are easy to access and have the potential to serve as a biomarker for long-lasting humoral immunity. This review will discuss recent findings of pTFH in human acute viral diseases with a focus on dengue infection.
Collapse
Affiliation(s)
- Luis A Sánchez-Vargas
- Department of Cell & Molecular Biology, Institute for Immunology & Informatics, University of Rhode Island, Providence, RI 02903, USA
| | - Anuja Mathew
- Department of Cell & Molecular Biology, Institute for Immunology & Informatics, University of Rhode Island, Providence, RI 02903, USA
| |
Collapse
|
32
|
ITRAQ-Based Quantitative Proteomics Reveals the Proteome Profiles of Primary Duck Embryo Fibroblast Cells Infected with Duck Tembusu Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1582709. [PMID: 30809531 PMCID: PMC6369498 DOI: 10.1155/2019/1582709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively. The Gene Ontology analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes, metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that the molecular functions in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection mechanisms.
Collapse
|
33
|
Chazal M, Beauclair G, Gracias S, Najburg V, Simon-Lorière E, Tangy F, Komarova AV, Jouvenet N. RIG-I Recognizes the 5' Region of Dengue and Zika Virus Genomes. Cell Rep 2018; 24:320-328. [PMID: 29996094 DOI: 10.1016/j.celrep.2018.06.047] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 12/24/2022] Open
Abstract
The flavivirus genus comprises major human pathogens, such as Dengue (DENV) and Zika (ZIKV) viruses. RIG-I and MDA5 are key cytoplasmic pathogen recognition receptors that are implicated in detecting viral RNAs. Here, we show that RNAs that co-purified with RIG-I during DENV infection are immuno-stimulatory, whereas RNAs bound to MDA5 are not. An affinity purification method combined with next-generation sequencing (NGS) revealed that the 5' region of the DENV genome is recognized by RIG-I. No DENV RNA was bound to MDA5. In vitro production of fragments of the DENV genome confirmed the NGS data and revealed that the 5' end of the genome, when bearing 5'-triphosphates, is the RIG-I ligand. The 5' region of the ZIKV genome is also a RIG-I agonist. We propose that RIG-I binds to the highly structured and conserved 5' region of flavivirus nascent transcripts before capping and that this mechanism leads to interferon secretion by infected cells.
Collapse
Affiliation(s)
- Maxime Chazal
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France; Unité de Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris 75015, France; CNRS UMR2000 Génomique Évolutive, Modélisation et Santé, Institut Pasteur, Paris 75015, France
| | - Guillaume Beauclair
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France
| | - Ségolène Gracias
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France
| | - Valérie Najburg
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France
| | - Etienne Simon-Lorière
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris 75015, France; CNRS UMR2000 Génomique Évolutive, Modélisation et Santé, Institut Pasteur, Paris 75015, France
| | - Frédéric Tangy
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France
| | - Anastassia V Komarova
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France.
| | - Nolwenn Jouvenet
- Unité Génomique Virale et Vaccination, Département de Virologie, CNRS UMR 3569, Institut Pasteur, Paris 75015, France.
| |
Collapse
|
34
|
Exploiting vita-PAMPs in vaccines. Curr Opin Pharmacol 2018; 41:128-136. [PMID: 29890457 DOI: 10.1016/j.coph.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/21/2018] [Indexed: 01/04/2023]
Abstract
Live attenuated vaccines elicit stronger protective immunity than dead vaccines. Distinct PAMPs designated as vita-PAMPs signify microbial viability to innate immune cells. Two vita-PAMPs have been characterized: cyclic-di-adenosine-monophosphate (c-di-AMP) and prokaryotic messenger RNA (mRNA). c-di-AMP produced by live Gram-positive bacteria elicits augmented production of STING-dependent type-I interferon, whereas prokaryotic mRNA from live bacteria is detected by TLR8 enabling discrimination of live from dead bacteria. Bacterial mRNA from live Gram-negative bacteria triggers a heightened type-I interferon and NLRP3 inflammasome response. By mobilizing unique viability-associated innate responses, vita-PAMPs mobilize adaptive immunity that best elicits protection, including follicular T helper cell and antibody responses. Here, we review the molecular mechanisms that confer the unique adjuvanticity of vita-PAMPs and discuss their applications in vaccine design.
Collapse
|
35
|
Barbet G, Sander LE, Geswell M, Leonardi I, Cerutti A, Iliev I, Blander JM. Sensing Microbial Viability through Bacterial RNA Augments T Follicular Helper Cell and Antibody Responses. Immunity 2018; 48:584-598.e5. [PMID: 29548673 PMCID: PMC5924674 DOI: 10.1016/j.immuni.2018.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/08/2017] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Live vaccines historically afford superior protection, yet the cellular and molecular mechanisms mediating protective immunity remain unclear. Here we found that vaccination of mice with live, but not dead, Gram-negative bacteria heightened follicular T helper cell (Tfh) differentiation, germinal center formation, and protective antibody production through the signaling adaptor TRIF. Complementing the dead vaccine with an innate signature of bacterial viability, bacterial RNA, recapitulated these responses. The interferon (IFN) and inflammasome pathways downstream of TRIF orchestrated Tfh responses extrinsically to B cells and classical dendritic cells. Instead, CX3CR1+CCR2- monocytes instructed Tfh differentiation through interleukin-1β (IL-1β), a tightly regulated cytokine secreted upon TRIF-dependent IFN licensing of the inflammasome. Hierarchical production of IFN-β and IL-1β dictated Tfh differentiation and elicited the augmented humoral responses characteristic of live vaccines. These findings identify bacterial RNA, an innate signature of microbial viability, as a trigger for Tfh differentiation and suggest new approaches toward vaccine formulations for coordinating augmented Tfh and B cell responses.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antibodies, Neutralizing/immunology
- Antibody Formation/immunology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Vaccines/immunology
- Biomarkers
- Cell Differentiation/immunology
- Cytokines/metabolism
- Germinal Center
- Host-Pathogen Interactions/immunology
- Immunity, Cellular
- Immunity, Innate
- Inflammasomes/metabolism
- Lymphocyte Activation/immunology
- Mice
- Microbial Viability/immunology
- Monocytes/immunology
- Monocytes/metabolism
- RNA, Bacterial/immunology
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Interleukin-1 Type I/genetics
- Receptors, Interleukin-1 Type I/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Gaetan Barbet
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Leif E Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthew Geswell
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irina Leonardi
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Andrea Cerutti
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institut Hospital del Mar 'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, 08003, Spain
| | - Iliyan Iliev
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Sprokholt J, Helgers LC, Geijtenbeek TBH. Innate immune receptors drive dengue virus immune activation and disease. Future Virol 2017; 13:287-305. [PMID: 29937918 PMCID: PMC6004600 DOI: 10.2217/fvl-2017-0146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022]
Abstract
Dengue is a worldwide disease with 400 million annual infections that can lead to septic shock and viral hemorrhagic fever with internal bleeding. These symptoms are the result of uncontrolled immune activation. Macrophages and dendritic cells are the main target of dengue virus (DENV) and the cellular source of cytokines associated with this immune activation. Macrophages and dendritic cells express several innate immune receptors that have been implicated in DENV immune activation, of which, CLEC5A, RIG-I and MDA5 are most important. Notably, activation of these receptors have profound effects on adaptive immune responses against DENV. This review will focus on how innate immune receptors drive DENV immune activation by inducing inflammatory cytokines and by activating adaptive immune responses.
Collapse
Affiliation(s)
- Joris Sprokholt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, AMC, VUmc, Amsterdam, The Netherlands
| | - Leanne C Helgers
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, AMC, VUmc, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, AMC, VUmc, Amsterdam, The Netherlands
| |
Collapse
|