1
|
Liu Y, Gong H, Zhu J, Liu F. Oral Vaccination with Attenuated Salmonella Expressing Viral M25 Protein Effectively Protects Mice Against Murine Cytomegalovirus Infection. Pathogens 2025; 14:314. [PMID: 40333046 PMCID: PMC12030445 DOI: 10.3390/pathogens14040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Attenuated Salmonella strains are promising oral vectors for vaccination against human infectious diseases. Human cytomegalovirus (CMV) is among the most common causes of disability in children, including intellectual disability and sensorineural hearing loss. Developing an anti-CMV vaccine is a major public health priority. We report in this study the construction of a new attenuated Salmonella strain to express murine cytomegalovirus (MCMV) M25 protein and its use for vaccination in mice against MCMV infection. In mice orally vaccinated with the constructed Salmonella vector carrying the M25 expression cassette, we revealed a substantial induction of anti-MCMV serum IgG and mucosal IgA humoral responses and a considerable elicitation of anti-MCMV T cell responses. When the vaccinated mice were challenged intraperitoneally and intranasally with MCMV, we observed a significant inhibition of virus infection and growth in various organs including spleens, livers, lungs, and salivary glands, compared to the non-vaccinated animals or those receiving a control vaccine without M25 protein expression. Moreover, we showed effective protection of these vaccinated mice from MCMV challenge. Our study provides the first direct evidence that an attenuated Salmonella-based vector with the MCMV M25 expression cassette can induce strong humoral and T cell responses and provide effective protection against MCMV infection. These results illustrate the feasibility of engineering Salmonella-based vectors expressing the M25 antigen for anti-CMV oral vaccine development.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jiaming Zhu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Fares S, Krishna BA. Why Are Cytomegalovirus-Encoded G-Protein-Coupled Receptors Essential for Infection but Only Variably Conserved? Pathogens 2025; 14:245. [PMID: 40137730 PMCID: PMC11945030 DOI: 10.3390/pathogens14030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Cytomegaloviruses (CMVs) encode viral G-protein-coupled receptors (vGPCRs) that have diverged from their cellular homologues to perform new functions. Human cytomegalovirus (HCMV) encodes four vGPCRs: UL33, UL78, US27, and US28, which contribute to viral pathogenesis, cellular signalling, and latency. While the role of US28 in chemokine signalling and viral latency is well characterised, the functions of other vGPCRs remain incompletely understood. Rodent cytomegaloviruses only have homologues to UL33 and UL78, while primates have two to five additional GPCRs which are homologues of US27 and US28. Different CMVs appear to have evolved vGPCRs with functions specific to infection of their respective host. As non-human CMVs are used as model organisms to understand clinical cytomegalovirus disease and develop vaccines and antivirals, understanding the differences between these vGPCRs helps researchers understand critical differences between their models. This review aims to address the differences between CMV vGPCRs, and how these differences may affect models of CMV disease to facilitate future research.
Collapse
Affiliation(s)
- Suzan Fares
- Occlutech Holding AG, Feldstrasse 22, 8200 Schaffhausen, Switzerland;
| | - Benjamin A. Krishna
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
3
|
Liu Y, Gong H, Zhu J, Liu F. Effective Immune Protection of Mice from Murine Cytomegalovirus Infection by Oral Salmonella-Based Vaccine Expressing Viral M78 Antigen. Vaccines (Basel) 2025; 13:137. [PMID: 40006684 PMCID: PMC11861581 DOI: 10.3390/vaccines13020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Human cytomegalovirus (CMV) is the most common cause of viral congenital infections worldwide. The development of effective vaccines against human CMV infection and disease is a high priority. Attenuated Salmonella are attractive oral vaccine vectors against human diseases because they can be administrated orally. Methods: In this study, an attenuated Salmonella strain was generated as an oral vaccine vector for the delivery and expression of the M78 protein of murine cytomegalovirus (MCMV). Using the MCMV infection of mice as the CMV infection model, we characterized the immune responses and protection induced by the constructed Salmonella-based vaccine. Results: The generated Salmonella-based vaccine, v-M78, which contained an M78 expression plasmid construct, carried out gene transfer efficiently for M78 expression and showed little pathogenicity and virulence in mice. In orally vaccinated mice, v-M78 induced anti-MCMV serum IgG and mucosal IgA responses and also elicited anti-MCMV T cell responses. Furthermore, mice immunized with v-M78 were protected from intraperitoneal and intranasal challenges with MCMV. The v-M78 vaccination reduced the titers of the challenged viruses in spleens, livers, lungs, and salivary glands. Conclusions: These results provide the first direct evidence that a Salmonella-based vaccine expressing M78 elicits strong humoral and cellular immune responses and induces immune protection against MCMV infection. Furthermore, our study demonstrates the potential of using Salmonella-based oral vaccines against CMV infection.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jiaming Zhu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Zhou J, Lv Z, Liu M, Du C, Du L, Gao Z, Jiang Z, Wang L, Wang S, Liang M, Xie S, Li Y, Wang Z, Li G, Wei Y, Han G. Ubiquitination and degradation of MHC-II by Tim-3 inhibits antiviral immunity. Cell Immunol 2025; 407:104889. [PMID: 39546827 DOI: 10.1016/j.cellimm.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
We previously reported that Tim-3, an immune checkpoint inhibitor, inhibits MHC-II expression, but the molecular mechanisms involved and the implications for antiviral immunity remain to be determined. Here, we found that during H1N1 infection, Tim-3 inhibits MHC-II expression in macrophages/microglia in vitro. Tim-3 interacts with MHC-II via its intracellular tail and induces proteasomal dependent degradation of MHC-II. In H1N1 infected macrophages/microglia, Tim-3 promotes the K48-linked ubiquitination of MHC-II via MARCH8, a ubiquitin E3 ligase that can be upregulated by Tim-3. In H1N1 infected mice, specific knockout of Tim-3 in macrophages leads to a decreased viral load, attenuates tissue damage and increases the survival rate. We have thus identified a novel mechanism by which Tim-3 mediates virus immune escape. Manipulating the Tim-3-MHC-II signaling pathway may provide a novel treatment for viral infections.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Zhonglin Lv
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chunxiao Du
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Du
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Zhenfang Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ziying Jiang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China; Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China
| | - Shuohua Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China; The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shun Xie
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
6
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
7
|
Miller WE, O'Connor CM. CMV-encoded GPCRs in infection, disease, and pathogenesis. Adv Virus Res 2024; 118:1-75. [PMID: 38461029 DOI: 10.1016/bs.aivir.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
G protein coupled receptors (GPCRs) are seven-transmembrane domain proteins that modulate cellular processes in response to external stimuli. These receptors represent the largest family of membrane proteins, and in mammals, their signaling regulates important physiological functions, such as vision, taste, and olfaction. Many organisms, including yeast, slime molds, and viruses encode GPCRs. Cytomegaloviruses (CMVs) are large, betaherpesviruses, that encode viral GPCRs (vGPCRs). Human CMV (HCMV) encodes four vGPCRs, including UL33, UL78, US27, and US28. Each of these vGPCRs, as well as their rodent and primate orthologues, have been investigated for their contributions to viral infection and disease. Herein, we discuss how the CMV vGPCRs function during lytic and latent infection, as well as our understanding of how they impact viral pathogenesis.
Collapse
Affiliation(s)
- William E Miller
- Department of Molecular and Cellular Bioscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christine M O'Connor
- Infection Biology, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
8
|
Jiang H, Nace R, Ariail E, Ma Y, McGlinch E, Ferguson C, Fernandez Carrasco T, Packiriswamy N, Zhang L, Peng KW, Russell SJ. Oncolytic α-herpesvirus and myeloid-tropic cytomegalovirus cooperatively enhance systemic antitumor responses. Mol Ther 2024; 32:241-256. [PMID: 37927036 PMCID: PMC10787119 DOI: 10.1016/j.ymthe.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023] Open
Abstract
Oncolytic virotherapy aims to activate host antitumor immunity. In responsive tumors, intratumorally injected herpes simplex viruses (HSVs) have been shown to lyse tumor cells, resulting in local inflammation, enhanced tumor antigen presentation, and boosting of antitumor cytotoxic lymphocytes. In contrast to HSV, cytomegalovirus (CMV) is nonlytic and reprograms infected myeloid cells, limiting their antigen-presenting functions and protecting them from recognition by natural killer (NK) cells. Here, we show that when co-injected into mouse tumors with an oncolytic HSV, mouse CMV (mCMV) preferentially targeted tumor-associated myeloid cells, promoted the local release of proinflammatory cytokines, and enhanced systemic antitumor immune responses, leading to superior control of both injected and distant contralateral tumors. Deletion of mCMV genes m06, which degrades major histocompatibility complex class I (MHC class I), or m144, a viral MHC class I homolog that inhibits NK activation, was shown to diminish the antitumor activity of the HSV/mCMV combination. However, an mCMV recombinant lacking the m04 gene, which escorts MHC class I to the cell surface, showed superior HSV adjuvanticity. CMV is a potentially promising agent with which to reshape and enhance antitumor immune responses following oncolytic HSV therapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily Ariail
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yejun Ma
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Erin McGlinch
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Coryn Ferguson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
9
|
Xie W, Bruce K, Stevenson PG, Farrell HE. Indirect CD4 + T cell protection against persistent MCMV infection by NK cells requires IFNγ. J Gen Virol 2024; 105. [PMID: 38271001 DOI: 10.1099/jgv.0.001956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Host control of mouse cytomegalovirus (MCMV) infection of MHCII- salivary gland acinar cells is mediated by CD4+ T cells, but how they protect is unclear. Here, we show CD4+ T cells control MCMV indirectly in the salivary gland, via IFNγ engagement with uninfected, but antigen+ MHCII+ APC and recruitment of NK cells to infected cell foci. This immune mechanism renders direct contact of CD4+ T cells with infected cells unnecessary and may represent a host strategy to overcome viral immune evasion.
Collapse
Affiliation(s)
- Wanxiaojie Xie
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Kimberley Bruce
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
10
|
Bruce K, Ma J, Lawler C, Xie W, Stevenson PG, Farrell HE. Recent Advancements in Understanding Primary Cytomegalovirus Infection in a Mouse Model. Viruses 2022; 14:v14091934. [PMID: 36146741 PMCID: PMC9505653 DOI: 10.3390/v14091934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Animal models that mimic human infections provide insights in virus–host interplay; knowledge that in vitro approaches cannot readily predict, nor easily reproduce. Human cytomegalovirus (HCMV) infections are acquired asymptomatically, and primary infections are difficult to capture. The gap in our knowledge of the early events of HCMV colonization and spread limits rational design of HCMV antivirals and vaccines. Studies of natural infection with mouse cytomegalovirus (MCMV) have demonstrated the olfactory epithelium as the site of natural colonization. Systemic spread from the olfactory epithelium is facilitated by infected dendritic cells (DC); tracking dissemination uncovered previously unappreciated DC trafficking pathways. The olfactory epithelium also provides a unique niche that supports efficient MCMV superinfection and virus recombination. In this review, we summarize recent advances to our understanding of MCMV infection and spread and the tissue-specific mechanisms utilized by MCMV to modulate DC trafficking. As these mechanisms are likely conserved with HCMV, they may inform new approaches for preventing HCMV infections in humans.
Collapse
|
11
|
Japanese Encephalitis Virus (JEV) NS1' Enhances the Viral Infection of Dendritic Cells (DCs) and Macrophages in Pig Tonsils. Microbiol Spectr 2022; 10:e0114722. [PMID: 35730942 PMCID: PMC9430915 DOI: 10.1128/spectrum.01147-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pigs are the amplifying hosts of Japanese encephalitis virus (JEV). Currently, the safe and effective live attenuated vaccine made of JEV strain SA14-14-2, which does not express NS1', is widely used in humans and domestic animals to prevent JEV infection. In this study, we constructed the NS1' expression recombinant virus (rA66G) through a single nucleotide mutation in NS2A of JEV strain SA14-14-2. Animal experiments showed that NS1' significantly enhanced JEV infection in pig central nervous system (CNS) and tonsil tissues. Pigs shed virus in oronasal secretions in the JEV rA66G virus inoculation group, indicating that NS1' may facilitate the horizontal transmission of JEV. Additionally, dendritic cells (DCs) and macrophages are the main target cells of JEV infection in pig tonsils, which are an important site of persistent JEV infection. The reduction of major histocompatibility complex class II (MHC II) and activation of inducible nitric oxide synthase (iNOS) in pig tonsils caused by viral infection may create a beneficial environment for persistent JEV infection. These results are of significance for JEV infection in pigs and lay the foundation for future studies of JEV persistent infection in pig tonsils. IMPORTANCE Pigs are amplification hosts for Japanese encephalitis virus (JEV). JEV can persist in the tonsils for months despite the presence of neutralizing antibodies. The present study shows that NS1' increases JEV infection in pig tonsils. In addition, DCs and macrophages in the tonsils are the target cells for JEV infection, and JEV NS1' promotes virus infection in DCs and macrophages. This study reveals a novel function of JEV NS1' protein and lays the foundation for future studies of JEV persistent infection in pig tonsils.
Collapse
|
12
|
Abstract
CD4+ T cells are key to controlling cytomegalovirus infections. Salivary gland infection by murine cytomegalovirus (MCMV) provides a way to identify mechanisms. CD11c+ dendritic cells (DC) disseminate MCMV to the salivary glands, where they transfer infection to acinar cells. Antiviral CD4+ T cells are often considered to be directly cytotoxic for cells expressing major histocompatibility complex class II (MHCII). However, persistently infected salivary gland acinar cells are MHCII- and are presumably inaccessible to direct CD4 T cell recognition. Here, we show that CD4+ T cell depletion amplified infection of MHCII- acinar cells but not MHCII+ cells. MCMV-infected mice with disrupted MHCII on CD11c+ cells showed increased MHCII- acinar infection; antiviral CD4+ T cells were still primed, but their recruitment to the salivary glands was reduced, suggesting that engagement with local MHCII+ DC is important for antiviral protection. As MCMV downregulates MHCII on infected DC, the DC participating in CD4 protection may thus be uninfected. NK cells and gamma interferon (IFN-γ) may also contribute to CD4+ T cell-dependent virus control: CD4 T cell depletion reduced NK cell recruitment to the salivary glands, and both NK cell and IFN-γ depletion equalized infection between MHCII-disrupted and control mice. Taken together, these results suggest that CD4+ T cells protect indirectly against infected acinar cells in the salivary gland via DC engagement, requiring the recruitment of NK cells and the action of IFN-γ. Congruence of these results with an established CD4+ T cell/NK cell axis of gammaherpesvirus infection control suggests a common mode of defense against evasive viruses. IMPORTANCE Cytomegalovirus infections commonly cause problems in immunocompromised patients and in pregnancy. We lack effective vaccines. CD4+ T cells play an important role in normal infection control, yet how they act has been unknown. Using murine cytomegalovirus as an accessible model, we show that CD4+ T cells are unlikely to recognize infected cells directly. We propose that CD4+ T cells interact with uninfected cells that present viral antigens and recruit other immune cells to attack infected targets. These data present a new outlook on understanding how CD4+ T cell-directed control protects against persistent cytomegalovirus infection.
Collapse
|
13
|
Olfactory Entry Promotes Herpesvirus Recombination. J Virol 2021; 95:e0155521. [PMID: 34523965 DOI: 10.1128/jvi.01555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus genomes show abundant evidence of past recombination. Its functional importance is unknown. A key question is whether recombinant viruses can outpace the immunity induced by their parents to reach higher loads. We tested this by coinfecting mice with attenuated mutants of murid herpesvirus 4 (MuHV-4). Infection by the natural olfactory route routinely allowed mutant viruses to reconstitute wild-type genotypes and reach normal viral loads. Lung coinfections rescued much less well. Attenuated murine cytomegalovirus mutants similarly showed recombinational rescue via the nose but not the lungs. These infections spread similarly, so route-specific rescue implied that recombination occurred close to the olfactory entry site. Rescue of replication-deficient MuHV-4 confirmed this, showing that coinfection occurred in the first encountered olfactory cells. This worked even with asynchronous inoculation, implying that a defective virus can wait here for later rescue. Virions entering the nose get caught on respiratory mucus, which the respiratory epithelial cilia push back toward the olfactory surface. Early infection was correspondingly focused on the anterior olfactory edge. Thus, by concentrating incoming infection into a small area, olfactory entry seems to promote functionally significant recombination. IMPORTANCE All organisms depend on genetic diversity to cope with environmental change. Small viruses rely on frequent point mutations. This is harder for herpesviruses because they have larger genomes. Recombination provides another means of genetic optimization. Human herpesviruses often coinfect, and they show evidence of past recombination, but whether this is rare and incidental or functionally important is unknown. We showed that herpesviruses entering mice via the natural olfactory route meet reliably enough for recombination routinely to repair crippling mutations and restore normal viral loads. It appeared to occur in the first encountered olfactory cells and reflected a concentration of infection at the anterior olfactory edge. Thus, natural host entry incorporates a significant capacity for herpesvirus recombination.
Collapse
|
14
|
Characterization of M116.1p, a murine cytomegalovirus protein required for efficient infection of mononuclear phagocytes. J Virol 2021; 96:e0087621. [PMID: 34705561 DOI: 10.1128/jvi.00876-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad tissue tropism of cytomegaloviruses (CMVs) is facilitated by different glycoprotein entry complexes, which are conserved between human CMV (HCMV) and murine CMV (MCMV). Among the wide array of cell types susceptible to the infection, mononuclear phagocytes (MNPs) play a unique role in the pathogenesis of the infection as they contribute both to the virus spread and immune control. CMVs have dedicated numerous genes for the efficient infection and evasion of macrophages and dendritic cells. In this study, we have characterized the properties and function of M116, a previously poorly described but highly transcribed MCMV gene region which encodes M116.1p, a novel protein necessary for the efficient infection of MNPs and viral spread in vivo. Our study further revealed that M116.1p shares similarities with its positional homologs in HCMV and RCMV, UL116 and R116, respectively, such as late kinetics of expression, N-glycosylation, localization to the virion assembly compartment, and interaction with gH - a member of the CMVs fusion complex. This study, therefore, expands our knowledge about virally encoded glycoproteins that play important roles in viral infectivity and tropism. Importance Human cytomegalovirus (HCMV) is a species-specific herpesvirus that causes severe disease in immunocompromised individuals and immunologically immature neonates. Murine cytomegalovirus (MCMV) is biologically similar to HCMV, and it serves as a widely used model for studying the infection, pathogenesis, and immune responses to HCMV. In our previous work, we have identified the M116 ORF as one of the most extensively transcribed regions of the MCMV genome without an assigned function. This study shows that the M116 locus codes for a novel protein, M116.1p, which shares similarities with UL116 and R116 in HCMV and RCMV, respectively, and is required for the efficient infection of mononuclear phagocytes and virus spread in vivo. Furthermore, this study establishes the α-M116 monoclonal antibody and MCMV mutants lacking M116, generated in this work, as valuable tools for studying the role of macrophages and dendritic cells in limiting CMV infection following different MCMV administration routes.
Collapse
|
15
|
Zhang S, Springer LE, Rao HZ, Espinosa Trethewy RG, Bishop LM, Hancock MH, Grey F, Snyder CM. Hematopoietic cell-mediated dissemination of murine cytomegalovirus is regulated by NK cells and immune evasion. PLoS Pathog 2021; 17:e1009255. [PMID: 33508041 PMCID: PMC7872266 DOI: 10.1371/journal.ppat.1009255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells. Cytomegalovirus (CMV) is a common cause of disease in immune compromised individuals as well as a common cause of congenital infections leading to disease in newborns. The virus is thought to enter primarily via mucosal barrier tissues, such as the oral and nasal mucosa. However, it is not clear how the virus escapes these barrier tissues to reach distant sites. In this study, we used a mouse model of CMV infection. Our data illustrate a complex balance between the immune system and viral infection of “myeloid cells”, which are most commonly thought to carry the virus around the body after infection. In particular, our data suggest that robust immune responses at the site of infection force the virus to rely on myeloid cells to escape the site of infection. Moreover, viral genes designed to evade these immune responses were needed to protect the virus during and after its spread to distant sites. Together, this work sheds light on the mechanisms of immune control and viral survival during CMV infection of mucosal tissues and spread to distant sites of the body.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han-Zhi Rao
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey M. Bishop
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail: (FG); (CMS)
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (FG); (CMS)
| |
Collapse
|
16
|
Han H, Fu X, Huang J, Zhang X, Yu J. PD-1/PD-L1 affects Graves progression through lymphocytes on the proliferation, apoptosis and inflammatory cytokine secretion of thyroid follicular epithelial cells. J Toxicol Sci 2020; 45:701-711. [PMID: 33132244 DOI: 10.2131/jts.45.701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We aimed to investigate the role of programmed cell death protein 1 (PD-1) and T lymphocytes in the proliferation, apoptosis and secretion of cells from patients and mice with Graves' disease (GD). The levels of serum hormones, related antibodies and inflammatory cytokines in GD patients were determined by electrochemiluminescence immunoassay and ELISA. The percentages of CD4 and CD8 T-lymphocytes and PD-1 expression were examined by flow cytometry. A GD mouse model, a thyroid follicular epithelial cell, and a CD4+PD-1+, CD4+PD-1- and CD8+PD-1+, CD8+PD-1- T lymphocyte co-culture system were constructed. The viability, apoptosis-related markers, serum hormones, related antibodies and inflammatory cytokines in thyroid follicular epithelial cells were determined by CCK-8, Western blot, qTR-PCR, electrochemiluminescence immunoassay and ELISA. Elevated free thyroid hormones (FT3, FT4), thyroid hormone antibodies (TRAb, TPOAb and TGAb), inflammatory cytokines, and inhibited TSH were observed in GD patients. The percentage of CD4+ T cells was increased, while that of CD8+ T cells was reduced in GD patients. PD-1 expression level was lifted in both CD4+ and CD8+ cells from GD patients. In mouse thyroid follicular epithelial cells co-cultured with CD4+PD-1+ and CD8+PD-1+ T lymphocytes, the cell viability, TH and TRAb levels and inflammatory cytokines level were the highest, while the TSH level and apoptosis were the lowest. PD-1 positive T lymphocytes were able to promote viability and inhibit apoptosis of thyroid follicular epithelial cells, which further caused a more accelerated development of GD.
Collapse
Affiliation(s)
- Hui Han
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Xiaodan Fu
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Jiao Huang
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Xianfeng Zhang
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Jianyi Yu
- Department of Endocrinology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| |
Collapse
|
17
|
Anderson CK, Reilly EC, Lee AY, Brossay L. Qa-1-Restricted CD8 + T Cells Can Compensate for the Absence of Conventional T Cells during Viral Infection. Cell Rep 2020; 27:537-548.e5. [PMID: 30970256 PMCID: PMC6472915 DOI: 10.1016/j.celrep.2019.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
The role of non-classical T cells during viral infection remains poorly understood. Using the well-established murine model of CMV infection (MCMV) and mice deficient in MHC class Ia molecules, we found that non-classical CD8+ T cells robustly expand after MCMV challenge, become highly activated effectors, and are capable of forming durable memory. Interestingly, although these cells are restricted by MHC class Ib molecules, they respond similarly to conventional T cells. Remarkably, when acting as the sole component of the adaptive immune response, non-classical CD8+ T cells are sufficient to protect against MCMV-induced lethality. We also demonstrate that the MHC class Ib molecule Qa-1 (encoded by H2-T23) restricts a large, and critical, portion of this population. These findings reveal a potential adaptation of the host immune response to compensate for viral evasion of classical T cell immunity. Anderson et al. describe a heterogenous population of non-classical CD8+ T cells responding to MCMV. Importantly, this population can protect mice from MCMV-induced lethality in the absence of other adaptive immune cells. Among the MHC class Ib-restricted CD8+ T cells responding, Qa-1-specific cells are required for protection.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Emma C Reilly
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Laurent Brossay
- Department of Molecular Microbiology & Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
18
|
Yunis J, Redwood AJ, Belz GT, Stevenson PG. Membrane association of a model CD4 + T-cell vaccine antigen confers enhanced yet incomplete protection against murid herpesvirus-4 infection. Immunol Cell Biol 2020; 98:332-343. [PMID: 31997396 DOI: 10.1111/imcb.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Vaccination against γ-herpesviruses has proved difficult. CD4+ T cells are essential to contain infection, but how best to prime them and whether this can reduce viral loads remain unclear. To address these questions, we used ovalbumin (OVA) as a model antigen, delivering it with murine cytomegalovirus (MCMV) to protect mice against OVA-expressing murine herpesvirus-4 (MuHV-4). Membrane-associated OVA (mOVA) was more effective than soluble OVA, both to prime CD4+ T cells and as an effector target. It was also a better target than an OVA epitope limited to infected cells, suggesting that protective CD4+ T cells recognize infected cell debris rather than infected cells themselves. While MCMV-mOVA protected acutely against MuHV-4-mOVA, long-term protection was incomplete, even when OVA-specific CD8+ T cells and B cells were also primed. Thus, even optimized single-target vaccines may poorly reduce long-term γ-herpesvirus infections.
Collapse
Affiliation(s)
- Joseph Yunis
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Alec J Redwood
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Human Cytomegalovirus Decreases Major Histocompatibility Complex Class II by Regulating Class II Transactivator Transcript Levels in a Myeloid Cell Line. J Virol 2020; 94:JVI.01901-19. [PMID: 31915281 DOI: 10.1128/jvi.01901-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that encodes many proteins to modulate the host immune response. Extensive efforts have led to the elucidation of multiple strategies employed by HCMV to effectively block NK cell targeting of virus-infected cells and the major histocompatibility complex (MHC) class I-primed CD8+ T cell response. However, viral regulation of the MHC class II-mediated CD4+ T cell response is understudied in endogenous MHC class II-expressing cells, largely because the popular cell culture systems utilized for studying HCMV do not endogenously express MHC class II. Of the many cell types infected by HCMV in the host, myeloid cells, such as monocytes, are of particular importance due to their role in latency and subsequent dissemination throughout the host. We investigated the impact of HCMV infection on MHC class II in Kasumi-3 cells, a myeloid-progenitor cell line that endogenously expresses the MHC class II gene, HLA-DR. We observed a significant reduction in the expression of surface and total HLA-DR at 72 h postinfection (hpi) and 120 hpi in infected cells. The decrease in HLA-DR expression was independent of the expression of previously described viral genes that regulate the MHC class II complex or the unique short (US) region of HCMV, a region expressing many immunomodulatory genes. The altered surface level of HLA-DR was not a result of increased endocytosis and degradation but was a result of a reduction in HLA-DR transcripts due to a decrease in the expression of the class II transactivator (CIITA).IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic herpesvirus that is asymptomatic for healthy individuals but that can lead to severe pathology in patients with congenital infections and immunosuppressed patients. Thus, it is important to understand the modulation of the immune response by HCMV, which is understudied in the context of endogenous MHC class II regulation. Using Kasumi-3 cells as a myeloid progenitor cell model endogenously expressing MHC class II (HLA-DR), this study shows that HCMV decreases the expression of HLA-DR in infected cells by reducing the transcription of HLA-DR transcripts early during infection independently of the expression of previously implicated genes. This is an important finding, as it highlights a mechanism of immune evasion utilized by HCMV to decrease the expression of MHC class II in a relevant cell system that endogenously expresses the MHC class II complex.
Collapse
|
20
|
Shnayder M, Nachshon A, Rozman B, Bernshtein B, Lavi M, Fein N, Poole E, Avdic S, Blyth E, Gottlieb D, Abendroth A, Slobedman B, Sinclair J, Stern-Ginossar N, Schwartz M. Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. eLife 2020; 9:e52168. [PMID: 31967545 PMCID: PMC7039680 DOI: 10.7554/elife.52168] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.
Collapse
Affiliation(s)
- Miri Shnayder
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Biana Bernshtein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Michael Lavi
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Noam Fein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of CambridgeCambridgeUnited Kingdom
| | - Selmir Avdic
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
| | - Emily Blyth
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
- Blood and Bone Marrow Transplant Unit, Westmead HospitalSydneyAustralia
| | - David Gottlieb
- Sydney Cellular Therapies Laboratory, WestmeadSydneyAustralia
- Blood and Bone Marrow Transplant Unit, Westmead HospitalSydneyAustralia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of SydneySydneyAustralia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of SydneySydneyAustralia
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of CambridgeCambridgeUnited Kingdom
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
21
|
A CD4 + T Cell-NK Cell Axis of Gammaherpesvirus Control. J Virol 2020; 94:JVI.01545-19. [PMID: 31694958 DOI: 10.1128/jvi.01545-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 01/27/2023] Open
Abstract
CD4+ T cells are essential to control herpesviruses. Murid herpesvirus 4 (MuHV-4)-driven lung disease in CD4+ T-cell-deficient mice provides a well-studied example. Protective CD4+ T cells have been hypothesized to kill infected cells directly. However, removing major histocompatibility complex class II (MHCII) from LysM+ or CD11c+ cells increased MuHV-4 replication not in those cells but in type 1 alveolar epithelial cells, which lack MHCII, LysM, or CD11c. Disruption of MHCII in infected cells had no effect. Therefore, CD4+ T cells engaged uninfected presenting cells and protected indirectly. Mice lacking MHCII in LysM+ or CD11c+ cells maintained systemic antiviral CD4+ T cell responses, but recruited fewer CD4+ T cells into infected lungs. NK cell infiltration was also reduced, and NK cell depletion normalized infection between MHCII-deficient and control mice. Therefore, NK cell recruitment seemed to be an important component of CD4+ T-cell-dependent protection. Disruption of viral CD8+ T cell evasion made this defense redundant, suggesting that it is important mainly to control CD8-evasive pathogens.IMPORTANCE Gammaherpesviruses are widespread and cause cancers. CD4+ T cells are a key defense. We found that they defend indirectly, engaging uninfected presenting cells and recruiting innate immune cells to attack infected targets. This segregation of CD4+ T cells from immediate contact with infection helps the immune system to cope with viral evasion. Priming this defense by vaccination offers a way to protect against gammaherpesvirus-induced cancers.
Collapse
|
22
|
Cytomegalovirus (CMV) Pneumonitis: Cell Tropism, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20163865. [PMID: 31398860 PMCID: PMC6719013 DOI: 10.3390/ijms20163865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing disease mainly in immunocompromised patients or after congenital infection. HCMV infection of the respiratory tract leads to pneumonitis in the immunocompromised host, which is often associated with a bad clinical course. The related mouse cytomegalovirus (MCMV) likewise exhibits a distinct tropism for the lung and thus provides an elegant model to study host-pathogen interaction. Accordingly, fundamental features of cytomegalovirus (CMV) pneumonitis have been discovered in mice that correlate with clinical data obtained from humans. Recent studies have provided insight into MCMV cell tropism and localized inflammation after infection of the respiratory tract. Accordingly, the nodular inflammatory focus (NIF) has been identified as the anatomical correlate of immune control in lungs. Several hematopoietic cells involved in antiviral immunity reside in NIFs and their key effector molecules have been deciphered. Here, we review what has been learned from the mouse model with focus on the microanatomy of infection sites and antiviral immunity in MCMV pneumonitis.
Collapse
|
23
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
24
|
Zhang S, Caldeira-Dantas S, Smith CJ, Snyder CM. Persistent viral replication and the development of T-cell responses after intranasal infection by MCMV. Med Microbiol Immunol 2019; 208:457-468. [PMID: 30848361 DOI: 10.1007/s00430-019-00589-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Natural transmission of cytomegalovirus (CMV) has been difficult to observe. However, recent work using the mouse model of murine (M)CMV demonstrated that MCMV initially infects the nasal mucosa after transmission from mothers to pups. We found that intranasal (i.n.) inoculation of C57BL/6J mice resulted in reliable recovery of replicating virus from the nasal mucosa as assessed by plaque assay. After i.n. inoculation, CD8+ T-cell priming occurred in the mandibular, deep-cervical, and mediastinal lymph nodes within 3 days of infection. Although i.n. infection induced "memory inflation" of T cells specific for the M38316-323 epitope, there were no detectable CD8+ T-cell responses against the late-appearing IE3416-423 epitope, which contrasts with intraperitoneal (i.p.) infection. MCMV-specific T cells migrated into the nasal mucosa where they developed a tissue-resident memory (TRM) phenotype and this could occur independently of local virus infection or antigen. Strikingly however, virus replication was poorly controlled in the nasal mucosa and MCMV was detectable by plaque assay for at least 4 months after primary infection, making the nasal mucosa a second site for MCMV persistence. Unlike in the salivary glands, the persistence of MCMV in the nasal mucosa was not modulated by IL-10. Taken together, our data characterize the development of local and systemic T-cell responses after intranasal infection by MCMV and define the nasal mucosa, a natural site of viral entry, as a novel site of viral persistence.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA
| | - Sofia Caldeira-Dantas
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,PT Government Associate Laboratory, ICVS/3B's, Braga/Guimarães, Portugal
| | - Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Abstract
Cytomegaloviruses (CMVs) are large, complex pathogens that persistently and systemically colonize most mammals. Human cytomegalovirus (HCMV) causes congenital harm, and has proved hard to control. One problem is that key vaccine targets - virus entry and spread in naive hosts - remain ill-defined. As CMVs predate human speciation, those of other mammals can provide new insight. Murine CMV (MCMV) enters new hosts via olfactory neurons. Like HCMV it binds to heparan, which is lacking from most differentiated apical epithelia but is displayed on olfactory neuronal cilia. It then spreads via infected dendritic cells (DCs), which migrate to draining lymph nodes (LNs), rejoin the circulation by entering high endothelial venules (HEVs), and extravasate into other tissues. This migration depends quantitatively on M33, a constitutively active viral G protein-coupled receptor (GPCR). The homologous US28 GPCR of HCMV can substitute for M33 in allowing MCMV-infected DCs to leave LNs via HEVs, so HCMV could potentially use the same route. The capacity of DCs to seed MCMV to tissues, and for other DCs to collect it for redistribution, suggest that DC recirculation chronically maintains and links diverse CMV reservoirs through lytic exchange.
Collapse
Affiliation(s)
- Helen E Farrell
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Murine Cytomegalovirus Glycoprotein O Promotes Epithelial Cell Infection In Vivo. J Virol 2019; 93:JVI.01378-18. [PMID: 30404805 DOI: 10.1128/jvi.01378-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) establish systemic infections across diverse cell types. Glycoproteins that alter tropism can potentially guide their spread. Glycoprotein O (gO) is a nonessential fusion complex component of both human CMV (HCMV) and murine CMV (MCMV). We tested its contribution to MCMV spread from the respiratory tract. In vitro, MCMV lacking gO poorly infected fibroblasts and epithelial cells. Cell binding was intact, but penetration was delayed. In contrast, myeloid infection was preserved, and in the lungs, where myeloid and type 2 alveolar epithelial cells are the main viral targets, MCMV lacking gO showed a marked preference for myeloid infection. Its poor epithelial cell infection was associated with poor primary virus production and reduced virulence. Systemic spread, which proceeds via infected CD11c+ myeloid cells, was initially intact but then diminished, because less epithelial infection led ultimately to less myeloid infection. Thus, the tight linkage between peripheral and systemic MCMV infections gave gO-dependent infection a central role in host colonization.IMPORTANCE Human cytomegalovirus is a leading cause of congenital disease. This reflects its capacity for systemic spread. A vaccine is needed, but the best viral targets are unclear. Attention has focused on the virion membrane fusion complex. It has 2 forms, so we need to know what each contributes to host colonization. One includes the virion glycoprotein O. We used murine cytomegalovirus, which has equivalent fusion complexes, to determine the importance of glycoprotein O after mucosal infection. We show that it drives local virus replication in epithelial cells. It was not required to infect myeloid cells, which establish systemic infection, but poor local replication reduced systemic spread as a secondary effect. Therefore, targeting glycoprotein O of human cytomegalovirus has the potential to reduce both local and systemic infections.
Collapse
|