1
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
2
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
3
|
Holtappels R, Büttner JK, Freitag K, Reddehase MJ, Lemmermann NA. Modulation of cytomegalovirus immune evasion identifies direct antigen presentation as the predominant mode of CD8 T-cell priming during immune reconstitution after hematopoietic cell transplantation. Front Immunol 2024; 15:1355153. [PMID: 38426094 PMCID: PMC10902149 DOI: 10.3389/fimmu.2024.1355153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Chaudhry MZ, Borkner L, Kulkarni U, Berberich-Siebelt F, Cicin-Sain L. NFAT signaling is indispensable for persistent memory responses of MCMV-specific CD8+ T cells. PLoS Pathog 2024; 20:e1012025. [PMID: 38346075 PMCID: PMC10890734 DOI: 10.1371/journal.ppat.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.
Collapse
Affiliation(s)
- M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| |
Collapse
|
5
|
Holtappels R, Becker S, Hamdan S, Freitag K, Podlech J, Lemmermann NA, Reddehase MJ. Immunotherapy of cytomegalovirus infection by low-dose adoptive transfer of antiviral CD8 T cells relies on substantial post-transfer expansion of central memory cells but not effector-memory cells. PLoS Pathog 2023; 19:e1011643. [PMID: 37972198 PMCID: PMC10688903 DOI: 10.1371/journal.ppat.1011643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific in their replication. It is a hallmark of all CMVs that productive primary infection is controlled by concerted innate and adaptive immune responses in the immunocompetent host. As a result, the infection usually passes without overt clinical symptoms and develops into latent infection, referred to as "latency". During latency, the virus is maintained in a non-replicative state from which it can reactivate to productive infection under conditions of waning immune surveillance. In contrast, infection of an immunocompromised host causes CMV disease with viral multiple-organ histopathology resulting in organ failure. Primary or reactivated CMV infection of hematopoietic cell transplantation (HCT) recipients in a "window of risk" between therapeutic hemato-ablative leukemia therapy and immune system reconstitution remains a clinical challenge. Studies in the mouse model of experimental HCT and infection with murine CMV (mCMV), followed by clinical trials in HCT patients with human CMV (hCMV) reactivation, have revealed a protective function of virus-specific CD8 T cells upon adoptive cell transfer (AT). Memory CD8 T cells derived from latently infected hosts are a favored source for immunotherapy by AT. Strikingly low numbers of these cells were found to prevent CMV disease, suggesting either an immediate effector function of few transferred cells or a clonal expansion generating high numbers of effector cells. In the murine model, the memory population consists of resting central memory T cells (TCM), as well as of conventional effector-memory T cells (cTEM) and inflationary effector-memory T cells (iTEM). iTEM increase in numbers over time in the latently infected host, a phenomenon known as 'memory inflation' (MI). They thus appeared to be a promising source for use in immunotherapy. However, we show here that iTEM contribute little to the control of infection after AT, which relies almost entirely on superior proliferative potential of TCM.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sara Becker
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara Hamdan
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias J. Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Ghonim MA, Boyd DF, Flerlage T, Thomas PG. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside. J Clin Invest 2023; 133:e170499. [PMID: 37655660 PMCID: PMC10471178 DOI: 10.1172/jci170499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
In recent years, there has been an explosion of interest in how fibroblasts initiate, sustain, and resolve inflammation across disease states. Fibroblasts contain heterogeneous subsets with diverse functionality. The phenotypes of these populations vary depending on their spatial distribution within the tissue and the immunopathologic cues contributing to disease progression. In addition to their roles in structurally supporting organs and remodeling tissue, fibroblasts mediate critical interactions with diverse immune cells. These interactions have important implications for defining mechanisms of disease and identifying potential therapeutic targets. Fibroblasts in the respiratory tract, in particular, determine the severity and outcome of numerous acute and chronic lung diseases, including asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and idiopathic pulmonary fibrosis. Here, we review recent studies defining the spatiotemporal identity of the lung-derived fibroblasts and the mechanisms by which these subsets regulate immune responses to insult exposures and highlight past, current, and future therapeutic targets with relevance to fibroblast biology in the context of acute and chronic human respiratory diseases. This perspective highlights the importance of tissue context in defining fibroblast-immune crosstalk and paves the way for identifying therapeutic approaches to benefit patients with acute and chronic pulmonary disorders.
Collapse
Affiliation(s)
- Mohamed A. Ghonim
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - David F. Boyd
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Swain AC, Borghans JA, de Boer RJ. Effect of cellular aging on memory T-cell homeostasis. Front Immunol 2022; 13:947242. [PMID: 36059495 PMCID: PMC9429809 DOI: 10.3389/fimmu.2022.947242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The fact that T-cell numbers remain relatively stable throughout life, and that T-cell proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers are regulated in a density-dependent manner. Competition for resources among memory T cells has been proposed to underlie this ‘homeostatic’ regulation. We first review how two classic models of resource competition affect the T-cell receptor (TCR) diversity of the memory T-cell pool. First, ‘global’ competition for cytokines leads to a skewed repertoire that tends to be dominated by the very first immune response. Second, additional ‘cognate’ competition for specific antigens results in a very diverse and stable memory T-cell pool, allowing every antigen to be remembered, which we therefore define as the ‘gold-standard’. Because there is limited evidence that memory T cells of the same specificity compete more strongly with each other than with memory T cells of different specificities, i.e., for ‘cognate’ competition, we investigate whether cellular aging could account for a similar level of TCR diversity. We define cellular aging as a declining cellular fitness due to reduced proliferation. We find that the gradual erosion of previous T-cell memories due to cellular aging allows for better establishment of novel memories and for a much higher level of TCR diversity compared to global competition. A small continual source (either from stem-cell-like memory T-cells or from naive T-cells due to repeated antigen exposure) improves the diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We further show that the presence of a source keeps the inflation of chronic memory responses in check by maintaining the immune memories to non-chronic antigens. We conclude that cellular aging along with a small source provides a novel and immunologically realistic mechanism to achieve and maintain the ‘gold-standard’ level of TCR diversity in the memory T-cell pool.
Collapse
Affiliation(s)
- Arpit C. Swain
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Arpit C. Swain,
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Zangger N, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol 2022; 77:102185. [DOI: 10.1016/j.coi.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
9
|
'Stem-like' precursors are the fount to sustain persistent CD8 + T cell responses. Nat Immunol 2022; 23:836-847. [PMID: 35624209 DOI: 10.1038/s41590-022-01219-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.
Collapse
|
10
|
Nandi M, Moyo MM, Orkhis S, Mobulakani JMF, Limoges MA, Rexhepi F, Mayhue M, Cayarga AA, Marrero GC, Ilangumaran S, Menendez A, Ramanathan S. IL-15Rα-Independent IL-15 Signaling in Non-NK Cell-Derived IFNγ Driven Control of Listeria monocytogenes. Front Immunol 2021; 12:793918. [PMID: 34956227 PMCID: PMC8703170 DOI: 10.3389/fimmu.2021.793918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-15, produced by hematopoietic and parenchymal cells, maintains immune cell homeostasis and facilitates activation of lymphoid and myeloid cell subsets. IL-15 interacts with the ligand-binding receptor chain IL-15Rα during biosynthesis, and the IL-15:IL-15Rα complex is trans-presented to responder cells that express the IL-2/15Rβγc complex to initiate signaling. IL-15-deficient and IL-15Rα-deficient mice display similar alterations in immune cell subsets. Thus, the trimeric IL-15Rαβγc complex is considered the functional IL-15 receptor. However, studies on the pathogenic role of IL-15 in inflammatory and autoimmune diseases indicate that IL-15 can signal independently of IL-15Rα via the IL-15Rβγc dimer. Here, we compared the ability of mice lacking IL-15 (no signaling) or IL-15Rα (partial/distinct signaling) to control Listeria monocytogenes infection. We show that IL-15-deficient mice succumb to infection whereas IL-15Rα-deficient mice clear the pathogen as efficiently as wildtype mice. IL-15-deficient macrophages did not show any defect in bacterial uptake or iNOS expression in vitro. In vivo, IL-15 deficiency impaired the accumulation of inflammatory monocytes in infected spleens without affecting chemokine and pro-inflammatory cytokine production. The inability of IL-15-deficient mice to clear L. monocytogenes results from impaired early IFNγ production, which was not affected in IL-15Rα-deficient mice. Administration of IFNγ partially enabled IL-15-deficient mice to control the infection. Bone marrow chimeras revealed that IL-15 needed for early bacterial control can originate from both hematopoietic and non-hematopoietic cells. Overall, our findings indicate that IL-15-dependent IL-15Rα-independent signaling via the IL-15Rβγc dimeric complex is necessary and sufficient for the induction of IFNγ from sources other than NK/NKT cells to control bacterial pathogens.
Collapse
Affiliation(s)
- Madhuparna Nandi
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mitterrand Muamba Moyo
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sakina Orkhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marc-André Limoges
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anny Armas Cayarga
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gisela Cofino Marrero
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Hsieh EW, Hernandez JD. Clean up by aisle 2: roles for IL-2 receptors in host defense and tolerance. Curr Opin Immunol 2021; 72:298-308. [PMID: 34479098 DOI: 10.1016/j.coi.2021.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022]
Abstract
Although IL-2 was first recognized as growth factor for T cells, it is now also appreciated to be a key regulator of T cells through its effects on regulatory T cells (Treg). The IL-2 receptor (IL-2R) subunits' different (i) ligand affinities, (ii) dimerization or trimerization relationships with other cytokine subunits, (iii) expression across multiple cell types, and (iv) downstream signaling effects, largely dictate cellular tolerance and antimicrobial processes. Defects in IL-2Rγ result in profound and almost universally fatal immune deficiency, unless treated with hematopoietic stem cell transplantation (HSCT). Defects in IL-2Rα and IL-2Rβ result in more limited infection susceptibility, particularly to herpesviruses. However, the most prominent clinical symptomatology for IL-2Rα and IL-2Rβ defects include multi-organ autoimmunity and inflammation, consistent with the critical role of IL-2 in establishing and maintaining immune tolerance. Here, we review how we have arrived at our current understanding of the complex roles of IL-2/2R in host defense and tolerance focusing on the insights gained from human clinical immunology.
Collapse
Affiliation(s)
- Elena Wy Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children's Hospital Colorado, United States; Department of Immunology and Microbiology, School of Medicine, University of Colorado, United States.
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, School of Medicine, Stanford University, Lucile Packard Children's Hospital, United States
| |
Collapse
|
12
|
Blaum F, Lukas D, Reddehase MJ, Lemmermann NAW. Localization of Viral Epitope-Specific CD8 T Cells during Cytomegalovirus Latency in the Lungs and Recruitment to Lung Parenchyma by Airway Challenge Infection. Life (Basel) 2021; 11:life11090918. [PMID: 34575067 PMCID: PMC8467276 DOI: 10.3390/life11090918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Interstitial pneumonia is a life-threatening clinical manifestation of cytomegalovirus infection in recipients of hematopoietic cell transplantation (HCT). The mouse model of experimental HCT and infection with murine cytomegalovirus revealed that reconstitution of virus-specific CD8+ T cells is critical for resolving productive lung infection. CD8+ T-cell infiltrates persisted in the lungs after the establishment of latent infection. A subset defined by the phenotype KLRG1+CD62L− expanded over time, a phenomenon known as memory inflation (MI). Here we studied the localization of these inflationary T effector-memory cells (iTEM) by comparing their frequencies in the intravascular and transmigration compartments, the IVC and TMC, respectively, with their frequency in the extravascular compartment (EVC), the alveolar epithelium. Frequencies of viral epitope-specific iTEM were comparable in the IVC and TMC but were reduced in the EVC, corresponding to an increase in KLRG1−CD62L− conventional T effector-memory cells (cTEM) and a decrease in functional IFNγ+CD8+ T cells. As maintained expression of KLRG1 requires stimulation by antigen, we conclude that iTEM lose KLRG1 and convert to cTEM after transmigration into the EVC because pneumocytes are not latently infected and, therefore, do not express antigens. Accordingly, antigen re-expression upon airway challenge infection recruited virus-specific CD8+ T cells to TMC and EVC.
Collapse
Affiliation(s)
- Franziska Blaum
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (N.A.W.L.)
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, University Hospital Cologne and Faculty of Medicine, 50937 Cologne, Germany;
| | - Matthias J. Reddehase
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (N.A.W.L.)
- Correspondence:
| | - Niels A. W. Lemmermann
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (F.B.); (N.A.W.L.)
| |
Collapse
|
13
|
Cupovic J, Ring SS, Onder L, Colston JM, Lütge M, Cheng HW, De Martin A, Provine NM, Flatz L, Oxenius A, Scandella E, Krebs P, Engeler D, Klenerman P, Ludewig B. Adenovirus vector vaccination reprograms pulmonary fibroblastic niches to support protective inflating memory CD8 + T cells. Nat Immunol 2021; 22:1042-1051. [PMID: 34267375 PMCID: PMC7611414 DOI: 10.1038/s41590-021-00969-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.
Collapse
Affiliation(s)
- Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Julia M Colston
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nicholas M Provine
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Berne, Berne, Switzerland
| | - Daniel Engeler
- Department of Urology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells. Pathogens 2021; 10:pathogens10080956. [PMID: 34451420 PMCID: PMC8400798 DOI: 10.3390/pathogens10080956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
CD8+ T-cell responses to pathogens are directed against infected cells that present pathogen-encoded peptides on MHC class-I molecules. Although natural responses are polyclonal, the spectrum of peptides that qualify for epitopes is remarkably small even for pathogens with high coding capacity. Among those few that are successful at all, a hierarchy exists in the magnitude of the response that they elicit in terms of numbers of CD8+ T cells generated. This led to a classification into immunodominant and non-immunodominant or subordinate epitopes, IDEs and non-IDEs, respectively. IDEs are favored in the design of vaccines and are chosen for CD8+ T-cell immunotherapy. Using murine cytomegalovirus as a model, we provide evidence to conclude that epitope hierarchy reflects competition on the level of antigen recognition. Notably, high-avidity cells specific for non-IDEs were found to expand only when IDEs were deleted. This may be a host’s back-up strategy to avoid viral immune escape through antigenic drift caused by IDE mutations. Importantly, our results are relevant for the design of vaccines based on cytomegaloviruses as vectors to generate high-avidity CD8+ T-cell memory specific for unrelated pathogens or tumors. We propose the deletion of vector-encoded IDEs to avoid the suppression of epitopes of the vaccine target.
Collapse
|
15
|
Direct Evidence for Viral Antigen Presentation during Latent Cytomegalovirus Infection. Pathogens 2021; 10:pathogens10060731. [PMID: 34200578 PMCID: PMC8229173 DOI: 10.3390/pathogens10060731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Murine models of cytomegalovirus (CMV) infection have revealed an immunological phenomenon known as “memory inflation” (MI). After a peak of a primary CD8+ T-cell response, the pool of epitope-specific cells contracts in parallel to the resolution of productive infection and the establishment of a latent infection, referred to as “latency.” CMV latency is associated with an increase in the number of cells specific for certain viral epitopes over time. The inflationary subset was identified as effector-memory T cells (iTEM) characterized by the cell surface phenotype KLRG1+CD127−CD62L−. As we have shown recently, latent viral genomes are not transcriptionally silent. Rather, viral genes are sporadically desilenced in a stochastic fashion. The current hypothesis proposes MI to be driven by presented viral antigenic peptides encoded by the corresponding, stochastically expressed viral genes. Although this mechanism suggests itself, independent evidence for antigen presentation during viral latency is pending. Here we fill this gap by showing that T cell-receptor transgenic OT-I cells that are specific for peptide SIINFEKL proliferate upon adoptive cell transfer in C57BL/6 recipients latently infected with murine CMV encoding SIINFEKL (mCMV-SIINFEKL), but not in those latently infected with mCMV-SIINFEKA, in which antigenicity is lost by mutation L8A of the C-terminal amino acid residue.
Collapse
|
16
|
Landscape of Exhausted Virus-Specific CD8 T Cells in Chronic LCMV Infection. Cell Rep 2021; 32:108078. [PMID: 32846135 DOI: 10.1016/j.celrep.2020.108078] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/31/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023] Open
Abstract
A hallmark of chronic infections is the presence of exhausted CD8 T cells, characterized by a distinct transcriptional program compared with functional effector or memory cells, co-expression of multiple inhibitory receptors, and impaired effector function, mainly driven by recurrent T cell receptor engagement. In the context of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, most studies focused on studying splenic virus-specific CD8 T cells. Here, we provide a detailed characterization of exhausted CD8 T cells isolated from six different tissues during established LCMV infection, using single-cell RNA sequencing. Our data reveal that exhausted cells are heterogeneous, adopt organ-specific transcriptomic profiles, and can be divided into five main functional subpopulations: advanced exhaustion, effector-like, intermediate, proliferating, or memory-like. Adoptive transfer experiments showed that these phenotypes are plastic, suggesting that the tissue microenvironment has a major impact in shaping the phenotype and function of virus-specific CD8 T cells during chronic infection.
Collapse
|
17
|
Welten SPM, Oderbolz J, Yilmaz V, Bidgood SR, Gould V, Mercer J, Spörri R, Oxenius A. Influenza- and MCMV-induced memory CD8 T cells control respiratory vaccinia virus infection despite residence in distinct anatomical niches. Mucosal Immunol 2021; 14:728-742. [PMID: 33479479 PMCID: PMC8075924 DOI: 10.1038/s41385-020-00373-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Induction of memory CD8 T cells residing in peripheral tissues is of interest for T cell-based vaccines as these cells are located at mucosal and barrier sites and can immediately exert effector functions, thus providing protection in case of local pathogen encounter. Different memory CD8 T cell subsets patrol peripheral tissues, but it is unclear which subset is superior in providing protection upon secondary infections. We used influenza virus to induce predominantly tissue resident memory T cells or cytomegalovirus to elicit a large pool of effector-like memory cells in the lungs and determined their early protective capacity and mechanism of reactivation. Both memory CD8 T cell pools have unique characteristics with respect to their phenotype, localization, and maintenance. However, these distinct features do not translate into different capacities to control a respiratory vaccinia virus challenge in an antigen-specific manner, although differential activation mechanisms are utilized. While influenza-induced memory CD8 T cells respond to antigen by local proliferation, MCMV-induced memory CD8 T cells relocate from the vasculature into the tissue in an antigen-independent and partially chemokine-driven manner. Together these results bear relevance for the development of vaccines aimed at eliciting a protective memory CD8 T cell pool at mucosal sites.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Josua Oderbolz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vural Yilmaz
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Susanna R Bidgood
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Victoria Gould
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roman Spörri
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
18
|
Griessl M, Renzaho A, Freitag K, Seckert CK, Reddehase MJ, Lemmermann NAW. Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell "Memory Inflation" and Avoid Immune Evasion. Front Immunol 2021; 12:668885. [PMID: 33968074 PMCID: PMC8100209 DOI: 10.3389/fimmu.2021.668885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Acute infection with murine cytomegalovirus (mCMV) is controlled by CD8+ T cells and develops into a state of latent infection, referred to as latency, which is defined by lifelong maintenance of viral genomes but absence of infectious virus in latently infected cell types. Latency is associated with an increase in numbers of viral epitope-specific CD8+ T cells over time, a phenomenon known as "memory inflation" (MI). The "inflationary" subset of CD8+ T cells has been phenotyped as KLRG1+CD62L- effector-memory T cells (iTEM). It is agreed upon that proliferation of iTEM requires repeated episodes of antigen presentation, which implies that antigen-encoding viral genes must be transcribed during latency. Evidence for this has been provided previously for the genes encoding the MI-driving antigenic peptides IE1-YPHFMPTNL and m164-AGPPRYSRI of mCMV in the H-2d haplotype. There exist two competing hypotheses for explaining MI-driving viral transcription. The "reactivation hypothesis" proposes frequent events of productive virus reactivation from latency. Reactivation involves a coordinated gene expression cascade from immediate-early (IE) to early (E) and late phase (L) transcripts, eventually leading to assembly and release of infectious virus. In contrast, the "stochastic transcription hypothesis" proposes that viral genes become transiently de-silenced in latent viral genomes in a stochastic fashion, not following the canonical IE-E-L temporal cascade of reactivation. The reactivation hypothesis, however, is incompatible with the finding that productive virus reactivation is exceedingly rare in immunocompetent mice and observed only under conditions of compromised immunity. In addition, the reactivation hypothesis fails to explain why immune evasion genes, which are regularly expressed during reactivation in the same cells in which epitope-encoding genes are expressed, do not prevent antigen presentation and thus MI. Here we show that IE, E, and L genes are transcribed during latency, though stochastically, not following the IE-E-L temporal cascade. Importantly, transcripts that encode MI-driving antigenic peptides rarely coincide with those that encode immune evasion proteins. As immune evasion can operate only in cis, that is, in a cell that simultaneously expresses antigenic peptides, the stochastic transcription hypothesis explains why immune evasion is not operative in latently infected cells and, therefore, does not interfere with MI.
Collapse
Affiliation(s)
| | | | | | | | | | - Niels A. W. Lemmermann
- Institute for Virology, Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
19
|
Swadling L, Pallett LJ, Diniz MO, Baker JM, Amin OE, Stegmann KA, Burton AR, Schmidt NM, Jeffery-Smith A, Zakeri N, Suveizdyte K, Froghi F, Fusai G, Rosenberg WM, Davidson BR, Schurich A, Simon AK, Maini MK. Human Liver Memory CD8 + T Cells Use Autophagy for Tissue Residence. Cell Rep 2021; 30:687-698.e6. [PMID: 31968246 PMCID: PMC6988113 DOI: 10.1016/j.celrep.2019.12.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident memory T cells have critical roles in long-term pathogen and tumor immune surveillance in the liver. We investigate the role of autophagy in equipping human memory T cells to acquire tissue residence and maintain functionality in the immunosuppressive liver environment. By performing ex vivo staining of freshly isolated cells from human liver tissue, we find that an increased rate of basal autophagy is a hallmark of intrahepatic lymphocytes, particularly liver-resident CD8+ T cells. CD8+ T cells with increased autophagy are those best able to proliferate and mediate cytotoxicity and cytokine production. Conversely, blocking autophagy induction results in the accumulation of depolarized mitochondria, a feature of exhausted T cells. Primary hepatic stellate cells or the prototypic hepatic cytokine interleukin (IL)-15 induce autophagy in parallel with tissue-homing/retention markers. Inhibition of T cell autophagy abrogates tissue-residence programming. Thus, upregulation of autophagy adapts CD8+ T cells to combat mitochondrial depolarization, optimize functionality, and acquire tissue residence. An increased rate of basal autophagy is a hallmark of liver-resident CD8+ T cells Enhanced T cell autophagy can be imprinted by IL-15 or hepatic stellate cells Autophagy induction is required for tissue-residence programming in vitro Enhanced autophagy maintains TRM mitochondrial fitness in the liver
Collapse
Affiliation(s)
- Leo Swadling
- Division of Infection and Immunity, University College London, London, UK.
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London, UK
| | - Mariana O Diniz
- Division of Infection and Immunity, University College London, London, UK
| | - Josephine M Baker
- Division of Infection and Immunity, University College London, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity, University College London, London, UK
| | - Kerstin A Stegmann
- Division of Infection and Immunity, University College London, London, UK
| | - Alice R Burton
- Division of Infection and Immunity, University College London, London, UK
| | - Nathalie M Schmidt
- Division of Infection and Immunity, University College London, London, UK
| | - Anna Jeffery-Smith
- Division of Infection and Immunity, University College London, London, UK; Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, QMUL, London, UK
| | - Nekisa Zakeri
- Division of Infection and Immunity, University College London, London, UK
| | | | - Farid Froghi
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London, UK
| | - William M Rosenberg
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Brian R Davidson
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Anna Schurich
- Division of Infection and Immunity, University College London, London, UK; Department of Infectious Diseases, Kings College London, London, UK
| | - A Katharina Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
20
|
Vasilieva E, Gianella S, Freeman ML. Novel Strategies to Combat CMV-Related Cardiovascular Disease. Pathog Immun 2020; 5:240-274. [PMID: 33089035 PMCID: PMC7556413 DOI: 10.20411/pai.v5i1.382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV), a ubiquitous human pathogen that is never cleared from the host, has long been thought to be relatively innocuous in immunocompetent adults, but causes severe complications including blindness, end-organ disease, and death in newborns and in immuno-compromised individuals, such as organ transplant recipients and those suffering from AIDS. Yet even in persons with intact immunity, CMV infection is associated with profound stimulation of immune and inflammatory pathways. Carriers of CMV infection also have an elevated risk of developing cardiovascular complications. In this review, we define the proposed mechanisms of how CMV contributes to cardiovascular disease (CVD), describe current approaches to target CMV, and discuss how these strategies may or may not alleviate cardiovascular complications in those with CMV infection. In addition, we discuss the special situation of CMV coinfection in people with HIV infection receiving antiretroviral therapy, and describe how these 2 viral infections may interact to potentiate CVD in this especially vulnerable population.
Collapse
Affiliation(s)
- Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine; Department of Medicine; Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
21
|
Takamura S. Impact of multiple hits with cognate antigen on memory CD8+ T-cell fate. Int Immunol 2020; 32:571-581. [PMID: 32506114 DOI: 10.1093/intimm/dxaa039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Antigen-driven activation of CD8+ T cells results in the development of a robust anti-pathogen response and ultimately leads to the establishment of long-lived memory T cells. During the primary response, CD8+ T cells interact multiple times with cognate antigen on distinct types of antigen-presenting cells. The timing, location and context of these antigen encounters significantly impact the differentiation programs initiated in the cells. Moderate re-activation in the periphery promotes the establishment of the tissue-resident memory T cells that serve as sentinels at the portal of pathogen entry. Under some circumstances, moderate re-activation of T cells in the periphery can result in the excessive expansion and accumulation of circulatory memory T cells, a process called memory inflation. In contrast, excessive re-activation stimuli generally impede conventional T-cell differentiation programs and can result in T-cell exhaustion. However, these conditions can also elicit a small population of exhausted T cells with a memory-like signature and self-renewal capability that are capable of responding to immunotherapy, and restoration of functional activity. Although it is clear that antigen re-encounter during the primary immune response has a significant impact on memory T-cell development, we still do not understand the molecular details that drive these fate decisions. Here, we review our understanding of how antigen encounters and re-activation events impact the array of memory CD8+ T-cell subsets subsequently generated. Identification of the molecular programs that drive memory T-cell generation will advance the development of new vaccine strategies that elicit high-quality CD8+ T-cell memory.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
22
|
Holtappels R, Freitag K, Renzaho A, Becker S, Lemmermann NA, Reddehase MJ. Revisiting CD8 T-cell 'Memory Inflation': New Insights with Implications for Cytomegaloviruses as Vaccine Vectors. Vaccines (Basel) 2020; 8:vaccines8030402. [PMID: 32707744 PMCID: PMC7563500 DOI: 10.3390/vaccines8030402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Murine models of cytomegalovirus (CMV) infection have revealed an exceptional kinetics of the immune response. After resolution of productive infection, transient contraction of the viral epitope-specific CD8 T-cell pool was found to be followed by a pool expansion specific for certain viral epitopes during non-productive ‘latent’ infection. This phenomenon, known as ‘memory inflation’ (MI), was found to be based on inflationary KLRG1+CD62L− effector-memory T cells (iTEM) that depend on repetitive restimulation. MI gained substantial interest for employing CMV as vaccine vector by replacing MI-driving CMV epitopes with foreign epitopes for generating high numbers of protective memory cells specific for unrelated pathogens. The concept of an MI-driving CMV vector is questioned by human studies disputing MI in humans. A bias towards MI in experimental models may have resulted from systemic infection. We have here studied local murine CMV infection as a route that is more closely matching routine human vaccine application. Notably, KLRG1−CD62L+ central memory T cells (TCM) and conventional KLRG1−CD62L− effector memory T cells (cTEM) were found to expand, associated with ‘avidity maturation’, whereas the pool size of iTEM steadily declined over time. The establishment of high avidity CD8 T-cell central memory encourages one to pursue the concept of CMV vector-based vaccines.
Collapse
|
23
|
Morris SR, Chen B, Mudd JC, Panigrahi S, Shive CL, Sieg SF, Cameron CM, Zidar DA, Funderburg NT, Younes SA, Rodriguez B, Gianella S, Lederman MM, Freeman ML. Inflammescent CX3CR1+CD57+CD8+ T cells are generated and expanded by IL-15. JCI Insight 2020; 5:132963. [PMID: 32369455 PMCID: PMC7346586 DOI: 10.1172/jci.insight.132963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
HIV infection is associated with an increase in the proportion of activated CD8+ memory T cells (Tmem) that express CX3CR1, but how these cells are generated and maintained in vivo is unclear. We demonstrate that increased CX3CR1 expression on CD8+ Tmem in people living with HIV (PLWH) is dependent on coinfection with human CMV, and CX3CR1+CD8+ Tmem are enriched for a putatively immunosenescent CD57+CD28- phenotype. The cytokine IL-15 promotes the phenotype, survival, and proliferation of CX3CR1+CD57+CD8+ Tmem in vitro, whereas T cell receptor stimulation leads to their death. IL-15-driven survival is dependent on STAT5 and Bcl-2 activity, and IL-15-induced proliferation requires STAT5 and mTORC1. Thus, we identify mechanistic pathways that could explain how "inflammescent" CX3CR1+CD57+ CD8+ Tmem dominate the overall memory T cell pool in CMV-seropositive PLWH and that support reevaluation of immune senescence as a nonproliferative dead end.
Collapse
Affiliation(s)
- Stephen R. Morris
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Bonnie Chen
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph C. Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Carey L. Shive
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Scott F. Sieg
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Cheryl M. Cameron
- Center for AIDS Research, Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - David A. Zidar
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Nicholas T. Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Benigno Rodriguez
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sara Gianella
- Center for AIDS Research, Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael M. Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael L. Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Morris SR, Chen B, Mudd JC, Panigrahi S, Shive CL, Sieg SF, Cameron CM, Zidar DA, Funderburg NT, Younes SA, Rodriguez B, Gianella S, Lederman MM, Freeman ML. Inflammescent CX3CR1+CD57+CD8+ T cells are generated and expanded by IL-15. JCI Insight 2020. [PMID: 32369455 DOI: 10.1172/jci.insight.l32963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
HIV infection is associated with an increase in the proportion of activated CD8+ memory T cells (Tmem) that express CX3CR1, but how these cells are generated and maintained in vivo is unclear. We demonstrate that increased CX3CR1 expression on CD8+ Tmem in people living with HIV (PLWH) is dependent on coinfection with human CMV, and CX3CR1+CD8+ Tmem are enriched for a putatively immunosenescent CD57+CD28- phenotype. The cytokine IL-15 promotes the phenotype, survival, and proliferation of CX3CR1+CD57+CD8+ Tmem in vitro, whereas T cell receptor stimulation leads to their death. IL-15-driven survival is dependent on STAT5 and Bcl-2 activity, and IL-15-induced proliferation requires STAT5 and mTORC1. Thus, we identify mechanistic pathways that could explain how "inflammescent" CX3CR1+CD57+ CD8+ Tmem dominate the overall memory T cell pool in CMV-seropositive PLWH and that support reevaluation of immune senescence as a nonproliferative dead end.
Collapse
Affiliation(s)
- Stephen R Morris
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Bonnie Chen
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Soumya Panigrahi
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Carey L Shive
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Scott F Sieg
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Cheryl M Cameron
- Center for AIDS Research, Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - David A Zidar
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, USA
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Benigno Rodriguez
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sara Gianella
- Center for AIDS Research, Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael M Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael L Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Welten SPM, Yermanos A, Baumann NS, Wagen F, Oetiker N, Sandu I, Pedrioli A, Oduro JD, Reddy ST, Cicin-Sain L, Held W, Oxenius A. Tcf1 + cells are required to maintain the inflationary T cell pool upon MCMV infection. Nat Commun 2020; 11:2295. [PMID: 32385253 PMCID: PMC7211020 DOI: 10.1038/s41467-020-16219-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 01/07/2023] Open
Abstract
Cytomegalovirus-based vaccine vectors offer interesting opportunities for T cell-based vaccination purposes as CMV infection induces large numbers of functional effector-like cells that accumulate in peripheral tissues, a process termed memory inflation. Maintenance of high numbers of peripheral CD8 T cells requires continuous replenishment of the inflationary T cell pool. Here, we show that the inflationary T cell population contains a small subset of cells expressing the transcription factor Tcf1. These Tcf1+ cells resemble central memory T cells and are proliferation competent. Upon sensing viral reactivation events, Tcf1+ cells feed into the pool of peripheral Tcf1- cells and depletion of Tcf1+ cells hampers memory inflation. TCR repertoires of Tcf1+ and Tcf1- populations largely overlap, with the Tcf1+ population showing higher clonal diversity. These data show that Tcf1+ cells are necessary for sustaining the inflationary T cell response, and upholding this subset is likely critical for the success of CMV-based vaccination approaches.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Wagen
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Nathalie Oetiker
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124, Braunschweig, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight novel advances in prophylaxis against and treatment of CMV in kidney transplant recipients. Current options include intravenous ganciclovir and oral valganciclovir, but use of these agents is limited by side effects, such as myelosuppression as well as evolving resistance in CMV strains. RECENT FINDINGS Advances in the field include novel drugs that have shown promise in preliminary studies and are now being tested in large-scale clinical trials. Moreover, there is a developing focus in enhancing host immune responses to better protect against viral infection using anti-CMV vaccines. Studying host immune responses to CMV has also led to improved monitoring strategies, such as the QuantiFERON assay, which will allow for improved risk stratification and targeted therapies in transplant recipients. SUMMARY In summary, although options for prophylaxis and treatment against CMV have been somewhat limited to date, a number of new strategies are currently under development with several drugs in phase 3 trials. Therefore, the landscape of CMV management in kidney transplant recipients will be changing significantly in the coming years with the ultimate goal of safer and more effective therapies to combat CMV.
Collapse
|
27
|
Abstract
Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Autoreactive cytotoxic CD8+ T cells engage melanocytes and promote disease progression through the local production of IFN-γ, and IFN-γ-induced chemokines are then secreted from surrounding keratinocytes to further recruit T cells to the skin through a positive-feedback loop. Both topical and systemic treatments that block IFN-γ signaling can effectively reverse vitiligo in humans; however, disease relapse is common after stopping treatments. Autoreactive resident memory T cells are responsible for relapse, and new treatment strategies focus on eliminating these cells to promote long-lasting benefit. Here, we discuss basic, translational, and clinical research studies that provide insight into the pathogenesis of vitiligo, and how this insight has been utilized to create new targeted treatment strategies.
Collapse
Affiliation(s)
- Michael L. Frisoli
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - Kingsley Essien
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - John E. Harris
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| |
Collapse
|
28
|
Advances in cytomegalovirus (CMV) biology and its relationship to health, diseases, and aging. GeroScience 2020; 42:495-504. [PMID: 32162210 PMCID: PMC7205956 DOI: 10.1007/s11357-020-00170-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the largest and most ubiquitous latent persistent viruses. Most humans are infected with CMV early in life, and all immunocompetent humans spend several decades living with CMV. In the vast majority of the hosts, CMV does not cause manifest disease, and CMV therefore can be considered part of normal aging for 50–90% of the human population worldwide. Experimental, clinical, and epidemiological studies suggest that CMV carriage can have nuanced outcomes, including both potentially harmful and potentially beneficial impacts on the host. We here present a summary of the 7th International Workshop on CMV and Immunosenescence, covering various aspects of the interplay between CMV and its mammalian hosts in the context of virus spread, immune evasion, antiviral immunity, as well as the impact on health span and aging.
Collapse
|
29
|
Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell Mol Immunol 2020; 17:113-122. [PMID: 31969685 DOI: 10.1038/s41423-019-0359-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident memory T (TRM) cells are increasingly associated with the outcomes of health and disease. TRM cells can mediate local immune protection against infections and cancer, which has led to interest in TRM cells as targets for vaccination and immunotherapies. However, these cells have also been implicated in mediating detrimental pro-inflammatory responses in autoimmune skin diseases such as psoriasis, alopecia areata, and vitiligo. Here, we summarize the biology of TRM cells established in animal models and in translational human studies. We review the beneficial effects of TRM cells in mediating protective responses against infection and cancer and the adverse role of TRM cells in driving pathology in autoimmunity. A further understanding of the breadth and mechanisms of TRM cell activity is essential for the safe design of strategies that manipulate TRM cells, such that protective responses can be enhanced without unwanted tissue damage, and pathogenic TRM cells can be eliminated without losing local immunity.
Collapse
|
30
|
Smith CJ, Venturi V, Quigley MF, Turula H, Gostick E, Ladell K, Hill BJ, Himelfarb D, Quinn KM, Greenaway HY, Dang THY, Seder RA, Douek DC, Hill AB, Davenport MP, Price DA, Snyder CM. Stochastic Expansions Maintain the Clonal Stability of CD8 + T Cell Populations Undergoing Memory Inflation Driven by Murine Cytomegalovirus. THE JOURNAL OF IMMUNOLOGY 2019; 204:112-121. [PMID: 31818981 PMCID: PMC6920548 DOI: 10.4049/jimmunol.1900455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
Clonal stability is a feature of memory inflation. Stochastic expansions maintain clonal stability during memory inflation. Persistent clonotypes are often public in the context of memory inflation.
CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maire F Quigley
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Holly Turula
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Danielle Himelfarb
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kylie M Quinn
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hui Yee Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Thurston H Y Dang
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Robert A Seder
- Cellular Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; .,Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4XN, United Kingdom
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
31
|
Nolz JC, Richer MJ. Control of memory CD8 + T cell longevity and effector functions by IL-15. Mol Immunol 2019; 117:180-188. [PMID: 31816491 DOI: 10.1016/j.molimm.2019.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
IL-15 is a member of the common gamma chain family of cytokines and plays important roles in regulating several aspects of innate and adaptive immunity. Besides its established role in controlling homeostatic proliferation and survival of memory CD8+ T cells and natural killer cells, recent findings demonstrate that inflammatory IL-15 can also stimulate a variety of effector functions, such as enhanced cytotoxicity, entry into the cell cycle, and trafficking into non-lymphoid tissues. Here, we discuss how IL-15 is critical in regulating many functions of memory CD8+ T cells and how these processes act collectively to ensure optimal protective cellular immunity against re-infections.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, 712 McIntyre Medical Building, 3655 promenade Sir William Osler, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
32
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
33
|
Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge. PLoS Pathog 2019; 15:e1008036. [PMID: 31525249 PMCID: PMC6763260 DOI: 10.1371/journal.ppat.1008036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections. Vaccines against influenza typically induce immune responses based on antibodies, small molecules that recognize the virus particles outside of cells and neutralize them before they infect a cell. However, influenza rapidly evolves, escaping immune recognition, and the fastest evolution is seen in the part of the virus that is recognized by antibodies. Therefore, every year we are confronted with new flu strains that are not recognized by our antibodies against the strains from previous years. The other branch of the immune system is made of killer T cells, which recognize infected cells and target them for killing. Influenza does not rapidly evolve to escape T cell killing; thus, vaccines inducing T-cell responses to influenza might provide long-term protection. We introduced an antigen from influenza into the murine cytomegalovirus (MCMV) and used it as a vaccine vector inducing killer T-cell responses of unparalleled strength. Our vector controls influenza replication and provides relief to infected mice, but only if we administered it through the nose, to activate killer T cells that will persist in the lungs close to the airways. Therefore, our data show that the subset of lung-resident killer T cells is sufficient to protect against influenza.
Collapse
|
34
|
Gabel M, Baumann NS, Oxenius A, Graw F. Investigating the Dynamics of MCMV-Specific CD8 + T Cell Responses in Individual Hosts. Front Immunol 2019; 10:1358. [PMID: 31281313 PMCID: PMC6595046 DOI: 10.3389/fimmu.2019.01358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Infection by Cytomegalovirus (CMV) is characterized by the massive expansion and continued maintenance of CMV-specific CD8+ T cells for certain CMV-derived peptides. This phenomenon called “memory inflation" has made CMV a primary target for the generation of T cell based vaccine vectors against various diseases. However, many aspects concerning the generation and maintenance of the inflationary CD8+ T cell response still remain to be resolved. In this study, we combined experimental data and mathematical models to analyze the dynamics of circulatory inflationary CD8+ T cells within individual mice infected by MCMV. Obtaining frequent measurements on the number and frequency of CMV-specific CD8+ T cells up to 70 days post infection, we find that mathematical models assuming differing viral stimuli during acute infection and the inflationary phase provide a better description for the observed dynamics than models relying on similar viral stimuli during both phases. In addition, our analysis allowed a detailed quantification of the different phases of memory inflation within individual mice (1st-expansion - contraction - 2nd expansion/maintenance) indicating remarkable consistency of the timing of these phases across mice, but considerable variation in the size of the individual responses between mice. Our analysis provides a first step toward generating a mechanistic framework for analyzing the generation and maintenance of inflationary CD8+ T cells while accounting for individual heterogeneity. Extending these analyses by incorporating measurements from additional compartments and more prolonged sampling will help to obtain a systematic and quantitative understanding of the factors regulating the process of memory inflation.
Collapse
Affiliation(s)
- Michael Gabel
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| | - Nicolas S Baumann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Frederik Graw
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Caspase-8-dependent control of NK- and T cell responses during cytomegalovirus infection. Med Microbiol Immunol 2019; 208:555-571. [PMID: 31098689 DOI: 10.1007/s00430-019-00616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Caspase-8 (CASP8) impacts antiviral immunity in expected as well as unexpected ways. Mice with combined deficiency in CASP8 and RIPK3 cannot support extrinsic apoptosis or RIPK3-dependent programmed necrosis, enabling studies of CASP8 function without complications of unleashed necroptosis. These extrinsic cell death pathways are naturally targeted by murine cytomegalovirus (MCMV)-encoded cell death suppressors, showing they are key to cell-autonomous host defense. Remarkably, Casp8-/-Ripk3-/-, Ripk1-/-Casp8-/-Ripk3-/- and Casp8-/-Ripk3K51A/K51A mice mount robust antiviral T cell responses to control MCMV infection. Studies in Casp8-/-Ripk3-/- mice show that CASP8 restrains expansion of MCMV-specific natural killer (NK) and CD8 T cells without compromising contraction or immune memory. Infected Casp8-/-Ripk3-/- or Casp8-/-Ripk3K51A/K51A mice have higher levels of virus-specific NK cells and CD8 T cells compared to matched RIPK3-deficient littermates or WT mice. CASP8, likely acting downstream of Fas death receptor, dampens proliferation of CD8 T cells during expansion. Importantly, contraction proceeds unimpaired in the absence of extrinsic death pathways owing to intact Bim-dependent (intrinsic) apoptosis. CD8 T cell memory develops in Casp8-/-Ripk3-/- mice, but memory inflation characteristic of MCMV infection is not sustained in the absence of CASP8 function. Despite this, Casp8-/-Ripk3-/- mice are immune to secondary challenge. Interferon (IFN)γ is recognized as a key cytokine for adaptive immune control of MCMV. Ifngr-/-Casp8-/-Ripk3-/- mice exhibit increased lifelong persistence in salivary glands as well as lungs compared to Ifngr-/- and Casp8-/-Ripk3-/- mice. Thus, mice deficient in CASP8 and RIPK3 are more dependent on IFNγ mechanisms for sustained T cell immune control of MCMV. Overall, appropriate NK- and T cell immunity to MCMV is dependent on host CASP8 function independent of RIPK3-regulated pathways.
Collapse
|
36
|
Baumann NS, Welten SPM, Torti N, Pallmer K, Borsa M, Barnstorf I, Oduro JD, Cicin-Sain L, Oxenius A. Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool. PLoS Pathog 2019; 15:e1007785. [PMID: 31083700 PMCID: PMC6532941 DOI: 10.1371/journal.ppat.1007785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Memory T cell inflation is a process in which a subset of cytomegalovirus (CMV) specific CD8 T cells continuously expands mainly during latent infection and establishes a large and stable population of effector memory cells in peripheral tissues. Here we set out to identify in vivo parameters that promote and limit CD8 T cell inflation in the context of MCMV infection. We found that the inflationary T cell pool comprised mainly high avidity CD8 T cells, outcompeting lower avidity CD8 T cells. Furthermore, the size of the inflationary T cell pool was not restricted by the availability of specific tissue niches, but it was directly related to the number of virus-specific CD8 T cells that were activated during priming. In particular, the amount of early-primed KLRG1- cells and the number of inflationary cells with a central memory phenotype were a critical determinant for the overall magnitude of the inflationary T cell pool. Inflationary memory CD8 T cells provided protection from a Vaccinia virus challenge and this protection directly correlated with the size of the inflationary memory T cell pool in peripheral tissues. These results highlight the remarkable protective potential of inflationary CD8 T cells that can be harnessed for CMV-based T cell vaccine approaches. Cytomegalovirus induces a lifelong infection in the majority of the world's population, due to the ability of the virus to establish latency. Upon CMV infection, large numbers of effector memory T cells are induced in peripheral tissues, a process that is termed memory inflation. As inflationary T cells are highly functional, CMV-based vaccines have gained substantial interest for vaccination purposes. Here we examine factors that promote and limit memory T cell inflation. We found that there were no constraints on the availability of specific niches for inflationary T cells in tissues and that high avidity T cells predominately contribute to the inflationary T cell population in the beginning of infection. Moreover, the number of early primed KLRG1- CMV-specific T cells in the acute phase of infection set the limit for memory T cell inflation. Furthermore, we show that inflationary T cells provided protection from a pathogenic challenge in peripheral tissues such as the ovaries. Thus, inflationary T cells comprise a population of T cells that can protect peripheral tissues from pathogenic infections and their efficacy can be regulated by balancing the number of KLRG1- CMV-specific cells during priming.
Collapse
Affiliation(s)
- Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| |
Collapse
|
37
|
Highton AJ, Zinser ME, Lee LN, Hutchings CL, De Lara C, Phetsouphanh C, Willberg CB, Gordon CL, Klenerman P, Marchi E. Single-cell transcriptome analysis of CD8 + T-cell memory inflation. Wellcome Open Res 2019; 4:78. [PMID: 31448339 PMCID: PMC6688724 DOI: 10.12688/wellcomeopenres.15115.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Persistent viruses such as murine cytomegalovirus (MCMV) and adenovirus-based vaccines induce strong, sustained CD8 + T-cell responses, described as memory "inflation". These retain functionality, home to peripheral organs and are associated with a distinct transcriptional program. Methods: To further define the nature of the transcriptional mechanisms underpinning memory inflation at different sites we used single-cell RNA sequencing of tetramer-sorted cells from MCMV-infected mice, analyzing transcriptional networks in virus-specific populations in the spleen and gut intra-epithelial lymphocytes (IEL). Results: We provide a transcriptional map of T-cell memory and define a module of gene expression, which distinguishes memory inflation in spleen from resident memory T-cells (T RM) in the gut. Conclusions: These data indicate that CD8 + T-cell memory in the gut epithelium induced by persistent viruses and vaccines has a distinct quality from both conventional memory and "inflationary" memory which may be relevant to protection against mucosal infections.
Collapse
Affiliation(s)
- Andrew J. Highton
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Madeleine E. Zinser
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Claire L. Hutchings
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Catherine De Lara
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Chris B. Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX42PG, UK
| | - Claire L. Gordon
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, OX42PG, UK
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, OX13SY, UK
| |
Collapse
|
38
|
Lérias JR, Paraschoudi G, Silva I, Martins J, de Sousa E, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Jäger E, Rao M, Maeurer M. Clinically Relevant Immune Responses against Cytomegalovirus: Implications for Precision Medicine. Int J Mol Sci 2019; 20:ijms20081986. [PMID: 31018546 PMCID: PMC6514820 DOI: 10.3390/ijms20081986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated “bystander” effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool—combining immunodiagnostics with a personalised therapeutic potential—to improve treatment outcomes in oncological indications.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Georgia Paraschoudi
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Inês Silva
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Cicin-Sain L. Cytomegalovirus memory inflation and immune protection. Med Microbiol Immunol 2019; 208:339-347. [PMID: 30972476 DOI: 10.1007/s00430-019-00607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Cytomegalovirus (CMV) infection induces powerful and sustained T-cell responses against a few selected immunodominant antigenic epitopes. This immune response was named memory inflation, because it does not contract in the long term, and may even expand over months and years of virus latency. It is by now understood that memory inflation does not occur at the expense of the naïve T-cell pool, but rather as a competitive selection process within the effector pool, where viral antigens with higher avidity of TCR binding and with earlier expression patterns outcompete those that are expressed later and bind TCRs less efficiently. It is also understood that inflationary epitopes require processing by the constitutive proteasome in non-hematopoietic cells, and this likely implies that memory inflation is fuelled by direct low-level antigenic expression in latently infected cells. This review proposes that these conditions make inflationary epitopes the optimal candidates for adoptive immunotherapy of CMV disease in the immunocompromised host. At present, functional target CMV epitopes have been defined only for the most common HLA haplotypes. Mapping the uncharacterized inflationary epitopes in less frequent HLAs may, thus, be a strategy for the identification of optimal immunotherapeutic targets in patients with uncommon haplotypes.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany. .,Centre for Individualised Infection Medicine (CIIM), A Joint Venture of HZI and MHH, Braunschweig, Germany. .,German Centre for Infection Research (DZIF), Hannover-Braunschweig site, Braunschweig, Germany.
| |
Collapse
|
40
|
Méndez AC, Rodríguez-Rojas C, Del Val M. Vaccine vectors: the bright side of cytomegalovirus. Med Microbiol Immunol 2019; 208:349-363. [PMID: 30900089 DOI: 10.1007/s00430-019-00597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Cytomegaloviruses (CMVs) present singular features that are particularly advantageous for human vaccine development, a current medical need. Vaccines that induce neutralizing antibodies are among the most successful and efficacious available. However, chronic and persistent human infections, pathogens with high variability of exposed proteins, as well as tumors, highlight the need for developing novel vaccines inducing strong and long-lasting cellular immune responses mediated by effector or effector memory CD8+ cytotoxic T lymphocytes. CMVs induce the most potent CD8+ T lymphocyte response to a pathogen known in each of their hosts, maintain and even increase it for life for selected antigens, in what is known as the ever growing inflationary memory, and maintain an effector memory status due to recent and repeated antigen stimulation that endows these inflationary T lymphocytes with superior and faster protective potency. In addition to these CMV singularities, this family of viruses has two more common favorable features: they can superinfect an already infected host, which is needed in face of the high CMV prevalence, and they can harbor very large segments of foreign DNA at many different genomic sites. All these properties endow CMVs with a singular potential to be used as human vaccine vectors. Current developments with most of the recombinant CMV-based vaccine candidates that have been tested in animal models against clinically relevant viral and bacterial infections and for their use in tumor immunotherapy are reviewed herein. Since CMV vectors should be designed to avoid the risk of disease in immunocompromised individuals, special attention is also paid to attenuated vectors. Taken together, the results support the future use of CMV-based vaccine vectors to induce protective CD8+ T lymphocyte responses in humans, mainly against viral infections and as anti-tumor vaccines.
Collapse
Affiliation(s)
- Andrea C Méndez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049, Madrid, Spain.
| |
Collapse
|
41
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
42
|
Zhang S, Caldeira-Dantas S, Smith CJ, Snyder CM. Persistent viral replication and the development of T-cell responses after intranasal infection by MCMV. Med Microbiol Immunol 2019; 208:457-468. [PMID: 30848361 DOI: 10.1007/s00430-019-00589-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Natural transmission of cytomegalovirus (CMV) has been difficult to observe. However, recent work using the mouse model of murine (M)CMV demonstrated that MCMV initially infects the nasal mucosa after transmission from mothers to pups. We found that intranasal (i.n.) inoculation of C57BL/6J mice resulted in reliable recovery of replicating virus from the nasal mucosa as assessed by plaque assay. After i.n. inoculation, CD8+ T-cell priming occurred in the mandibular, deep-cervical, and mediastinal lymph nodes within 3 days of infection. Although i.n. infection induced "memory inflation" of T cells specific for the M38316-323 epitope, there were no detectable CD8+ T-cell responses against the late-appearing IE3416-423 epitope, which contrasts with intraperitoneal (i.p.) infection. MCMV-specific T cells migrated into the nasal mucosa where they developed a tissue-resident memory (TRM) phenotype and this could occur independently of local virus infection or antigen. Strikingly however, virus replication was poorly controlled in the nasal mucosa and MCMV was detectable by plaque assay for at least 4 months after primary infection, making the nasal mucosa a second site for MCMV persistence. Unlike in the salivary glands, the persistence of MCMV in the nasal mucosa was not modulated by IL-10. Taken together, our data characterize the development of local and systemic T-cell responses after intranasal infection by MCMV and define the nasal mucosa, a natural site of viral entry, as a novel site of viral persistence.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA
| | - Sofia Caldeira-Dantas
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,PT Government Associate Laboratory, ICVS/3B's, Braga/Guimarães, Portugal
| | - Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Pardieck IN, Beyrend G, Redeker A, Arens R. Cytomegalovirus infection and progressive differentiation of effector-memory T cells. F1000Res 2018; 7. [PMID: 30345004 PMCID: PMC6173108 DOI: 10.12688/f1000research.15753.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2018] [Indexed: 12/22/2022] Open
Abstract
Primary cytomegalovirus (CMV) infection leads to strong innate and adaptive immune responses against the virus, which prevents serious disease. However, CMV infection can cause serious morbidity and mortality in individuals who are immunocompromised. The adaptive immune response to CMV is characterized by large populations of effector-memory (EM) T cells that are maintained lifelong, a process termed memory inflation. Recent findings indicate that infection with CMV leads to continuous differentiation of CMV-specific EM-like T cells and that high-dose infection accelerates this progression. Whether measures that counteract CMV infection, such as anti-viral drugs, targeting of latently infected cells, adoptive transfer of CMV-specific T cells, and vaccination strategies, are able to impact the progressive differentiation of CMV-specific EM-like cells is discussed.
Collapse
Affiliation(s)
- Iris N Pardieck
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Guillaume Beyrend
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| |
Collapse
|
44
|
Luo XH, Meng Q, Rao M, Liu Z, Paraschoudi G, Dodoo E, Maeurer M. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology 2018; 155:294-308. [PMID: 30098205 DOI: 10.1111/imm.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous, persistent beta herpesvirus. CMV infection contributes to the accumulation of functional antigen-specific CD8+ T-cell pools with an effector-memory phenotype and enrichment of these immune cells in peripheral organs. We review here this 'memory T-cell inflation' phenomenon and associated factors including age and sex. 'Collateral damage' due to CMV-directed immune reactivity may occur in later stages of life - arising from CMV-specific immune responses that were beneficial in earlier life. CMV may be considered an age-dependent immunomodulator and a double-edged sword in editing anti-tumour immune responses. Emerging evidence suggests that CMV is highly prevalent in patients with a variety of cancers, particularly glioblastoma. A better understanding of CMV-associated immune responses and its implications for immune senescence, especially in patients with cancer, may aid in the design of more clinically relevant and tailored, personalized treatment regimens. 'Memory T-cell inflation' could be applied in vaccine development strategies to enrich for immune reactivity where long-term immunological memory is needed, e.g. in long-term immune memory formation directed against transformed cells.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|