1
|
Xiao D, Su X. Methyltransferase-like 3 is a target for the diagnose and therapy of clear cell renal carcinoma. Front Pharmacol 2025; 16:1534655. [PMID: 40313614 PMCID: PMC12043664 DOI: 10.3389/fphar.2025.1534655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Patients diagnosed with clear cell renal carcinoma (ccRCC) frequently exhibit metastatic disease, which complicates treatment strategies, underscoring the urgent need for mechanistic insights and early diagnostic biomarkers. Current research is dedicated to uncovering the mechanisms behind ccRCC development and resistance to treatment, with a particular focus on the role of methyltransferase-like 3 (METTL3) in RNA N6-methyladenosine modification, a key gene regulatory process. This review synthesizes current evidence on METTL3's functions, revealing its oncogenic activity through m6A-mediated regulation of RNA stability and translation, which promotes tumor progression, metastasis, and chemoresistance. We further explore METTL3's dual diagnostic and therapeutic relevance, including its utility as a prognostic biomarker and its targeting via novel strategies such as small-molecule inhibitors (e.g., Erianin) and combination therapies with mTOR or immune checkpoint inhibitors. By consolidating these advances, this review positions METTL3 as a critical node for advancing precision medicine in ccRCC.
Collapse
Affiliation(s)
| | - Xiaojuan Su
- Department of Emergency, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Chen F, Zhou M, Chen W, Geng W, Lu L, Shen G, Lin P, Xia Q, Zhao P, Li Z. N6-methyladenosine modification of host Hsc70 attenuates nucleopolyhedrovirus infection in the lepidopteran model insect Bombyx mori. Int J Biol Macromol 2025; 298:139869. [PMID: 39814281 DOI: 10.1016/j.ijbiomac.2025.139869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification on mRNA and plays critical roles in various biological processes including virus infection. It has been shown that m6A methylation is able to regulate virus proliferation and host innate immunity in mammals and plants, however, this antiviral defense in insects is largely unknown. Here we investigated function of m6A and its associated methyltransferases in nucleopolyhedrovirus (BmNPV) infection in silkworm. We reported significant changes of m6A methyltransferases METTL3 and METTL14 upon BmNPV treatment. Knockdown of METTL3 and METTL14 enhanced BmNPV infection and promoted viral proliferation, whereas overexpression of these enzymes could prevent viral replication. Further study revealed that host heat shock cognate 70 (Hsc70) as a target gene of m6A would contribute to BmNPV proliferation. CRISPR-dCas9-targeted methylation of Hsc70 by METTL3/METTL14 decreased its expression and further attenuated BmNPV infection. Consistently, knockout of METTL3 in silkworm individuals by CRISPR-Cas9 reduced overall m6A levels, which led to rapid death of silkworms and increase of BmNPV upon virus infection likely due to upregulated expression of Hsc70. Collectively, these findings provided a novel insight into antiviral activity of m6A and demonstrated a distinct immune response via attenuating host Hsc70 expression to counteract BmNPV replication in lepidopteran silkworm.
Collapse
Affiliation(s)
- Feng Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Mingyi Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wei Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Wenjing Geng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Liang Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Zhiqing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China.
| |
Collapse
|
3
|
Lan J, Huang X, Li H, Lin S, Huang J, Yang W, Ouyang M, Fang J, Xu Q. YTHDF2 Regulates Advanced Glycation End Products-Induced Melanogenesis through Inhibiting A20 Expression in Human Dermal Fibroblasts. Inflammation 2025; 48:919-934. [PMID: 39009810 DOI: 10.1007/s10753-024-02097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Fibroblast A20 suppresses advanced glycation end products (AGEs)-induced melanogenesis by inhibiting NLRP3 inflammasome activation. AGEs repress A20 expression and significantly m6A-methylate A20 mRNA in fibroblasts. YTHDF2 is the most studied m6A reader protein and can accelerate degradation of m6A-modified mRNA. Whether YTHDF2 regulates AGEs-induced A20 expression and pigmentation is unknown. In this study, we confirmed that YTHDF2 inversely regulated AGEs-BSA-inhibited A20 expression but facilitated AGEs-BSA-activated NF-κB signaling and NLRP3 inflammasome in fibroblasts via YTHDF2 knockdown and overexpression experiments. Mechanistically, YTHDF2 bound to m6A-modified A20 mRNA induced by AGEs-BSA and increased its degradation. Moreover, fibroblast YTHDF2 robustly promoted AGEs-BSA-induced IL-18 level in coculture supernatants and melanin content, tyrosinase activity, and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes, which were significantly blocked by IL-18 binding protein. Further, fibroblast YTHDF2 markedly increased AGEs-BSA-induced epidermal melanin level in cocultured ex vivo skin and MAPKs activation in melanocytes. Importantly, upregulated dermal YTHDF2 expression was negatively correlated with dermal A20 level and positively associated with both epidermal melanin and dermal AGEs content in sun-exposed skin and lesions of melasma and solar lentigo. These findings suggest that fibroblast YTHDF2 positively regulates AGEs-induced melanogenesis mainly via A20/ NF-κB /NLRP3 inflammasome/ IL-18 /MAPKs axis in an m6A-dependent manner and functions in photoaging-induced hyperpigmentation skin disorders.
Collapse
Affiliation(s)
- Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Shen Lin
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Weixin Yang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Jiaqi Fang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China.
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China.
| |
Collapse
|
4
|
Verhamme R, Favoreel HW. The role of N 6-methyladenosine (m 6A) mRNA modifications in herpesvirus infections. J Virol 2025; 99:e0172324. [PMID: 39868828 PMCID: PMC11852997 DOI: 10.1128/jvi.01723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Herpesviruses, a family of large enveloped DNA viruses, establish persistent infections in a wide range of hosts. This characteristic requires an intricate network of interactions with their hosts and host cells. In recent years, the interplay between herpesviruses and the epitranscriptome-chemical modifications in transcripts that may affect mRNA biology and fate-has emerged as a novel aspect of herpesvirus-host interactions. In particular, herpesviruses display different mechanisms to modulate and usurp the most abundant mRNA modification, N6-methyladenosine or m6A. Some herpesviruses interfere with m6A methylation of transcripts, while others enhance or take advantage of m6A methylation of viral and/or cellular transcripts. In many cases, herpesviruses appear to modulate the m6A methylation process to suppress the antiviral host response. This review highlights the strategies used by members of the different herpesvirus subfamilies to manipulate host m6A mediators and how these contribute to virus replication and the antiviral host response. Research aimed at deciphering the interaction of herpesviruses with the m6A epitranscriptome not only may lead to new avenues in the design of antiviral and immunomodulatory strategies, but also provides new insights in the regulation and the role of m6A transcript methylation in general.
Collapse
Affiliation(s)
- Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Li Z, Lao Y, Yan R, Li F, Guan X, Dong Z. N6-methyladenosine in inflammatory diseases: Important actors and regulatory targets. Gene 2025; 936:149125. [PMID: 39613051 DOI: 10.1016/j.gene.2024.149125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications in eukaryotic cells. It regulates RNA function and stability by modifying RNA methylation through writers, erasers, and readers. As a result, m6A plays a critical role in a wide range of biological processes. Inflammation is a common and fundamental pathological process. Numerous studies have investigated the role of m6A modifications in inflammatory diseases. This review highlights the mechanisms by which m6A contributes to inflammation, focusing on pathogen-induced infectious diseases, autoimmune disorders, allergic conditions, and metabolic disorder-related inflammatory diseases.
Collapse
Affiliation(s)
- Zewen Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Yan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fuhan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
6
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Schultz S, Gomard-Henshaw K, Muller M. RNA Modifications and Their Role in Regulating KSHV Replication and Pathogenic Mechanisms. J Med Virol 2025; 97:e70140. [PMID: 39740054 DOI: 10.1002/jmv.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication. Recent studies have highlighted the importance of RNA modifications, also known as the epitranscriptome, in regulating KSHV-encoded RNAs, adding a novel layer of posttranscriptional control previously unknown. These RNA modifications, such as N6-methyladenosine, A-to-I editing, and N4-acetylcytidine, are involved in fine-tuning KSHV gene expression during both latency and lytic replication. Understanding the role of RNA modifications in KSHV infection is essential for revealing new regulatory mechanisms and identifying therapeutic opportunities. Targeting these RNA modifications could serve as a strategy to disrupt key viral processes, offering promising insights into KSHV pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- S Schultz
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - K Gomard-Henshaw
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - M Muller
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
8
|
Wang L, Zhu W, Gong L, Kang Y, Lv L, Zhai Y, Zhang Y, Qiu X, Zhuang G, Sun A. MDV-encoded protein kinase U S3 phosphorylates WTAP to inhibit transcriptomic m 6A modification and cellular protein translation. Vet Microbiol 2025; 300:110335. [PMID: 39644648 DOI: 10.1016/j.vetmic.2024.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Marek's disease virus (MDV)-encoded US3 is a highly conserved serine/threonine protein kinase in alpha-herpesviruses. In other alpha-herpesviruses, such as pseudorabies virus (PRV), US3 phosphorylates the N6-methyladenosine (m6A) methyltransferase Wilms tumor 1-associated protein (WTAP), inhibiting m6A modification. However, the role and mechanism of US3-mediated WTAP phosphorylation during MDV infection remain undefined. Our study revealed that MDV infection in vitro does not alter WTAP expression, while significant changes in WTAP expression occur during the MDV life cycle in vivo. We demonstrated that MDV-encoded US3 interacts with and co-localizes with WTAP in the nucleus. Further analysis showed that US3 binds to WTAP's C-terminal domain and phosphorylates WTAP at S273, S305, S314, and S375. Notably, the interaction between US3 and WTAP does not affect WTAP stability but inhibits transcriptomic m6A modification and cellular protein translation. Therefore, these findings enhance our understanding of the molecular mechanisms underlying MDV infection.
Collapse
Affiliation(s)
- Lele Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenhui Zhu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lele Gong
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunzhe Kang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lijie Lv
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunyun Zhai
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangqi Qiu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| | - Aijun Sun
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China; Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Zou Y, Guo Z, Ge XY, Qiu Y. RNA Modifications in Pathogenic Viruses: Existence, Mechanism, and Impacts. Microorganisms 2024; 12:2373. [PMID: 39597761 PMCID: PMC11596894 DOI: 10.3390/microorganisms12112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
RNA modification is a key posttranscriptional process playing various biological roles, and one which has been reported to exist extensively in cellular RNAs. Interestingly, recent studies have shown that viral RNAs also contain a variety of RNA modifications, which are regulated dynamically by host modification machinery and play critical roles in different stages of the viral life cycle. In this review, we summarize the reports of four typical modifications reported on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), and N1-methyladenosine (m1A), describe the molecular mechanisms of these modification processes, and illustrate their impacts on viral replication, pathogenicity, and innate immune responses. Notably, we find that RNA modifications in different viruses share some common features and mechanisms in their generation, regulation, and function, highlighting the potential for viral RNA modifications and the related host machinery to serve as the targets or bases for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
| | | | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410012, China; (Y.Z.); (Z.G.)
| |
Collapse
|
10
|
Chen Y, Bian S, Zhang J, Luan Y, Yin B, Dai W, Wang H, Chen X, Dong Y, Cai Y, Dong R, Yu L, Shu M. HSV-1-induced N6-methyladenosine reprogramming via ICP0-mediated suppression of METTL14 potentiates oncolytic activity in glioma. Cell Rep 2024; 43:114756. [PMID: 39325621 DOI: 10.1016/j.celrep.2024.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shasha Bian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiamei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxuan Luan
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hanlin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiheng Cai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ruitao Dong
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liubing Yu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/ Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacy, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
11
|
Wang H, Feng J, Fu Z, Xu T, Liu J, Yang S, Li Y, Deng J, Zhang Y, Guo M, Wang X, Zhang Z, Huang Z, Lan K, Zhou L, Chen Y. Epitranscriptomic m 5C methylation of SARS-CoV-2 RNA regulates viral replication and the virulence of progeny viruses in the new infection. SCIENCE ADVANCES 2024; 10:eadn9519. [PMID: 39110796 PMCID: PMC11305390 DOI: 10.1126/sciadv.adn9519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
While the significance of N6-methyladenosine (m6A) in viral regulation has been extensively studied, the functions of 5-methylcytosine (m5C) modification in viral biology remain largely unexplored. In this study, we demonstrate that m5C is more abundant than m6A in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a comprehensive profile of the m5C landscape of SARS-CoV-2 RNA. Knockout of NSUN2 reduces m5C levels in SARS-CoV-2 virion RNA and enhances viral replication. Nsun2 deficiency mice exhibited higher viral burden and more severe lung tissue damages. Combined RNA-Bis-seq and m5C-MeRIP-seq identified the NSUN2-dependent m5C-methylated cytosines across the positive-sense genomic RNA of SARS-CoV-2, and the mutations of these cytosines enhance RNA stability. The progeny SARS-CoV-2 virions from Nsun2 deficiency mice with low levels of m5C modification exhibited a stronger replication ability. Overall, our findings uncover the vital role played by NSUN2-mediated m5C modification during SARS-CoV-2 replication and propose a host antiviral strategy via epitranscriptomic addition of m5C methylation to SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yingjian Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jikai Deng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yuzhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xin Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| |
Collapse
|
12
|
Horner SM, Reaves JV. Recent insights into N 6-methyladenosine during viral infection. Curr Opin Genet Dev 2024; 87:102213. [PMID: 38901100 DOI: 10.1016/j.gde.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
The RNA modification of N6-methyladenosine (m6A) controls many aspects of RNA function that impact biological processes, including viral infection. In this review, we highlight recent work that shapes our current understanding of the diverse mechanisms by which m6A can regulate viral infection by acting on viral or cellular mRNA molecules. We focus on emerging concepts and understanding, including how viral infection alters the localization and function of m6A machinery proteins, how m6A regulates antiviral innate immunity, and the multiple roles of m6A in regulating specific viral infections. We also summarize the recent studies on m6A during SARS-CoV-2 infection, focusing on points of convergence and divergence. Ultimately, this review provides a snapshot of the latest research on m6A during viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Jordan V Reaves
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Xu GE, Yu P, Hu Y, Wan W, Shen K, Cui X, Wang J, Wang T, Cui C, Chatterjee E, Li G, Cretoiu D, Sluijter JPG, Xu J, Wang L, Xiao J. Exercise training decreases lactylation and prevents myocardial ischemia-reperfusion injury by inhibiting YTHDF2. Basic Res Cardiol 2024; 119:651-671. [PMID: 38563985 DOI: 10.1007/s00395-024-01044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Exercise improves cardiac function and metabolism. Although long-term exercise leads to circulating and micro-environmental metabolic changes, the effect of exercise on protein post-translational lactylation modifications as well as its functional relevance is unclear. Here, we report that lactate can regulate cardiomyocyte changes by improving protein lactylation levels and elevating intracellular N6-methyladenosine RNA-binding protein YTHDF2. The intrinsic disorder region of YTHDF2 but not the RNA m6A-binding activity is indispensable for its regulatory function in influencing cardiomyocyte cell size changes and oxygen glucose deprivation/re-oxygenation (OGD/R)-stimulated apoptosis via upregulating Ras GTPase-activating protein-binding protein 1 (G3BP1). Downregulation of YTHDF2 is required for exercise-induced physiological cardiac hypertrophy. Moreover, myocardial YTHDF2 inhibition alleviated ischemia/reperfusion-induced acute injury and pathological remodeling. Our results here link lactate and lactylation modifications with RNA m6A reader YTHDF2 and highlight the physiological importance of this innovative post-transcriptional intrinsic regulation mechanism of cardiomyocyte responses to exercise. Decreasing lactylation or inhibiting YTHDF2/G3BP1 might represent a promising therapeutic strategy for cardiac diseases.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Pujiao Yu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai, 200135, China
| | - Yuxue Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Keting Shen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxin Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiaqi Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Caiyue Cui
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 020031, Bucharest, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062, Bucharest, Romania
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, 3508GA, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3508GA, The Netherlands
| | - Jiahong Xu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai, 200135, China.
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
14
|
Li F, Zeng C, Liu J, Wang L, Yuan X, Yuan L, Xia X, Huang W. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clin Transl Med 2024; 14:e1784. [PMID: 39135292 PMCID: PMC11319238 DOI: 10.1002/ctm2.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.
Collapse
Affiliation(s)
- Fenghe Li
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Chong Zeng
- Department of Respiratory and Critical Care MedicineThe Seventh Affiliated Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Jie Liu
- Department of PathologyThe Affiliated Changsha Central Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, School of Basic Medical Science, Central South UniversityChangshaHunanChina
| | - Xiaorui Yuan
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Yuan
- Department of Nuclear MedicineThe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaomeng Xia
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center of Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Research Center of Carcinogenesis and Targeted TherapyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
15
|
Picavet LW, van Vroonhoven ECN, Scholman RC, Smits YTH, Banerjee R, Besteman SB, Viveen MC, van der Vlist MM, Tanenbaum ME, Lebbink RJ, Vastert SJ, van Loosdregt J. m 6A Reader YTHDC1 Impairs Respiratory Syncytial Virus Infection by Downregulating Membrane CX3CR1 Expression. Viruses 2024; 16:778. [PMID: 38793659 PMCID: PMC11125786 DOI: 10.3390/v16050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the most prevalent cause of acute lower respiratory infection in young children. Currently, the first RSV vaccines are approved by the FDA. Recently, N6-methyladenosine (m6A) RNA methylation has been implicated in the regulation of the viral life cycle and replication of many viruses, including RSV. m6A methylation of RSV RNA has been demonstrated to promote replication and prevent anti-viral immune responses by the host. Whether m6A is also involved in viral entry and whether m6A can also affect RSV infection via different mechanisms than methylation of viral RNA is poorly understood. Here, we identify m6A reader YTH domain-containing protein 1 (YTHDC1) as a novel negative regulator of RSV infection. We demonstrate that YTHDC1 abrogates RSV infection by reducing the expression of RSV entry receptor CX3C motif chemokine receptor 1 (CX3CR1) on the cell surface of lung epithelial cells. Altogether, these data reveal a novel role for m6A methylation and YTHDC1 in the viral entry of RSV. These findings may contribute to the development of novel treatment options to control RSV infection.
Collapse
Affiliation(s)
- Lucas W. Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Ellen C. N. van Vroonhoven
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Rianne C. Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Yesper T. H. Smits
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Rupa Banerjee
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.T.)
- Oncode Institute, 3584 CX Utrecht, The Netherlands
| | - Sjanna B. Besteman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Mattheus C. Viveen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Michiel M. van der Vlist
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
- Oncode Institute, 3584 CX Utrecht, The Netherlands
| | - Marvin E. Tanenbaum
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.T.)
- Oncode Institute, 3584 CX Utrecht, The Netherlands
- Department of Bionanoscience, Delft University of Technology, 2600 AA Delft, The Netherlands
| | - Robert J. Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (E.C.N.v.V.); (R.C.S.); (M.C.V.); (M.M.v.d.V.); (S.J.V.)
| |
Collapse
|
16
|
Horner SM, Thompson MG. Challenges to mapping and defining m 6A function in viral RNA. RNA (NEW YORK, N.Y.) 2024; 30:482-490. [PMID: 38531643 PMCID: PMC11019751 DOI: 10.1261/rna.079959.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Viral RNA molecules contain multiple layers of regulatory information. This includes features beyond the primary sequence, such as RNA structures and RNA modifications, including N6-methyladenosine (m6A). Many recent studies have identified the presence and location of m6A in viral RNA and have found diverse regulatory roles for this modification during viral infection. However, to date, viral m6A mapping strategies have limitations that prevent a complete understanding of the function of m6A on individual viral RNA molecules. While m6A sites have been profiled on bulk RNA from many viruses, the resulting m6A maps of viral RNAs described to date present a composite picture of m6A across viral RNA molecules in the infected cell. Thus, for most viruses, it is unknown if unique viral m6A profiles exist throughout infection, nor if they regulate specific viral life cycle stages. Here, we describe several challenges to defining the function of m6A in viral RNA molecules and provide a framework for future studies to help in the understanding of how m6A regulates viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
17
|
Baquero-Pérez B, Yonchev ID, Delgado-Tejedor A, Medina R, Puig-Torrents M, Sudbery I, Begik O, Wilson SA, Novoa EM, Díez J. N 6-methyladenosine modification is not a general trait of viral RNA genomes. Nat Commun 2024; 15:1964. [PMID: 38467633 PMCID: PMC10928186 DOI: 10.1038/s41467-024-46278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of m6A in CHIKV and DENV RNAs. For this, we combine m6A-Seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we find no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery does not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection has no effect on the m6A machinery's localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivaylo D Yonchev
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Delgado-Tejedor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Puig-Torrents
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ian Sudbery
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Stuart A Wilson
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Moon JS, Lee W, Cho YH, Kim Y, Kim GW. The Significance of N6-Methyladenosine RNA Methylation in Regulating the Hepatitis B Virus Life Cycle. J Microbiol Biotechnol 2024; 34:233-239. [PMID: 37942519 PMCID: PMC10940779 DOI: 10.4014/jmb.2309.09013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation has recently emerged as a significant co-transcriptional modification involved in regulating various RNA functions. It plays a vital function in numerous biological processes. Enzymes referred to as m6A methyltransferases, such as the methyltransferaselike (METTL) 3-METTL14-Wilms tumor 1 (WT1)-associated protein (WTAP) complex, are responsible for adding m6A modifications, while m6A demethylases, including fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5), can remove m6A methylation. The functions of m6A-methylated RNA are regulated through the recognition and interaction of m6A reader proteins. Recent research has shown that m6A methylation takes place at multiple sites within hepatitis B virus (HBV) RNAs, and the location of these modifications can differentially impact the HBV infection. The addition of m6A modifications to HBV RNA can influence its stability and translation, thereby affecting viral replication and pathogenesis. Furthermore, HBV infection can also alter the m6A modification pattern of host RNA, indicating the virus's ability to manipulate host cellular processes, including m6A modification. This manipulation aids in establishing chronic infection, promoting liver disease, and contributing to pathogenesis. A comprehensive understanding of the functional roles of m6A modification during HBV infection is crucial for developing innovative approaches to combat HBV-mediated liver disease. In this review, we explore the functions of m6A modification in HBV replication and its impact on the development of liver disease.
Collapse
Affiliation(s)
- Jae-Su Moon
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wooseong Lee
- Center for Convergent Research of Emerging virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yong-Hee Cho
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Medical Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yonghyo Kim
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Geon-Woo Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
19
|
Sugiokto FG, Saiada F, Zhang K, Li R. SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication. mBio 2024; 15:e0316823. [PMID: 38236021 PMCID: PMC10865817 DOI: 10.1128/mbio.03168-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 small ubiquitin-like modifier (SUMO) ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 synergizes with wild-type YTHDF2, but not a SUMOylation-deficient mutant, to limit EBV lytic replication. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3, to restrict EBV replication. These results collectively uncover a unique mechanism whereby YTHDF family proteins control EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.IMPORTANCEm6A RNA modification pathway plays important roles in diverse cellular processes and viral life cycle. Here, we investigated the relationship between PIAS1 and the m6A reader protein YTHDF2, which is involved in regulating RNA stability by binding to m6A-modified RNA. We found that both the N-terminal and C-terminal regions of YTHDF2 interact with PIAS1. We showed that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues. We also demonstrated that PIAS1 enhances the anti-EBV activity of YTHDF2. We further revealed that PIAS1 mediates the SUMOylation of other YTHDF family members, namely, YTHDF1 and YTHDF3, to limit EBV replication. These findings together illuminate an important regulatory mechanism of YTHDF proteins in controlling viral RNA decay and EBV replication through PIAS1-mediated SUMOylation.
Collapse
Affiliation(s)
- Febri Gunawan Sugiokto
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Farjana Saiada
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Tao X, Wang G, Wei W, Su J, Chen X, Shi M, Liao Y, Qin T, Wu Y, Lu B, Liang H, Ye L, Jiang J. A bibliometric analysis of m6A methylation in viral infection from 2000 to 2022. Virol J 2024; 21:20. [PMID: 38238848 PMCID: PMC10797797 DOI: 10.1186/s12985-024-02294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation has become an active research area in viral infection, while little bibliometric analysis has been performed. In this study, we aim to visualize hotspots and trends using bibliometric analysis to provide a comprehensive and objective overview of the current research dynamics in this field. METHODS The data related to m6A methylation in viral infection were obtained through the Web of Science Core Collection form 2000 to 2022. To reduce bias, the literature search was conducted on December 1, 2022. Bibliometric and visual analyzes were performed using CiteSpace and Bibliometrix package. After screening, 319 qualified records were retrieved. RESULTS These publications mainly came from 28 countries led by China and the United States (the US), with the US ranking highest in terms of total link strength.The most common keywords were m6A, COVID-19, epitranscriptomics, METTL3, hepatitis B virus, innate immunity and human immunodeficiency virus 1. The thematic map showed that METTL3, plant viruses, cancer progression and type I interferon (IFN-I) reflected a good development trend and might become a research hotspot in the future, while post-transcriptional modification, as an emerging or declining theme, might not develop well. CONCLUSIONS In conclusion, m6A methylation in viral infection is an increasingly important topic in articles. METTL3, plant viruses, cancer progression and IFN-I may still be research hotspots and trends in the future.
Collapse
Affiliation(s)
- Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Minjuan Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yinlu Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Tongxue Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuting Wu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Beibei Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China.
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China.
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- China (Guangxi) - ASEAN Joint Laboratory of Emerging Infectious Diseases, Guangxi Medical University, Nanning, Guangxi, China.
- Biosafety Level -3 Laboratory, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
21
|
Chen Y, Wang W, Zhang W, He M, Li Y, Qu G, Tong J. Emerging roles of biological m 6A proteins in regulating virus infection: A review. Int J Biol Macromol 2023; 253:126934. [PMID: 37722640 DOI: 10.1016/j.ijbiomac.2023.126934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent chemical modifications of intracellular RNA, which recently emerging as a multifaceted effector of viral genomic RNA. As a dynamic process, three groups of biological proteins control the levels of m6A modification in eukaryocyte, designed as m6A writers, erasers, and readers. The m6A writers comprising of methyltransferases complex initiate the modification process. On the contrary, the m6A erasers ALKBH5 or FTO abolish the modification through three-step demethylation: m6A to N6-hydroxymethyl adenosine (hm6A), then hm6A to N6-methyladenosine (f6A), and finally f6A to adenosine. The known m6A readers include the YTH family and the hnRNP family. As m6A modification regulates RNA nuclear exportation, stability, and translation, m6A proteins commonly participate in virus infection by regulating viral genomic RNA synthesis. Moreover, m6A proteins establish molecular linkages between virus genome/viral encode proteins and host cells proteins via their multifunctional roles in cellular RNA metabolism. The m6A writers and erasers directly impact interferon expression and macrophage innate immune responses, facilitating them to act as anti-/pro-viral factors. The m6A readers enable to alter cell metabolism and stress granules (SGs) production to regulate virus-host interactions. Here, the latest progress of m6A proteins in regulating viral infection is reviewed. Demonstrating the roles of m6A proteins will enhance the understanding of epigenetic regulation of virus infection and stimulate the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yuran Chen
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjing Wang
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Mei He
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an 271000, China.
| | - Guosheng Qu
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jie Tong
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
22
|
Li XH, Chen J, Ou YD, Zhong X, Hu JH, Sun RC, Lv YJ, Wei JC, Go YY, Zhou B. m 6A modification associated with YTHDF1 is involved in Japanese encephalitis virus infection. Vet Microbiol 2023; 287:109887. [PMID: 37925877 DOI: 10.1016/j.vetmic.2023.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
N6-methyladenosine (m6A), the most common modification in mammalian mRNA and viral RNA, regulates mRNA structure, stability, translation, and nuclear export. The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus causing severe neurologic disease in humans. To date, the role of m6A modification in JEV infection remains unclear. Herein, we aimed to determine the impact of m6A methylation modification on JEV replication in vitro and in vivo. Our results demonstrated that the overexpression of the m6A reader protein YTHDF1 in vitro significantly inhibits JEV proliferation. Additionally, YTHDF1 negatively regulates JEV proliferation in YTHDF1 knockdown cells and YTHDF1 knockout mice. MeRIP-seq analysis indicated that YTHDF1 interacts with several interferon-stimulated genes (ISGs), especially in IFIT3. Overall, our data showed that YTHDF1 played a vital role in inhibiting JEV replication. These findings bring novel insights into the specific mechanisms involved in the innate immune response to infection with JEV. They can be used in the development of novel therapeutics for controlling JEV infection.
Collapse
Affiliation(s)
- Xiao-Han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu-da Ou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-Cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying-Jun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jian-Chao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Feng J, Xu T, He M, Li J, Yao P, Ma C, Yang S, Xu Z, Yan K, Chen X, Wang H, Liu J, Zeng C, Xia Y, Yan H, Zhou L, Chen Y. NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication. PLoS Pathog 2023; 19:e1011808. [PMID: 38048324 PMCID: PMC10721180 DOI: 10.1371/journal.ppat.1011808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and liver cancer, despite strong prevention and treatment efforts. The study of the epigenetic modification of HBV has become a research hotspot, including the N6-methyladenosine (m6A) modification of HBV RNA, which plays complex roles in the HBV life cycle. In addition to m6A modification, 5-methylcytosine (m5C) is another major modification of eukaryotic mRNA. In this study, we explored the roles of m5C methyltransferase and demethyltransferase in the HBV life cycle. The results showed that m5C methyltransferase NSUN2 deficiency could negatively regulate the expression of HBV while m5C demethyltransferase TET2 deficiency positively regulates the expression of HBV. Subsequently, we combined both in vitro bisulfite sequencing and high-throughput bisulfite sequencing methods to determine the distribution and stoichiometry of m5C modification in HBV RNA. Two sites: C2017 and C131 with the highest-ranking methylation rates were identified, and mutations at these two sites could lead to the decreased expression and replication of HBV, while the mutation of the "fake" m5C site had no effect. Mechanistically, NSUN2-mediated m5C modification promotes the stability of HBV RNA. In addition, compared with wild-type HepG2-NTCP cells and primary human hepatocytes, the replication level of HBV after NSUN2 knockdown decreased, and the ability of the mutant virus to infect and replicate in wild-type HepG2-NTCP cells and PHHs was substantially impaired. Similar results were found in the experiments using C57BL/6JGpt-Nsun2+/- mice. Interestingly, we also found that HBV expression and core protein promoted the endogenous expression of NSUN2, which implied a positive feedback loop. In summary, our study provides an accurate and high-resolution m5C profile of HBV RNA and reveals that NSUN2-mediated m5C modification of HBV RNA positively regulates HBV replication by maintaining RNA stability.
Collapse
Affiliation(s)
- Jiangpeng Feng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Tianmo Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| | - Miao He
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiali Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peipei Yao
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Chengbao Ma
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zaichao Xu
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Kun Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Cong Zeng
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuchen Xia
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
- Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
24
|
Yu Y, Liang C, Wang X, Shi Y, Shen L. The potential role of RNA modification in skin diseases, as well as the recent advances in its detection methods and therapeutic agents. Biomed Pharmacother 2023; 167:115524. [PMID: 37722194 DOI: 10.1016/j.biopha.2023.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
RNA modification is considered as an epigenetic modification that plays an indispensable role in biological processes such as gene expression and genome editing without altering nucleotide sequence, but the molecular mechanism of RNA modification has not been discussed systematically in the development of skin diseases. This article mainly presents the whole picture of theoretical achievements on the potential role of RNA modification in dermatology. Furthermore, this article summarizes the latest advances in clinical practice related with RNA modification, including its detection methods and drug development. Based on this comprehensive review, we aim to illustrate the current blind spots and future directions of RNA modification, which may provide new insights for researchers in this field.
Collapse
Affiliation(s)
- Yue Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chen Liang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.
| | - Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
25
|
Zeng Z, Lan Y, Zhang L, Chen Y, Gong Y, Zuo F, Li J, Luo G, Peng Y, Yuan Z. The m6A reader YTHDF2 alleviates the inflammatory response by inhibiting IL-6R/JAK2/STAT1 pathway-mediated high-mobility group box-1 release. BURNS & TRAUMA 2023; 11:tkad023. [PMID: 38026444 PMCID: PMC10650363 DOI: 10.1093/burnst/tkad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Indexed: 12/01/2023]
Abstract
Background Sepsis is a common severe complication in major burn victims and is characterized by a dysregulated systemic response to inflammation. YTH domain family 2 (YTHDF2), a well-studied N6-methyladenosine (m6A) reader that specifically recognizes and binds to m6A-modified transcripts to mediate their degradation, is connected to pathogenic and physiological processes in eukaryotes, but its effect on sepsis is still unknown. We aimed to discover the effects and mechanisms of YTHDF2 in sepsis. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot analyses were used to measure the expression of YTHDF2, the interleukin 6 receptor (IL-6R), high-mobility group box-1 (HMGB1), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 1 (STAT1) under different in vitro conditions. Enzyme-linked immunosorbent assays were utilized to evaluate the expression of HMGB1, IL-6, IL-1β and tumor necrosis factor-α. To confirm that YTHDF2 specifically targets IL-6R mRNA, RNA immunoprecipitation and dual-luciferase reporter assays were performed. Finally, we utilized a mouse model of lipopolysaccharide (LPS)-induced sepsis to verify the effects of YTHDF2 in vivo. Results According to our findings, YTHDF2 was expressed at a low level in peripheral blood mononuclear cells from septic mice and patients as well as in LPS-induced RAW264.7 cells. Overexpression of YTHDF2 alleviated the inflammatory response by inhibiting HMGB1 release and JAK2/STAT1 signalling in LPS-stimulated cells. Mechanistically, YTHDF2 suppressed JAK2/STAT1 signalling by directly recognizing the m6A-modified site in IL-6R and decreasing the stability of IL-6R mRNA, thereby inhibiting HMGB1 release. In vivo experiments showed that YTHDF2 played a protective role in septic mice by suppressing the IL-6R/JAK2/STAT1/HMGB1 axis. Conclusions In summary, these findings demonstrate that YTHDF2 plays an essential role as an inhibitor of inflammation to reduce the release of HMGB1 by inhibiting the IL-6R/JAK2/STAT1 pathway, indicating that YTHDF2 is a novel target for therapeutic interventions in sepsis.
Collapse
Affiliation(s)
- Zhuo Zeng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yingying Lan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lijuan Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yu Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fangqing Zuo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junda Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhiqiang Yuan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
26
|
Zhang X, Peng Q, Wang L. N 6-methyladenosine modification-a key player in viral infection. Cell Mol Biol Lett 2023; 28:78. [PMID: 37828480 PMCID: PMC10571408 DOI: 10.1186/s11658-023-00490-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a dynamic, reversible process and is the most prevalent internal modification of RNA. This modification is regulated by three protein groups: methyltransferases ("writers"), demethylases ("erasers"), and m6A-binding proteins ("readers"). m6A modification and related enzymes could represent an optimal strategy to deepen the epigenetic mechanism. Numerous reports have suggested that aberrant modifications of m6A lead to aberrant expression of important viral genes. Here, we review the role of m6A modifications in viral replication and virus-host interactions. In particular, we focus on DNA and RNA viruses associated with human diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus (HIV)-1, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus (KSHV). These findings will contribute to the understanding of the mechanisms of virus-host interactions and the design of future therapeutic targets for treatment of tumors associated with viral infections.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
27
|
Yan Q, Zhou J, Wang Z, Ding X, Ma X, Li W, Jia X, Gao SJ, Lu C. NAT10-dependent N 4-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation. Nat Commun 2023; 14:6327. [PMID: 37816771 PMCID: PMC10564894 DOI: 10.1038/s41467-023-42135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
N-acetyltransferase 10 (NAT10) is an N4-acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.
Collapse
Affiliation(s)
- Qin Yan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Ziyu Wang
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Xiangya Ding
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China
| | - Xinyue Ma
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China.
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China.
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China.
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China.
| |
Collapse
|
28
|
Zhang X, Meng W, Feng J, Gao X, Qin C, Feng P, Huang Y, Gao SJ. METTL16 controls Kaposi's sarcoma-associated herpesvirus replication by regulating S-adenosylmethionine cycle. Cell Death Dis 2023; 14:591. [PMID: 37673880 PMCID: PMC10482891 DOI: 10.1038/s41419-023-06121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases, both of which are important for the development of KSHV-related cancers. As one of the most abundant RNA modifications, N6-methyladenosine (m6A) and its related complexes regulate KSHV life cycle. However, the role of METTL16, a newly discovered RNA methyltransferase, in KSHV life cycle remains unknown. In this study, we have identified a suppressive role of METTL16 in KSHV lytic replication. METTL16 knockdown increased while METTL16 overexpression reduced KSHV lytic replication. METTL16 binding to and writing of m6A on MAT2A transcript are essential for its splicing, maturation and expression. As a rate-limiting enzyme in the methionine-S-adenosylmethionine (SAM) cycle, MAT2A catalyzes the conversion of L-methionine to SAM required for the transmethylation of protein, DNA and RNA, transamination of polyamines, and transsulfuration of cystathionine. Consequently, knockdown or chemical inhibition of MAT2A reduced intracellular SAM level and enhanced KSHV lytic replication. In contrast, SAM treatment was sufficient to inhibit KSHV lytic replication and reverse the effect of the enhanced KSHV lytic program caused by METTL16 or MAT2A knockdown. Mechanistically, METTL16 or MAT2A knockdown increased while SAM treatment decreased the intracellular reactive oxygen species level by altering glutathione level, which is essential for efficient KSHV lytic replication. These findings demonstrate that METTL16 suppresses KSHV lytic replication by modulating the SAM cycle to maintain intracellular SAM level and redox homeostasis, thus illustrating the linkage of KSHV life cycle with specific m6A modifications, and cellular metabolic and oxidative conditions.
Collapse
Affiliation(s)
- Xinquan Zhang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wen Meng
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jian Feng
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xinghong Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Huo FC, Zhu ZM, Du WQ, Pan YJ, Jiang X, Kang MJ, Liu BW, Mou J, Pei DS. HPV E7-drived ALKBH5 promotes cervical cancer progression by modulating m6A modification of PAK5. Pharmacol Res 2023; 195:106863. [PMID: 37480971 DOI: 10.1016/j.phrs.2023.106863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Human papillomavirus (HPV) infection is a causative agent of cervical cancer (CC). N6-methyladenosine (m6A) modification is implicated in carcinogenesis and tumor progression. However, the involvement of m6A modification in HPV-involved CC remains unclear. Here we showed that HPV E6/7 oncoproteins affected the global m6A modification and E7 specifically promoted the expression of ALKBH5. We found that ALKBH5 was significantly upregulated in CC and might serve as a valuable prognostic marker. Forced expression of ALKBH5 enhanced the malignant phenotypes of CC cells. Mechanistically, we discovered that E7 increased ALKBH5 expression through E2F1-mediated activation of the H3K27Ac and H3K4Me3 histone modifications, as well as post-translational modification mediated by DDX3. ALKBH5-mediated m6A demethylation enhanced the expression of PAK5. The m6A reader YTHDF2 bound to PAK5 mRNA and regulated its stability in an m6A-dependent manner. Moreover, ALKBH5 promoted tumorigenesis and metastasis of CC by regulating PAK5. Overall, our findings herein demonstrate a significant role of ALKBH5 in CC progression in HPV-positive cells. Thus, we propose that ALKBH5 may serve as a prognostic biomarker and therapeutic target for CC patients.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Yao-Jie Pan
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Xin Jiang
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Meng-Jie Kang
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Bo-Wen Liu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China.
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
30
|
Yao L, Zhang W, Chen X, Yi M, Jia K. Methyltransferase-like 3 suppresses red spotted grouper nervous necrosis virus and viral hemorrhagic septicemia virus infection by enhancing type I interferon responses in sea perch. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108993. [PMID: 37573969 DOI: 10.1016/j.fsi.2023.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Methylation at the N6 position of adenosine (m6A) is the most abundant internal mRNA modification in eukaryotes, tightly associating with regulation of viral life circles and immune responses. Here, a methyltransferase-like 3 homolog gene from sea perch (Lateolabrax japonicus), designated LjMETTL3, was cloned and characterized, and its negative role in fish virus pathogenesis was uncovered. The cDNA of LjMETTL3 encoded a 601-amino acid protein with a MT-A70 domain, which shared the closest genetic relationship with Echeneis naucrates METTL3. Spatial expression analysis revealed that LjMETTL3 was more abundant in the immune tissues of sea perch post red spotted grouper nervous necrosis virus (RGNNV) or viral hemorrhagic septicemia virus (VHSV) infection. LjMETTL3 expression was significantly upregulated at 12 and 24 h post RGNNV and VHSV infection in vitro. In addition, ectopic expression of LjMETTL3 inhibited RGNNV and VHSV infection in LJB cells at 12 and 24 h post infection, whereas knockdown of LjMETTL3 led to opposite effects. Furthermore, we found that LjMETTL3 may participate in boosting the type I interferon responses by interacting with TANK-binding kinase. Taken together, these results disclosed the antiviral role of fish METTL3 against RGNNV and VHSV and provided evidence for understanding the potential mechanisms of fish METTL3 in antiviral innate immunity.
Collapse
Affiliation(s)
- Lan Yao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China
| | - Xiaoqi Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510000, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
31
|
Jansens RJ, Olarerin-George A, Verhamme R, Mirza A, Jaffrey S, Favoreel HW. Alphaherpesvirus-mediated remodeling of the cellular transcriptome results in depletion of m6A-containing transcripts. iScience 2023; 26:107310. [PMID: 37575180 PMCID: PMC10415716 DOI: 10.1016/j.isci.2023.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The mechanisms by which viruses regulate host mRNAs during infection are still poorly understood. Several host transcripts that encode proteins that contribute to the anti-viral response contain the N6-methyladenosine nucleotide (m6A). In this study, we investigated if and how viruses from different (sub) families specifically affect m6A-containing host transcripts. Systematic analysis of host transcriptomes after infection with diverse types of viruses showed that m6A-methylated transcripts are selectively downregulated during infection with Sendai virus, African swine fever virus and the alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). Focusing on PRV and HSV-1, we found that downregulation of m6A-methylated transcripts depends on the YTHDF family of m6A-binding proteins, and correlates with localization of these proteins to enlarged P-bodies. Knockdown of YTHDF proteins in primary cells reduced PRV protein expression and increased expression of antiviral interferon-stimulated genes, suggesting that virus-induced depletion of host m6A-containing transcripts constitutes an immune evasion strategy.
Collapse
Affiliation(s)
- Robert J.J. Jansens
- Department of Translational Physiology, Infectiology and Public Health
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Anthony Olarerin-George
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Ruth Verhamme
- Department of Translational Physiology, Infectiology and Public Health
| | - Aashiq Mirza
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | - Samie Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York NY 10021, USA
| | | |
Collapse
|
32
|
Sugiokto FG, Saiada F, Zhang K, Li R. SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552509. [PMID: 37609256 PMCID: PMC10441406 DOI: 10.1101/2023.08.08.552509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
YTHDF2 is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 SUMO ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 enhances the antiviral activity of YTHDF2, and SUMOylation-deficient YTHDF2 shows reduced anti-EBV activity. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3. These results collectively uncover a unique mechanism whereby YTHDF2 controls EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.
Collapse
Affiliation(s)
- Febri Gunawan Sugiokto
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Farjana Saiada
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
33
|
Wang Y, Zhou X. N 6-methyladenosine and Its Implications in Viruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:695-706. [PMID: 35835441 PMCID: PMC10787122 DOI: 10.1016/j.gpb.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
N6-methyladenine (m6A) is the most abundant RNA modification in mammalian messenger RNAs (mRNAs), which participates in and regulates many important biological activities, such as tissue development and stem cell differentiation. Due to an improved understanding of m6A, researchers have discovered that the biological function of m6A can be linked to many stages of mRNA metabolism and that m6A can regulate a variety of complex biological processes. In addition to its location on mammalian mRNAs, m6A has been identified on viral transcripts. m6A also plays important roles in the life cycle of many viruses and in viral replication in host cells. In this review, we briefly introduce the detection methods of m6A, the m6A-related proteins, and the functions of m6A. We also summarize the effects of m6A-related proteins on viral replication and infection. We hope that this review provides researchers with some insights for elucidating the complex mechanisms of the epitranscriptome related to viruses, and provides information for further study of the mechanisms of other modified nucleobases acting on processes such as viral replication. We also anticipate that this review can stimulate collaborative research from different fields, such as chemistry, biology, and medicine, and promote the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
34
|
Ribeiro DR, Nunes A, Ribeiro D, Soares AR. The hidden RNA code: implications of the RNA epitranscriptome in the context of viral infections. Front Genet 2023; 14:1245683. [PMID: 37614818 PMCID: PMC10443596 DOI: 10.3389/fgene.2023.1245683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Emerging evidence highlights the multifaceted roles of the RNA epitranscriptome during viral infections. By modulating the modification landscape of viral and host RNAs, viruses enhance their propagation and elude host surveillance mechanisms. Here, we discuss how specific RNA modifications, in either host or viral RNA molecules, impact the virus-life cycle and host antiviral responses, highlighting the potential of targeting the RNA epitranscriptome for novel antiviral therapies.
Collapse
|
35
|
Wang L, Dou X, Chen S, Yu X, Huang X, Zhang L, Chen Y, Wang J, Yang K, Bugno J, Pitroda S, Ding X, Piffko A, Si W, Chen C, Jiang H, Zhou B, Chmura SJ, Luo C, Liang HL, He C, Weichselbaum RR. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell 2023; 41:1294-1308.e8. [PMID: 37236197 PMCID: PMC10524856 DOI: 10.1016/j.ccell.2023.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/23/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
RNA N6-methyladenosine (m6A) modification is implicated in cancer progression. However, the impact of m6A on the antitumor effects of radiotherapy and the related mechanisms are unknown. Here we show that ionizing radiation (IR) induces immunosuppressive myeloid-derived suppressor cell (MDSC) expansion and YTHDF2 expression in both murine models and humans. Following IR, loss of Ythdf2 in myeloid cells augments antitumor immunity and overcomes tumor radioresistance by altering MDSC differentiation and inhibiting MDSC infiltration and suppressive function. The remodeling of the landscape of MDSC populations by local IR is reversed by Ythdf2 deficiency. IR-induced YTHDF2 expression relies on NF-κB signaling; YTHDF2 in turn leads to NF-κB activation by directly binding and degrading transcripts encoding negative regulators of NF-κB signaling, resulting in an IR-YTHDF2-NF-κB circuit. Pharmacological inhibition of YTHDF2 overcomes MDSC-induced immunosuppression and improves combined IR and/or anti-PD-L1 treatment. Thus, YTHDF2 is a promising target to improve radiotherapy (RT) and RT/immunotherapy combinations.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Shijie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Linda Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yantao Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiaai Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA; The Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 600637, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Xingchen Ding
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Andras Piffko
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA; Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Wei Si
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China.
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges. Biochem Pharmacol 2023; 213:115628. [PMID: 37247745 DOI: 10.1016/j.bcp.2023.115628] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The oldest known highly conserved modification of RNA, N4-acetylcytidine, is widely distributed from archaea to eukaryotes and acts as a posttranscriptional chemical modification of RNA, contributing to the correct reading of specific nucleotide sequences during translation, stabilising mRNA and improving transcription efficiency. Yeast Kre33 and human NAT10, the only known authors of ac4C, modify tRNA with the help of the Tan1/THUMPD1 adapter to stabilise its structure. Currently, the mRNA for N4-acetylcytidine (ac4C), catalysed by NAT10 (N-acetyltransferase 10), has been implicated in a variety of human diseases, particularly cancer. This article reviews advances in the study of ac4C modification of RNA and the ac4C-related gene NAT10 in normal physiological cell development, cancer, premature disease and viral infection and discusses its therapeutic promise and future research challenges.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingsong Cao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang 421001, China
| | - Cong Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
37
|
Zhang H, Sandhu PK, Damania B. The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections. Cells 2023; 12:1650. [PMID: 37371120 PMCID: PMC10297173 DOI: 10.3390/cells12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and the Epstein-Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
|
38
|
Manners O, Baquero-Perez B, Mottram TJ, Yonchev ID, Trevelyan CJ, Harper KL, Menezes S, Patterson MR, Macdonald A, Wilson SA, Aspden JL, Whitehouse A. m 6A Regulates the Stability of Cellular Transcripts Required for Efficient KSHV Lytic Replication. Viruses 2023; 15:1381. [PMID: 37376680 DOI: 10.3390/v15061381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The epitranscriptomic modification N6-methyladenosine (m6A) is a ubiquitous feature of the mammalian transcriptome. It modulates mRNA fate and dynamics to exert regulatory control over numerous cellular processes and disease pathways, including viral infection. Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation from the latent phase leads to the redistribution of m6A topology upon both viral and cellular mRNAs within infected cells. Here we investigate the role of m6A in cellular transcripts upregulated during KSHV lytic replication. Our results show that m6A is crucial for the stability of the GPRC5A mRNA, whose expression is induced by the KSHV latent-lytic switch master regulator, the replication and transcription activator (RTA) protein. Moreover, we demonstrate that GPRC5A is essential for efficient KSHV lytic replication by directly regulating NFκB signalling. Overall, this work highlights the central importance of m6A in modulating cellular gene expression to influence viral infection.
Collapse
Affiliation(s)
- Oliver Manners
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Belinda Baquero-Perez
- Molecular Virology Unit, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Timothy J Mottram
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ivaylo D Yonchev
- Sheffield Institute for Nucleic Acids, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Christopher J Trevelyan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine L Harper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Menezes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stuart A Wilson
- Sheffield Institute for Nucleic Acids, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- LeedsOmics, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
39
|
Li C, Zhu M, Wang J, Wu H, Liu Y, Huang D. Role of m6A modification in immune microenvironment of digestive system tumors. Biomed Pharmacother 2023; 164:114953. [PMID: 37269812 DOI: 10.1016/j.biopha.2023.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Digestive system tumors are huge health problem worldwide, largely attributable to poor dietary choices. The role of RNA modifications in cancer development is an emerging field of research. RNA modifications are associated with the growth and development of various immune cells, which, in turn, regulate the immune response. The majority of RNA modifications are methylation modifications, and the most common type is the N6-methyladenosine (m6A) modification. Here, we reviewed the molecular mechanism of m6A in the immune cells and the role of m6A in the digestive system tumors. However, further studies are required to better understand the role of RNA methylation in human cancers for designing diagnostic and treatment strategies and predicting the prognosis of patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Mengqi Zhu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Jiajia Wang
- Department of Health Management, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Hengshuang Wu
- Department of Gynecological Pelvis Floor Reconstruction Ward, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Yameng Liu
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China.
| |
Collapse
|
40
|
Yang D, Zhao G, Zhang HM. m 6A reader proteins: the executive factors in modulating viral replication and host immune response. Front Cell Infect Microbiol 2023; 13:1151069. [PMID: 37325513 PMCID: PMC10266107 DOI: 10.3389/fcimb.2023.1151069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is the most abundant covalent modification of RNA. It is a reversible and dynamic process induced by various cellular stresses including viral infection. Many m6A methylations have been discovered, including on the genome of RNA viruses and on RNA transcripts of DNA viruses, and these methylations play a positive or negative role on the viral life cycle depending on the viral species. The m6A machinery, including the writer, eraser, and reader proteins, achieves its gene regulatory role by functioning in an orchestrated manner. Notably, data suggest that the biological effects of m6A on target mRNAs predominantly depend on the recognition and binding of different m6A readers. These readers include, but are not limited to, the YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs), and many others discovered recently. Indeed, m6A readers have been recognized not only as regulators of RNA metabolism but also as participants in a variety of biological processes, although some of these reported roles are still controversial. Here, we will summarize the recent advances in the discovery, classification, and functional characterization of m6A reader proteins, particularly focusing on their roles and mechanisms of action in RNA metabolism, gene expression, and viral replication. In addition, we also briefly discuss the m6A-associated host immune responses in viral infection.
Collapse
Affiliation(s)
- Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
41
|
Zhu Y, Wang R, Zou J, Tian S, Yu L, Zhou Y, Ran Y, Jin M, Chen H, Zhou H. N6-methyladenosine reader protein YTHDC1 regulates influenza A virus NS segment splicing and replication. PLoS Pathog 2023; 19:e1011305. [PMID: 37053288 PMCID: PMC10146569 DOI: 10.1371/journal.ppat.1011305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
N6-methyladenosine (m6A) modification on viral RNAs has a profound impact on infectivity. m6A is also a highly pervasive modification for influenza viral RNAs. However, its role in virus mRNA splicing is largely unknown. Here, we identify the m6A reader protein YTHDC1 as a host factor that associates with influenza A virus NS1 protein and modulates viral mRNA splicing. YTHDC1 levels are enhanced by IAV infection. We demonstrate that YTHDC1 inhibits NS splicing by binding to an NS 3' splicing site and promotes IAV replication and pathogenicity in vitro and in vivo. Our results provide a mechanistic understanding of IAV-host interactions, a potential therapeutic target for blocking influenza virus infection, and a new avenue for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Luyao Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanbao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ying Ran
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
42
|
Hesser CR, Walsh D. YTHDF2 Is Downregulated in Response to Host Shutoff Induced by DNA Virus Infection and Regulates Interferon-Stimulated Gene Expression. J Virol 2023; 97:e0175822. [PMID: 36916936 PMCID: PMC10062140 DOI: 10.1128/jvi.01758-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Recent studies have begun to reveal the complex and multifunctional roles of N6-methyladenosine (m6A) modifications and their associated writer, reader, and eraser proteins in infection by diverse RNA and DNA viruses. However, little is known about their regulation and functions during infection by several viruses, including poxviruses. Here, we show that members of the YTH Domain Family (YTHDF), in particular YTHDF2, are downregulated as the prototypical poxvirus, vaccinia virus (VacV) enters later stages of replication in a variety of natural target cell types, but not in commonly used transformed cell lines wherein the control of YTHDF2 expression appears to be dysregulated. YTHDF proteins also decreased at late stages of infection by herpes simplex virus 1 (HSV-1) but not human cytomegalovirus, suggesting that YTHDF2 is downregulated in response to infections that induce host shutoff. In line with this idea, YTHDF2 was potently downregulated upon infection with a VacV mutant expressing catalytically inactive forms of the decapping enzymes, D9 and D10, which fails to degrade dsRNA and induces a protein kinase R response that itself inhibits protein synthesis. Overexpression and RNAi-mediated depletion approaches further demonstrate that YTHDF2 does not directly affect VacV replication. Instead, experimental downregulation of YTHDF2 or the related family member, YTHDF1, induces a potent increase in interferon-stimulated gene expression and establishes an antiviral state that suppresses infection by either VacV or HSV-1. Combined, our data suggest that YTHDF2 is destabilized in response to infection-induced host shutoff and serves to augment host antiviral responses. IMPORTANCE There is increasing recognition of the importance of N6-methyladenosine (m6A) modifications to both viral and host mRNAs and the complex roles this modification plays in determining the fate of infection by diverse RNA and DNA viruses. However, in many instances, the functional contributions and importance of specific m6A writer, reader, and eraser proteins remains unknown. Here, we show that natural target cells but not transformed cell lines downregulate the YTH Domain Family (YTHDF) of m6A reader proteins, in particular YTHDF2, in response to shutoff of protein synthesis upon infection with the large DNA viruses, vaccinia virus (VacV), or herpes simplex virus type 1. We further reveal that YTHDF2 downregulation also occurs as part of the host protein kinase R response to a VacV shutoff mutant and that this downregulation of YTHDF family members functions to enhance interferon-stimulated gene expression to create an antiviral state.
Collapse
Affiliation(s)
- Charles R. Hesser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
43
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
44
|
Wang S, Li H, Lian Z, Deng S. The Role of m 6A Modifications in B-Cell Development and B-Cell-Related Diseases. Int J Mol Sci 2023; 24:4721. [PMID: 36902149 PMCID: PMC10003095 DOI: 10.3390/ijms24054721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
B cells are a class of professional antigen-presenting cells that produce antibodies to mediate humoral immune response and participate in immune regulation. m6A modification is the most common RNA modification in mRNA; it involves almost all aspects of RNA metabolism and can affect RNA splicing, translation, stability, etc. This review focuses on the B-cell maturation process as well as the role of three m6A modification-related regulators-writer, eraser, and reader-in B-cell development and B-cell-related diseases. The identification of genes and modifiers that contribute to immune deficiency may shed light on regulatory requirements for normal B-cell development and the underlying mechanism of some common diseases.
Collapse
Affiliation(s)
- Shuqi Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huanxiang Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
45
|
Kisan A, Chhabra R. Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. J Cell Physiol 2023; 238:5-31. [PMID: 36326110 DOI: 10.1002/jcp.30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The advent of high throughput techniques in the past decade has significantly advanced the field of epitranscriptomics. The internal chemical modification of the target RNA at a specific site is a basic feature of epitranscriptomics and is critical for its structural stability and functional property. More than 170 modifications at the transcriptomic level have been reported so far, among which m6A methylation is one of the more conserved internal RNA modifications, abundantly found in eukaryotic mRNAs and frequently involved in enhancing the target messenger RNA's (mRNA) stability and translation. m6A modification of mRNAs is essential for multiple physiological processes including stem cell differentiation, nervous system development and gametogenesis. Any aberration in the m6A modification can often result in a pathological condition. The deregulation of m6A methylation has already been described in inflammation, viral infection, cardiovascular diseases and cancer. The m6A modification is reversible in nature and is carried out by specialized m6A proteins including writers (m6A methyltransferases) that add methyl groups and erasers (m6A demethylases) that remove methyl groups selectively. The fate of m6A-modified mRNA is heavily reliant on the various m6A-binding proteins ("readers") which recognize and generate a functional signal from m6A-modified mRNA. In this review, we discuss the role of a family of reader proteins, "YT521-B homology domain containing family" (YTHDF) proteins, in human physiology and pathology. In addition, we critically evaluate the potential of YTHDF proteins as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Aju Kisan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
46
|
Zhuang G, Zhao X, Jin J, Zhu X, Wang R, Zhai Y, Lu W, Liao Y, Teng M, Yao Y, Nair V, Yao W, Sun A, Luo J, Zhang G. Infection phase-dependent dynamics of the viral and host N6-methyladenosine epitranscriptome in the lifecycle of an oncogenic virus in vivo. J Med Virol 2023; 95:e28324. [PMID: 36401345 DOI: 10.1002/jmv.28324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Dynamic alteration of the epitranscriptome exerts regulatory effects on the lifecycle of oncogenic viruses in vitro. However, little is known about these effects in vivo because of the general lack of suitable animal infection models of these viruses. Using a model of rapid-onset Marek's disease lymphoma in chickens, we investigated changes in viral and host messenger RNA (mRNA) N6-methyladenosine (m6 A) modification during Marek's disease virus (MDV) infection in vivo. We found that the expression of major epitranscriptomic proteins varies among viral infection phases, reprogramming both the viral and the host epitranscriptomes. Specifically, the methyltransferase-like 3 (METTL3)/14 complex was suppressed during the lytic and reactivation phases of the MDV lifecycle, whereas its expression was increased during the latent phase and in MDV-induced tumors. METTL3/14 overexpression inhibits, whereas METTL3/14 knockdown enhances, MDV gene expression and replication. These findings reveal the dynamic features of the mRNA m6 A modification program during viral replication in vivo, especially in relation to key pathways involved in tumorigenesis.
Collapse
Affiliation(s)
- Guoqing Zhuang
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuyang Zhao
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiaxin Jin
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaojing Zhu
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Rui Wang
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yunyun Zhai
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenlong Lu
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongxiu Yao
- Viral Oncogenesis Group & UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Surrey, UK
| | - Venugopal Nair
- Viral Oncogenesis Group & UK-China Centre of Excellence for Research on Avian Diseases, The Pirbright Institute, Surrey, UK
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Aijun Sun
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Department of Preventive Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China.,Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.,UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Li H, Guo Y, Qi W, Liao M. N 6-methyladenosine modification of viral RNA and its role during the recognition process of RIG-I-like receptors. Front Immunol 2022; 13:1031200. [PMID: 36582239 PMCID: PMC9792670 DOI: 10.3389/fimmu.2022.1031200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA chemical modification in eukaryotes and is also found in the RNAs of many viruses. In recent years, m6A RNA modification has been reported to have a role not only in the replication of numerous viruses but also in the innate immune escape process. In this review, we describe the viruses that contain m6A in their genomes or messenger RNAs (mRNAs), and summarize the effects of m6A on the replication of different viruses. We also discuss how m6A modification helps viral RNAs escape recognition by exogenous RNA sensors, such as retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), during viral invasion. Overall, the goal of our review is to summarize how m6A regulates viral replication and facilitates innate immune escape. Furthermore, we elaborate on the potential of m6A as a novel antiviral target.
Collapse
Affiliation(s)
- Huanan Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yang Guo
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,*Correspondence: Wenbao Qi, ; Ming Liao,
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory (Guangzhou), South China Agricultural University, Guangzhou, China,Key Laboratory of Zoonosis, Ministry of Agriculture and Rural Affairs, Guangzhou, China,National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, China,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Academy of Agricultural Sciences, Guangzhou, China,*Correspondence: Wenbao Qi, ; Ming Liao,
| |
Collapse
|
48
|
Shi X, Ni H, Wu Y, Guo M, Wang B, Zhang Y, Zhang B, Xu Y. Diagnostic signature, subtype classification, and immune infiltration of key m6A regulators in osteomyelitis patients. Front Genet 2022; 13:1044264. [PMID: 36544487 PMCID: PMC9760713 DOI: 10.3389/fgene.2022.1044264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background: As a recurrent inflammatory bone disease, the treatment of osteomyelitis is always a tricky problem in orthopaedics. N6-methyladenosine (m6A) regulators play significant roles in immune and inflammatory responses. Nevertheless, the function of m6A modification in osteomyelitis remains unclear. Methods: Based on the key m6A regulators selected by the GSE16129 dataset, a nomogram model was established to predict the incidence of osteomyelitis by using the random forest (RF) method. Through unsupervised clustering, osteomyelitis patients were divided into two m6A subtypes, and the immune infiltration of these subtypes was further evaluated. Validating the accuracy of the diagnostic model for osteomyelitis and the consistency of clustering based on the GSE30119 dataset. Results: 3 writers of Methyltransferase-like 3 (METTL3), RNA-binding motif protein 15B (RBM15B) and Casitas B-lineage proto-oncogene like 1 (CBLL1) and three readers of YT521-B homology domain-containing protein 1 (YTHDC1), YT521-B homology domain-containing family 3 (YTHDF2) and Leucine-rich PPR motif-containing protein (LRPPRC) were identified by difference analysis, and their Mean Decrease Gini (MDG) scores were all greater than 10. Based on these 6 significant m6A regulators, a nomogram model was developed to predict the incidence of osteomyelitis, and the fitting curve indicated a high degree of fit in both the test and validation groups. Two m6A subtypes (cluster A and cluster B) were identified by the unsupervised clustering method, and there were significant differences in m6A scores and the abundance of immune infiltration between the two m6A subtypes. Among them, two m6A regulators (METTL3 and LRPPRC) were closely related to immune infiltration in patients with osteomyelitis. Conclusion: m6A regulators play key roles in the molecular subtypes and immune response of osteomyelitis, which may provide assistance for personalized immunotherapy in patients with osteomyelitis.
Collapse
Affiliation(s)
- Xiangwen Shi
- School of Medicine, Kunming Medical University, Kunming, China
| | - Haonan Ni
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yipeng Wu
- School of Medicine, Kunming Medical University, Kunming, China,Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,Laboratory of Clinical Medical Center, Yunnan Traumatology and Orthopedics, Kunming, China
| | - Minzheng Guo
- School of Medicine, Kunming Medical University, Kunming, China
| | - Bin Wang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yue Zhang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Bihuan Zhang
- School of Medicine, Kunming Medical University, Kunming, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,Laboratory of Clinical Medical Center, Yunnan Traumatology and Orthopedics, Kunming, China,*Correspondence: Yongqing Xu,
| |
Collapse
|
49
|
Rodriguez W, Mehrmann T, Hatfield D, Muller M. Shiftless Restricts Viral Gene Expression and Influences RNA Granule Formation during Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. J Virol 2022; 96:e0146922. [PMID: 36326276 PMCID: PMC9682979 DOI: 10.1128/jvi.01469-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Herpesviral infection reflects thousands of years of coevolution and the constant struggle between virus and host for control of cellular gene expression. During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, the virus rapidly seizes control of host gene expression machinery by triggering a massive RNA decay event via a virally encoded endoribonuclease, SOX. This virus takeover strategy decimates close to 80% of cellular transcripts, reallocating host resources toward viral replication. The host cell, however, is not entirely passive in this assault on RNA stability. A small pool of host transcripts that actively evade SOX cleavage has been identified over the years. One such "escapee," C19ORF66 (herein referred to as Shiftless [SHFL]), encodes a potent antiviral protein capable of restricting the replication of multiple DNA and RNA viruses and retroviruses, including KSHV. Here, we show that SHFL restricts KSHV replication by targeting the expression of critical viral early genes, including the master transactivator protein, KSHV ORF50, and thus subsequently the entire lytic gene cascade. Consistent with previous reports, we found that the SHFL interactome throughout KSHV infection is dominated by RNA-binding proteins that influence both translation and protein stability, including the viral protein ORF57, a crucial regulator of viral RNA fate. We next show that SHFL affects cytoplasmic RNA granule formation, triggering the disassembly of processing bodies. Taken together, our findings provide insights into the complex relationship between RNA stability, RNA granule formation, and the antiviral response to KSHV infection. IMPORTANCE In the past 5 years, SHFL has emerged as a novel and integral piece of the innate immune response to viral infection. SHFL has been reported to restrict the replication of multiple viruses, including several flaviviruses and the retrovirus HIV-1. However, to date, the mechanism(s) by which SHFL restricts DNA virus infection remains largely unknown. We have previously shown that following its escape from KSHV-induced RNA decay, SHFL acts as a potent antiviral factor, restricting nearly every stage of KSHV lytic replication. In this study, we set out to determine the mechanism by which SHFL restricts KSHV infection. We demonstrate that SHFL impacts all classes of KSHV genes and found that SHFL restricts the expression of several key early genes, including KSHV ORF50 and ORF57. We then mapped the interactome of SHFL during KSHV infection and found several host and viral RNA-binding proteins that all play crucial roles in regulating RNA stability and translation. Lastly, we found that SHFL expression influences RNA granule formation both outside and within the context of KSHV infection, highlighting its broader impact on global gene expression. Collectively, our findings highlight a novel relationship between a critical piece of the antiviral response to KSHV infection and the regulation of RNA-protein dynamics.
Collapse
Affiliation(s)
- William Rodriguez
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Timothy Mehrmann
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Hatfield
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
50
|
Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1720. [PMID: 35150188 PMCID: PMC9786758 DOI: 10.1002/wrna.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
More than 100 chemical modifications of RNA, termed the epitranscriptome, have been described, most of which occur in prokaryotic and eukaryotic ribosomal, transfer, and noncoding RNA and eukaryotic messenger RNA. DNA and RNA viruses can modify their RNA either directly via genome-encoded enzymes or by hijacking the host enzymatic machinery. Among the many RNA modifications described to date, four play particularly important roles in promoting viral infection by facilitating viral gene expression and replication and by enabling escape from the host innate immune response. Here, we discuss our current understanding of the mechanisms by which the RNA modifications such as N6 -methyladenosine (m6A), N6 ,2'-O-dimethyladenosine (m6Am), 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and 2'-O-methylation (Nm) promote viral replication and/or suppress recognition by innate sensors and downstream activation of the host antiviral response. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Na Li
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| |
Collapse
|