1
|
Liu M, Wang J, Li W, Zhao B, Zhang Y, Liu G, Zeng Q. Selenoprotein M Inhibits the Replication of Influenza A Virus by Regulating Reactive Oxygen Species Levels. Life (Basel) 2025; 15:714. [PMID: 40430142 PMCID: PMC12112756 DOI: 10.3390/life15050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Influenza A virus (IAV) is the major pathogen responsible for influenza pandemics and can cause seasonal influenza outbreaks. In general, viral infection of host cells increases reactive oxygen species (ROS) levels, a process that triggers cell death, lung injury (LI), and other damage mechanisms. Methods: In our previous study, we revealed that selenoproteins may inhibit IAV replication at the cellular level. In this study, we determined the effect of selenoprotein M (SelM) on Nanoluc-IAV-PR8 replication through Nanoluc analysis. The mechanism through which selenoprotein inhibits the replication of the influenza virus was investigated using the SelM knockout cell line, nano-luciferase reporter assays, RNAi, qPCR, Western blot, and confocal microscopy. Results: Our experimental results show that SelM can effectively inhibit the replication of influenza A viruses and could potentially be used as a broad-spectrum inhibitor for IAV therapy in future clinical treatments. The increase in ROS levels induced by IAV infection was found to be inhibited by SelM, which possesses an important Sec functional site, thus weakening the ability of IAV to replicate in cells. Conclusions: The results of this study highlight SelM as a selenoprotein that can effectively inhibit IAV replication.
Collapse
Affiliation(s)
- Minxuan Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (J.W.)
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China
| | - Jinhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (J.W.)
| | - Weigang Li
- Animal Husbandry and Veterinary Station of Zhenyuan County, Zhenyuan 744500, China; (W.L.); (Y.Z.)
| | - Bo Zhao
- Gansu Agriculture Technology College, Duanjiatan 425, Lanzhou 730030, China;
| | - Yuanyuan Zhang
- Animal Husbandry and Veterinary Station of Zhenyuan County, Zhenyuan 744500, China; (W.L.); (Y.Z.)
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (M.L.); (J.W.)
| |
Collapse
|
2
|
Dinant S, Castille J, Deloizy C, Bruder E, Sedano L, Daniel-Carlier N, Da Costa B, Passet B, Béringue V, Duchesne A, Chevalier C, Larcher T, Moazami-Goudarzi K, Vilotte JL, Le Goffic R. The prion-family protein Doppel exerts a protective role during influenza virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf031. [PMID: 40204637 DOI: 10.1093/jimmun/vkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
The cellular form of the prion protein (PrPC), known for its involvement as a misfolded isoform in transmissible spongiform encephalopathies, has recently been identified to exert a protective effect against viral infections. In this study, we explored the role of 2 other prion family members, Shadoo and Doppel, in protection against influenza A virus infection in mice. Lung expression levels of these genes revealed marked differences, with high expression of PrPC, low expression of Doppel, while Shadoo remained undetectable. Mice genetically knocked out for the genes encoding PrPC, Prnp-/- or Doppel, Prnd-/-, showed increased susceptibility to the virus, resulting in elevated morbidity compared with wild-type mice and mice knocked out for Shadoo, Sprn-/-. Unlike previous results observed in Prnp-/- mice, the absence of Doppel does not show enhancing effect on virus replication levels. Histological analysis of lung tissue from Prnd-/- mice revealed no difference in lesion size and severity compared with wild-type mice. However, transcriptomic analysis on day 7 postinfection revealed distinct signatures in Prnd-/- mice, highlighting the role of specific genes associated with polymorphonuclear neutrophil cells. Bronchoalveolar lavages confirmed a substantial neutrophil influx and increased inflammatory markers in the lungs of Prnd-/- mice. Neutrophil depletion experiments demonstrated a direct link between excessive neutrophil influx and increased susceptibility, mitigating pathology and partially restoring a wild-type phenotype in Prnd-/- mice. These findings underscore the complex role of Doppel in modulating the host immune response to influenza virus infection, particularly in regulating neutrophil recruitment and its implications on disease outcomes.
Collapse
Affiliation(s)
- Soraya Dinant
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Johan Castille
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Charlotte Deloizy
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Elise Bruder
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Laura Sedano
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | | | - Bruno Da Costa
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Bruno Passet
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Vincent Béringue
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Amandine Duchesne
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | | | | | | | - Jean-Luc Vilotte
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Ronan Le Goffic
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| |
Collapse
|
3
|
Chida J, Ichimura-Shimizu M, Batchuluun B, Bolorchimeg K, Tsuneyama K, Sakaguchi S. Anti-prion Antibody Ameliorates Metabolic Dysfunction-associated Steatohepatitis in Mice. Cell Mol Gastroenterol Hepatol 2025:101499. [PMID: 40118272 DOI: 10.1016/j.jcmgh.2025.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Khurelbaatar Bolorchimeg
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan.
| |
Collapse
|
4
|
Viramontes KM, Thone MN, DeRogatis JM, Neubert EN, Henriquez ML, De La Torre JJ, Tinoco R. Prion protein modulation of virus-specific T cell differentiation and function during acute viral infection. Immunohorizons 2025; 9:vlae002. [PMID: 39846843 PMCID: PMC11841969 DOI: 10.1093/immhor/vlae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/11/2024] [Indexed: 01/24/2025] Open
Abstract
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model. Our findings reveal that Prnp-/- mice exhibit a robust expansion of virus-specific CD8+ T cells, with similar activation profiles as wild-type mice during the early stages of infection. However, Prnp-/- mice had higher frequencies and numbers of virus-specific memory CD8+ T cells, along with altered differentiation profiles characterized by increased central and effector memory subsets. Despite similar proliferation rates early during infection, Prnp-/- memory CD8+ T cells had decreased proliferation compared with their wild-type counterparts. Additionally, Prnp-/- mice had higher numbers of cytokine-producing memory CD8+ T cells, indicating a more robust functional response. Furthermore, Prnp-/- mice had increased virus-specific CD4+ T cell responses, suggesting a broader impact of PrPc deficiency on T cell immunity. These results unveil a previously unrecognized role for PrPc in regulating the differentiation, proliferation, and functionality of virus-specific T cells, providing valuable insights into immune system regulation by prion proteins during viral infections.
Collapse
Affiliation(s)
- Karla M Viramontes
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Melissa N Thone
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Julia M DeRogatis
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Emily N Neubert
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Monique L Henriquez
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jamie-Jean De La Torre
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Roberto Tinoco
- Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Allais-Bonnet A, Richard C, André M, Gelin V, Deloche MC, Lamadon A, Morin G, Mandon-Pépin B, Canon E, Thépot D, Laubier J, Moazami-Goudarzi K, Laffont L, Dubois O, Fassier T, Congar P, Lasserre O, Aguirre-Lavin T, Vilotte JL, Pailhoux E. CRISPR/Cas9-editing of PRNP in Alpine goats. Vet Res 2025; 56:11. [PMID: 39806509 PMCID: PMC11731167 DOI: 10.1186/s13567-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Misfolding of the cellular PrP (PrPc) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrPc induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrPc-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides. The targeted region preceded the PRNPTer mutation previously described in Norwegian goats. Genome editors were injected under the zona pellucida prior to the electroporation of 565 Alpine goat embryos/oocytes. A total of 122 two-cell-stage embryos were transferred to 46 hormonally synchronized recipient goats. Six of the goats remained pregnant and naturally gave birth to 10 offspring. Among the 10 newborns, eight founder animals carrying PRNP genome-edited alleles were obtained. Eight different mutated alleles were observed, including five inducing KO mutations. Three founders carried only genome-edited alleles and were phenotypically indistinguishable from their wild-type counterparts. Among them, one male carrying a one base pair insertion leading to a KO allele is currently used to rapidly extend a PRNP-KO line of Alpine goats for future characterization. In addition to KO alleles, a PRNPdel6 genetic variant has been identified in one-third of founder animals. This new variant will be tested for its potential properties with respect to prion disease. Future studies will also evaluate the effects of genetic background on other characters associated with PRNP KO, as previously described in the Norwegian breed or other species.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- Eliance, Paris, France
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Christophe Richard
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Marjolaine André
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Valérie Gelin
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Marie-Christine Deloche
- Eliance, Paris, France
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Aurore Lamadon
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | | | - Béatrice Mandon-Pépin
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Eugénie Canon
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Dominique Thépot
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Johann Laubier
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Ludivine Laffont
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Olivier Dubois
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Thierry Fassier
- INRAE, UE P3R Bourges, Domaine de Bourges, 31326, Osmoy, France
| | | | | | | | - Jean-Luc Vilotte
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
- BREED, École Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
6
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Zhang K, Yang XM, Sun H, Cheng ZS, Peng J, Dong M, Chen F, Shen H, Zhang P, Li JF, Zhang Y, Jiang C, Huang J, Chan JFW, Yuan S, Luo YS, Shen XC. Modulating apoptosis as a novel therapeutic strategy against Respiratory Syncytial Virus infection: insights from Rotenone. Antiviral Res 2024; 231:106007. [PMID: 39299548 DOI: 10.1016/j.antiviral.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of acute lower respiratory tract infections, particularly in vulnerable populations such as neonates, infants, young children, and the elderly. Among infants, RSV is the primary cause of bronchiolitis and pneumonia, contributing to a notable proportion of child mortality under the age of 5. In this study, we focused on investigating the pathogenicity of a lethal RSV strain, GZ08-18, as a model for understanding mechanisms of hypervirulent RSV. Our findings indicate that the heightened pathogenicity of GZ08-18 stems from compromised activation of intrinsic apoptosis, as evidenced by aberration of mitochondrial membrane depolarization in host cells. We thus hypothesized that enhancing intrinsic apoptosis could potentially attenuate the virulence of RSV strains and explored the effects of Rotenone, a natural compound known to stimulate the intrinsic apoptosis pathway, on inhibiting RSV infection. Our results demonstrate that Rotenone treatment significantly improved mouse survival rates and mitigated lung pathology following GZ08-18 infection. These findings suggest that modulating the suppressed apoptosis induced by RSV infection represents a promising avenue for antiviral intervention strategies.
Collapse
Affiliation(s)
- Ke Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Xiao-Meng Yang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haoran Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China
| | - Zhong-Shan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Jianqing Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Minjun Dong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University, School of Medicine, Hangzhou, 310000, China
| | - Fang Chen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Huyan Shen
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Pingping Zhang
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jin-Fu Li
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Virology Institute, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, China
| | - Jiandong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518000, China.
| | - Yu-Si Luo
- Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Emergency, Liupanshui Hospital of the Affiliated Hospital of Guizhou Medical University, Liupanshui, 553000, China.
| | - Xiang-Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
8
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Hara H, Chida J, Batchuluun B, Takahashi E, Kido H, Sakaguchi S. Protective role of cytosolic prion protein against virus infection in prion-infected cells. J Virol 2024; 98:e0126224. [PMID: 39194237 PMCID: PMC11406989 DOI: 10.1128/jvi.01262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Production of the amyloidogenic prion protein, PrPSc, which forms infectious protein aggregates, or prions, is a key pathogenic event in prion diseases. Functional prion-like protein aggregations, such as the mitochondrial adaptor protein MAVS and the inflammasome component protein ASC, have been identified to play a protective role in viral infections in mammalian cells. In this study, to investigate if PrPSc could play a functional role against external stimuli, we infected prion-infected cells with a neurotropic influenza A virus strain, IAV/WSN. We found that prion-infected cells were highly resistant to IAV/WSN infection. In these cells, NF-κB nuclear translocation was disturbed; therefore, mitochondrial superoxide dismutase (mtSOD) expression was suppressed, and mitochondrial reactive oxygen species (mtROS) was increased. The elevated mtROS subsequently activated NLRP3 inflammasomes, leading to the suppression of IAV/WSN-induced necroptosis. We also found that prion-infected cells accumulated a portion of PrP molecules in the cytosol, and that the N-terminal potential nuclear translocation signal of PrP impeded NF-κB nuclear translocation. These results suggest that PrPSc might play a functional role in protection against viral infections by stimulating the NLRP3 inflammasome-dependent antivirus mechanism through the cytosolic PrP-mediated disturbance of NF-κB nuclear translocation, which leads to suppression of mtSOD expression and consequently upregulation of the NLRP3 inflammasome activator mtROS. IMPORTANCE Cytosolic PrP has been detected in prion-infected cells and suggested to be involved in the neurotoxicity of prions. Here, we also detected cytosolic PrP in prion-infected cells. We further found that the nuclear translocation of NF-κB was disturbed in prion-infected cells and that the N-terminal potential nuclear translocation signal of PrP expressed in the cytosol disturbed the nuclear translocation of NF-κB. Thus, the N-terminal nuclear translocation signal of cytosolic PrP might play a role in prion neurotoxicity. Prion-like protein aggregates in other protein misfolding disorders, including Alzheimer's disease were reported to play a protective role against various environmental stimuli. We here showed that prion-infected cells were partially resistant to IAV/WSN infection due to the cytosolic PrP-mediated disturbance of the nuclear translocation of NF-κB, which consequently activated NLRP3 inflammasomes after IAV/WSN infection. It is thus possible that prions could also play a protective role in viral infections.
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- Core Research Facility, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Batzaya Batchuluun
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
10
|
Karner D, Kvestak D, Kucan Brlic P, Cokaric Brdovcak M, Lisnic B, Brizic I, Juranic Lisnic V, Golemac M, Tomac J, Krmpotic A, Karkeni E, Libri V, Mella S, Legname G, Altmeppen HC, Hasan M, Jonjic S, Lenac Rovis T. Prion protein alters viral control and enhances pathology after perinatal cytomegalovirus infection. Nat Commun 2024; 15:7754. [PMID: 39237588 PMCID: PMC11377837 DOI: 10.1038/s41467-024-51931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Daria Kvestak
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Paola Kucan Brlic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | | | - Berislav Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotic
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esma Karkeni
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Giuseppe Legname
- Department of Neuroscience, Prion Biology Laboratory, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Stipan Jonjic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
11
|
Sun Y, Ji L, Liu W, Sun J, Liu P, Wang X, Liu X, Xu X. Influenza virus infection activates TAK1 to suppress RIPK3-independent apoptosis and RIPK1-dependent necroptosis. Cell Commun Signal 2024; 22:372. [PMID: 39044278 PMCID: PMC11264382 DOI: 10.1186/s12964-024-01727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Many DNA viruses develop various strategies to inhibit cell death to facilitate their replication. However, whether influenza A virus (IAV), a fast-replicating RNA virus, attenuates cell death remains unknown. Here, we report that IAV infection induces TAK1 phosphorylation in a murine alveolar epithelial cell line (LET1) and a murine fibroblastoma cell line (L929). The TAK1-specific inhibitor 5Z-7-Oxzeneonal (5Z) and TAK1 knockout significantly enhance IAV-induced apoptosis, as evidenced by increased PARP, caspase-8, and caspase-3 cleavage. TAK1 inhibition also increases necroptosis as evidenced by increased RIPK1S166, RIPK3T231/S232, and MLKLS345 phosphorylation. Mechanistically, TAK1 activates IKK, which phosphorylates RIPK1S25 and inhibits its activation. TAK1 also activates p38 and its downstream kinase MK2, which phosphorylates RIPK1S321 but does not affect RIPK1 activation. Further investigation revealed that the RIPK1 inhibitor Nec-1 and RIPK1 knockout abrogate IAV-induced apoptosis and necroptosis; re-expression of wild-type but not kinase-dead (KD)-RIPK1 restores IAV-induced cell death. ZBP1 knockout abrogates IAV-induced cell death, whereas RIPK3 knockout inhibits IAV-induced necroptosis but not apoptosis. 5Z treatment enhances IAV-induced cell death and slightly reduces the inflammatory response in the lungs of H1N1 virus-infected mice and prolongs the survival of IAV-infected mice. Our study provides evidence that IAV activates TAK1 to suppress RIPK1-dependent apoptosis and necroptosis, and that RIPK3 is required for IAV-induced necroptosis but not apoptosis in epithelial cells.
Collapse
Affiliation(s)
- Yuling Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Lei Ji
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Wei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Jing Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Penggang Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
12
|
Donátová K, Mladá M, Lopušná K, Baran F, Betáková T. Changes in the Expression of Proteins Associated with Neurodegeneration in the Brains of Mice after Infection with Influenza A Virus with Wild Type and Truncated NS1. Int J Mol Sci 2024; 25:2460. [PMID: 38473707 DOI: 10.3390/ijms25052460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Recently, a specific link between IAV infection and neurodegenerative disease progression has been established. The non-structural NS1 protein of IAV regulates viral replication during infection and antagonizes host antiviral responses, contributing to influenza virulence. In the present study, we have prepared a mouse lung-to-lung adapted to the NS1-truncated virus (NS80ad). Transcriptome analysis of the gene expression in the lungs revealed that infection with wild-type A/WSN/33 (WSN), NS80, and NS80ad viruses resulted in different regulation of genes involved in signaling pathways associated with the cell proliferation, inflammatory response, and development of neurodegenerative diseases. NS1 protein did not influence the genes involved in the RIG-I-like receptor signaling pathway in the brains. Lethal infection with IAVs dysregulated expression of proteins associated with the development of neurodegenerative diseases (CX3CL1/Fractalkine, Coagulation factor III, and CD105/Endoglin, CD54/ICAM-1, insulin-like growth factor-binding protein (IGFBP)-2, IGFBP-5, IGFBP-6, chitinase 3-like 1 (CHI3L1), Myeloperoxidase (MPO), Osteopontin (OPN), cystatin C, and LDL R). Transcription of GATA3 mRNA was decreased, and expression of MPO was inhibited in the brain infected with NS80 and NS80ad viruses. In addition, the truncation of NS1 protein led to reduced expression of IGFBP-2, CHI3L1, MPO, and LDL-R proteins in the brains. Our results indicate that the influenza virus influences the expression of proteins involved in brain function, and this might occur mostly through the NS1 protein. These findings suggest that the abovementioned proteins represent a promising target for the development of potentially effective immunotherapy against neurodegeneration.
Collapse
Affiliation(s)
- Karin Donátová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Miriam Mladá
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Filip Baran
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Tatiana Betáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
13
|
Karner D, Kvestak D, Lisnic B, Cokaric Brdovcak M, Juranic Lisnic V, Kucan Brlic P, Hasan M, Lenac Rovis T. Comprehensive Analysis of Soluble Mediator Profiles in Congenital CMV Infection Using an MCMV Model. Viruses 2024; 16:208. [PMID: 38399983 PMCID: PMC10891658 DOI: 10.3390/v16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection may cause life-threatening disease and permanent damage to the central nervous system. The mouse model of CMV infection is most commonly used to study mechanisms of infection and pathogenesis. While essential to limit mouse CMV (MCMV) replication, the inflammatory responses, particularly IFNγ and TNFα, cause neurodevelopmental abnormalities. Other soluble mediators of the immune response in most tissues remain largely unexplored. To address this gap, we quantified 48 soluble mediators of the immune response, including 32 cytokines, 10 chemokines, 3 growth factors/regulators, and 3 soluble receptors in the spleen, liver, lungs, and brain at 9 and 14 days postinfection (dpi). Our analysis found 25 induced molecules in the brain at 9 dpi, with an additional 8 showing statistically elevated responses at 14 dpi. Specifically, all analyzed CCL group cytokines (CCL2, CCL3, CCL4, CCL5, CCL7, and CCL11) were upregulated at 14 dpi in the brain. Furthermore, data revealed differentially regulated analytes across tissues, such as CCL11, CXCL5, and IL-10 in the brain, IL-33/IL-33R in the liver, and VEGF-a and IL-5 in the lungs. Overall, this study provides an overview of the immune dynamics of soluble mediators in congenital CMV.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| | - Daria Kvestak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| | - Maja Cokaric Brdovcak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| | - Vanda Juranic Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| | - Paola Kucan Brlic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS), Institut Pasteur, Université Paris Cité, 75015 Paris, France;
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (D.K.); (D.K.); (B.L.); (M.C.B.); (V.J.L.); (P.K.B.)
| |
Collapse
|
14
|
Hong JM, Munna AN, Moon JH, Kim JH, Seol JW, Eo SK, Park SY. Antiviral activity of prion protein against Japanese encephalitis virus infection in vitro and in vivo. Virus Res 2023; 338:199249. [PMID: 37858731 PMCID: PMC10598702 DOI: 10.1016/j.virusres.2023.199249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Flaviviruses are a major cause of viral diseases worldwide, for which effective treatments have yet to be discovered. The prion protein (PrPc) is abundantly expressed in brain cells and has been shown to play a variety of roles, including neuroprotection, cell homeostasis, and regulation of cellular signaling. However, it is still unclear whether PrPc can protect against flaviviruses. In this study, we investigated the role of PrPc in regulating autophagy flux and its potential antiviral activity during Japanese encephalitis virus (JEV) infection. Our in vivo experiment showed that JEV was more lethal to the PrPc knocked out mice which was further supported by histological analysis, western blot and rtPCR results from infected mice brain samples. Role of PrPc against viral propagation in vitro was verified through cell survival study, protein expression and RNA replication analysis, and adenoviral vector assay by overexpressing PrPc. Further analysis indicated that after virus entry, PrPc inhibited autophagic flux that prevented JEV replication inside the host cell. Our results from in vivo and in vitro investigations demonstrate that prion protein effectively inhibited JEV propagation by regulating autophagy flux which is used by JEV to release its genetic material and replication after entering the host cell, suggesting that prion protein may be a promising therapeutic target for flavivirus infection.
Collapse
Affiliation(s)
- Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Jong-Hoon Kim
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Seong-Kug Eo
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79, Gobong-ro, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
15
|
Hara H, Miyata H, Chida J, Sakaguchi S. Strain-dependent role of copper in prion disease through binding to histidine residues in the N-terminal domain of prion protein. J Neurochem 2023; 167:394-409. [PMID: 37777338 DOI: 10.1111/jnc.15971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
The cellular prion protein, PrPC , is a copper-binding protein abundantly expressed in the brain, particularly by neurons, and its conformational conversion into the amyloidogenic isoform, PrPSc , plays a key pathogenic role in prion diseases. However, the role of copper binding to PrPC in prion diseases remains unclear. Here, we fed mice with a low-copper or regular diet and intracerebrally inoculated them with two different mouse-adapted RML scrapie and BSE prions. Mice with a low-copper diet developed disease significantly but only slightly later than those with a regular diet after inoculation with BSE prions, but not with RML prions, suggesting that copper could play a minor role in BSE prion pathogenesis, but not in RML prion pathogenesis. We then generated two lines of transgenic mice expressing mouse PrP with copper-binding histidine (His) residues in the N-terminal domain replaced with alanine residues, termed TgPrP(5H > A)-7342/Prnp0/0 and TgPrP(5H > A)-7524/Prnp0/0 mice, and similarly inoculated RML and BSE prions into them. Due to 2-fold higher expression of PrP(5H > A) than PrPC in wild-type (WT) mice, TgPrP(5H > A)-7524/Prnp0/0 mice were highly susceptible to these prions, compared to WT mice. However, TgPrP(5H > A)-7342/Prnp0/0 mice, which express PrP(5H > A) 1.2-fold as high as PrPC in WT mice, succumbed to disease slightly, but not significantly, later than WT mice after inoculation with RML prions, but significantly so after inoculation with BSE prions. Subsequent secondary inoculation experiments revealed that amino acid sequence differences between PrP(5H > A) and WT PrPSc created no prion transmission barrier to BSE prions. These results suggest that copper-binding His residues in PrPC are dispensable for RML prion pathogenesis but have a minor effect on BSE prion pathogenesis. Taken together, our current results suggest that copper could have a minor effect on prion pathogenesis in a strain-dependent manner through binding to His residues in the N-terminal domain of PrPC .
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Yahatanishi, Kitakyushu, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| |
Collapse
|
16
|
Kim YC, Won SY, Jeong BH. No association of prion protein gene ( PRNP) polymorphisms with susceptibility to the pandemic 2009 swine flu. Mol Cell Toxicol 2022; 19:1-5. [PMID: 36408482 PMCID: PMC9660098 DOI: 10.1007/s13273-022-00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Background The pandemic 2009 swine flu is a highly infectious respiratory disorder caused by H1N1 influenza A viruses. A recent study reported that knockout of the prion protein gene (PRNP) induced susceptibility and lethality in influenza A virus-infected mice. Objective Thus, we examined the association between genetic variations of the PRNP gene and susceptibility to pandemic 2009 swine flu. Results We did not find an association between PRNP polymorphisms and susceptibility to pandemic 2009 swine flu. Conclusions To the best of our knowledge, this was the first evaluation of the association between PRNP polymorphisms and vulnerability to pandemic 2009 swine flu.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, Jeonbuk 54531 Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
17
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
18
|
Hunter P. Understanding redundancy and resilience: Redundancy in life is provided by distributing functions across networks rather than back-up systems: Redundancy in life is provided by distributing functions across networks rather than back-up systems. EMBO Rep 2022; 23:e54742. [PMID: 35156768 PMCID: PMC8892264 DOI: 10.15252/embr.202254742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding how evolution generates and maintains redundancy to cope with damage and loss of function in living systems could inspire applications from new therapies to resilient computer networks.
Collapse
|
19
|
Abstract
The cellular isoform of prion protein, designated PrPC, is a membrane glycoprotein expressed most abundantly in the brain, particularly by neurons, and its conformational conversion into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying mechanism in the pathogenesis of prion diseases, a group of neurodegenerative disorders in humans and animals. Most cases of these diseases are sporadic and their aetiologies are unknown. We recently found that a neurotropic strain of influenza A virus (IAV/WSN) caused the conversion of PrPC into PrPSc and the subsequent formation of infectious prions in mouse neuroblastoma cells after infection. These results show that IAV/WSN is the first non-prion pathogen capable of inducing the conversion of PrPC into PrPSc and propagating infectious prions in cultured neuronal cells, and also provide the intriguing possibility that IAV infection in neurons might be a cause of or be associated with sporadic prion diseases. Here, we present our findings of the IAV/WSN-induced conversion of PrPC into PrPSc and subsequent propagation of infectious prions, and also discuss the biological significance of the conversion of PrPC into PrPSc in virus infections.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima 770-8503, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
20
|
Bantle CM, Rocha SM, French CT, Phillips AT, Tran K, Olson KE, Bass TA, Aboellail T, Smeyne RJ, Tjalkens RB. Astrocyte inflammatory signaling mediates α-synuclein aggregation and dopaminergic neuronal loss following viral encephalitis. Exp Neurol 2021; 346:113845. [PMID: 34454938 PMCID: PMC9535678 DOI: 10.1016/j.expneurol.2021.113845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Viral infection of the central nervous system (CNS) can cause lasting neurological decline in surviving patients and can present with symptoms resembling Parkinson's disease (PD). The mechanisms underlying postencephalitic parkinsonism remain unclear but are thought to involve increased innate inflammatory signaling in glial cells, resulting in persistent neuroinflammation. We therefore studied the role of glial cells in regulating neuropathology in postencephalitic parkinsonism by studying the involvement of astrocytes in loss of dopaminergic neurons and aggregation of α-synuclein protein following infection with western equine encephalitis virus (WEEV). Infections were conducted in both wildtype mice and in transgenic mice lacking NFκB inflammatory signaling in astrocytes. For 2 months following WEEV infection, we analyzed glial activation, neuronal loss and protein aggregation across multiple brain regions, including the substantia nigra pars compacta (SNpc). These data revealed that WEEV induces loss of SNpc dopaminergic neurons, persistent activation of microglia and astrocytes that precipitates widespread aggregation of α-synuclein in the brain of C57BL/6 mice. Microgliosis and macrophage infiltration occurred prior to activation of astrocytes and was followed by opsonization of ⍺-synuclein protein aggregates in the cortex, hippocampus and midbrain by the complement protein, C3. Astrocyte-specific NFκB knockout mice had reduced gliosis, α-synuclein aggregate formation and neuronal loss. These data suggest that astrocytes play a critical role in initiating PD-like pathology following encephalitic infection with WEEV through innate immune inflammatory pathways that damage dopaminergic neurons, possibly by hindering clearance of ⍺-synuclein aggregates. Inhibiting glial inflammatory responses could therefore represent a potential therapy strategy for viral parkinsonism.
Collapse
Affiliation(s)
- Collin M Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Savannah M Rocha
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - C Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Aaron T Phillips
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Kenneth E Olson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Todd A Bass
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Richard J Smeyne
- Jefferson Comprehensive Parkinson's Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States of America.
| |
Collapse
|
21
|
Virus Infection, Genetic Mutations, and Prion Infection in Prion Protein Conversion. Int J Mol Sci 2021; 22:ijms222212439. [PMID: 34830321 PMCID: PMC8624980 DOI: 10.3390/ijms222212439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.
Collapse
|
22
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
23
|
Hara H, Chida J, Uchiyama K, Pasiana AD, Takahashi E, Kido H, Sakaguchi S. Neurotropic influenza A virus infection causes prion protein misfolding into infectious prions in neuroblastoma cells. Sci Rep 2021; 11:10109. [PMID: 33980968 PMCID: PMC8115602 DOI: 10.1038/s41598-021-89586-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
Abstract
Misfolding of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, which forms infectious protein aggregates, the so-called prions, is a key pathogenic event in prion diseases. No pathogens other than prions have been identified to induce misfolding of PrPC into PrPSc and propagate infectious prions in infected cells. Here, we found that infection with a neurotropic influenza A virus strain (IAV/WSN) caused misfolding of PrPC into PrPSc and generated infectious prions in mouse neuroblastoma cells through a hit-and-run mechanism. The structural and biochemical characteristics of IAV/WSN-induced PrPSc were different from those of RML and 22L laboratory prions-evoked PrPSc, and the pathogenicity of IAV/WSN-induced prions were also different from that of RML and 22L prions, suggesting IAV/WSN-specific formation of PrPSc and infectious prions. Our current results may open a new avenue for the role of viral infection in misfolding of PrPC into PrPSc and formation of infectious prions.
Collapse
Affiliation(s)
- Hideyuki Hara
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Agriani Dini Pasiana
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University, Kuramoto 3-18-15, Tokushima, 770-8503, Japan.
| |
Collapse
|
24
|
Hara H, Sakaguchi S. N-Terminal Regions of Prion Protein: Functions and Roles in Prion Diseases. Int J Mol Sci 2020; 21:ijms21176233. [PMID: 32872280 PMCID: PMC7504422 DOI: 10.3390/ijms21176233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.
Collapse
|
25
|
Chida J, Hara H, Uchiyama K, Takahashi E, Miyata H, Kosako H, Tomioka Y, Ito T, Horiuchi H, Matsuda H, Kido H, Sakaguchi S. Prion protein signaling induces M2 macrophage polarization and protects from lethal influenza infection in mice. PLoS Pathog 2020; 16:e1008823. [PMID: 32845931 PMCID: PMC7489546 DOI: 10.1371/journal.ppat.1008823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 09/14/2020] [Accepted: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
The cellular prion protein, PrPC, is a glycosylphosphatidylinositol anchored-membrane glycoprotein expressed most abundantly in neuronal and to a lesser extent in non-neuronal cells. Its conformational conversion into the amyloidogenic isoform in neurons is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. However, the normal functions of PrPC remain largely unknown, particularly in non-neuronal cells. Here we show that stimulation of PrPC with anti-PrP monoclonal antibodies (mAbs) protected mice from lethal infection with influenza A viruses (IAVs), with abundant accumulation of anti-inflammatory M2 macrophages with activated Src family kinases (SFKs) in infected lungs. A SFK inhibitor dasatinib inhibited M2 macrophage accumulation in IAV-infected lungs after treatment with anti-PrP mAbs and abolished the anti-PrP mAb-induced protective activity against lethal influenza infection in mice. We also show that stimulation of PrPC with anti-PrP mAbs induced M2 polarization in peritoneal macrophages through SFK activation in vitro and in vivo. These results indicate that PrPC could activate SFK in macrophages and induce macrophage polarization to an anti-inflammatory M2 phenotype after stimulation with anti-PrP mAbs, thereby eliciting protective activity against lethal infection with IAVs in mice after treatment with anti-PrP mAbs. These results also highlight PrPC as a novel therapeutic target for IAV infection.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Hideyuki Hara
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Hironori Miyata
- Animal Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Kuramoto-cho, Tokushima, Japan
| | - Yukiko Tomioka
- Laboratory of Laboratory Animal Science, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Koyama-cho, Tottori, Japan
| | - Hiroyuki Horiuchi
- Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Haruo Matsuda
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, The Institute for Enzyme Research, Tokushima University (KOSOKEN), Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, Tokushima, Japan
- * E-mail:
| |
Collapse
|
26
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
27
|
Kim YC, Won SY, Jeong BH. Absence of single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of the prion protein gene (PRNP) in a large sampling of various chicken breeds. BMC Genomics 2019; 20:922. [PMID: 31795947 PMCID: PMC6892216 DOI: 10.1186/s12864-019-6315-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are zoonotic diseases with a broad infection spectrum among mammalian hosts and are caused by the misfolded prion protein (PrPSc) derived from the normal prion protein (PrPC), which encodes the prion protein gene (PRNP). Currently, although several prion disease-resistant animals have been reported, a high dose of prion agent inoculation triggers prion disease infection in these disease-resistant animals. However, in chickens, natural prion disease-infected cases have not been reported, and experimental challenges with prion agents have failed to cause infection. Unlike other prion disease-resistant animals, chickens have shown perfect resistance to prion disease thus far. Thus, investigation of the chicken PRNP gene could improve for understanding the mechanism of perfect prion-disease resistance. Here, we investigated the genetic characteristics of the open reading frame (ORF) of the chicken PRNP gene in a large sampling of various chicken breeds. RESULTS We found only tandem repeat deletion polymorphisms of the chicken PRNP ORF in the 4 chicken breeds including 106 Dekalb White, 100 Ross, 98 Ogolgye and 100 Korean native chickens. In addition, the distribution of chicken insertion/deletion polymorphisms was significantly different among the 4 chicken breeds. Finally, we found significant differences in the number of PRNP SNPs between prion disease-susceptible species and prion disease-resistant species. Notably, chickens lack SNPs in the ORF of the prion protein. CONCLUSION In this study, we found that the absence of SNPs in the chicken PRNP ORF is a notable feature of animals with perfect resistant to prion disease.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea.
- Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
28
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
29
|
Chida J, Sakaguchi S. Cellular prion protein-mediated protection against influenza A virus infection. Future Virol 2019. [DOI: 10.2217/fvl-2018-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cellular prion protein, termed PrPC, is a glycoprotein abundantly expressed in brains and to a lesser extent in non-neuronal tissues including lungs. It was reported that PrPC is expressed by lung epithelial cells in mice, and that it may play a protective role against lethal infection with influenza A viruses (IAVs). This may occur by regulating Cu content and superoxide dismutase (SOD) activity, eventually reducing oxidative stress in infected lungs. Antioxidative therapeutics have been demonstrated to protect mice from lethal infection with IAVs. Therefore, PrPC might be a new target molecule for development of IAV therapeutics. Here, we introduce the antiviral mechanism of PrPC against IAV infection and discuss perspectives of PrPC-targeting therapeutics against IAV infection.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
30
|
Lin Z, Li Y, Gong G, Xia Y, Wang C, Chen Y, Hua L, Zhong J, Tang Y, Liu X, Zhu B. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. Int J Nanomedicine 2018; 13:5787-5797. [PMID: 30310281 PMCID: PMC6165773 DOI: 10.2147/ijn.s177658] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Ribavirin (RBV) is a broad-spectrum antiviral drug. Selenium nanoparticles (SeNPs) attract much attention in the biomedical field and are used as carriers of drugs in current research studies. In this study, SeNPs were decorated by RBV, and the novel nanoparticle system was well characterized. Madin-Darby Canine Kidney cells were infected with H1N1 influenza virus before treatment with RBV, SeNPs, and SeNPs loaded with RBV (Se@RBV). METHODS AND RESULTS MTT assay showed that Se@RBV nanoparticles protect cells during H1N1 infection in vitro. Se@RBV depressed virus titer in the culture supernatant. Intracellular localization detection revealed that Se@RBV accumulated in lysosome and escaped to cytoplasm as time elapsed. Furthermore, activation of caspase-3 was resisted by Se@RBV. Expressions of proteins related to caspase-3, including cleaved poly-ADP-ribose polymerase, caspase-8, and Bax, were downregulated evidently after treatment with Se@RBV compared with the untreated infection group. In addition, phosphorylations of phosphorylated 38 (p38), JNK, and phosphorylated 53 (p53) were inhibited as well. In vivo experiments indicated that Se@RBV was found to prevent lung injury in H1N1-infected mice through hematoxylin and eosin staining. Tunel test of lung tissues present that DNA damage reached a high level but reduced substantially when treated with Se@RBV. Immunohistochemical test revealed an identical result with the in vitro experiment that activations of caspase-3 and proteins on the apoptosis pathway were restrained by Se@RBV treatment. CONCLUSION Taken together, this study elaborates that Se@RBV is a novel promising agent against H1N1 influenza virus infection.
Collapse
Affiliation(s)
- Zhengfang Lin
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yinghua Li
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Guifang Gong
- Department of Obstetrics Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yu Xia
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Changbing Wang
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Yi Chen
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Liang Hua
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Jiayu Zhong
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Ying Tang
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Xiaomin Liu
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| | - Bing Zhu
- Department of Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, ;
| |
Collapse
|
31
|
Abstract
The normal cellular prion protein, designated PrPC, is a membrane glycoprotein expressed most abundantly in brains, particularly by neurons, and to a lesser extent in non-neuronal tissues including lungs. Conformational conversion of PrPC into the amyloidogenic isoform is a key pathogenic event in prion diseases. We recently found that PrPC has a protective role against infection with influenza A viruses (IAVs) in mice by reducing reactive oxygen species in the lungs after infection with IAVs. The antioxidative activity of PrPC is probably attributable to its function to activate antioxidative enzyme Cu/Zn-superoxide dismutase, or SOD1, through regulating Cu content in lungs infected with IAVs. Oxidative stress could play a pivotal role in the pathogenesis of a wide range of viral infections. Here, we introduce our and others' studies on the role of PrPC in viral infections, and raise the attractive possibility that PrPC might be a novel target molecule for development of antioxidative therapeutics against not only IAV infection but also other viral infections.
Collapse
Affiliation(s)
- Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima, Japan
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research (KOSOKEN), Tokushima University , Tokushima, Japan
| |
Collapse
|