1
|
Sun W, Jian Y, Feng X, Zhao M, Liu Y. Efficacy of Kangfuxin liquid for preventing and treating chemotherapy-induced oral mucositis: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2025; 16:1565345. [PMID: 40264666 PMCID: PMC12011798 DOI: 10.3389/fphar.2025.1565345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
Objective Chemotherapy-induced oral mucositis (CTOM) is a common side effect affecting 20%-40% of cancer patients receiving chemotherapy. Kangfuxin liquid (KFXL) has been used clinically to prevent and treat CTOM, but the evidence has not been systematically evaluated. This study aimed to evaluate the preventive and therapeutic effects of KFXL on CTOM. Methods Nine electronic databases were searched to identify KFXL-related randomized controlled trials (RCTs) for the prevention and treatment of CTOM from inception to September 2024. The primary outcomes were incidence rate, efficacy rate and cure rate, and the secondary outcomes was healing time. Results Twenty-one trials involving 1825 patients were included in this review. The results of our meta-analysis showed that, compared with basic oral care (BOC), KFXL significantly reduced the incidence rate of CTOM and severe CTOM (RR = 0.54, p < 0.00001; RR = 0.23, p < 0.00001, respectively), improved the efficacy rate of CTOM and severe CTOM (RR = 1.23, p = 0.0003; RR = 1.99, p = 0.05, respectively), improved the cure rate of CTOM (RR = 2.06, p = 0.0004),and accelerated the healing process (MD = -2.48, p < 0.00001). However, KFXL and other drugs have the same efficacy rate in treating CTOM and severe CTOM (RR = 1.00, p = 0.99; RR = 1.00, p = 1.00, respectively), and the same cure rate in CTOM (RR = 0.91, p = 0.39), and the same healing time (MD = -0.01, p = 1.00). Conclusion The results suggest that KFXL may provide more benefit in the prevention and treatment for CTOM compared to BOC. Although KFXL may be a promising drug for the prevention and treatment of CTOM, the evidence is insufficient to prove its superiority over other guideline-recommended treatment. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024585859, ID: CRD42024585859.
Collapse
Affiliation(s)
- Wei Sun
- Department of Laboratory Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Yang Jian
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaolin Feng
- Department of Laboratory Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Minru Zhao
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Yuan Liu
- Department of Laboratory Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
2
|
Liu X, Han Z, Ma W, Cui W, Zhen D, Jiang S, Zhang J. Effects of Lactiplantibacillus plantarum HNU082 intervention on fungi and bacteriophages in different intestinal segments of mice. BMC Microbiol 2025; 25:69. [PMID: 39922998 PMCID: PMC11806771 DOI: 10.1186/s12866-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Gut fungi and bacteriophages, as members of the gut microbiota, can affect the interactions between gut bacteria and the host, participate in host metabolism, and are associated with various diseases. Probiotics substantially influence gut fungi and bacteriophages, modulating their composition through both direct and indirect mechanisms, thereby influencing host health. Current research primarily focuses on the effects of probiotics on the intestinal bacterial community. However, the alterations in the compositions of gut fungi and bacteriophages following probiotic intervention are not yet fully understood. Therefore, this study used Lactiplantibacillus plantarum HNU082 (Lp082) as the research subject and aimed to investigate the changes of the gut fungi and bacteriophages in the small intestine and the large intestine after the gavage of Lp082. RESULTS After probiotics entered the gut, the changes of the gut fungi and bacteriophages caused by the probiotics were more pronounced in the small intestine compared to the large intestine. The relative abundance of pathogenic fungi, such as Candida albicans, decreased in the small intestine. Furthermore, a strong positive correlation between the relative abundance of bacteriophages and their host bacteria in the gut was observed. The relative abundance of both Clostridia class bacteria and their bacteriophages increased. CONCLUSIONS In summary, the effects of probiotics on gut fungi and bacteriophages differed between the small intestine and the large intestine. This study contributed to a better understanding of the impact of probiotics on gut fungi and bacteriophages and provided data support for the association and dynamic changes between gut bacteria and their bacteriophages.
Collapse
Affiliation(s)
- Xinlei Liu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Wenyao Ma
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Weipeng Cui
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Dongyu Zhen
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
3
|
Zhang Y, Chen X, Zhong Y, Guo F, Ouyang G, Mao R. Rapid and simple detection of Candida albicans using closed dumbbell-mediated isothermal amplification. Front Cell Infect Microbiol 2025; 15:1484089. [PMID: 39963408 PMCID: PMC11830661 DOI: 10.3389/fcimb.2025.1484089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Candida albicans, a human fungal pathogen, multiplies to invade body cells and causes fungal diseases in the condition of insufficient body's immune function. Early detection of C. albicans is required to guide appropriate prevention and treatment. Methods The purpose of this study was to establish a C. albicans assay based on newly developed closed dumbbell-mediated isothermal amplification (CDA) to achieve rapid and simple point of care diagnostic. The CDA technique was carried out by specific primers targeting at the conserved C. albicans ITS2 gene. All primers were selected and evaluated by real-time fluorescence monitoring and endpoint visual judgement indicated by hydroxy naphthol blue (HNB). Optimal primers and accelerate primers (out primers and loop primers) were designed and selected after confirmation of the fundamental CDA primers to achieve more efficient CDA reaction for C. albicans detection (CA-OL-CDA). Results After establishment of the assay, 9 non-Candida albicans strains, including 3 Candida species were tested to negative by adopting the established CA-OL-CDA assay, indicated high specificity. The limit of detection of Candida albicans DNA by CA-OL-CDA assay was 6.2×10-6 ng/μL of DNA (10 copies/μL), 10-fold more sensitive than real-time quantitative PCR (qPCR). Discussion The CA-OL-CDA assay exhibited advantages of high specificity, sensitivity, simpler and more efficient operation. In addition, the CA-OL-CDA method holds potential in on-site detection for C. albicans using color shift by adopting the reaction mixture based on HNB.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xuhan Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Yeling Zhong
- Department of General Surgery (Hepatic, Anal-canal, Gastrointestinal), Ningbo Zhenhai People’s Hospital, Ningbo, Zhejiang, China
| | - Fei Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Rui Mao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
4
|
Veerapandian R, Paudyal A, Schneider SM, Lee STM, Vediyappan G. A mouse model of immunosuppression facilitates oral Candida albicans biofilms, bacterial dysbiosis and dissemination of infection. Front Cell Infect Microbiol 2025; 14:1467896. [PMID: 39902181 PMCID: PMC11788080 DOI: 10.3389/fcimb.2024.1467896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Opportunistic pathogens are a major threat to people, especially those with impaired immune systems. Two of the most important microbes in this category are the fungus Candida albicans and Gram-positive bacteria of the genus Enterococcus, which share overlapping niches in the oral cavity, gastrointestinal and urogenital tracts. The clinical importance of oral C. albicans biofilm and its interaction with the host under immunosuppressive conditions remains largely understudied. Here, we used a mouse model of oropharyngeal candidiasis (OPC) with cortisone acetate injection on alternate days and a continuous supply of C. albicans in drinking water for three days, resulting in immunosuppression. Results showed abundant growth of resident oral bacteria and a strong C. albicans biofilm on the tongue consisting of hyphae which damaged papillae, the epidermal layer, and invaded tongue tissue with the accumulation of inflammatory cells as demonstrated by Grocott's methenamine silver and hematoxylin and eosin staining, respectively. The dispersed microbes from the oral biofilm colonized the gastrointestinal (GI) tract and damaged its integrity, disseminating microbes to other organs. Although no visible damage was observed in the kidney and liver, except increased lipid vacuoles in the liver cells, C. albicans was found in the liver homogenate. Intriguingly, we found co-occurrence of Enterococcus faecalis in the tongue, liver, and stool of immunosuppressed control and C. albicans infected organs. Targeted 16S rRNA and ITS2 amplicon sequencing of microbes from the fecal samples of mice confirmed the above results in the stool samples and revealed an inverse correlation of beneficial microbes in the dysbiosis condition. Our study shows that mucosal-oral infection of C. albicans under immunosuppressed conditions causes tissue damage and invasion in local and distant organs; the invasion may be aided by the overgrowth of the resident endogenous Enterobacteriaceae and other members, including the opportunistic pathogen Enterococcus faecalis.
Collapse
Affiliation(s)
- Raja Veerapandian
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Anuja Paudyal
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sarah M. Schneider
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Govindsamy Vediyappan
- Division of Biology, Kansas State University, Manhattan, KS, United States
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2025; 14:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
6
|
Guglietta S, Li X, Saxena D. Role of Fungi in Tumorigenesis: Promises and Challenges. ANNUAL REVIEW OF PATHOLOGY 2025; 20:459-482. [PMID: 39854185 DOI: 10.1146/annurev-pathmechdis-111523-023524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers. Some fungal species can promote tumorigenesis by triggering the complement system. However, in immunocompromised patients, fungi can also inhibit this activation and establish life-threatening infections. Interestingly, the interaction of the fungi and bacteria can also induce unique host immune responses. Recent breakthroughs and advancements in high-throughput sequencing of the gut and tumor mycobiomes are highlighting novel diagnostic and therapeutic opportunities for cancer. We discuss the latest developments in the field of cancer and the mycobiome and the potential benefits and challenges of antifungal therapies.
Collapse
Affiliation(s)
- Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Charleston, South Carolina, USA
| | - Xin Li
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Urology, NYU Grossman School of Medicine, New York, NY, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, USA;
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Department of Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Vazquez-Munoz R, Russell JT, Thompson A, Dongari-Bagtzoglou A. Genome sequencing of Enterococcus faecalis strain 13, an oral strain isolated from C57BL/6 mice. Microbiol Resour Announc 2024; 13:e0018524. [PMID: 39315861 PMCID: PMC11556102 DOI: 10.1128/mra.00185-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Enterococcus faecalis strain 13 (Ef#13) is a tongue isolate from a C57BL/6 mouse with experimental oropharyngeal candidiasis. Short-read sequencing revealed a genome of 2,767,598 bp with a GC content of 38.4%, and 2,649 genes were predicted.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Angela Thompson
- Department of General Dentistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Chen Z, Lu Y, Xu Z, Wu L, Wei X, Cai Y. Evaluation of a Burkholderia ambifaria strain from plants as a novel promising probiotic in dental caries management. J Oral Microbiol 2024; 16:2420612. [PMID: 39502190 PMCID: PMC11536693 DOI: 10.1080/20002297.2024.2420612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Background Probiotics serve as a novel preventive or therapeutic approach for dental caries owing to their ability to reverse dysbiosis and restore a healthy microbiota. Here, we identified Burkholderia ambifaria AFS098024 as a probiotic candidate isolated from plants. Methods The safety of B. ambifaria was evaluated by hemolytic activity, D-lactic acid production and antibiotic susceptibility. In vitro biofilm model derived from the saliva of caries-free and caries-active donors and in vivo rat caries model were used to assess the efficacy of B. ambifaria in caries prevention and treatment. Results B. ambifaria was safe as a probiotic candidate and it could integrate with in vitro biofilm model. It significantly reduced the biomass and lactate production of biofilms from caries-active donors and disrupted biofilm structures. B. ambifaria effectively reduced the severity of carious lesions in rat molars, regardless of the inoculation sequence. Molars pretreated or treated with B. ambifaria demonstrated notably higher enamel volumes. Additionally, colonization of rat molars by B. ambifaria persisted for 6 weeks. Conclusion The B. ambifaria strain used in this study holds promise as a probiotic for inhibiting dental caries, both in vitro and in vivo.
Collapse
Affiliation(s)
- Zirang Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yangyu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijing Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. Lactobacillus johnsonii is a dominant Lactobacillus in the murine oral mucosa and has chitinase activity that compromises fungal cell wall integrity. mBio 2024; 15:e0241624. [PMID: 39287438 PMCID: PMC11481578 DOI: 10.1128/mbio.02416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
The oral microbiome is a critical determinant of health and disease, as interactions between oral microorganisms can influence their physiology and the development or severity of oral infections. Lactobacilli have a widely recognized antagonistic relationship with Candida albicans and may exhibit probiotic properties that limit oral fungal infection. We previously reported that Lactobacillus johnsonii strain MT4, an oral strain isolated from C57BL/6 mice, can induce global changes in the murine oral microbiome and has anti-Candida activity in vitro. To build on this information, we analyzed its abundance on the mouse oral mucosa, tested its impact on the severity and progression of oropharyngeal candidiasis (OPC) in a mouse model, and further explored the mechanism of antifungal activity in vitro. Our findings reveal that L. johnsonii MT4 is a dominant cultivable Lactobacillus in the oral mucosa of C57BL/6 mice. Strain MT4 has chitinase activity against C. albicans, which damages the cell wall and compromises fungal metabolic activity. Oral inoculation with strain MT4 causes a reduction in the Candida-induced rise in the abundance of oral enterococci and oral mucosal damage. This research underscores the potential of L. johnsonii strain MT4 as a novel probiotic agent in the prevention or management of OPC, and it contributes to a better understanding of the role of oral bacterial microbiota role in the pathogenesis of fungal infections. IMPORTANCE The interactions between the opportunistic pathogen Candida albicans and resident oral bacteria are particularly crucial in maintaining oral health. Emerging antifungal drug-resistant strains, slow-paced drug discovery, and the risk of side effects can compromise the effectiveness of current treatments available for oropharyngeal candidiasis. This study advances the search for alternative microbiome-targeted therapies in oral fungal infections. We report that Lactobacillus johnsonii strain MT4 prevents the Candida-induced bloom of dysbiotic oral enterococci and reduces oral mucosal lesions in an oropharyngeal candidiasis murine model. We also show that this strain directly compromises the cell wall and reduces fungal metabolic activity, partly due to its chitinase activity.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
10
|
Huang Y, Wang Y, Huang X, Yu X. Unveiling the overlooked fungi: the vital of gut fungi in inflammatory bowel disease and colorectal cancer. Gut Pathog 2024; 16:59. [PMID: 39407244 PMCID: PMC11481806 DOI: 10.1186/s13099-024-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Yilin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yang Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
11
|
Kapitan M, Niemiec MJ, Millet N, Brandt P, Chowdhury MEK, Czapka A, Abdissa K, Hoffmann F, Lange A, Veleba M, Nietzsche S, Mosig AS, Löffler B, Marquet M, Makarewicz O, Kline KA, Vylkova S, Swidergall M, Jacobsen ID. Synergistic cross-kingdom host cell damage between Candida albicans and Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612452. [PMID: 39314435 PMCID: PMC11419042 DOI: 10.1101/2024.09.11.612452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The fungus Candida albicans and the Gram-positive bacterium Enterococcus faecalis share mucosal niches in the human body. As opportunistic pathogens, both are found to expand population size during dysbiosis, and can cause severe systemic infections in susceptible individuals. Here, we show that the presence of C. albicans results in increased host cell damage by E. faecalis . Furthermore, E. faecalis aggravates oropharyngeal candidiasis in mice. Increased damage is mediated by enterococcal cytolysin, and involves both physical interaction and altered glucose availability. Physical interaction promotes accumulation of bacteria on host cells, facilitating contact of cytolysin with host cells. Glucose depletion by the metabolic activity of the fungus sensitized host cells to cytolysin. This work illustrates how a complex interplay between fungi and bacteria can result in detrimental consequences for the host.
Collapse
|
12
|
Jiang X, Fu T, Huang L. PANoptosis: a new insight for oral diseases. Mol Biol Rep 2024; 51:960. [PMID: 39235684 DOI: 10.1007/s11033-024-09901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
PANoptosis, a burgeoning area of research, is a unique type of programmed cell death typified by pyroptosis, apoptosis, and necroptosis, yet it defies singular classification by any one mode of death. The assembly and activation of PANoptosomes are pivotal processes in PANoptosis, with several PANoptosomes already identified. Linkages between PANoptosis and the pathophysiology of various systemic illnesses are established, with increasing recognition of its association with oral ailments. This paper aims to deepen understanding by conducting a comprehensive analysis of the molecular pathways driving PANoptosis and exploring its potential implications in oral diseases.
Collapse
Affiliation(s)
- Xinyi Jiang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Tingting Fu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, #426 SongShiBeiRd., YuBei, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
| |
Collapse
|
13
|
Gelin A, Masson-Meyers D, Amini F, Moharamzadeh K, Tayebi L. Collagen: The superior material for full-thickness oral mucosa tissue engineering. J Oral Biosci 2024; 66:511-518. [PMID: 38909983 DOI: 10.1016/j.job.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Tissue engineering has significantly progressed in developing full-thickness oral mucosa constructs designed to replicate the natural oral mucosa. These constructs serve as valuable in vitro models for biocompatibility testing and oral disease modeling and hold clinical potential for replacing damaged or lost oral soft tissue. However, one of the major challenges in tissue engineering of the oral mucosa is the identification of an appropriate scaffold with optimal porosity, interconnected porous networks, biodegradability, and biocompatibility. These characteristics facilitate cell migration, nutrient delivery, and vascularization. Various biomaterials have been investigated for constructing tissue-engineered oral mucosa models; collagen has demonstrated superior outcomes compared with other materials. HIGHLIGHT This review discusses the different types of tissue-engineered oral mucosa developed using various materials and includes articles published between January 2000 and December 2022 in PubMed and Google Scholar. The review focuses on the superiority of collagen-based scaffolds for tissue engineering of oral mucosa, explores in vitro applications, and discusses potential clinical applications. CONCLUSION Among the various scaffold materials used for engineering the connective tissue of the oral mucosa, collagen-based scaffolds possess excellent biological properties, offering high-quality oral mucosa constructs and high resemblance to the native human oral mucosa in terms of histology and expression of various differentiation markers.
Collapse
Affiliation(s)
- Alexandra Gelin
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | | | - Fatemeh Amini
- School of Dentistry, Shahed University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates; School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
14
|
García-Gamboa R, Perfecto-Avalos Y, Gonzalez-Garcia J, Alvarez-Calderon MJ, Gutierrez-Vilchis A, Garcia-Gonzalez A. In vitro analysis of postbiotic antimicrobial activity against Candida Species in a minimal synthetic model simulating the gut mycobiota in obesity. Sci Rep 2024; 14:16760. [PMID: 39033245 PMCID: PMC11271299 DOI: 10.1038/s41598-024-66806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| | - Yocanxóchitl Perfecto-Avalos
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Julieta Gonzalez-Garcia
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - María J Alvarez-Calderon
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Abel Gutierrez-Vilchis
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| |
Collapse
|
15
|
Zou P, Liu J, Li P, Luan Q. Antifungal Activity, Synergism with Fluconazole or Amphotericin B and Potential Mechanism of Direct Current against Candida albicans Biofilms and Persisters. Antibiotics (Basel) 2024; 13:521. [PMID: 38927187 PMCID: PMC11200915 DOI: 10.3390/antibiotics13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Candida albicans, as a notorious fungal pathogen, is associated with high morbidity and mortality worldwide due to its ability to form biofilms and persisters that can withstand currently available antifungals. Direct current (DC) has demonstrated a promising antimicrobial effect and synergistic effect with antimicrobials against various infections. Here, we first found DC exerted a killing effect on C. albicans planktonic and biofilm cells. Moreover, DC showed a synergistic effect with fluconazole (FLC) and amphotericin B (AMB). Notably, near-to-complete eradication of AMB-tolerant C. albicans biofilm persisters was achieved upon DC treatment. Next, the mechanism of action of DC was explored through mapping the genes and proteomic profiles of DC-treated C. albicans. The multi-omics analysis, quantitative real-time PCR and assay of reactive oxygen species (ROS) demonstrated DC exerted an antifungal effect on C. albicans by increasing cellular oxidative stress. As revealed by multiple analyses (e.g., protein assay based on absorbance at 280 nm and rhodamine 6G assay), DC was able to enhance membrane permeability, inhibit drug efflux and increase cellular FLC/AMB concentration of C. albicans, thereby mediating its synergism with the antifungals. Furthermore, DC inhibited superoxide dismutase 2 (SOD2) expression and manganese-containing SOD (Mn SOD) activity, leading to ROS production and enhanced killing of C. albicans biofilm persisters. The current findings demonstrate that the adjunctive use of DC in combination with antifungals is a promising strategy for effective control of C. albicans infections and management of antifungal resistance/tolerance in Candida biofilms.
Collapse
Affiliation(s)
| | | | - Peng Li
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China; (P.Z.); (J.L.)
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China; (P.Z.); (J.L.)
| |
Collapse
|
16
|
Hou GW, Huang T. Essential oils as promising treatments for treating Candida albicans infections: research progress, mechanisms, and clinical applications. Front Pharmacol 2024; 15:1400105. [PMID: 38831882 PMCID: PMC11145275 DOI: 10.3389/fphar.2024.1400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Candida albicans: (C. albicans) is a prevalent opportunistic pathogen that can cause severe mucosal and systemic fungal infections, leading to high morbidity and mortality rates. Traditional chemical drug treatments for C. albicans infection have limitations, including the potential for the development of drug resistance. Essential oils, which are secondary metabolites extracted from plants, have gained significant attention due to their antibacterial activity and intestinal regulatory effects. It makes them an ideal focus for eco-friendly antifungal research. This review was aimed to comprehensively evaluate the research progress, mechanisms, and clinical application prospects of essential oils in treating C. albicans infections through their antibacterial and intestinal regulatory effects. We delve into how essential oils exert antibacterial effects against C. albicans infections through these effects and provide a comprehensive analysis of related experimental studies and clinical trials. Additionally, we offer insights into the future application prospects of essential oils in antifungal therapy, aiming to provide new ideas and methods for the development of safer and more effective antifungal drugs. Through a systematic literature review and data analysis, we hope to provide insights supporting the application of essential oils in antifungal therapy while also contributing to the research and development of natural medicines. In the face of increasingly severe fungal infections, essential oils might emerge as a potent method in our arsenal, aiding in the effective protection of human and animal health.
Collapse
Affiliation(s)
| | - Ting Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
17
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. Powder diet exacerbates oropharyngeal candidiasis in a mouse model. Appl Environ Microbiol 2024; 90:e0171323. [PMID: 38319097 PMCID: PMC10952443 DOI: 10.1128/aem.01713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
This study reports on the influence of a powder diet in a mouse model of oropharyngeal candidiasis (OPC), a significant health concern caused primarily by Candida albicans. Despite identical nutritional composition, we found that a powdered diet significantly increased Candida burdens and oral lesions, and aggravated weight loss compared to a standard pelleted diet. High fungal burdens and severe oral lesions were accomplished within 48 hours after infection with only one dose of cortisone. Moreover, mice on a powder diet recovered a week after infection. Using a powder diet, we thus modified the cortisone OPC murine model in a way that simplifies the infection process, enhances reproducibility, and facilitates studies investigating both pathogenesis and recovery processes. Our findings also underscore the pivotal role of the physical form of the diet in the progression and severity of oral Candida infection in this model. Future research should investigate this relationship further to broaden our understanding of the underlying mechanisms, potentially leading to novel prevention strategies and improved disease management.IMPORTANCEOropharyngeal candidiasis (OPC) is a multifactorial disease and a significant health concern. We found that the physical form of the diet plays a critical role in the severity and progression of OPC. We developed a modified cortisone OPC murine model that facilitates studies investigating pathogenesis and recovery processes.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
18
|
Luo S, Shao R, Hong Y, Zhang T, Zhou Q, Zhou Q, Rao F, Zhao X, Dong Y, Zhu R, Ling P, Cui G, Guan Z, Luo P, He Y, Qi X, Liao J, Hong W. Identifying the oral microbiome of adolescents with and without dental fluorosis based on full-length 16S rRNA gene sequencing. Front Microbiol 2024; 15:1296753. [PMID: 38380100 PMCID: PMC10876846 DOI: 10.3389/fmicb.2024.1296753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Dental fluorosis, resulting from long-term environmental exposure to fluoride, is prevalent among diverse populations worldwide. Severe fluorosis not only compromises the aesthetic appeal of teeth but also impairs their functionality. This study aims to investigate the oral microbiome in dental fluorosis and the health individuals of adolescents living in the endemic fluorosis area of Guizhou, China through full-length 16S rDNA sequencing. Fourty-six individuals meet the sampling criteria, and we divided these samples into the following groups: a healthy group (H = 23) and a dental fluorosis group (F = 23), and two subgroups of Miao ethnicity: a healthy Miao group (Hm = 13) and a dental fluorosis Miao group (Fm = 15). A total of 660,389 high-quality sequences were obtained, and 12,007 Amplicon Sequence Variants (ASVs) were identified, revealing significant variations in oral microbiome between Fm and Hm groups. The composition of oral microbiota was similar between the H and F groups. At the genus level, Pseudopropionibacterium and at the species level, Streptococcus oralis_subsp.dentisani_clade_058 were less abundant in group F than in group H (P < 0.05). Further analysis revealed that the abundance of Capnocytophaga gingivalis and Kingella denitrificans was significantly lower in Fm fluorosis patients than in the Hm group (P < 0.05). Based on the LEfSe analysis, the potential core biomarkers in the oral of Fm fluorosis patients were identified at different taxonomic levels, ranging from phylum to species. These include Gammaproteobacteria, Prevotella sp_HMT_304, Gemella sanguinis, and Gracilibacteria_(GN02). Network analysis revealed that the microbiota in the fluorosis group exhibited more complex interactions with each other than the healthy group. Notably, within the Hm group, the potential biomarkers Capnocytophaga gingivalis and Kingella denitrificans exhibited a positive correlation. Finally, we employed PICRUSt2 analysis to explore the abundance clustering of the top 30 functional units in each sample, and we found that the metabolic pathway compositions of the four groups were similar. In summary, our findings suggest that the microbial composition of plaque in Hm patients with dental fluorosis is significantly altered, and we identified the potential marker microorganisms that contribute to these changes.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruirui Shao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Yue Hong
- He Guantun Town Health Center in Qixingguan District, Bijie, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Qingshuai Zhou
- Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Qian Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Fengqing Rao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingxing Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ping Ling
- Pediatric Intensive Care Unit, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Jian Liao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| |
Collapse
|
19
|
Park J, Kim H, Kang DD, Park Y. Exploring the Therapeutic Potential of Scorpion-Derived Css54 Peptide Against Candida albicans. J Microbiol 2024; 62:101-112. [PMID: 38589765 PMCID: PMC11021323 DOI: 10.1007/s12275-024-00113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Candida albicans (C. albicans) is one of the most common opportunistic fungi worldwide, which is associated with a high mortality rate. Despite treatment, C. albicans remains the leading cause of life-threatening invasive infections. Consequently, antimicrobial peptides (AMPs) are potential alternatives as antifungal agents with excellent antifungal activity. We previously reported that Css54, found in the venom of Centrurodies suffusus suffusus (C. s. suffusus) showed antibacterial activity against zoonotic bacteria. However, the antifungal activity of Css54 has not yet been elucidated. The objective of this study was to identify the antifungal activity of Css54 against C. albicans and analyze its mechanism. Css54 showed high antifungal activity against C. albicans. Css54 also inhibited biofilm formation in fluconazole-resistant fungi. The antifungal mechanism of action of Css54 was investigated using membrane-related assays, including the membrane depolarization assay and analysis of the membrane integrity of C. albicans after treatment with Css54. Css54 induced reactive oxygen species (ROS) production in C. albicans, which affected its antifungal activity. Our results indicate that Css54 causes membrane damage in C. albicans, highlighting its value as a potential therapeutic agent against C. albicans infection.
Collapse
Affiliation(s)
- Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea
| | - Hyeongsun Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Da Dam Kang
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
20
|
Teng W, Subsomwong P, Narita K, Nakane A, Asano K. Heat Shock Protein SSA1 Enriched in Hypoxic Secretome of Candida albicans Exerts an Immunomodulatory Effect via Regulating Macrophage Function. Cells 2024; 13:127. [PMID: 38247818 PMCID: PMC10814802 DOI: 10.3390/cells13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.
Collapse
Affiliation(s)
- Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
| | - Kouji Narita
- Insititue for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (W.T.); (P.S.)
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| |
Collapse
|
21
|
Medeiros L, Dos Santos RF, da Rolt Nervis B, Jacobi M, Hashizume LN, Gazzi RP, Visioli F, Nunes JS, Lavayen V, De Franco VC, Daitx TS, Pereira SC, Ferreira GA, Pohlmann A, Guterres S, Frank LA, Bussamara R. Synthesis of films based on chitosan and protic ionic liquids to be used as wound dressing on the oral mucosa. Int J Biol Macromol 2023; 253:127134. [PMID: 37776933 DOI: 10.1016/j.ijbiomac.2023.127134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Oral mucosal ulcerations expose connective tissue to different pathogens and this can progress to systemic infection. This study aimed to synthesize environmentally-friendly films with chitosan and protic ionic liquids, possessing mucoadhesive properties, activity against opportunistic microorganisms, enhanced malleability and mechanical resistance to be used as a wound dressing on the oral mucosa. Therefore, films with chitosan and 10, 35, and 50 % (wt/wt) of 2-hydroxy diethylammonium lactate, salicylate, and maleate protic ionic liquids were synthesized. Thickness measurements and mechanical properties analysis were performed. In addition, oral mucoadhesion, antimicrobial activity, and cytotoxicity properties were investigated. Results showed that the addition of 35wt% and 50wt% of all kinds of protic ionic liquids tested presented significant improvements in film thickness and mechanical properties. Films based on chitosan and the protic ionic liquid 2-hydroxy diethylammonium salicylate at percentages of 35 and 50wt% exhibited superior mucoadhesive properties, antimicrobial activity on opportunistic microorganisms and an improvement in their flexibility after immersion in synthetic saliva. Cytotoxicity results suggest that all kinds of chitosan/protic ionic liquids films tested are safe for intra-oral use. Therefore, the results of this study indicate that these materials could be good candidates for efficient and environmentally-friendly wound dressing films on the oral mucosa.
Collapse
Affiliation(s)
- Leonardo Medeiros
- Laboratory of Proteins and Microorganisms Applied to Chemistry, Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Rogério F Dos Santos
- Laboratory of Proteins and Microorganisms Applied to Chemistry, Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Brenda da Rolt Nervis
- Laboratory of Proteins and Microorganisms Applied to Chemistry, Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Marly Jacobi
- Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Lina Naomi Hashizume
- Department of Preventive and Social Dentistry, School of Dentistry, UFRGS, Rua Ramiro Barcelos 2492, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Rafaela P Gazzi
- Department of Preventive and Social Dentistry, School of Dentistry, UFRGS, Rua Ramiro Barcelos 2492, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Department of Oral Pathology, School of Dentistry, UFRGS, Rua Ramiro Barcelos 2492, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Júlia Silveira Nunes
- Department of Oral Pathology, School of Dentistry, UFRGS, Rua Ramiro Barcelos 2492, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Vladimir Lavayen
- Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Vinícius C De Franco
- Laboratory of Magnetism, Institute of Physics, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Tales S Daitx
- Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Sandra Cerqueira Pereira
- Escola Politécnica(,) Department of Chemical Engineering, UFBA, R. Aristides Novis 2, CEP 40210-630 Salvador, BA, Brazil
| | - Gicelia Antonia Ferreira
- Escola Politécnica(,) Department of Chemical Engineering, UFBA, R. Aristides Novis 2, CEP 40210-630 Salvador, BA, Brazil
| | - Adriana Pohlmann
- Pharmaceutical Sciences Post-Graduate Program, UFRGS, Av. Ipiranga 2752, CEP 90160-093 Porto Alegre, RS, Brazil
| | - Silvia Guterres
- Pharmaceutical Sciences Post-Graduate Program, UFRGS, Av. Ipiranga 2752, CEP 90160-093 Porto Alegre, RS, Brazil
| | - Luiza Abrahão Frank
- Pharmaceutical Sciences Post-Graduate Program, UFRGS, Av. Ipiranga 2752, CEP 90160-093 Porto Alegre, RS, Brazil
| | - Roberta Bussamara
- Laboratory of Proteins and Microorganisms Applied to Chemistry, Institute of Chemistry, UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
O'Connell LM, Mann AE, Osagie E, Akhigbe P, Blouin T, Soule A, Obuekwe O, Omoigberale A, Burne RA, Coker MO, Richards VP. Supragingival mycobiome of HIV-exposed-but-uninfected children reflects a stronger correlation with caries-free-associated taxa compared to HIV-infected or uninfected children. Microbiol Spectr 2023; 11:e0149123. [PMID: 37874172 PMCID: PMC10715047 DOI: 10.1128/spectrum.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Globally, caries is among the most frequent chronic childhood disease, and the fungal component of the microbial community responsible is poorly studied despite evidence that fungi contribute to increased acid production exacerbating enamel demineralization. HIV infection is another global health crisis. Perinatal HIV exposure with infection are caries risk factors; however, the caries experience in the context of perinatal HIV exposure without infection is less clear. Using high-throughput amplicon sequencing, we find taxonomic differences that become pronounced during late-stage caries. Notably, we show a stronger correlation with health-associated taxa for HIV-exposed-but-uninfected children when compared to unexposed and uninfected children. This aligns with a lower incidence of caries in primary teeth at age 6 or less for exposed yet uninfected children. Ultimately, these findings could contribute to improved risk assessment, intervention, and prevention strategies such as biofilm disruption and the informed design of pro-, pre-, and synbiotic oral therapies.
Collapse
Affiliation(s)
- Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Thomas Blouin
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ashlyn Soule
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ozoemene Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Augustine Omoigberale
- Department of Child Health, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
23
|
He S, Sun Y, Sun W, Tang M, Meng B, Liu Y, Kong Q, Li Y, Yu J, Li J. Oral microbiota disorder in GC patients revealed by 2b-RAD-M. J Transl Med 2023; 21:831. [PMID: 37980457 PMCID: PMC10656981 DOI: 10.1186/s12967-023-04599-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/06/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Microbiota alterations are linked with gastric cancer (GC). However, the relationship between the oral microbiota (especially oral fungi) and GC is not known. In this study, we aimed to apply 2b-RAD sequencing for Microbiome (2b-RAD-M) to characterize the oral microbiota in patients with GC. METHODS We performed 2b-RAD-M analysis on the saliva and tongue coating of GC patients and healthy controls. We carried out diversity, relative abundance, and composition analyses of saliva and tongue coating bacteria and fungi in the two groups. In addition, indicator analysis, the Gini index, and the mean decrease accuracy were used to identify oral fungal indicators of GC. RESULTS In this study, fungal imbalance in the saliva and tongue coating was observed in the GC group. At the species level, enriched Malassezia globosa (M. globosa) and decreased Saccharomyces cerevisiae (S. cerevisiae) were observed in saliva and tongue coating samples of the GC group. Random forest analysis indicated that M. globosa in saliva and tongue coating samples could serve as biomarkers to diagnose GC. The Gini index and mean decreases in accuracy for M. globosa in saliva and tongue coating samples were the largest. In addition, M. globosa in saliva and tongue coating samples classified GC from the control with areas under the receiver operating curve (AUCs) of 0.976 and 0.846, respectively. Further ecological analysis revealed correlations between oral bacteria and fungi. CONCLUSION For the first time, our data suggested that changes in oral fungi between GC patients and controls may help deepen our understanding of the complex spectrum of the different microbiotas involved in GC development. Although the cohort size was small, this study is the first to use 2b-RAD-M to reveal that oral M. globosa can be a fungal biomarker for detecting GC.
Collapse
Affiliation(s)
- Shengfu He
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yating Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingyang Tang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bao Meng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Qinxiang Kong
- Department of Infectious Diseases, Chaohu Hospital of Anhui MedicalUniversity, Hefei, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jiawen Yu
- Department of Oncology, Anqing First People's Hospital of Anhui Medical University/Anqing First People's Hospital of Anhui Province, Anqing, China.
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China.
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China.
- Department of Infectious Diseases, Chaohu Hospital of Anhui MedicalUniversity, Hefei, Anhui, China.
| |
Collapse
|
24
|
Wang X, Wu S, Li L, Yan Z. Candida albicans overgrowth disrupts the gut microbiota in mice bearing oral cancer. Mycology 2023; 15:57-69. [PMID: 38558840 PMCID: PMC10977010 DOI: 10.1080/21501203.2023.2256761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024] Open
Abstract
Candida albicans is one of the most common opportunistic fungi in cancer patients. This study explored the influence of C. albicans on gut microbiota in oral tumour-bearing mice by means of 16S rRNA sequencing and ITS sequencing. It was found that C. albicans infection induced the decrease of alpha diversity of bacteria and fungi in the gut microbiome. For the bacteria, C. albicans caused the reduction of Ralstonia, Alistipes, Clostridia UCG-014, Ruminococcus, and Lachnospiraceae NK4A136 group. For the fungi, C. albicans inhibited the growth of other fungi including Aspergillus, Cladosporium, and Bipolaris. The neutralisation of γδT cells partly alleviated the out-of-balance of Firmicutes/Bacteroidota (F/B) ratio in the gut caused by C. albicans infection. However, γδT cell neutralisation boosted the overgrowth of C. albicans. Additionally, IL-17A neutralisation aggravated the microbial dysbiosis of bacteria and fungi caused by C. albicans infection. Further analysis indicated that C. albicans overgrowth might influence the correlations between fungal and bacterial kingdoms. In conclusion, C. albicans infection disturbed the gut microbiota of both bacteria and fungi in oral tumour-bearing mice, which may be associated with the intestinal immune components including γδT cells and IL-17A.
Collapse
Affiliation(s)
- Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuangshaung Wu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Linman Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
25
|
Robertson EB, Willett JLE. Streptococcus mutans inhibits the growth of Enterococcus via the non-ribosomal cyclic peptide mutanobactin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557362. [PMID: 37745448 PMCID: PMC10515869 DOI: 10.1101/2023.09.12.557362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium in the gastrointestinal tract and an opportunistic pathogen. Enterococci are a leading cause of nosocomial infections, treatment of which is complicated by intrinsic and acquired antibiotic resistance mechanisms. Additionally, E. faecalis has been associated with various oral diseases, and it is frequently implicated in the failure of endodontic treatment. For establishment and persistence in a microbial community, E. faecalis must successfully compete against other bacteria. Streptococcal species play an important role in the establishment of the oral microbiome and co-exist with Enterococcus in the small intestine, yet the nature of interactions between E. faecalis and oral streptococci remains unclear. Here, we describe a mechanism by which Streptococcus mutans inhibits the growth of E. faecalis and other Gram-positive pathogens through the production of mutanobactin, a cyclic lipopeptide. Mutanobactin is produced by a polyketide synthase-nonribosomal peptide synthetase hybrid system encoded by the mub locus. Mutanobactin-producing S. mutans inhibits planktonic and biofilm growth of E. faecalis and is also active against other Enterococcus species and Staphylococcus aureus. Mutanobactin damages the cell envelope of E. faecalis, similar to other lipopeptide antibiotics like daptomycin. E. faecalis resistance to mutanobactin is mediated by the virulence factor gelatinase, a secreted metalloprotease. Our results highlight the anti-biofilm potential of the microbial natural product mutanobactin, provide insight into how E. faecalis interacts with other organisms in the human microbiome, and demonstrate the importance of studying E. faecalis dynamics within polymicrobial communities.
Collapse
Affiliation(s)
- Ethan B. Robertson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
26
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. A prebiotic diet modulates the oral microbiome composition and results in the attenuation of oropharyngeal candidiasis in mice. Microbiol Spectr 2023; 11:e0173423. [PMID: 37671879 PMCID: PMC10580959 DOI: 10.1128/spectrum.01734-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023] Open
Abstract
Oral bacteria can influence the ability of Candida albicans to cause oropharyngeal candidiasis (OPC). We recently reported that a Lactobacillus johnsonii-enriched oral microbiota reduced C. albicans virulence in an immunosuppressed OPC mouse model. As a follow-up, in this work, we aimed to enrich the resident oral Lactobacillus communities with a prebiotic diet to further assess their effect on the severity of OPC. We tested the effect of a prebiotic xylo-oligosaccharides (XOS)-enriched diet in the oral global bacterial composition and severity of OPC. We assessed changes in the oral microbiome composition via 16S-rRNA gene high-throughput sequencing, validated by qPCR. The impact of the prebiotic diet on Candida infection was assessed by quantifying changes in oral fungal and bacterial biomass and scoring tongue lesions. Contrary to expectations, oral Lactobacillus communities were not enriched by the XOS-supplemented diet. Yet, XOS modulated the oral microbiome composition, increasing Bifidobacterium abundance and reducing enterococci and staphylococci. In the OPC model, the XOS diet attenuated Candida virulence and bacterial dysbiosis, increasing lactobacilli and reducing enterococci on the oral mucosa. We conclude that XOS attenuates Candida virulence by promoting a bacterial microbiome structure more resilient to Candida infection. IMPORTANCE This is the first study on the effects of a prebiotic diet on the oral mucosal bacterial microbiome and an oropharyngeal candidiasis (OPC) mouse model. We found that xylo-oligosaccharides change the oral bacterial community composition and attenuate OPC. Our results contribute to the understanding of the impact of the oral bacterial communities on Candida virulence.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
27
|
Rojas CA, Entrolezo Z, Jarett JK, Jospin G, Kingsbury DD, Martin A, Eisen JA, Ganz HH. Microbiome Responses to Fecal Microbiota Transplantation in Cats with Chronic Digestive Issues. Vet Sci 2023; 10:561. [PMID: 37756083 PMCID: PMC10537086 DOI: 10.3390/vetsci10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
There is growing interest in the application of fecal microbiota transplants (FMTs) in small animal medicine, but there are few published studies that have tested their effects in the domestic cat (Felis catus). Here we use 16S rRNA gene sequencing to examine fecal microbiome changes in 46 domestic cats with chronic digestive issues that received FMTs using lyophilized stool that was delivered in oral capsules. Fecal samples were collected from FMT recipients before and two weeks after the end of the full course of 50 capsules, as well as from their stool donors (N = 10), and other healthy cats (N = 113). The fecal microbiomes of FMT recipients varied with host clinical signs and dry kibble consumption, and shifts in the relative abundances of Clostridium, Collinsella, Megamonas, Desulfovibrio and Escherichia were observed after FMT. Overall, donors shared 13% of their bacterial amplicon sequence variants (ASVs) with FMT recipients and the most commonly shared ASVs were classified as Prevotella 9, Peptoclostridium, Bacteroides, and Collinsella. Lastly, the fecal microbiomes of cats with diarrhea became more similar to the microbiomes of age-matched and diet-matched healthy cats compared to cats with constipation. Overall, our results suggest that microbiome responses to FMT may be modulated by the FMT recipient's initial presenting clinical signs, diet, and their donor's microbiome.
Collapse
Affiliation(s)
- Connie A. Rojas
- Genome Center, University of California, Davis, CA 95616, USA; (C.A.R.); (J.A.E.)
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Zhandra Entrolezo
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Jessica K. Jarett
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Guillaume Jospin
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Dawn D. Kingsbury
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Alex Martin
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA 95616, USA; (C.A.R.); (J.A.E.)
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Holly H. Ganz
- AnimalBiome, Oakland, CA 94609, USA; (Z.E.); (J.K.J.); (G.J.); (A.M.)
| |
Collapse
|
28
|
Lin Y, Li S, Mo C, Liu H, Bi J, Xu S, Jia B, Liu C, Liu Z. Oral microbial changes and oral disease management before and after the treatment of hematological malignancies: a narrative review. Clin Oral Investig 2023; 27:4083-4106. [PMID: 37071220 DOI: 10.1007/s00784-023-05021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES Patients with hematological malignancies have dynamic changes in oral microbial communities before and after treatment. This narrative review describes the changes in oral microbial composition and diversity, and discusses an oral microbe-oriented strategy for oral disease management. MATERIALS AND METHODS A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1980 and 2022. Any articles on the changes in oral microbial communities in patients with hematological malignancies and their effects on disease progression and prognosis were included. RESULTS Oral sample detection and oral microbial sequencing analysis of patients with hematological malignancies showed a correlation between changes in oral microbial composition and diversity and disease progression and prognosis. The possible pathogenic mechanism of oral microbial disorders is the impairment of mucosal barrier function and microbial translocation. Probiotic strategies, antibiotic strategies, and professional oral care strategies targeting the oral microbiota can effectively reduce the risk of oral complications and the grade of severity in patients with hematological malignancies. CLINICAL RELEVANCE This review provides dentists and hematologists with a comprehensive understanding of the host-microbe associated with hematologic malignancies and oral disease management advice.
Collapse
Affiliation(s)
- Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongyu Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
29
|
Chen J, Li S, Zhu J, Su W, Jian C, Zhang J, Wu J, Wang T, Zhang W, Zeng F, Chang S, Jia L, Su J, Zhao Y, Wang J, Zeng F. Multi-omics profiling reveals potential alterations in rheumatoid arthritis with different disease activity levels. Arthritis Res Ther 2023; 25:74. [PMID: 37138305 PMCID: PMC10155393 DOI: 10.1186/s13075-023-03049-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease, the pathogenesis of which is not clear. Clinical remission, or decreased disease activity, is the aim of treatment for RA. However, our understanding of disease activity is inadequate, and clinical remission rates for RA are generally poor. In this study, we used multi-omics profiling to study potential alterations in rheumatoid arthritis with different disease activity levels. METHODS Fecal and plasma samples from 131 rheumatoid arthritis (RA) patients and 50 healthy subjects were collected for 16S rRNA sequencing, internally transcribed spacer (ITS) sequencing, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The PBMCS were also collected for RNA sequencing and whole exome sequencing (WES). The disease groups, based on 28 joints and ESR (DAS28), were divided into DAS28L, DAS28M, and DAS28H groups. Three random forest models were constructed and verified with an external validation cohort of 93 subjects. RESULTS Our findings revealed significant alterations in plasma metabolites and gut microbiota in RA patients with different disease activities. Moreover, plasma metabolites, especially lipid metabolites, demonstrated a significant correlation with the DAS28 score and also associations with gut bacteria and fungi. KEGG pathway enrichment analysis of plasma metabolites and RNA sequencing data demonstrated alterations in the lipid metabolic pathway in RA progression. Whole exome sequencing (WES) results have shown that non-synonymous single nucleotide variants (nsSNV) of the HLA-DRB1 and HLA-DRB5 gene locus were associated with the disease activity of RA. Furthermore, we developed a disease classifier based on plasma metabolites and gut microbiota that effectively discriminated RA patients with different disease activity in both the discovery cohort and the external validation cohort. CONCLUSION Overall, our multi-omics analysis confirmed that RA patients with different disease activity were altered in plasma metabolites, gut microbiota composition, transcript levels, and DNA. Our study identified the relationship between gut microbiota and plasma metabolites and RA disease activity, which may provide a novel therapeutic direction for improving the clinical remission rate of RA.
Collapse
Affiliation(s)
- Jianghua Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Congcong Jian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Zhang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jianhong Wu
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Weihua Zhang
- Department of Rheumatology and Immunology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Fanwei Zeng
- Sichuan Province Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Shengjia Chang
- Shantou University Medical College, Shantou University, Guangdong, China
| | - Lihua Jia
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jing Wang
- The National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| | - Fanxin Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China.
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
31
|
Sala A, Ardizzoni A, Spaggiari L, Vaidya N, van der Schaaf J, Rizzato C, Cermelli C, Mogavero S, Krüger T, Himmel M, Kniemeyer O, Brakhage AA, King BL, Lupetti A, Comar M, de Seta F, Tavanti A, Blasi E, Wheeler RT, Pericolini E. A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis-Associated Strains. mBio 2023; 14:e0010723. [PMID: 36856418 PMCID: PMC10128025 DOI: 10.1128/mbio.00107-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamentation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal proliferation and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis. IMPORTANCE Despite a high incidence of VVC, we still have a poor understanding of this female-specific disease whose negative impact on women's quality of life has become a public health issue. It is not yet possible to determine by genotype or laboratory phenotype if a given Candida albicans strain is more or less likely to cause VVC. Here, we show that Candida strains causing VVC induce more fungal shedding from epithelial cells than strains from healthy women. This effect is also accompanied by increased epithelial cell detachment and differential activation of the type I interferon pathway. These distinguishing phenotypes suggest it may be possible to evaluate the VVC pathogenic potential of fungal isolates. This would permit more targeted antifungal treatments to spare commensals and could allow for displacement of pathogenic strains with nonpathogenic colonizers. We expect these new assays to provide a more targeted tool for identifying fungal virulence factors and epithelial responses that control fungal vaginitis.
Collapse
Affiliation(s)
- Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Nikhil Vaidya
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Jane van der Schaaf
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Cermelli
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Antonella Lupetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco de Seta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
32
|
Wijesinghe GK, Nobbs AH, Bandara HMHN. Cross-kingdom Microbial Interactions Within the Oral Cavity and Their Implications for Oral Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Abstract
Purpose of Review
This review serves to highlight the cross-kingdom interactions that can occur within the human oral cavity between fungus Candida albicans and oral bacteria, and their impact on the delicate balance between oral health and disease.
Recent Findings
A growing number of physical, chemical, and metabolic networks have been identified that underpin these cross-kingdom interactions. Moreover, these partnerships are often synergistic and can modulate microbial burden or virulence. This, in turn, can drive the onset or progression of oral diseases such as dental caries, periodontitis, denture-associated stomatitis, and oral cancer.
Summary
The impact of cross-kingdom interactions on the cellular, biochemical, and communal composition of oral microbial biofilms is increasingly clear. With growing insight into these processes at the molecular level, so this knowledge can be used to better inform the development of novel strategies to manipulate the oral microbiota to promote oral health and combat oral disease.
Collapse
|
33
|
Lessa ADFN, Celestino MDA, Ferreira JM, Lima IV, Ramos YCS, Vieira FF, Amâncio AMTDS, Caldeira PC, Sousa SFD, Aguiar MCFD. Antimicrobial photodynamic therapy for the treatment of oral mucositis - a comparative study. Photodiagnosis Photodyn Ther 2023; 42:103543. [PMID: 37003595 DOI: 10.1016/j.pdpdt.2023.103543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVES The aim was to evaluate the effectiveness of the photobiomodulation associated to antimicrobial photodynamic therapy in the treatment of oral mucositis. BACKGROUND Oral Mucositis is a frequent complication of oral cavity and oropharynx cancer. Considering the OM aggravation by microorganisms contamination, disinfection provide by antimicrobial photodynamic therapy could be an effective approach. MATERIAL AND METHODS This comparative study included fourteen patients undergoing radiochemotherapy for oral cavity and oropharynx cancer treatment, who developed oral mucositis. CONTROL GROUP photobiomodulation. Intervention group: photobiomodulation and antimicrobial photodynamic therapy. The lesion size, duration, pain, and identification of microorganisms were evaluated. RESULTS The mean reduction in oral mucositis size in the intervention group was 0.70 cm² (±0.35) and 0.30 cm² (±1.10) for the control group. The mean duration of oral mucositis was 18.37 days (±12.12) for the intervention group and 23 days (±14.78) for the control group. The intervention group had a mean reduction of 3.40 points on the pain scale (±2.44), while the control group had 0.17 (±2.28). In the intervention group, the predominant isolated microbiota was featured as mixed culture (n=4/ 50%), followed of Gram Positive (n=3/ 37.50%), and Gram Negative (n=1/ 12.55%). In the control group, mixed culture was also more frequent (n=4 / 66%), followed by Gram Positive (n=2 /34%). Gram Negative was not predominantly isolated in the control group. CONCLUSION No statistical significance was found between PBM-T alone and PBM-T + PDT. However, the better outcomes reached by PBM-T + PDT group would suggest there could be a role for combined treatment in the management of OM lesions.
Collapse
Affiliation(s)
- Adriele de Freitas Neiva Lessa
- Research Department - Muriaé Cancer Hospital. Cristiano Varella Foundation. Muriaé, MG, Brazil; Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | - Flávio Ferraz Vieira
- Research Department - Muriaé Cancer Hospital. Cristiano Varella Foundation. Muriaé, MG, Brazil
| | | | - Patrícia Carlos Caldeira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sílvia Ferreira de Sousa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Cássia Ferreira de Aguiar
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
34
|
Bjornsdottir B, Benitez Hernandez U, Haraldsson A, Thors V. Febrile Children with Pneumonia Have Higher Nasopharyngeal Bacterial Load Than Other Children with Fever. Pathogens 2023; 12:517. [PMID: 37111403 PMCID: PMC10143154 DOI: 10.3390/pathogens12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Febrile episodes are common in children and the most frequent reason for attending emergency services. Although most infections have a benign and self-limiting course, severe and sometimes life-threatening infections occur. This prospective study describes a cohort of children presenting to a single-centre pediatric emergency department (ED) with suspected invasive bacterial infection, and explores the relationships between nasopharyngeal microbes and outcomes. All children attending the ED who had a blood culture taken were offered to participate over a two-year period. In addition to conventional medical care, a nasopharyngeal swab was obtained., which was analysed for respiratory viruses and three bacterial species using a quantitative PCR. Fisher's exact test, Wilcoxon rank sum, and multivariable models were used for statistical analyses of the 196 children (75% younger than four years) who were enrolled and had sufficient data for analysis; 92 had severe infections according to the study protocol, while five had bloodstream infections. Radiologically confirmed pneumonia was the most common severe infection found in 44/92 patients. The presence of respiratory viruses and the carriage of Streptococcus pneumoniae and Haemophilus influenzae were associated with a higher risk of pneumonia. Higher density colonisation with these bacteria were independent risk factors for pneumonia, whereas Moraxella catarrhalis carriage was associated with lower risk. Our data support the hypothesis that higher nasopharyngeal density of pneumococci and H. influenzae could play a role in the development of bacterial pneumonia in children. A preceding viral infection of the respiratory tract may be a trigger and play a role in the progression to severe lower respiratory tract infection.
Collapse
Affiliation(s)
- Bryndis Bjornsdottir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Science/Biostatistics, Landspitali University Hospital, 101 Reykjavik, Iceland
| | | | - Asgeir Haraldsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Children’s Hospital Iceland, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Valtyr Thors
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Children’s Hospital Iceland, Landspitali University Hospital, 101 Reykjavik, Iceland
| |
Collapse
|
35
|
Lisovskaya S, Isaeva GS, Nikolaeva I, Guseva S, Gainatullina L, Chumarev N. COLONIZATION AND AZOLE RESISTANCE OF OROPHARYNGEAL CANDIDA FUNGI IN INTENSIVE CARE PATIENTS WITH COVID-19. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-caa-2059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Patients with COVID-19 are susceptible to developing oropharyngeal candidiasis and invasive candidiasis. Invasive fungal infections can complicate the clinical course of COVID-19 and are associated with a substantially increased mortality. An important reason for the successful treatment of candidiasis is to determine the sensitivity of clinical fungal isolates to antimycotics. A microbiological study of oropharyngeal swabs was performed in 54 patients aged 33 to 94 years (mean age 67.4 years) with severe and extremely severe COVID-19, who were treated in the intensive care unit at the height of clinical manifestations. Most patients (95%) had comorbidities: hypertension (68.5%), diabetes mellitus (24%), coronary artery disease (22.2%), chronic heart failure (38.9%), obesity (23.8%), cardiac arrhythmias (20.4%), chronic cerebral ischemia (56.1%), varicose veins of the lower extremities (5.5%), chronic kidney disease (20.4%), liver cirrhosis (5.5%), HIV infection (5.5%). A comparative analysis of oropharyngeal microbial biocenosis showed differences in the frequency of occurrence of opportunistic microbial species, as well as in the number of members in microbial associations. Polyspecific fungal-bacterial associations were more common and dominated polyspecific bacterial associations. According to the results, a high frequency of oropharyngeal colonization in patients with severe COVID-19 by strains of fungi of the genus Candida was established. The vast majority of strains of fungi of the genus Candida (85.2%) were resistant to antimycotics of the azole group. A high frequency (85.2%) of oropharyngeal colonization in resuscitation patients with azole-resistant strains of fungi of the genus Candida was revealed. C. albicans dominated among Candida. C. albicans was isolated in 37 (68.5%) patients, C. pararapsilosis - in 6 (11.1%), C. tropicalis - in 3 (5.5%), C. krusei - in 2 (3.7%) %), C. kefyr - in 1 (1.9%), C. glabrata - in 1 (1.9%) patient. In 11 (20.4%) patients, associations of C. albicans and other Candida species were identified. The level of fungi in the material was etiologically significant (104 105 CFU/tamp.) in 80% of patients. The vast majority of strains (more than 70%) were resistant to fluconazole and voriconazole, which should be taken into account when prescribing candidiasis therapy in patients with COVID-19. The MIC for fluconazole against C. albicans strains was 1024 g/ml for 4 isolates, 512 g/ml for 7 isolates, and 128 g/ml for 15 isolates. The maximum MIC values for voriconazole against C. albicans was 256 g/ml.
Collapse
|
36
|
Wang X, Zhang W, Wu W, Wu S, Young A, Yan Z. Is Candida albicans a contributor to cancer? A critical review based on the current evidence. Microbiol Res 2023; 272:127370. [PMID: 37028206 DOI: 10.1016/j.micres.2023.127370] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
The association between Candida albicans (C. albicans) and cancer has been noticed for decades. Whether C. albicans infection is a complication of cancer status or as a contributor to cancer development remains to be discussed. This review systematically summarized the up-to-date knowledge about associations between C. albicans and various types of cancer, and discussed the role of C. albicans in cancer development. Most of the current clinical and animal evidence support the relationship between C. albicans and oral cancer development. However, there is insufficient evidence to demonstrate the role of C. albicans in other types of cancer. Moreover, this review explored the underlying mechanisms for C. albicans promoting cancer. It was hypothesized that C. albicans may promote cancer progression by producing carcinogenic metabolites, inducing chronic inflammation, remodeling immune microenvironment, activating pro-cancer signals, and synergizing with bacteria.
Collapse
|
37
|
Shen X, Zhang YL, Zhu JF, Xu BH. Oral dysbiosis in the onset and carcinogenesis of oral epithelial dysplasia: A systematic review. Arch Oral Biol 2023; 147:105630. [PMID: 36709626 DOI: 10.1016/j.archoralbio.2023.105630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This systematic review aims to investigate possible connections between the oral microbiome and the onset and carcinogenesis of oral epithelial dysplasia (OED). METHODS A systematic search was performed on PubMed, Embase, Cochrane Database, and SCOPUS by two authors independently, addressing the focused question- "Has oral microbiome dysbiosis been involved in the onset and carcinogenesis of oral epithelial dysplasia?" We used the Newcastle-Ottawa scale to assess the quality of studies included in the review. RESULTS Out of 580 references screened, ten studies were found eligible for inclusion. All studies were case-control studies, and only qualitative analysis was conducted due to heterogeneous characteristics. The overall risk of bias in the eligible studies was considered as high. Microbiome diversity indices showed inconsistent evidence among studies. A significant increase of phylum Bacteroidetes in OED patients was reported in five studies. Five studies reported an increase of genus Fusobacterium in both the OED and oral squamous cell carcinoma (OSCC) patients and six different studies respectively reported a reduction of genus Streptococcus in both the OED and OSCC groups when compared to normal controls. Other predominant bacteria that were specific to different patient groups varied in each study. CONCLUSIONS The results of the included studies showed that the composition of the oral microbiome in patients with OED compared to healthy controls and OSCC patients was inconsistent. However, all ten studies showed non-negligible heterogeneity in the type and size of the sample, and the comparability between groups, which strongly limited the external validity of results. Further studies are strongly recommended.
Collapse
Affiliation(s)
- Xiao Shen
- Center of Dental Medicine, China-Japan Friendship Hospital, 2 Ying-Hua-Yuan East Street, Chaoyang District, Beijing 100029, China
| | - Yue-Lun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun-Fei Zhu
- Center of Dental Medicine, China-Japan Friendship Hospital, 2 Ying-Hua-Yuan East Street, Chaoyang District, Beijing 100029, China
| | - Bao-Hua Xu
- Center of Dental Medicine, China-Japan Friendship Hospital, 2 Ying-Hua-Yuan East Street, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
38
|
Min Z, Yang L, Hu Y, Huang R. Oral microbiota dysbiosis accelerates the development and onset of mucositis and oral ulcers. Front Microbiol 2023; 14:1061032. [PMID: 36846768 PMCID: PMC9948764 DOI: 10.3389/fmicb.2023.1061032] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
With the rapid development of metagenomic high-throughput sequencing technology, more and more oral mucosal diseases have been proven to be associated with oral microbiota shifts or dysbiosis. The commensal oral microbiota can greatly influence the colonization and resistance of pathogenic microorganisms and induce primary immunity. Once dysbiosis occurs, it can lead to damage to oral mucosal epithelial defense, thus accelerating the pathological process. As common oral mucosal diseases, oral mucositis and ulcers seriously affect patients' prognosis and quality of life. However, from the microbiota perspective, the etiologies, specific alterations of oral flora, pathogenic changes, and therapy for microbiota are still lacking in a comprehensive overview. This review makes a retrospective summary of the above problems, dialectically based on oral microecology, to provide a new perspective on oral mucosal lesions management and aims at improving patients' quality of life.
Collapse
Affiliation(s)
- Ziyang Min
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Hu
- Arts College, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Ruijie Huang,
| |
Collapse
|
39
|
Cheng T, Xu C, Wu D, Yan G, Wang C, Wang T, Shao J. Sodium houttuyfonate derived from Houttuynia cordata Thunb improves intestinal malfunction via maintaining gut microflora stability in Candida albicans overgrowth aggravated ulcerative colitis. Food Funct 2023; 14:1072-1086. [PMID: 36594429 DOI: 10.1039/d2fo02369e] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Candida albicans is a common opportunistic pathogen and normally resides in the human gut. Increasing number of reports link the overgrowth of C. albicans to the severity of ulcerative colitis (UC). Sodium houttuyfonate (SH), a derivative of the medicinal herb Houttuynia cordata Thunb, has been demonstrated to exhibit decent antifungal and anti-inflammatory activities. We showed previously that SH could ameliorate colitis mice infected with C. albicans. However, it is unclear whether the therapeutic effect of SH is connected to its modulation of intestinal microflora in UC. In this study, the impact of SH on the gut microbiota was explored in both cohabitation and non-cohabitation patterns. The results showed that in UC mice inflicted by C. albicans, the administration of SH could greatly improve the pathological signs, weaken the oxidative stress and inflammatory response, and enhance the intestinal mucosal integrity. By 16S rRNA gene sequencing, we found that C. albicans interference caused intestinal microbiota dysbiosis accompanied by an increase of some harmful pathogens including Klebsiella and Bacteroides. In contrast, SH could modulate the abundance and diversity of microbiota with an increase of several beneficial bacteria comprising short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group, Intestinimonas) and probiotics (Lactobacillus and Alloprevotella). Furthermore, the cohabitation strategy could also prove the efficacy of SH, indicating a role of transmissible gut flora in the colitis model. These findings suggest that SH might be an effective compound for the treatment of UC complicated by C. albicans overgrowth through maintaining gut microbiota homeostasis, thereby improving intestinal function.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Chen Xu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Daqiang Wu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Guiming Yan
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Changzhong Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| | - Tianming Wang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China.
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Shining Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China. .,Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, P. R. China
| |
Collapse
|
40
|
Jacobsen ID. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:55-65. [PMID: 37151578 PMCID: PMC10154278 DOI: 10.1007/s40588-023-00190-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
Abstract Purpose of Review The fungus Candida albicans has evolved to live in close association with warm-blooded hosts and is found frequently on mucosal surfaces of healthy humans. As an opportunistic pathogen, C. albicans can also cause mucosal and disseminated infections (candidiasis). This review describes the features that differentiate the fungus in the commensal versus pathogenic state and the main factors underlying C. albicans commensal-to-pathogen transition. Recent Findings Adhesion, invasion, and tissue damage are critical steps in the infection process. Especially invasion and damage require transcriptional and morphological changes that differentiate C. albicans in the pathogenic from the commensal state. While the commensal-to-pathogen transition has some conserved causes and features in the oral cavity, the female urogenital tract, and the gut, site-specific differences have been identified in recent years. Summary This review highlights how specific factors in the different mucosal niches affect development of candidiasis. Recent evidence suggests that colonization of the gut is not only a risk factor for systemic candidiasis but might also provide beneficial effects to the host.
Collapse
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
41
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Bagirova NS, Petukhova IN, Grigorievskaya ZV, Sytov AV, Slukin PV, Goremykina EA, Khokhlova OE, Fursova NK, Kazimov AE. Oral microbiota in patients with oropharyngeal cancer with an emphasis on <i>Candida</i> spp. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-71-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction. Interactions between the 2 microbiota components – bacteria and fungi – are of interest as diagnostic and prognostic markers in selection of treatment tactics for oncological patients.Aim. To study microbiota of the oral cavity in patients with primary squamous cell carcinoma of the oropharyngeal area before and after surgical intervention to find biomarkers for rational selection of antifungal drugs.Materials and methods. At the Surgical Department of Head and Neck Tumors of the N. N. Blokhin National Research Center of Oncology, three-component study was performed: investigations of spectrum of Candida spp. isolates, Candida spp. strains’ resistance to antifungals, and oral washes in primary patients before and after surgery. mALDI-Tof microflex LT (Biotyper, Bruker Daltonics, germany) was used for strain identification; Sensititre Yeast ONE, YO10 (Trek Diagnostic System, united kingdom) plates were used for determination of minimal inhibiting concentrations of anti fungals. values of minimal inhibiting concentrations were evaluated based on the European Committee on Antimicrobial Susceptibility Testing (EuCAST) criteria (version 10.0).Results. four-year observation of patients at the surgical department of head and neck tumors of the N. N. Blokhin National Research Center of Oncology showed that the most common species of Candida is C. albicans (73.5 % of cases). Candida spp. resistance to antifungals was detected only for fluconazole (9.3 % of cases) and micafungin (8.0 % of cases), mostly among C. albicans strains. In 31.8 % of primary patients, oral washes prior to surgery showed growth of Candida spp. (probably, tissue colonization). After surgical intervention, Candida spp. growth was detected in 36.4 % of cases, only 1 of which was diagnosed as invasive mycosis. In 54.5 % of cases before and in 72.7 % of cases after surgery, gram-negative rods were detected. After surgical intervention, percentage of enterobacteria and non-fermenters significantly increased: 59.1 % versus 27.3 % (p <0.05) and 63.6 % versus 27.3 % (p <0.02), respectively. prior to surgery, non-fermenting gram-negative bacteria were represented only by P. aeruginosa; after surgery, the spectrum of non-fermenting gram-negative bacteria became wider but percentage of P. aeruginosa remained high: 71.4 %. ERG11 gene was identified only in 1 strain: C. albicans. FKS1 gene also was identified only in 1 strain: C. inconspicua. virulence factor genes were detected in 57.1 % of strains.Conclusion. Surgical intervention is associated with changes in bacterial microbiota but not fugal microbiota. presence of virulence factor genes and resistance genes in Candida spp. strains should be considered a biomarker allowing to differentiate between colonization and candida infection and can be used for rational selection of antifungal drugs in prevention and treatment of invasive candidiasis, especially in the absence of criteria for interpretation of measured minimal inhibiting concentrations of antifungals.
Collapse
Affiliation(s)
- N. S. Bagirova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - I. N. Petukhova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - Z. V. Grigorievskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. V. Sytov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - P. V. Slukin
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - E. A. Goremykina
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - O. E. Khokhlova
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - N. K. Fursova
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - A. E. Kazimov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
43
|
Bertolini M, Costa RC, Barão VAR, Cunha Villar C, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022; 10:microorganisms10122413. [PMID: 36557666 PMCID: PMC9781395 DOI: 10.3390/microorganisms10122413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity presents a highly diverse community of microorganisms due to the unique environmental conditions for microbial adhesion and growth [...].
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
- Correspondence:
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-010, SP, Brazil
| | | | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Center for Clinical and Translational Research, Forsyth Institute, Boston, MA 02142, USA
| | - João Gabriel Silva Souza
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Montes Claros 39401-303, MG, Brazil
- Oncovida Cancer Research Center, Montes Claros 39400-111, MG, Brazil
| |
Collapse
|
44
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
45
|
Herrera G, Arboleda JC, Pérez-Jaramillo JE, Patarroyo MA, Ramírez JD, Muñoz M. Microbial Interdomain Interactions Delineate the Disruptive Intestinal Homeostasis in Clostridioides difficile Infection. Microbiol Spectr 2022; 10:e0050222. [PMID: 36154277 PMCID: PMC9602525 DOI: 10.1128/spectrum.00502-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) creates an imbalance in the intestinal microbiota due to the interaction of the components making up this ecosystem, but little is known about the impact of this disease on other microbial members. This work has thus been aimed at evaluating the taxonomic composition, potential gene-associated functions, virulence factors, and antimicrobial resistance profiles of gut microbiomes. A total of 48 DNA samples obtained from patients with health care facility-acquired (HCFO) and community-onset (CO) diarrhea were distributed in the following four groups according to CDI status: HCFO/+ (n = 13), HCFO/- (n = 8), CO/+ (n = 13), and CO/- (n = 14). These samples were subjected to shotgun metagenomics sequencing. Although the CDI groups' microbiota had microbiome alterations, the greatest imbalance was observed in the in the HCFO+/- groups, with an increase in common pathogens and phage populations, as well as a decrease in beneficial microorganisms that leads to a negative impact on some intestinal homeostasis-related metabolic processes. A reduction in the relative abundance of butyrate metabolism-associated genes was also detected in the HCFO groups (P < 0.01), with an increase in some virulence factors and antibiotic-resistance markers. A set of 51 differentially abundant species in the groups with potential association to CDI enabled its characterization, leading to their spatial separation by onset. Strong correlations between phages and some archaeal and bacterial phyla were identified. This highlighted the need to study the microbiota's various components since their imbalance is multifactorial, with some pathogens contributing to a greater or lesser extent because of their interaction with the ecosystem they inhabit. IMPORTANCE Clostridioides difficile infection represents a serious public health problem in different countries due to its high morbi-mortality and the high costs it represents for health care systems. Studies have shown the impact of this infection on intestinal microbiome homeostasis, mainly on bacterial populations. Our research provides evidence of the impact of CDI at both the compositional (bacteria, archaea, and viruses), and functional levels, allowing us to understand that the alterations of the microbiota occur systemically and are caused by multiple perturbations generated by different members of the microbiota as well as by some pathogens that take advantage of the imbalance to proliferate. Likewise, the 51 differentially abundant species in the study groups with potential association to CDI found in this study could help us envisage future treatments against this and other inflammatory diseases, improving future therapeutic options for patients.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan Camilo Arboleda
- Unidad de Bioprospección and Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- Semillero de Investigación en Bioinformática-GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Juan E. Pérez-Jaramillo
- Semillero de Investigación en Bioinformática-GenomeSeq, Seccional Oriente, Universidad de Antioquia, Medellín, Colombia
- Grupo de Fundamentos y Enseñanza de la Física y los Sistemas Dinámicos, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
46
|
Wang H, Zhang R, Ma B, Wang W, Yu C, Han J, Zhu L, Zhang X, Dai H, Liu H, Chen B. Japonamides A and B, Two New Cyclohexadepsipeptides from the Marine-Sponge-Derived Fungus Aspergillus japonicus and Their Synergistic Antifungal Activities. J Fungi (Basel) 2022; 8:jof8101058. [PMID: 36294623 PMCID: PMC9605600 DOI: 10.3390/jof8101058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Two new cyclohexadepsipeptides japonamides A (1) and B (2) were isolated from the ethyl acetate extract of a marine-sponge-derived fungus Aspergillus japonicus based on molecular networking. Their structures were elucidated by comprehensive spectral analysis and their absolute configurations were confirmed by Marfey's method. Compounds 1 and 2 showed no antifungal activities against Candida albicans SC5314 measured by the broth microdilution method but exhibited prominent synergistic antifungal activities in combination with fluconazole, ketoconazole, or rapamycin. The Minimum inhibitory concentrations (MICs) of rapamycin, fluconazole, and ketoconazole were significantly decreased from 0.5 to 0.002 μM, from 0.25 to 0.063 μM, and from 0.016 to 0.002 μM, in the presence of compounds 1 or 2 at 3.125 μM, 12.5 μM, and 6.25 μM, respectively. Surprisingly, the combination of compounds 1 or 2 with rapamycin showed a strong synergistic effect, with fractional inhibitory concentration index (FICI) values of 0.03.
Collapse
Affiliation(s)
- Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ben Ma
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (H.L.); (B.C.)
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (H.L.); (B.C.)
| |
Collapse
|
47
|
Olaisen M, Richard ML, Beisvåg V, Granlund AVB, Røyset ES, Rué O, Martinsen TC, Sandvik AK, Sokol H, Fossmark R. The ileal fungal microbiota is altered in Crohn's disease and is associated with the disease course. Front Med (Lausanne) 2022; 9:868812. [PMID: 36237548 PMCID: PMC9551188 DOI: 10.3389/fmed.2022.868812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Fungal microbiota's involvement in the pathogenesis of Crohn's disease (CD) is incompletely understood. The terminal ileum is a predilection site both for primary involvement and recurrences of CD. We, therefore, assessed the mucosa-associated mycobiota in the inflamed and non-inflamed ileum in patients with CD. Methods The mucosa-associated mycobiota was assessed by ITS2 sequencing in a total of 168 biopsies sampled 5 and 15 cm proximal of the ileocecal valve or ileocolic anastomosis in 44 CD patients and 40 healthy controls (HC). CD patients with terminal ileitis, with endoscopic inflammation at 5 cm and normal mucosa at 15 cm and no history of upper CD involvement, were analyzed separately. The need for additional CD treatment the year following biopsy collection was recorded. Results CD patients had reduced mycobiota evenness, increased Basidiomycota/Ascomycota ratio, and reduced abundance of Chytridiomycota compared to HC. The mycobiota of CD patients were characterized by an expansion of Malassezia and a depletion of Saccharomyces, along with increased abundances of Candida albicans and Malassezia restricta. Malassezia was associated with the need for treatment escalation during follow-up. Current anti-TNF treatment was associated with lower abundances of Basidiomycota. The alpha diversity of the inflamed and proximal non-inflamed mucosa within the same patients was similar. However, the inflamed mucosa had a more dysbiotic composition with increased abundances of Candida sake and reduced abundances of Exophiala equina and Debaryomyces hansenii. Conclusions The ileal mucosa-associated mycobiota in CD patients is altered compared to HC. The mycobiota in the inflamed and proximal non-inflamed ileum within the same patients harbor structural differences which may play a role in the CD pathogenesis. Increased abundance of Malassezia was associated with an unfavorable disease course.
Collapse
Affiliation(s)
- Maya Olaisen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Mathias L. Richard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Vidar Beisvåg
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Central Administration, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elin S. Røyset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Olivier Rué
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tom Christian Martinsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
- Centre of Molecular Inflammation Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Harry Sokol
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- Gastroenterology Department, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Sorbonne Université, Paris, France
| | - Reidar Fossmark
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav's Hospital - Trondheim University Hospital, Trondheim, Norway
- *Correspondence: Reidar Fossmark
| |
Collapse
|
48
|
Li H, Miao MX, Jia CL, Cao YB, Yan TH, Jiang YY, Yang F. Interactions between Candida albicans and the resident microbiota. Front Microbiol 2022; 13:930495. [PMID: 36204612 PMCID: PMC9531752 DOI: 10.3389/fmicb.2022.930495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is a prevalent, opportunistic human fungal pathogen. It usually dwells in the human body as a commensal, however, once in its pathogenic state, it causes diseases ranging from debilitating superficial to life-threatening systemic infections. The switch from harmless colonizer to virulent pathogen is, in most cases, due to perturbation of the fungus-host-microbiota interplay. In this review, we focused on the interactions between C. albicans and the host microbiota in the mouth, gut, blood, and vagina. We also highlighted important future research directions. We expect that the evaluation of these interplays will help better our understanding of the etiology of fungal infections and shed new light on the therapeutic approaches.
Collapse
Affiliation(s)
- Hao Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-xing Miao
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-lin Jia
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-hua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: Tian-hua Yan,
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Yuan-ying Jiang,
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China,Feng Yang,
| |
Collapse
|
49
|
Huang Z, Zhan M, Cheng G, Lin R, Zhai X, Zheng H, Wang Q, Yu Y, Xu Z. IHNV Infection Induces Strong Mucosal Immunity and Changes of Microbiota in Trout Intestine. Viruses 2022; 14:v14081838. [PMID: 36016461 PMCID: PMC9415333 DOI: 10.3390/v14081838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fish intestinal mucosa is among the main sites through which environmental microorganisms interact with the host. Therefore, this tissue not only constitutes the first line of defense against pathogenic microorganisms but also plays a crucial role in commensal colonization. The interaction between the mucosal immune system, commensal microbiota, and viral pathogens has been extensively described in the mammalian intestine. However, very few studies have characterized these interactions in early vertebrates such as teleosts. In this study, rainbow trout (Oncorhynchus mykiss) was infected with infectious hematopoietic necrosis virus (IHNV) via a recently developed immersion method to explore the effects of viral infection on gut immunity and microbial community structure. IHNV successfully invaded the gut mucosa of trout, resulting in severe tissue damage, inflammation, and an increase in gut mucus. Moreover, viral infection triggered a strong innate and adaptive immune response in the gut, and RNA−seq analysis indicated that both antiviral and antibacterial immune pathways were induced, suggesting that the viral infection was accompanied by secondary bacterial infection. Furthermore, 16S rRNA sequencing also revealed that IHNV infection induced severe dysbiosis, which was characterized by large increases in the abundance of Bacteroidetes and pathobiont proliferation. Moreover, the fish that survived viral infection exhibited a reversal of tissue damage and inflammation, and their microbiome was restored to its pre−infection state. Our findings thus demonstrated that the relationships between the microbiota and gut immune system are highly sensitive to the physiological changes triggered by viral infection. Therefore, opportunistic bacterial infection must also be considered when developing strategies to control viral infection.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengting Zhan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaofeng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiou Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
50
|
Odorici A, Colombari B, Bellini P, Meto A, Venturelli I, Blasi E. Novel Options to Counteract Oral Biofilm Formation: In Vitro Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138056. [PMID: 35805711 PMCID: PMC9265889 DOI: 10.3390/ijerph19138056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Biofilm production on biotic and abiotic surfaces is crucial in the pathogenesis of most infections, particularly those occurring in the oral cavity. Its prevention and/or control may greatly facilitate the management of patients with oral diseases. Here, the antibiofilm activity of a biomimetic hydroxyapatite and a natural compound, MicroRepair (MicroR) and pomegranate (PomeGr), respectively, was assessed. By luminescence/fluorescence-based assays, Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were tested for biofilm production in the presence of MicroR and/or PomeGr. We found that both MicroR and PomeGr could affected biofilm production; however, the efficacy of the two, given alone or in combination, varied according to the microbial agent considered. These data open to clinical studies aimed at defining the most efficacious protocols to counteract oral biofilm-associated infections.
Collapse
Affiliation(s)
- Alessandra Odorici
- School of Doctorate in Clinical and Experimental Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Bruna Colombari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (B.C.); (P.B.)
| | - Pierantonio Bellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (B.C.); (P.B.)
| | - Aida Meto
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
- Department of Dentistry, Faculty of Dental Medicine, University of Western Balkans, 1051 Tirana, Albania
- Correspondence: (A.M.); (E.B.)
| | - Irene Venturelli
- School of Specialization in Microbiology and Virology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Elisabetta Blasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, Laboratory of Microbiology and Virology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; (B.C.); (P.B.)
- Correspondence: (A.M.); (E.B.)
| |
Collapse
|