1
|
Nobach D, Raeder L, Müller J, Herzog S, Eickmann M, Herden C. Experimental infection of shrews ( Crocidura russula) with Borna disease virus 1: Insights into viral spread and shedding. PNAS NEXUS 2025; 4:pgaf144. [PMID: 40375974 PMCID: PMC12080549 DOI: 10.1093/pnasnexus/pgaf144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/28/2025] [Indexed: 05/18/2025]
Abstract
Numbers of human encephalitis cases caused by infection with Borna disease virus 1 (BoDV1) increase continuously in endemic areas. The reservoir host of BoDV1 is the bicolored white-toothed shrew, albeit few naturally infected individuals of other shrew species have been detected. To establish a reliable experimental reservoir model, 15 greater white-toothed shrews were infected with a shrew-derived BoDV1 isolate by different inoculation routes (intracerebral, intranasal, oral, subcutaneous, and intraperitoneal) and monitored up to 41 days. Except for the oral route, all other animals (12/15) were successfully infected, and the majority of them displayed temporarily reduced feed intake and loss of body weight but no inflammatory lesions. Infectious virus was isolated from 11/12 infected animals. Viral RNA was demonstrated by qRT-PCR in the central nervous system (CNS) and the majority of organs. Immunohistochemistry demonstrated BoDV1 antigen in neurons and astrocytes in the CNS and peripheral nerves. High viral loads in the CNS and the spinal cord points towards spread from periphery to the CNS to enhance viral replication and subsequent centrifugal spread to organs capable of secretion and excretions. In general, successful experimental BoDV1 infection of shrews proves their usefulness as animal model, enabling further studies on maintenance, transmission, pathogenesis, and risk assessment for human spillover infections.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University, Giessen 35392, Germany
- Chemical and Veterinary Analysis Agency Stuttgart (CVUAS), Schaflandstraße 3/2, Fellbach 70736, Germany
| | - Leif Raeder
- Institute of Veterinary Pathology, Justus-Liebig-University, Giessen 35392, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University, Giessen 35392, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus-Liebig-University, Giessen 35392, Germany
| | - Markus Eickmann
- Institute of Virology, Philipps-University, Marburg 35043, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University, Giessen 35392, Germany
- Center for Mind, Brain and Behavior, Justus-Liebig-University, Frankfurterstraße 96, Giessen 35392, Germany
| |
Collapse
|
2
|
Kanda T, Santos PD, Höper D, Beer M, Rubbenstroth D, Tomonaga K. Borna disease virus 2 maintains genomic polymorphisms by superinfection in persistently infected cells. NPJ VIRUSES 2025; 3:31. [PMID: 40295890 PMCID: PMC12006538 DOI: 10.1038/s44298-025-00117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Mammalian orthobornaviruses, such as Borna disease virus 1 (BoDV-1) and variegated squirrel bornavirus 1, are zoonotic pathogens that cause fatal encephalitis in humans. BoDV-2, another mammalian orthobornavirus with high genetic homology to BoDV-1, is believed to share the same geographical distribution as BoDV-1, indicating its potential risk to human health. However, due to the limited number of isolations, the virological characteristics of BoDV-2, such as pathogenicity and infectivity, remain largely unexplored. Here, we re-evaluated the whole-genome sequence of BoDV-2 and established a reverse genetics system to investigate its virological properties. Compared to the published reference sequence, we identified two nonsynonymous nucleotide substitutions in the large (L) gene, one of which was critical for restoring polymerase activity, enabling the successful recovery of recombinant BoDV-2 (rBoDV-2). Additionally, we identified two nonsynonymous single-nucleotide polymorphisms (SNPs) in the L gene and one in the phosphoprotein (P) gene. Substitution of these SNPs significantly enhanced the growth ability of rBoDV-2. Furthermore, our studies demonstrated that BoDV-2 does not induce superinfection exclusion in cells, allowing the persistence of low-fitness genome variants for an extended period of time. These findings help to characterize the virological properties of BoDV-2 and shed light on how bornaviruses maintain genetic diversity in infected cells.
Collapse
Affiliation(s)
- Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Science, Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Greifswald, Germany.
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Science, Kyoto University, Kyoto, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Lieftüchter V, Vollmuth Y, Tacke M, Hoffmann F, Paolini M, Finck T, Liesche-Starnecker F, von Both U, Pörtner K, Tappe D, Grosse L. Bornavirus (BoDV-1) Encephalitis in Children: Update on Diagnosis and Treatment. Neuropediatrics 2025. [PMID: 40228529 DOI: 10.1055/a-2561-8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Infectious encephalitis in children can be caused by several pathogens, very rarely this can be caused by bornaviruses (BoDV-1). Due to the recent discovery of the disease in humans and the small number of cases, especially pediatric infections, knowledge about the disease pathology as well as therapeutic options is limited. Therefore, this review shall help raise awareness of this rare and mostly fatal disease, promote an early diagnosis, and present current knowledge about possible treatment options.
Collapse
Affiliation(s)
- Victoria Lieftüchter
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Yannik Vollmuth
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Moritz Tacke
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Florian Hoffmann
- Pediatric Intensive Care Unit, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Marco Paolini
- Department of Radiology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Tom Finck
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ulrich von Both
- Department of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Leonie Grosse
- Department of Pediatric Neurology, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Germany
| |
Collapse
|
4
|
Zhang J, Yang Y, Wang B, Qiu W, Zhang H, Qiu Y, Yuan J, Dong R, Zha Y. Developing a universal multi-epitope protein vaccine candidate for enhanced borna virus pandemic preparedness. Front Immunol 2024; 15:1427677. [PMID: 39703502 PMCID: PMC11655343 DOI: 10.3389/fimmu.2024.1427677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Borna disease virus 1 (BoDV-1) is an emerging zoonotic RNA virus that can cause severe acute encephalitis with high mortality. Currently, there are no effective countermeasures, and the potential risk of a future outbreak requires urgent attention. To address this challenge, the complete genome sequence of BoDV-1 was utilized, and immunoinformatics was applied to identify antigenic peptides suitable for vaccine development. Methods Immunoinformatics and antigenicity-focused protein screening were employed to predict B-cell linear epitopes, B-cell conformational epitopes, and cytotoxic T lymphocyte (CTL) epitopes. Only overlapping epitopes with antigenicity greater than 1 and non-toxic, non-allergenic properties were selected for subsequent vaccine construction. The epitopes were linked using GPGPG linkers, incorporating β-defensins at the N-terminus to enhance immune response, and incorporating Hit-6 at the C-terminus to improve protein solubility and aid in protein purification. Computational tools were used to predict the immunogenicity, physicochemical properties, and structural stability of the vaccine. Molecular docking was performed to predict the stability and dynamics of the vaccine in complex with Toll-like receptor 4 (TLR-4) and major histocompatibility complex I (MHC I) receptors. The vaccine construct was cloned through in silico restriction to create a plasmid for expression in a suitable host. Results Among the six BoDV-1 proteins analyzed, five exhibited high antigenicity scores. From these, eight non-toxic, non-allergenic overlapping epitopes with antigenicity scores greater than 1 were selected for vaccine development. Computational predictions indicated favorable immunogenicity, physicochemical properties, and structural stability. Molecular docking analysis showed that the vaccine remained stable in complex with TLR-4 and MHC I receptors, suggesting strong potential for immune recognition. A plasmid construct was successfully generated, providing a foundation for the experimental validation of vaccines in future pandemic scenarios. Discussion These findings demonstrate the potential of the immunoinformatics-designed multi-epitope vaccines for the prevention and treatment of BoDV-1. Relevant preparations were made in advance for possible future outbreaks and could be quickly utilized for experimental verification.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Youfang Yang
- Department of Nephrology, The First Clinical Institute, Zunyi Medical University, Zunyi, China
| | - Binyu Wang
- School of Medicine, Guizhou University, Guiyang, China
| | - Wanting Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Helin Zhang
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Qiu
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rong Dong
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
5
|
Ebinger A, Santos PD, Pfaff F, Dürrwald R, Kolodziejek J, Schlottau K, Ruf V, Liesche-Starnecker F, Ensser A, Korn K, Ulrich R, Fürstenau J, Matiasek K, Hansmann F, Seuberlich T, Nobach D, Müller M, Neubauer-Juric A, Suchowski M, Bauswein M, Niller HH, Schmidt B, Tappe D, Cadar D, Homeier-Bachmann T, Haring VC, Pörtner K, Frank C, Mundhenk L, Hoffmann B, Herms J, Baumgärtner W, Nowotny N, Schlegel J, Ulrich RG, Beer M, Rubbenstroth D. Lethal Borna disease virus 1 infections of humans and animals - in-depth molecular epidemiology and phylogeography. Nat Commun 2024; 15:7908. [PMID: 39256401 PMCID: PMC11387626 DOI: 10.1038/s41467-024-52192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, a fatal neurologic disorder of domestic mammals and humans, resulting from spill-over infection from its natural reservoir host, the bicolored white-toothed shrew (Crocidura leucodon). The known BoDV-1-endemic area is remarkably restricted to parts of Germany, Austria, Switzerland and Liechtenstein. To gain comprehensive data on its occurrence, we analysed diagnostic material from suspected BoDV-1-induced encephalitis cases based on clinical and/or histopathological diagnosis. BoDV-1 infection was confirmed by RT-qPCR in 207 domestic mammals, 28 humans and seven wild shrews. Thereby, this study markedly raises the number of published laboratory-confirmed human BoDV-1 infections and provides a first comprehensive summary. Generation of 136 new BoDV-1 genome sequences from animals and humans facilitated an in-depth phylogeographic analysis, allowing for the definition of risk areas for zoonotic BoDV-1 transmission and facilitating the assessment of geographical infection sources. Consistent with the low mobility of its reservoir host, BoDV-1 sequences showed a remarkable geographic association, with individual phylogenetic clades occupying distinct areas. The closest genetic relatives of most human-derived BoDV-1 sequences were located at distances of less than 40 km, indicating that spill-over transmission from the natural reservoir usually occurs in the patient´s home region.
Collapse
Affiliation(s)
- Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Pauline D Santos
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ralf Dürrwald
- Robert Koch Institute, Department of Infectious Diseases, Unit 17 Influenza and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Armin Ensser
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Korn
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jenny Fürstenau
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
- Chemical and Veterinary Analysis Agency Stuttgart (CVUAS), Fellbach, Germany
| | - Matthias Müller
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | | | - Marcel Suchowski
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Hans-Helmut Niller
- Institute for Medical Microbiology, Regensburg University, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Dennis Tappe
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Viola C Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kirsten Pörtner
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Christina Frank
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
6
|
Haring VC, Litz B, Jacob J, Brecht M, Bauswein M, Sehl-Ewert J, Heroldova M, Wylezich C, Hoffmann D, Ulrich RG, Beer M, Pfaff F. Detection of novel orthoparamyxoviruses, orthonairoviruses and an orthohepevirus in European white-toothed shrews. Microb Genom 2024; 10:001275. [PMID: 39088249 PMCID: PMC11293873 DOI: 10.1099/mgen.0.001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
While the viromes and immune systems of bats and rodents have been extensively studied, comprehensive data are lacking for insectivores (order Eulipotyphla) despite their wide geographic distribution. Anthropogenic land use and outdoor recreational activities, as well as changes in the range of shrews, may lead to an expansion of the human-shrew interface with the risk of spillover infections, as reported for Borna disease virus 1. We investigated the virome of 45 individuals of 4 white-toothed shrew species present in Europe, using metagenomic RNA sequencing of tissue and intestine pools. Moderate to high abundances of sequences related to the families Paramyxoviridae, Nairoviridae, Hepeviridae and Bornaviridae were detected. Whole genomes were determined for novel orthoparamyxoviruses (n=3), orthonairoviruses (n=2) and an orthohepevirus. The novel paramyxovirus, tentatively named Hasua virus, was phylogenetically related to the zoonotic Langya virus and Mòjiāng virus. The novel orthonairoviruses, along with the potentially zoonotic Erve virus, fall within the shrew-borne Thiafora virus genogroup. The highest viral RNA loads of orthoparamyxoviruses were detected in the kidneys, in well-perfused organs for orthonairoviruses and in the liver and intestine for orthohepevirus, indicating potential transmission routes. Notably, several shrews were found to be coinfected with viruses from different families. Our study highlights the virus diversity present in shrews, not only in biodiversity-rich regions but also in areas influenced by human activity. This study warrants further research to characterize and assess the clinical implications and risk of these viruses and the importance of shrews as reservoirs in European ecosystems.
Collapse
Affiliation(s)
- Viola C. Haring
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Benedikt Litz
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Jens Jacob
- Julius Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Muenster, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Julia Sehl-Ewert
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald - Insel Riems, Germany
| | - Marta Heroldova
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Claudia Wylezich
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Florian Pfaff
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| |
Collapse
|
7
|
Böhmer MM, Haring VC, Schmidt B, Saller FS, Coyer L, Chitimia-Dobler L, Dobler G, Tappe D, Bonakdar A, Ebinger A, Knoll G, Eidenschink L, Rohrhofer A, Niller HH, Katz K, Starcky P, Beer M, Ulrich RG, Rubbenstroth D, Bauswein M. One Health in action: Investigation of the first detected local cluster of fatal borna disease virus 1 (BoDV-1) encephalitis, Germany 2022. J Clin Virol 2024; 171:105658. [PMID: 38447459 DOI: 10.1016/j.jcv.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Zoonotic Borna disease virus 1 (BoDV-1) causes fatal encephalitis in humans and animals. Subsequent to the detection of two paediatric cases in a Bavarian municipality in Germany within three years, we conducted an interdisciplinary One Health investigation. We aimed to explore seroprevalence in a local human population with a risk for BoDV-1 exposure as well as viral presence in environmental samples from local sites and BoDV-1 prevalence within the local small mammal population and its natural reservoir, the bicoloured white-toothed shrew (Crocidura leucodon). METHODS The municipality's adult residents participated in an anonymised sero-epidemiological study. Potential risk factors and clinical symptoms were assessed by an electronic questionnaire. Small mammals, environmental samples and ticks from the municipality were tested for BoDV-1-RNA. Shrew-derived BoDV-1-sequences together with sequences of the two human cases were phylogenetically analysed. RESULTS In total, 679 citizens participated (response: 41 %), of whom 38 % reported shrews in their living environment and 19 % direct shrew contact. No anti-BoDV-1 antibodies were detected in human samples. BoDV-1-RNA was also undetectable in 38 environmental samples and 336 ticks. Of 220 collected shrews, twelve of 40 C. leucodon (30%) tested BoDV-1-RNA-positive. BoDV-1-sequences from the previously diagnosed two paediatric patients belonged to two different subclades, that were also present in shrews from the municipality. INTERPRETATION Our data support the interpretation that human BoDV-1 infections are rare even in endemic areas and primarily manifest as severe encephalitis. Sequence analysis linked both previous paediatric human infections to the local shrew population, but indicated independent infection sources. FUNDING The project was partly financed by funds of the German Federal Ministry of Education and Research (grant numbers: 01KI2005A, 01KI2005C, 01KI1722A, 01KI1722C, 01KI2002 to MaBe, DR, RGU, DT, BS) as well as by the ReForM-A programme of the University Hospital Regensburg (to MaBa) and by funds of the Bavarian State Ministry of Health, Care and Prevention, project "Zoonotic Bornavirus Focal Point Bavaria - ZooBoFo" (to MaBa, MaBe, BS, MMB, DR, PS, RGU).
Collapse
Affiliation(s)
- Merle M Böhmer
- Bavarian Health and Food Safety Authority, Munich, Germany; Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Bornavirus-Focal Point Bavaria, Germany.
| | - Viola C Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Barbara Schmidt
- Bornavirus-Focal Point Bavaria, Germany; Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - Liza Coyer
- Bavarian Health and Food Safety Authority, Munich, Germany; ECDC Fellowship Programme, Field Epidemiology Path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | | | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Consiliary Laboratory for Bornaviruses, Germany
| | - Andrea Bonakdar
- Local Health Authority, county Mühldorf am Inn, Mühldorf am Inn, Germany
| | - Arnt Ebinger
- University Medicine Greifswald, Greifswald, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Lisa Eidenschink
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Katharina Katz
- Bavarian Health and Food Safety Authority, Munich, Germany
| | - Philip Starcky
- Bavarian Health and Food Safety Authority, Munich, Germany; Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Markus Bauswein
- Bornavirus-Focal Point Bavaria, Germany; Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
8
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
9
|
Fürstenau J, Richter MT, Erickson NA, Große R, Müller KE, Nobach D, Herden C, Rubbenstroth D, Mundhenk L. Borna disease virus 1 infection in alpacas: Comparison of pathological lesions and viral distribution to other dead-end hosts. Vet Pathol 2024; 61:62-73. [PMID: 37431864 DOI: 10.1177/03009858231185107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Borna disease is a progressive meningoencephalitis caused by spillover of the Borna disease virus 1 (BoDV-1) to horses and sheep and has gained attention due to its zoonotic potential. New World camelids are also highly susceptible to the disease; however, a comprehensive description of the pathological lesions and viral distribution is lacking for these hosts. Here, the authors describe the distribution and severity of inflammatory lesions in alpacas (n = 6) naturally affected by this disease in comparison to horses (n = 8) as known spillover hosts. In addition, the tissue and cellular distribution of the BoDV-1 was determined via immunohistochemistry and immunofluorescence. A predominant lymphocytic meningoencephalitis was diagnosed in all animals with differences regarding the severity of lesions. Alpacas and horses with a shorter disease duration showed more prominent lesions in the cerebrum and at the transition of the nervous to the glandular part of the pituitary gland, as compared to animals with longer disease progression. In both species, viral antigen was almost exclusively restricted to cells of the central and peripheral nervous systems, with the notable exception of virus-infected glandular cells of the Pars intermedia of the pituitary gland. Alpacas likely represent dead-end hosts similar to horses and other spillover hosts of BoDV-1.
Collapse
Affiliation(s)
| | | | - Nancy A Erickson
- Freie Universität Berlin, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
11
|
Pörtner K, Wilking H, Frank C, Böhmer MM, Stark K, Tappe D. Risk factors for Borna disease virus 1 encephalitis in Germany - a case-control study. Emerg Microbes Infect 2023; 12:e2174778. [PMID: 36748319 PMCID: PMC9980402 DOI: 10.1080/22221751.2023.2174778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In 2018, Borna Disease Virus 1 (BoDV-1) was confirmed as a human zoonotic pathogen causing rare but fatal encephalitis in Germany. While diagnostic procedures and the clinical picture have been described, epidemiology remains mysterious. Though endemic areas and a natural reservoir host have been identified with the shrew Crocidura leucodon shedding virus in secretions, transmission events, routes and risk factors are unclear. We performed the first comprehensive epidemiological study, combining a large case series with the first case-control study: We interviewed family members of 20 PCR-confirmed BoDV-1 encephalitis cases deceased in 1996-2021 with a standardized questionnaire covering medical history, housing environment, profession, animal contacts, outdoor activities, travel, and nutrition. Cases' median age was 51 (range 11-79) years, 12/20 were female, and 18/20 lived in the federal state of Bavaria in Southeastern Germany. None had a known relevant pre-existing medical condition. None of the interviews yielded a transmission event such as direct shrew contact, but peridomestic shrew presence was confirmed in 13 cases supporting environmental transmission. Residency in rural areas endemic for animal BoDV-1 was the common denominator of all cases. A subsequent individually matched case-control study revealed residence close to nature in a stand-alone location or on the fringe of the settlement as a risk factor for disease in multivariable analysis with an adjusted OR of 10.8 (95% CI 1.3-89.0). Other variables including keeping cats were not associated with disease. Targeted prevention, future post-exposure-prophylaxis, and timely diagnosis remain challenging.
Collapse
Affiliation(s)
- Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany,Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany affiliated with the ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden, Kirsten Pörtner Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany; Dennis Tappe Research Group Zoonoses, National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hendrik Wilking
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Christina Frank
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Merle M. Böhmer
- Department of Infectious Disease Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany,Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, Magdeburg, Germany
| | - Klaus Stark
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Research Group Zoonoses, National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, Kirsten Pörtner Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany; Dennis Tappe Research Group Zoonoses, National Reference Centre for Tropical Pathogens, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
12
|
Riccò M, Zanella I, Satta E, Ranzieri S, Corrado S, Marchesi F, Peruzzi S. BoDV-1 Infection in Children and Adolescents: A Systematic Review and Meta-Analysis. Pediatr Rep 2023; 15:512-531. [PMID: 37755407 PMCID: PMC10534910 DOI: 10.3390/pediatric15030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Borna disease virus 1 (BoDV-1) can cause a severe human syndrome characterized by meningo-myeloencephalitis. The actual epidemiology of BoDV-1 remains disputed, and our study summarized prevalence data among children and adolescents (<18-year-old). Through systematic research on three databases (PubMed, EMBASE, MedRxiv), all studies, including seroprevalence rates for BoDV-1 antigens and specific antibodies, were retrieved, and their results were summarized. We identified a total of six studies for a total of 2692 subjects aged less than 18 years (351 subjects sampled for BoDV-1 antibodies and 2557 for antigens). A pooled seroprevalence of 6.09% (95% Confidence Interval [95% CI] 2.14 to 16.17) was eventually calculated for BoDV-1 targeting antibodies and 0.76% (95% CI 0.26 to 2.19) for BoDV-1 antigens. Both estimates were affected by substantial heterogeneity. Seroprevalence rates for BoDV-1 in children and adolescents suggested that a substantial circulation of the pathogen does occur, and as infants and adolescents have relatively scarce opportunities for being exposed to hosts and animal reservoirs, the potential role of unknown vectors cannot be ruled out.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Ilaria Zanella
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Silvia Corrado
- ASST Rhodense, Dipartimento Della Donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.Z.); (E.S.); (S.R.); (F.M.)
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL—IRCCS di Reggio Emilia, 42016 Guastalla, Italy;
| |
Collapse
|
13
|
Ulrich RG, Drewes S, Haring V, Panajotov J, Pfeffer M, Rubbenstroth D, Dreesman J, Beer M, Dobler G, Knauf S, Johne R, Böhmer MM. [Viral zoonoses in Germany: a One Health perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:599-616. [PMID: 37261460 PMCID: PMC10233563 DOI: 10.1007/s00103-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Collapse
Affiliation(s)
- Rainer G Ulrich
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland.
| | - Stephan Drewes
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Viola Haring
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Jessica Panajotov
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Martin Pfeffer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, Leipzig, Deutschland
| | - Dennis Rubbenstroth
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | | | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Gerhard Dobler
- Abteilung Virologie und Rickettsiologie, Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| | - Sascha Knauf
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Reimar Johne
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Merle M Böhmer
- Landesinstitut Gesundheit II - Task Force Infektiologie, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), München, Deutschland
- Institut für Sozialmedizin und Gesundheitssystemforschung, Otto-von-Guericke Universität, Magdeburg, Deutschland
| |
Collapse
|
14
|
Anderson C, Baha H, Boghdeh N, Barrera M, Alem F, Narayanan A. Interactions of Equine Viruses with the Host Kinase Machinery and Implications for One Health and Human Disease. Viruses 2023; 15:v15051163. [PMID: 37243249 DOI: 10.3390/v15051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens that are vector-transmitted have and continue to contribute to several emerging infections globally. In recent years, spillover events of such zoonotic pathogens have increased in frequency as a result of direct contact with livestock, wildlife, and urbanization, forcing animals from their natural habitats. Equines serve as reservoir hosts for vector-transmitted zoonotic viruses that are also capable of infecting humans and causing disease. From a One Health perspective, equine viruses, therefore, pose major concerns for periodic outbreaks globally. Several equine viruses have spread out of their indigenous regions, such as West Nile virus (WNV) and equine encephalitis viruses (EEVs), making them of paramount concern to public health. Viruses have evolved many mechanisms to support the establishment of productive infection and to avoid host defense mechanisms, including promoting or decreasing inflammatory responses and regulating host machinery for protein synthesis. Viral interactions with the host enzymatic machinery, specifically kinases, can support the viral infectious process and downplay innate immune mechanisms, cumulatively leading to a more severe course of the disease. In this review, we will focus on how select equine viruses interact with host kinases to support viral multiplication.
Collapse
Affiliation(s)
- Carol Anderson
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Niloufar Boghdeh
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Michael Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
15
|
Whitehead JD, Grimes JM, Keown JR. Structural and biophysical characterization of the Borna disease virus 1 phosphoprotein. Acta Crystallogr F Struct Biol Commun 2023; 79:51-60. [PMID: 36862093 PMCID: PMC9979977 DOI: 10.1107/s2053230x23000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Bornaviruses are RNA viruses with a mammalian, reptilian, and avian host range. The viruses infect neuronal cells and in rare cases cause a lethal encephalitis. The family Bornaviridae are part of the Mononegavirales order of viruses, which contain a nonsegmented viral genome. Mononegavirales encode a viral phosphoprotein (P) that binds both the viral polymerase (L) and the viral nucleoprotein (N). The P protein acts as a molecular chaperone and is required for the formation of a functional replication/transcription complex. In this study, the structure of the oligomerization domain of the phosphoprotein determined by X-ray crystallography is reported. The structural results are complemented with biophysical characterization using circular dichroism, differential scanning calorimetry and small-angle X-ray scattering. The data reveal the phosphoprotein to assemble into a stable tetramer, with the regions outside the oligomerization domain remaining highly flexible. A helix-breaking motif is observed between the α-helices at the midpoint of the oligomerization domain that appears to be conserved across the Bornaviridae. These data provide information on an important component of the bornavirus replication complex.
Collapse
Affiliation(s)
- Jack D. Whitehead
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jeremy R. Keown
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Mystery of fatal 'staggering disease' unravelled: novel rustrela virus causes severe meningoencephalomyelitis in domestic cats. Nat Commun 2023; 14:624. [PMID: 36739288 PMCID: PMC9899117 DOI: 10.1038/s41467-023-36204-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
'Staggering disease' is a neurological disease entity considered a threat to European domestic cats (Felis catus) for almost five decades. However, its aetiology has remained obscure. Rustrela virus (RusV), a relative of rubella virus, has recently been shown to be associated with encephalitis in a broad range of mammalian hosts. Here, we report the detection of RusV RNA and antigen by metagenomic sequencing, RT-qPCR, in-situ hybridization and immunohistochemistry in brain tissues of 27 out of 29 cats with non-suppurative meningoencephalomyelitis and clinical signs compatible with'staggering disease' from Sweden, Austria, and Germany, but not in non-affected control cats. Screening of possible reservoir hosts in Sweden revealed RusV infection in wood mice (Apodemus sylvaticus). Our work indicates that RusV is the long-sought cause of feline 'staggering disease'. Given its reported broad host spectrum and considerable geographic range, RusV may be the aetiological agent of neuropathologies in further mammals, possibly even including humans.
Collapse
|
17
|
Kawasaki J, Tomonaga K, Horie M. Large-scale investigation of zoonotic viruses in the era of high-throughput sequencing. Microbiol Immunol 2023; 67:1-13. [PMID: 36259224 DOI: 10.1111/1348-0421.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/10/2023]
Abstract
Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.
Collapse
Affiliation(s)
- Junna Kawasaki
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
18
|
Dürrwald R, Kolodziejek J, Oh DY, Herzog S, Liebermann H, Osterrieder N, Nowotny N. Vaccination against Borna Disease: Overview, Vaccine Virus Characterization and Investigation of Live and Inactivated Vaccines. Viruses 2022; 14:2706. [PMID: 36560710 PMCID: PMC9788498 DOI: 10.3390/v14122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Vaccination of horses and sheep against Borna disease (BD) was common in endemic areas of Germany in the 20th century but was abandoned in the early 1990s. The recent occurrence of fatal cases of human encephalitis due to Borna disease virus 1 (BoDV-1) has rekindled the interest in vaccination. (2) Methods: The full genomes of the BD live vaccine viruses "Dessau" and "Giessen" were sequenced and analyzed for the first time. All vaccination experiments followed a proof-of-concept approach. Dose-titration infection experiments were performed in rabbits, based on both cell culture- and brain-derived viruses at various doses. Inactivated vaccines against BD were produced from concentrated cell culture supernatants and investigated in rabbits and horses. The BoDV-1 live vaccine "Dessau" was administered to horses and antibody profiles were determined. (3) Results: The BD live vaccine viruses "Dessau" and "Giessen" belong to clusters 3 and 4 of BoDV-1. Whereas the "Giessen" virus does not differ substantially from field viruses, the "Dessau" virus shows striking differences in the M gene and the N-terminal part of the G gene. Rabbits infected with high doses of cell-cultured virus developed neutralizing antibodies and were protected from disease, whereas rabbits infected with low doses of cell-cultured virus, or with brain-derived virus did not. Inactivated vaccines were administered to rabbits and horses, following pre-defined vaccination schemes consisting of three vaccine doses of either adjuvanted or nonadjuvanted inactivated virus. Their immunogenicity and protective efficacy were compared to the BD live vaccine "Dessau". Seventy per cent of horses vaccinated with the BD live vaccine "Dessau" developed neutralizing antibodies after vaccination. (4) Conclusion: Despite a complex evasion of immunological responses by bornaviruses, some vaccination approaches can protect against clinical disease. For optimal effectiveness, vaccines should be administered at high doses, following vaccination schemes consisting of three vaccine doses as basic immunization. Further investigations are necessary in order to investigate and improve protection against infection and to avoid side effects.
Collapse
Affiliation(s)
- Ralf Dürrwald
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Djin-Ye Oh
- Unit 17: Influenza and Other Viruses of the Respiratory Tract, Department of Infectious Diseases, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany
| | - Sibylle Herzog
- Institute of Virology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Heinrich Liebermann
- retd., former Institute of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | | | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
19
|
Kanda T, Tomonaga K. Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1. Viruses 2022; 14:v14102236. [PMID: 36298790 PMCID: PMC9612284 DOI: 10.3390/v14102236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus belonging to the family Bornaviridae within the order Mononegavirales. Whereas BoDV-1 causes neurological and behavioral disorders, called Borna disease (BD), in a wide range of mammals, its virulence in humans has been debated for several decades. However, a series of case reports in recent years have established the nature of BoDV-1 as a zoonotic pathogen that causes fatal encephalitis in humans. Although many virological properties of BoDV-1 have been revealed to date, the mechanism by which it causes fatal encephalitis in humans remains unclear. In addition, there are no effective vaccines or antiviral drugs that can be used in clinical practice. A reverse genetics approach to generating replication-competent recombinant viruses from full-length cDNA clones is a powerful tool that can be used to not only understand viral properties but also to develop vaccines and antiviral drugs. The rescue of recombinant BoDV-1 (rBoDV-1) was first reported in 2005. However, due to the slow nature of the replication of this virus, the rescue of high-titer rBoDV-1 required several months, limiting the use of this system. This review summarizes the history of the reverse genetics and artificial replication systems for orthobornaviruses and explores the recent progress in efforts to rescue rBoDV-1.
Collapse
Affiliation(s)
- Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Correspondence:
| |
Collapse
|
20
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
21
|
Schlottau K, Feldmann F, Hanley PW, Lovaglio J, Tang-Huau TL, Meade-White K, Callison J, Williamson BN, Rosenke R, Long D, Wylezich C, Höper D, Herden C, Scott D, Hoffmann D, Saturday G, Beer M, Feldmann H. Development of a nonhuman primate model for mammalian bornavirus infection. PNAS NEXUS 2022; 1:pgac073. [PMID: 35860599 PMCID: PMC9291224 DOI: 10.1093/pnasnexus/pgac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023]
Abstract
Until recently, it was assumed that members of the family Bornaviridae could not induce severe disease in humans. Today, however, Borna disease virus 1 (BoDV-1), as well as the more recently emerged variegated squirrel bornavirus 1 (VSBV-1), are known as causative agents of lethal encephalitis in humans. In order to establish animal models reflecting the pathogenesis in humans and for countermeasure efficacy testing, we infected twelve rhesus macaques (Macaca mulatta) either with VSBV-1 or with BoDV-1. For each virus, three monkeys each were inoculated with 2 × 104 focus forming units by the intracerebral route or by multiple peripheral routes (intranasal, conjunctival, intramuscular, and subcutaneous; same dose in total). All BoDV-1 and VSBV-1 intracerebrally infected monkeys developed severe neurological signs around 5 to 6 or 8 to 12 weeks postinfection, respectively. Focal myoclonus and tremors were the most prominent observations in BoDV-1 and VSBV-1-infected animals. VSBV-1-infected animals also showed behavioral changes. Only one BoDV-1 peripherally infected animal developed similar disease manifestations. All animals with severe clinical disease showed high viral loads in brain tissues and displayed perivascular mononuclear cuffs with a predominance of lymphocytes and similar meningeal inflammatory infiltrates. In summary, rhesus macaques intracerebrally infected with mammalian bornaviruses develop a human-like disease and may serve as surrogate models for human bornavirus infection.
Collapse
Affiliation(s)
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brandi N Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christiane Herden
- Justus-Liebig-Universität, Institute of Veterinary Pathology, 35390 Gießen, Germany
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
22
|
Lyra E Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology 2022; 209:109023. [PMID: 35257690 PMCID: PMC8894741 DOI: 10.1016/j.neuropharm.2022.109023] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada.
| | - Fernanda G Q Barros-Aragão
- D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Psychiatry, Queen's University, Kingston, ON, Canada; D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- D'OR Institute for Research & Education, RJ, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Avian Bornaviruses in Wild Aquatic Birds of the Anseriformes Order in Poland. Pathogens 2022; 11:pathogens11010098. [PMID: 35056046 PMCID: PMC8778845 DOI: 10.3390/pathogens11010098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Bornaviruses are a diverse family of viruses infecting various hosts, including birds. Aquatic bird bornavirus 1 (ABBV-1) and aquatic bird bornavirus 2 (ABBV-2) have been found in wild waterfowl but data on their prevalence are scarce. To gain knowledge on the occurrence of ABBVs in Poland, samples originating from dead birds of the Anseriformes order collected in 2016–2021 were tested with a real time RT-PCR method targeting the ABBVs genome. A total of 514 birds were examined, including 401 swans, 96 ducks and 17 geese. The presence of ABBV-1 RNA was detected in 52 swans (10.1% of all tested birds) from 40 different locations. No positive results were obtained for ducks and geese. Sequences of about 2300 bases were generated for 18 viruses and phylogenetic analysis was performed. A relatively low genetic diversity of the examined ABBV-1 strains was observed as all were gathered in a single cluster in the phylogenetic tree and the minimum nucleotide identity was 99.14%. The Polish strains were closely related to ABBV-1 identified previously in Denmark and Germany, but a limited number of sequences from Europe hinders the drawing of conclusions about interconnections between Polish and other European ABBVs. The results of the present study provide new insights into the distribution and genetic characteristics of ABBVs in wild birds in Europe.
Collapse
|
24
|
Horie M. [One hundred million years history of bornavirus infection]. Uirusu 2022; 72:47-54. [PMID: 37899229 DOI: 10.2222/jsv.72.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
|
25
|
The Borna Disease Virus 2 (BoDV-2) Nucleoprotein Is a Conspecific Protein That Enhances BoDV-1 RNA-Dependent RNA Polymerase Activity. J Virol 2021; 95:e0093621. [PMID: 34406860 DOI: 10.1128/jvi.00936-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate an REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus. We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, conversely, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also to understanding of the molecular regulation of orthobornavirus polymerase activity. IMPORTANCE Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus, is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus, can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.
Collapse
|
26
|
Bourgade K, Thouard A, Abravanel F, Hebral AL, Del Bello A, Viguier A, Gonzalez-Dunia D, Kamar N. Fatal encephalitis and Borna Disease Virus-1 seropositivity in two kidney-transplant patients living in the same nonendemic area. Transpl Infect Dis 2021; 23:e13734. [PMID: 34549497 DOI: 10.1111/tid.13734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Karine Bourgade
- Toulouse Institute for Inflammatory and Infectious Diseases (Infinity), Inserm, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Anne Thouard
- Toulouse Institute for Inflammatory and Infectious Diseases (Infinity), Inserm, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Florence Abravanel
- Toulouse Institute for Inflammatory and Infectious Diseases (Infinity), Inserm, CNRS, UPS, Université de Toulouse, Toulouse, France.,CHU Toulouse, Laboratoire de Virologie, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Anne-Laure Hebral
- CHU Toulouse, Service de Néphrologie et de Transplantation d'organes, Hôpital Rangueil, Toulouse, France
| | - Arnaud Del Bello
- Toulouse Institute for Inflammatory and Infectious Diseases (Infinity), Inserm, CNRS, UPS, Université de Toulouse, Toulouse, France.,CHU Toulouse, Service de Néphrologie et de Transplantation d'organes, Hôpital Rangueil, Toulouse, France
| | - Alain Viguier
- CHU Toulouse, Unité Neuro-Vasculaire, Hôpital Pierre Paul Riquet, Toulouse, France
| | - Daniel Gonzalez-Dunia
- Toulouse Institute for Inflammatory and Infectious Diseases (Infinity), Inserm, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Nassim Kamar
- Toulouse Institute for Inflammatory and Infectious Diseases (Infinity), Inserm, CNRS, UPS, Université de Toulouse, Toulouse, France.,CHU Toulouse, Laboratoire de Virologie, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France.,CHU Toulouse, Service de Néphrologie et de Transplantation d'organes, Hôpital Rangueil, Toulouse, France
| |
Collapse
|
27
|
Pfaff F, Rubbenstroth D. Two novel bornaviruses identified in colubrid and viperid snakes. Arch Virol 2021; 166:2611-2614. [PMID: 34128103 PMCID: PMC8321990 DOI: 10.1007/s00705-021-05138-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/04/2022]
Abstract
We present the complete genome sequences of Caribbean watersnake bornavirus (CWBV) and Mexican black-tailed rattlesnake bornavirus (MRBV), which we identified in archived raw transcriptomic read data of a Caribbean watersnake (Tretanorhinus variabilis) and a Mexican black-tailed rattlesnake (Crotalus molossus nigrescens), respectively. The genomes of CWBV and MRBV have a length of about 8,900 nucleotides and comprise the complete coding regions and the untranslated regions. The overall genomic makeup and predicted gene content is typical for members of the genus Orthobornavirus within the family Bornaviridae. Alternative splicing was detected for the L and M genes. Based on a phylogenetic analysis of all viral proteins, we consider both viruses to be members of a single novel species within the genus Orthobornavirus. Both viruses form a distinct outgroup to all currently known orthobornaviruses. Based on the novel virus genomes, we furthermore identified closely related endogenous bornavirus-like nucleoprotein sequences in transcriptomic data of veiled chameleons (Chamaeleo calyptratus) and a common lancehead (Bothrops atrox).
Collapse
Affiliation(s)
- Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Riems, Germany.
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Riems, Germany
| |
Collapse
|
28
|
Sukmak M, Okamoto M, Ando T, Hagiwara K. Genetic stability of the open reading frame 2 (ORF2) of borna disease virus 1 (BoDV-1) distributed in cattle in Hokkaido. J Vet Med Sci 2021; 83:1526-1533. [PMID: 34393150 PMCID: PMC8569879 DOI: 10.1292/jvms.21-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Borna disease virus (BoDV) is a neurotropic virus that causes several infections in
humans and neurological diseases in a wide range of animals worldwide. BoDV-1 has been
molecularly and serologically detected in many domestic and wild animals in Japan;
however, the genetic diversity of this virus and the origin of its infection are not fully
understood. In this study, we investigated BoDV-1 infection and genetic diversity in
samples collected from animals in Hokkaido between 2006 and 2020. The analysis was
performed by focusing on the P region of BoDV-1 for virus detection. The presence of
BoDV-1 RNA was observed in samples of brain tissue and various organs derived from
persistently infected cattle. Moreover, after inoculation, BoDV-positive brains were
isolated from neonatal rats. The gene sequences of the P region of BoDV obtained from the
rat brain were in the same cluster as the P region of the virus isolated from the original
bovine. Thus, genetic variation in BoDV-1 was extremely low. The phylogenetic analysis
revealed that BoDV-1 isolates obtained in this study were part of the same cluster, which
suggested that BoDV-1 of the same cluster was widespread among animals in Hokkaido.
Collapse
Affiliation(s)
- Manakorn Sukmak
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetseart University.,Kamphaengsaen Veterinary Diagnostic Center (KVDC), Faculty of Veterinary Medicine, Kasetseart University
| | | | - Tastuya Ando
- School of Veterinary Medicine, Rakuno Gakuen University
| | | |
Collapse
|
29
|
Tappe D, Pörtner K, Frank C, Wilking H, Ebinger A, Herden C, Schulze C, Muntau B, Eggert P, Allartz P, Schuldt G, Schmidt-Chanasit J, Beer M, Rubbenstroth D. Investigation of fatal human Borna disease virus 1 encephalitis outside the previously known area for human cases, Brandenburg, Germany - a case report. BMC Infect Dis 2021; 21:787. [PMID: 34376142 PMCID: PMC8353434 DOI: 10.1186/s12879-021-06439-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Background The true burden and geographical distribution of human Borna disease virus 1 (BoDV-1) encephalitis is unknown. All detected cases so far have been recorded in Bavaria, southern Germany. Case presentation A retrospective laboratory and epidemiological investigation of a 2017 case of fatal encephalitis in a farmer in Brandenburg, northeast Germany, demonstrated BoDV-1 as causative agent by polymerase chain reaction, immunohistochemistry and in situ hybridization. Next-generation sequencing showed that the virus belonged to a cluster not known to be endemic in Brandenburg. The investigation was triggered by a recent outbreak of animal Borna disease in the region. Multiple possible exposures were identified. The next-of-kin were seronegative. Conclusions The investigation highlights clinical awareness for human BoDV-1 encephalitis which should be extended to all areas endemic for animal Borna disease. All previously diagnosed human cases had occurred > 350 km further south. Further testing of shrews and livestock with Borna disease may show whether this BoDV-1 cluster is additionally endemic in the northwest of Brandenburg.
Collapse
Affiliation(s)
- Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| | - Kirsten Pörtner
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.,Postgraduate Training for Applied Epidemiology (PAE) affiliated with the European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Christina Frank
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Hendrik Wilking
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Christiane Herden
- Institute for Veterinary Pathology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Petra Eggert
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Petra Allartz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Gerlind Schuldt
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| |
Collapse
|
30
|
Eisermann P, Rubbenstroth D, Cadar D, Thomé-Bolduan C, Eggert P, Schlaphof A, Leypoldt F, Stangel M, Fortwängler T, Hoffmann F, Osterman A, Zange S, Niller HH, Angstwurm K, Pörtner K, Frank C, Wilking H, Beer M, Schmidt-Chanasit J, Tappe D. Active Case Finding of Current Bornavirus Infections in Human Encephalitis Cases of Unknown Etiology, Germany, 2018-2020. Emerg Infect Dis 2021; 27:1371-1379. [PMID: 33900167 PMCID: PMC8084505 DOI: 10.3201/eid2705.204490] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human bornavirus encephalitis is a severe and often fatal infection caused by variegated squirrel bornavirus 1 (VSBV-1) and Borna disease virus 1 (BoDV-1). We conducted a prospective study of bornavirus etiology of encephalitis cases in Germany during 2018-2020 by using a serologic testing scheme applied along proposed graded case definitions for VSBV-1, BoDV-1, and unspecified bornavirus encephalitis. Of 103 encephalitis cases of unknown etiology, 4 bornavirus infections were detected serologically. One chronic case was caused by VSBV-1 after occupational-related contact of a person with exotic squirrels, and 3 acute cases were caused by BoDV-1 in virus-endemic areas. All 4 case-patients died. Bornavirus etiology could be confirmed by molecular methods. Serologic testing for these cases was virus specific, discriminatory, and a practical diagnostic option for living patients if no brain tissue samples are available. This testing should be guided by clinical and epidemiologic suspicions, such as residence in virus-endemic areas and animal exposure.
Collapse
|
31
|
Abstract
Significant advances have been observed in the field of cell biology, with numerous studies exploring the molecular genetic pathways that have contributed to species evolution and disease development. The current study adds to the existing body of research evidence by reviewing information related to the role of leftover viruses and/or viral remnants in human physiology. To explore leftover viruses, their incorporation, and their roles in human physiology. The study entailed conducting a systematic search in the PsycINFO, PubMed, Web of Science, and CINAHL databases to locate articles related to the topic of investigation. The search terms included “leftovers,” “viruses,” “genome sequences,” “transposable elements,” “immune response,” and “evolution.” Additional articles were selected from the references of the studies identified in the electronic databases. Evidence showed that both retroviruses and nonretroviruses can be integrated into the human germline via various mechanisms. The role of leftover viruses in human physiology has been explored by studying the activation of human retroviral genes in the human placenta, RNA transfer between neurons through virus-like particles, and RNA transfer through extracellular vesicles. Research evidence suggested that leftover viruses play key roles in human physiology. A more complete understanding of the underlying pathways may provide an avenue for studying human evolution and allow researchers to determine the pathogenesis of some viral infections. Evidence obtained in this review shows that leftover viruses may be incorporated into the human genome. Retroviral genes are critical for the development of different parts of the body, such as the placenta in mammals.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392, Giessen, Germany.
| |
Collapse
|
32
|
Malbon AJ, Dürrwald R, Kolodziejek J, Nowotny N, Kobera R, Pöhle D, Muluneh A, Dervas E, Cebra C, Steffen F, Paternoster G, Gerspach C, Hilbe M. New World camelids are sentinels for the presence of Borna disease virus. Transbound Emerg Dis 2021; 69:451-464. [PMID: 33501762 DOI: 10.1111/tbed.14003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Borna disease (BD), a frequently fatal neurologic disorder caused by Borna disease virus 1 (BoDV-1), has been observed for decades in horses, sheep, and other mammals in certain regions of Europe. The bicoloured white-toothed shrew (Crocidura leucodon) was identified as a persistently infected species involved in virus transmission. Recently, BoDV-1 attracted attention as a cause of fatal encephalitis in humans. Here, we report investigations on BoDV-1-infected llamas from a farm in a BD endemic area of Switzerland, and alpacas from holdings in a region of Germany where BD was last seen in the 1960s but not thereafter. All New World camelids showed apathy and abnormal behaviour, necessitating euthanasia. Histologically, severe non-suppurative meningoencephalitis with neuronal Joest-Degen inclusion bodies was observed. BoDV-1 was confirmed by immunohistology, RT-qPCR, and sequencing in selected animals. Analysis of the llama herd over 20 years showed that losses due to clinically suspected BD increased within the last decade. BoDV-1 whole-genome sequences from one Swiss llama and one German alpaca and-for comparison-from one Swiss horse and one German shrew were established. They represent the first published whole-genome sequences of BoDV-1 clusters 1B and 3, respectively. Our analysis suggests that New World camelids may have a role as a sentinel species for BoDV-1 infection, even when symptomatic cases are lacking in other animal species.
Collapse
Affiliation(s)
- Alexandra J Malbon
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Dietrich Pöhle
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Aemero Muluneh
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Eva Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher Cebra
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Frank Steffen
- Section of Neurology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Giulia Paternoster
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian Gerspach
- Farm Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Schulze V, Große R, Fürstenau J, Forth LF, Ebinger A, Richter MT, Tappe D, Mertsch T, Klose K, Schlottau K, Hoffmann B, Höper D, Mundhenk L, Ulrich RG, Beer M, Müller KE, Rubbenstroth D. Borna disease outbreak with high mortality in an alpaca herd in a previously unreported endemic area in Germany. Transbound Emerg Dis 2020; 67:2093-2107. [PMID: 32223069 DOI: 10.1111/tbed.13556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, an often fatal neurologic condition of domestic mammals, including New World camelids, in endemic areas in Central Europe. Recently, BoDV-1 gained further attention by the confirmation of fatal zoonotic infections in humans. Although Borna disease and BoDV-1 have been described already over the past decades, comprehensive reports of Borna disease outbreaks in domestic animals employing state-of-the-art diagnostic methods are missing. Here, we report a series of BoDV-1 infections in a herd of 27 alpacas (Vicugna pacos) in the federal state of Brandenburg, Germany, which resulted in eleven fatalities (41%) within ten months. Clinical courses ranged from sudden death without previous clinical signs to acute or chronic neurologic disease with death occurring after up to six months. All animals that underwent necropsy exhibited a non-suppurative encephalitis. In addition, six apparently healthy seropositive individuals were identified within the herd, suggesting subclinical BoDV-1 infections. In infected animals, BoDV-1 RNA and antigen were mainly restricted to the central nervous system and the eye, and sporadically detectable in large peripheral nerves and neuronal structures in other tissues. Pest control measures on the farm resulted in the collection of a BoDV-1-positive bicoloured white-toothed shrew (Crocidura leucodon), while all other trapped small mammals were negative. A phylogeographic analysis of BoDV-1 sequences from the alpacas, the shrew and BoDV-1-positive equine cases from the same region in Brandenburg revealed a previously unreported endemic area of BoDV-1 cluster 4 in North-Western Brandenburg. In conclusion, alpacas appear to be highly susceptible to BoDV-1 infection and display a highly variable clinical picture ranging from peracute death to subclinical forms. In addition to horses and sheep, they can serve as sensitive sentinels used for the identification of endemic areas.
Collapse
Affiliation(s)
- Vanessa Schulze
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reinhard Große
- Clinic for Ruminants and Swine, Freie Universität Berlin, Berlin, Germany
| | - Jenny Fürstenau
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Madita T Richter
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Kristin Klose
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
34
|
Komatsu Y, Tomonaga K. Reverse genetics approaches of Borna disease virus: applications in development of viral vectors and preventive vaccines. Curr Opin Virol 2020; 44:42-48. [PMID: 32659515 DOI: 10.1016/j.coviro.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
The plasmid-based reverse genetics system, which involves generation of recombinant viruses from cloned cDNA, has accelerated the understanding of clinical and virological aspects of different viruses. Borna disease virus (BoDV) is a nonsegmented, negative-strand RNA virus that causes persistent intranuclear infection in various vertebrate species. Since its first report, reverse genetics approaches with modified strategies have greatly improved rescue efficiency of recombinant BoDV and enhanced the understanding of function of each viral protein and mechanism of intranuclear persistency. Here, we summarize different reverse genetics approaches of BoDV and recent developments in the use of reverse genetics for generation of viral vectors for gene therapy and virus-like particles for potential preventive vaccines.
Collapse
Affiliation(s)
- Yumiko Komatsu
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research, Kyoto University, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
35
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
36
|
Rubbenstroth D, Niller HH, Angstwurm K, Schwemmle M, Beer M. Are human Borna disease virus 1 infections zoonotic and fatal? - Authors' reply. THE LANCET. INFECTIOUS DISEASES 2020; 20:651. [PMID: 32473135 DOI: 10.1016/s1473-3099(20)30379-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Hans H Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
37
|
Honda T. Relaunching human bornavirus research from encephalitis cases with unclear cause. THE LANCET. INFECTIOUS DISEASES 2020; 20:389-391. [PMID: 31924548 DOI: 10.1016/s1473-3099(19)30740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Niller HH, Angstwurm K, Rubbenstroth D, Schlottau K, Ebinger A, Giese S, Wunderlich S, Banas B, Forth LF, Hoffmann D, Höper D, Schwemmle M, Tappe D, Schmidt-Chanasit J, Nobach D, Herden C, Brochhausen C, Velez-Char N, Mamilos A, Utpatel K, Evert M, Zoubaa S, Riemenschneider MJ, Ruf V, Herms J, Rieder G, Errath M, Matiasek K, Schlegel J, Liesche-Starnecker F, Neumann B, Fuchs K, Linker RA, Salzberger B, Freilinger T, Gartner L, Wenzel JJ, Reischl U, Jilg W, Gessner A, Jantsch J, Beer M, Schmidt B. Zoonotic spillover infections with Borna disease virus 1 leading to fatal human encephalitis, 1999-2019: an epidemiological investigation. THE LANCET. INFECTIOUS DISEASES 2020; 20:467-477. [PMID: 31924550 DOI: 10.1016/s1473-3099(19)30546-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND In 2018-19, Borna disease virus 1 (BoDV-1), the causative agent of Borna disease in horses, sheep, and other domestic mammals, was reported in five human patients with severe to fatal encephalitis in Germany. However, information on case frequencies, clinical courses, and detailed epidemiological analyses are still lacking. We report the occurrence of BoDV-1-associated encephalitis in cases submitted to the Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany, and provide a detailed description of newly identified cases of BoDV-1-induced encephalitis. METHODS All brain tissues from 56 encephalitis cases from Bavaria, Germany, of putative viral origin (1999-2019), which had been submitted for virological testing upon request of the attending clinician and stored for stepwise diagnostic procedure, were systematically screened for BoDV-1 RNA. Two additional BoDV-1-positive cases were contributed by other diagnostic centres. Positive results were confirmed by deep sequencing, antigen detection, and determination of BoDV-1-reactive antibodies in serum and cerebrospinal fluid. Clinical and epidemiological data from infected patients were collected and analysed. FINDINGS BoDV-1 RNA and bornavirus-reactive antibodies were detected in eight newly analysed encephalitis cases and the first human BoDV-1 isolate was obtained from an unequivocally confirmed human BoDV-1 infection from the endemic area. Six of the eight BoDV-1-positive patients had no record of immunosuppression before the onset of fatal disease, whereas two were immunocompromised after solid organ transplantation. Typical initial symptoms were headache, fever, and confusion, followed by various neurological signs, deep coma, and severe brainstem involvement. Seven of nine patients with fatal encephalitis of unclear cause were BoDV-1 positive within one diagnostic centre. BoDV-1 sequence information and epidemiological analyses indicated independent spillover transmissions most likely from the local wild animal reservoir. INTERPRETATION BoDV-1 infection has to be considered as a potentially lethal zoonosis in endemic regions with reported spillover infections in horses and sheep. BoDV-1 infection can result in fatal encephalitis in immunocompromised and apparently healthy people. Consequently, all severe encephalitis cases of unclear cause should be tested for bornaviruses especially in endemic regions. FUNDING German Federal Ministry of Education and Research.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Klemens Angstwurm
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; Institute of Virology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sebastian Giese
- Institute of Virology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Wunderlich
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Banas
- Department of Nephrology, Regensburg University Hospital, Regensburg, Germany
| | - Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | - Andreas Mamilos
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Saida Zoubaa
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | | | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Georg Rieder
- Department of Neurology, Klinikum Traunstein, Traunstein, Germany
| | - Mario Errath
- Department of Neurology, Klinikum Traunstein, Traunstein, Germany
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Technical University of Munich, Munich, Germany
| | | | - Bernhard Neumann
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Kornelius Fuchs
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Infectious Diseases, Regensburg University Hospital, Regensburg, Germany
| | - Tobias Freilinger
- Department of Neurology, Klinikum Passau, Passau, Germany; Hertie-Institute for Clinical Brain Research, University Tuebingen, Tuebingen, Germany
| | - Lisa Gartner
- Department of Neurology, Klinikum Passau, Passau, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Udo Reischl
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Wolfgang Jilg
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|