1
|
Lauzier AM, Douette É, Labrie A, Jubinville É, Goulet-Beaulieu V, Hamon F, Jean J. Comparison of sample pretreatments used to distinguish between infectious and non-infectious foodborne viruses by RT-qPCR. J Virol Methods 2025; 335:115130. [PMID: 39993658 DOI: 10.1016/j.jviromet.2025.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
To detect viruses such as hepatitis A virus (HAV) and human norovirus (HuNoV) in foods, RT-qPCR or other molecular methods are used, which cannot distinguish between infectious and non-infectious virions. Samples can be pretreated to limit detection to intact and presumably infectious virions. We compared propidium monoazide (PMA or PMAxx), platinum (IV) chloride (PtCl4), magnetic silica beads and centrifugal filter using HAV or HuNoV inactivated by heat, pulsed light, or sodium hypochlorite (NaOCl). PMAxx completely or nearly eliminated (3.96 ± 1.24 log gc) the RT-qPCR signal of HAV inactivated at 100°C for 10 min. Pretreatments could not reduce significantly RT-qPCR signal of HAV after pulsed light (0.74 ± 0.36 log gc) and NaOCl (0.24 ± 0.14 log gc) inactivation. Enzymatic treatments did not improve the results obtained with PMAxx. The exudate of raspberry, strawberry or oyster used as food matrices needed dilution by at least tenfold for PMAxx to to yield results comparable to virions without a food matrix. Overall, PMAxx shows good potential to discriminate between infectious and non-infectious despite some remaining limitations.
Collapse
Affiliation(s)
- Anne-Marie Lauzier
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Émilie Douette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Antoine Labrie
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Éric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | | | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada.
| |
Collapse
|
2
|
Prasad BVV, Atmar RL, Ramani S, Palzkill T, Song Y, Crawford SE, Estes MK. Norovirus replication, host interactions and vaccine advances. Nat Rev Microbiol 2025; 23:385-401. [PMID: 39824927 DOI: 10.1038/s41579-024-01144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide in all age groups and cause significant disease and economic burden globally. To date, no approved vaccines or antiviral therapies are available to treat or prevent HuNoV illness. Several candidate vaccines are in clinical trials, although potential barriers to successful development must be overcome. Recently, significant advances have been made in understanding HuNoV biology owing to breakthroughs in virus cultivation using human intestinal tissue-derived organoid (or enteroid) cultures, advances in structural biology technology combined with epitope mapping and increased metagenomic sequencing. New and unexpected strain-specific differences in pandemic versus non-pandemic virus structures, replication properties and virus-host interactions, including host factors required for susceptibility to infection and pathogenesis, are discussed.
Collapse
Affiliation(s)
- B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Farkas T. B cell lines fail to support efficient rhesus enteric calicivirus and human norovirus replication. J Virol 2025; 99:e0014325. [PMID: 40261012 PMCID: PMC12090725 DOI: 10.1128/jvi.00143-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Analyses of intestinal biopsies of infected individuals and/or nonhuman primates (NHP) suggested the possible immune cell tropism of human noroviruses (HuNoV) and rhesus enteric caliciviruses (ReCV). Subsequently, the first HuNoV cell culture system using human B cell lines was reported. However, reproducibility issues raised questions about the validity and suitability of B cell cultures for HuNoV research. Histo-blood group antigens (HBGA) are known HuNoV susceptibility factors, but the full range of HuNoV susceptibility determinants remains unknown. In contrast, strain-specific ReCV susceptibility determinants have been recently characterized. Here, we evaluated NHP B cell lines and the human BJAB cell line for susceptibility to ReCV-FT285 infection, which is controlled by the Coxsackie and adenovirus receptor (CAR) and the type A or B HBGA. NHP B cell lines lacked CAR and HBGA expression and resisted infection. Inconsistent, low-level virus replication was detectable in BJAB cells, and expression of CAR and HBGAs was evident by Western blots. However, <1% of live, but >80% of fixed and permeabilized BJAB cells were CAR+, suggesting that CAR is mostly internalized. Co-transfection of BJAB cells with hCAR and A enzyme expression vectors led to substantial surface CAR and type A HBGA expression but not to an increase in ReCV titers. dsRNA staining revealed initial ReCV and HuNoV infection in a few cells that most likely became abortive. Based on both the similarities between ReCV and HuNoV replication profiles and the results obtained in the present study, considering BJAB cells an efficient culture system for HuNoV research is not justified.IMPORTANCERecently, two human norovirus (HuNoV) cell culture systems have been developed-the B cell culture system and the enteroid culture system. While the enteroid cell culture system became widely used in HuNoV research, mainly due to reproducibility issues, the B cell culture system did not. Here, we used HuNoV and rhesus enteric caliciviruses (ReCV) to evaluate enteric calicivirus B cell infections, in correlation to cell surface molecular determinants that control the susceptibility to infection. These are fully characterized for ReCVs, but not for HuNoVs. We found that only few BJAB cells express the cell surface molecules necessary for ReCV infection and support low-level, initial ReCV and HuNoV infection, but virus replication is most likely abortive, with minimal progeny virus release. Our findings and the poor reproducibility indicate that the B cell culture system in its current form is unsuitable for ReCV or HuNoV research and does not represent an efficient valid cell culture system.
Collapse
Affiliation(s)
- Tibor Farkas
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Mirmahdi RS, Dicker SL, Yusuf NG, Montazeri N. Navigating Uncertainties in RT-qPCR and Infectivity Assessment of Norovirus. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:22. [PMID: 40057626 PMCID: PMC11890344 DOI: 10.1007/s12560-024-09632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/30/2024] [Indexed: 04/08/2025]
Abstract
Human norovirus (HuNoV) is the primary cause of gastroenteritis globally. Due to the lack of a reliable cultivation system, RT-qPCR is a gold standard technique for the detection and quantification of HuNoV. However, the inability of PCR to differentiate between infectious from non-infectious particles remains a significant limitation. This study aims to address this limitation by exploring the relationship between culture-based (plaque assay and TCID50) and non-culture-based (RT-qPCR) methods for HuNoV quantification, using Tulane virus as a cultivable surrogate. The ultracentrifuge-purified Tulane virus at 6.7 log10 PFU/ml or 5.8 log10 TCID50/ml in Tris-EDTA buffer (pH 7.2), was serially diluted and subjected to RNA extraction, with or without RNase pretreatment, followed by quantification with RT-qPCR. Further physical characterization of the virus stock was performed with dynamic light scattering and transmission electron microscopy. A strong correlation (Pearson's Correlation Coefficient of 0.99) was observed between log10 genome copies (GC) and log10 plaque forming units (PFU) per PCR reaction for both RNase-pretreated and unpretreated samples. Beta distributions indicated a similar median GC:PFU ratio of ca. 3.7 log10 for both RNase-pretreated and unpretreated samples. The high GC:PFU ratio may indicate the sensitive nature of RT-qPCR or the presence of intact, non-infectious virus particles. The outcomes of this study will contribute to the more accurate estimation of infectious norovirus particles in food and environmental matrices.
Collapse
Affiliation(s)
- Razieh Sadat Mirmahdi
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Drive, Gainesville, FL, 32611, USA
| | - Samantha L Dicker
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Drive, Gainesville, FL, 32611, USA
| | - Nuradeen Garba Yusuf
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Drive, Gainesville, FL, 32611, USA
| | - Naim Montazeri
- Food Science and Human Nutrition Department, University of Florida, 572 Newell Drive, Gainesville, FL, 32611, USA.
- Global Food Systems Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Girón-Guzmán I, Falcó I, Cuevas-Ferrando E, Ballesteros S, Barranquero R, Sánchez G. Survival of viruses in water microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178416. [PMID: 39818153 DOI: 10.1016/j.scitotenv.2025.178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions. The decay of infectious viruses was analyzed using a monophasic decay model, which largely showed that human enteric viruses exhibit remarkable persistence in water samples. MNV infectivity decreased significantly after 14 days in EW at room temperature compared to 84 days under refrigerated conditions, with decay rates of 0.230 log TCID50/day at room temperature and 0.040 log TCID50/day under refrigeration. A gradual decline in HAV infectivity was observed at room temperature, whereas at refrigerated temperature, infectious viruses were recovered even after 98 days. HCoV-229E, IAV H3N2 and VACV were completely inactivated in DW and EW at room temperature between 7 and 21 days, with longer stability observed under refrigeration. The decay of IAV H3N2, HCoV-229E and VACV in EW and DW was also assessed in parallel using RT-qPCR to determine genome persistence and viability PCR to determine intact viral capsid persistence. Overall, our results suggest that viability PCR is not suitable for tracking virus decay in water under real-world environmental conditions.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Sandra Ballesteros
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
6
|
Lee DH, Ju HJ, Lee Y, Bae YK. Development of RNA reference materials for norovirus GI and GII using digital PCR. Virology 2025; 603:110358. [PMID: 39693788 DOI: 10.1016/j.virol.2024.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Norovirus is a highly virulent pathogen that causes enteritis in all age groups worldwide. Owing to the diversity of noroviruses, the development of vaccines and treatments is challenging, and an early and accurate diagnosis is crucial. Reference materials (RMs) developed previously for norovirus genotypes I (GI) and II (GII) were quantified using reverse transcription quantitative PCR. In this study, we developed norovirus GI and GII RMs as in vitro transcribed RNA forms. These RMs were then assigned reference values for the RNA copy number concentration. The concentrations of GI and GII RMs determined using in-house reverse transcription digital PCR assays were (1.92±0.37)×107 and (1.20±0.27)×107 copy/mL, respectively. The homogeneity and stability of the RMs were evaluated, and their compatibility with commercial diagnostic kits was validated. These RMs can be used for the development of detection assays, as calibrants for various molecular measurement techniques, and as test materials for internal and external quality assurance.
Collapse
Affiliation(s)
- Da-Hye Lee
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea; Department of Precision Measurement, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyo Jung Ju
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Yoojin Lee
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Young-Kyung Bae
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Deng W, Almeida G, Gibson KE. Virus Association with Bacteria and Bacterial Cell Components Enhance Virus Infectivity. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:15. [PMID: 39789292 PMCID: PMC11717783 DOI: 10.1007/s12560-025-09633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
The transmission and infection of enteric viruses can be influenced by co-existing bacteria within the environment and host. However, the viral binding ligands on bacteria and the underlying interaction mechanisms remain unclear. This study characterized the association of norovirus surrogate Tulane virus (TuV) and murine norovirus (MNV) as well as the human enteric virus Aichi virus (AiV) with six bacteria strains (Pantoea agglomerans, Pantoea ananatis, Bacillus cereus, Enterobacter cloacae, Exiguobacterium sibiricum, Pseudomonas spp.). At room temperature, the viruses bound to all bacteria in strain-dependent rates and remained bound for at least 2 h. The virus association with two gram-positive bacteria B. cereus and E. sibiricum was less efficient than gram-negative bacteria. Next, the bacterial envelope components including lipopolysaccharides (LPS), extracellular polymeric substances (EPS), and peptidoglycan (PG) from selected strains were co-incubated with viruses to evaluate their effect on virus infectivity. All the tested bacteria components significantly increased virus infection to variable degrees as compared to PBS. The LPS of E. coli O111:B4 resulted in the greatest increases of infection by 0.19 log PFU for TuV as determined by plaque assay. Lastly, bacterial whole cell lysate of B. cereus and E. cloacae was examined for their impact on the infectivity of MNV and TuV. The co-incubation with whole cell lysates significantly increased the infectivity of TuV by 0.2 log PFU but not MNV. This study indicated that both the individual bacteria components and whole bacterial cell lysate can enhance virus infectivity, providing key insights for understanding virus-bacteria interaction.
Collapse
Affiliation(s)
- Wenjun Deng
- College of Life Science, Qingdao University, Qingdao, People's Republic of China
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
| | - Giselle Almeida
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Kristen E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, 1371 West Altheimer Dr, Fayetteville, AR, 72704, USA.
| |
Collapse
|
8
|
Papafragkou E, Kita-Yarbro A, Yang Z, Chhabra P, Davis T, Blackmore J, Ziemer C, Klos R, Hall AJ, Vinjé J. Traceback and Testing of Food Epidemiologically Linked to a Norovirus Outbreak at a Wedding Reception. J Food Prot 2025; 88:100395. [PMID: 39505084 PMCID: PMC11844314 DOI: 10.1016/j.jfp.2024.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
We investigated a suspected norovirus outbreak associated with a wedding reception in Wisconsin in May 2015. Fifty-six of 106 (53%) wedding attendees were interviewed, and 23 (41%) reported symptoms consistent with norovirus infection. A retrospective cohort study identified fruit salad as the likely vehicle of infection (risk ratio 3.2, 95% confidence interval 1.1--8.3). Norovirus was detected by real-time reverse transcription polymerase chain reaction (RT-qPCR) in stool specimens collected from four attendees and one food handler and in 12 leftover fruit salad samples from both an opened and a sealed container. Norovirus-positive clinical samples (n = 4) were genotyped as GII.4 Sydney and norovirus-positive fruit salad samples (n = 2) confirmed the presence of GII.4 norovirus by Sanger sequencing with 98% nucleotide (n = 236) similarity in 5' end of ORF2 between fruit salad and clinical specimens. In conclusion, this comprehensive norovirus outbreak investigation combined epidemiologic, virologic, and environmental findings to traceback the contaminated food as the source of the outbreak.
Collapse
Affiliation(s)
| | | | - Zihui Yang
- Food and Drug Administration, Laurel, Maryland, United States
| | - Preeti Chhabra
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Timothy Davis
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States
| | - James Blackmore
- Public Health Madison & Dane County, Madison, Wisconsin, United States
| | - Courtney Ziemer
- Public Health Madison & Dane County, Madison, Wisconsin, United States
| | - Rachel Klos
- Wisconsin Department of Health Services, Division of Public Health, United States
| | - Aron J Hall
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Jan Vinjé
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| |
Collapse
|
9
|
Wu XM, Zheng SY, Chang MX. Zebrafish as a Model for Investigating Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:221-236. [PMID: 39192133 DOI: 10.1007/978-1-0716-4108-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Zebrafish is a widely used model organism in genetics, developmental biology, pathology, and immunology research. Due to their fast reproduction, large numbers, transparent early embryos, and high genetic conservation with the human genome, zebrafish have been used as a model for studying human and fish viral diseases. In particular, the ability to easily perform forward and reverse genetics and lacking a functional adaptive immune response during the early period of development establish the zebrafish as a favored option to assess the functional implication of specific genes in the antiviral innate immune response and the pathogenesis of viral diseases. In this chapter, we detail protocols for the antiviral innate immunity analysis using the zebrafish model, including the generation of gene-overexpression zebrafish, generation of gene-knockout zebrafish by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, methods of viral infection in zebrafish larvae, analyzing the expression of antiviral genes in zebrafish larvae using qRT-PCR, Western blotting and transcriptome sequencing, and in vivo antiviral assays. These experimental protocols provide effective references for studying the antiviral immune response in the zebrafish model.
Collapse
Affiliation(s)
- Xiao Man Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Si Yao Zheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Chandran S, Gibson KE. Utilizing Zebrafish Embryos for Replication of Tulane Virus: A Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:470-478. [PMID: 39179704 PMCID: PMC11525437 DOI: 10.1007/s12560-024-09610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The zebrafish larvae/embryo model has been shown to support the replication of seven strains (G1.7[P7], GII.2[P16], GII.3[P16], GII.4[P4], GII.4[P16], GII.6[P7], and GII.17[P13]) of human norovirus (HuNoV). However, due to challenges in consistently obtaining HuNoV-positive stool samples from clinical sources, evaluating HuNoV surrogates in this model is highly valuable. This study assesses the potential of zebrafish embryos and larvae as a model for Tulane virus (TuV) replication. Three infection methods were examined: microinjection, immersion, and feeding. Droplet digital PCR was used to quantify viral RNA across all three infection methods. Microinjection of 3 nL of TuV into zebrafish embryos (< 6-h post-fertilization) resulted in significant replication, with viral RNA levels reaching 6.22 logs at 4-day post-infection. In contrast, the immersion method showed no replication after immersing 4-day post-fertilization (dpf) larvae in TuV suspension for 6 h. Similarly, no replication was observed with the feeding method, where Paramecium caudatum loaded with TuV were fed to 4 dpf larvae. The findings indicate that the zebrafish embryo model supports TuV replication through the microinjection method, suggesting that TuV may serve as a useful surrogate for studying HuNoV pathogenesis. Additionally, TuV can be utilized in place of HuNoV in method optimization studies using the zebrafish embryo model, circumventing the limited availability of HuNoV.
Collapse
Affiliation(s)
- Sahaana Chandran
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72704, USA.
| |
Collapse
|
11
|
Sow AA, Jamadagni P, Scaturro P, Patten SA, Chatel-Chaix L. A zebrafish-based in vivo model of Zika virus infection unveils alterations of the glutamatergic neuronal development and NS4A as a key viral determinant of neuropathogenesis. PLoS Pathog 2024; 20:e1012756. [PMID: 39621753 PMCID: PMC11637437 DOI: 10.1371/journal.ppat.1012756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Infection of pregnant women by Zika virus (ZIKV) is associated with severe neurodevelopmental defects in newborns through poorly defined mechanisms. Here, we established a zebrafish in vivo model of ZIKV infection to circumvent limitations of existing mammalian models. Leveraging the unique tractability of this system, we gained unprecedented access to the ZIKV-infected brain at early developmental stages. The infection of zebrafish larvae with ZIKV phenocopied the disease in mammals including a reduced head area and neural progenitor cells (NPC) infection and depletion. Moreover, transcriptomic analyses of NPCs isolated from ZIKV-infected embryos revealed a distinct dysregulation of genes involved in survival and neuronal differentiation, including downregulation of the expression of the glutamate transporter vglut1, resulting in an altered glutamatergic network in the brain. Mechanistically, ectopic expression of ZIKV protein NS4A in the larvae recapitulated the morphological defects observed in infected animals, identifying NS4A as a key determinant of neurovirulence and a promising antiviral target for developing therapies.
Collapse
Affiliation(s)
- Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Priyanka Jamadagni
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | | | - Shunmoogum A. Patten
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Québec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Québec, Canada
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Québec, Canada
| |
Collapse
|
12
|
Ettayebi K, Kaur G, Patil K, Dave J, Ayyar BV, Tenge VR, Neill FH, Zeng XL, Speer AL, Di Rienzi SC, Britton RA, Blutt SE, Crawford SE, Ramani S, Atmar RL, Estes MK. Insights into human norovirus cultivation in human intestinal enteroids. mSphere 2024; 9:e0044824. [PMID: 39404443 PMCID: PMC11580437 DOI: 10.1128/msphere.00448-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights into this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells that were then transplanted and matured in mice before making enteroids (H9tHIEs), genetically engineered (J4FUT2 knock-in [KI], J2STAT1 knockout [KO]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of genogroup I and II HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.IMPORTANCEHuman noroviruses (HuNoVs) cause global diarrheal illness and chronic infections in immunocompromised patients. This paper reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from (i) different intestinal segments of single donors, (ii) human embryonic stem cell-derived organoids transplanted into mice, (iii) genetically modified lines, and (iv) a patient with common variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment, and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically modified J4FUT2 knock-in (KI) HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
Collapse
Affiliation(s)
- Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Janam Dave
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - B. Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Victoria R. Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Allison L. Speer
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Medicine, BCM, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Medicine, BCM, Houston, Texas, USA
| |
Collapse
|
13
|
Lu Y, Hua MZ, Luo Y, Lu X, Liu Q. Hybrid paper/PDMS microfluidic device integrated with RNA extraction and recombinase polymerase amplification for detection of norovirus in foods. Appl Environ Microbiol 2024; 90:e0120824. [PMID: 39377590 PMCID: PMC11577789 DOI: 10.1128/aem.01208-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization. This process includes RNA absorption via a paper strip, RNA amplification using recombinase polymerase amplification (RPA), and a lateral flow assay for signal readout. The on-chip detection of MNV-1 was completed within 35 min, demonstrating 100% specificity to MNV-1 in our settings. The detection limit of this microfluidic device for MNV-1 was 200 PFU/mL, comparable to the in-tube RPA reaction. It also successfully detected MNV-1 in lettuce and raspberries at concentrations of 170 PFU/g and 230 PFU/g, respectively, without requiring extra concentration steps. This device demonstrates high compatibility with isothermal nucleic acid amplification and holds significant potential for detecting foodborne viruses in agri-food products in remote and resource-limited settings. IMPORTANCE HuNoV belongs to the family of Caliciviridae and is a leading cause of acute gastroenteritis that can be transmitted through contaminated foods. HuNoV causes around one out of five cases of acute gastroenteritis that lead to diarrhea and vomiting, placing a substantial burden on the healthcare system worldwide. HuNoV outbreaks can occur when food is contaminated at the source (e.g., wild mussels exposed to polluted water), on farms (e.g., during crop cultivation, harvesting, or livestock handling), during packaging, or at catered events. The research outcomes of this study expand the approaches of HuNoV testing, adding value to the framework for routine testing of food products. This microfluidic device can facilitate the monitoring of HuNoV outbreaks, reduce the economic loss of the agri-food industry, and enhance food safety.
Collapse
Affiliation(s)
- Yuxiao Lu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Marti Z. Hua
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- McGill Centre for Viral Diseases, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
14
|
McSweeney AM, Eruera AR, McKenzie-Goldsmith GM, Bouwer JC, Brown SHJ, Stubbing LA, Hubert JG, Shrestha R, Sparrow KJ, Brimble MA, Harris LD, Evans GB, Bostina M, Krause KL, Ward VK. Activity and cryo-EM structure of the polymerase domain of the human norovirus ProPol precursor. J Virol 2024; 98:e0119324. [PMID: 39475276 PMCID: PMC11575396 DOI: 10.1128/jvi.01193-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Human norovirus (HuNV) is a leading cause of acute gastroenteritis worldwide with most infections caused by genogroup I and genogroup II (GII) viruses. Replication of HuNV generates both precursor and mature proteins during processing of the viral polyprotein that are essential to the viral lifecycle. One such precursor is protease-polymerase (ProPol), a multi-functional enzyme comprised of the norovirus protease and polymerase proteins. This work investigated HuNV ProPol by determining the de novo polymerase activity, protein structure, and antiviral inhibition profile. The GII ProPol de novo enzymatic efficiencies (kcat/Km) for RNA templates and ribonucleotides were equal or superior to those of mature GII Pol on all templates measured. Furthermore, GII ProPol was the only enzyme form active on a poly(A) template. The first structure of the polymerase domain of HuNV ProPol in the unliganded state was determined by cryo-electron microscopy at a resolution of 2.6 Å. The active site and overall architecture of ProPol are similar to those of mature Pol. In addition, both galidesivir triphosphate and PPNDS inhibited polymerase activity of GII ProPol, with respective half-maximal inhibitory concentration (IC50) values of 247.5 µM and 3.8 µM. In both instances, the IC50 obtained with ProPol was greater than that of mature Pol, indicating that ProPol can exhibit different responses to antivirals. This study provides evidence that HuNV ProPol possesses overlapping and unique enzyme properties compared with mature Pol and will aid our understanding of the replication cycle of the virus.IMPORTANCEDespite human norovirus (HuNV) being a leading cause of acute gastroenteritis, the molecular mechanisms surrounding replication are not well understood. Reports have shown that HuNV replication generates precursor proteins from the viral polyprotein, one of which is the protease-polymerase (ProPol). This precursor is important for viral replication; however, the polymerase activity and structural differences between the precursor and mature forms of the polymerase remain to be determined. We show that substrate specificity and polymerase activity of ProPol overlap with, but is distinct from, the mature polymerase. We employ cryo-electron microscopy to resolve the first structure of the polymerase domain of ProPol. This shows a polymerase architecture similar to mature Pol, indicating that the interaction of the precursor with substrates likely defines its activity. We also show that ProPol responds differently to antivirals than mature polymerase. Altogether, these findings enhance our understanding of the function of the important norovirus ProPol precursor.
Collapse
Affiliation(s)
- Alice M McSweeney
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Geena M McKenzie-Goldsmith
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - James C Bouwer
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, New South Wales, Australia
| | - Louise A Stubbing
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinu Shrestha
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Cuvry A, Molineaux L, Gozalbo-Rovira R, Neyts J, de Witte P, Rodríguez-Díaz J, Rocha-Pereira J. Human norovirus disturbs intestinal motility and transit time through its capsid proteins. PLoS Pathog 2024; 20:e1012710. [PMID: 39602402 PMCID: PMC11602112 DOI: 10.1371/journal.ppat.1012710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Human norovirus (HuNoV) accounts for over 700 million cases of gastroenteritis annually. Episodes of HuNoV disease are characterized by vomiting and diarrhea as the two most prominent symptoms. Despite its prevalence, our understanding of the pathophysiological mechanisms triggered upon HuNoV infection is limited, mainly due to a lack of suitable animal models. Our aim was to use the recent HuNoV zebrafish larvae model to study the effect of HuNoV infection on intestinal motility and investigate whether one viral protein could act as an enterotoxin, as seen with rotavirus. We studied whether HuNoV infection affects the contraction frequency of the intestinal bulb and the posterior intestine as well as the transit time. Infection of larvae, following injection of a HuNoV GII.4-containing stool sample in the yolk, resulted in an increased contraction frequency in the intestinal bulb. A comparable effect was observed in serotonin-treated larvae, corresponding to the natural function of serotonin. The higher replication efficacy of HuNoV GII.4 likely explains why they have a more marked effect on gut motility, when compared to other genotypes. Additionally, transit time of fluorescent food was prolonged in HuNoV GII.4 infected larvae, suggesting a loss of coordination in bowel movements upon infection. To identify the proteins responsible for the effect, individual HuNoV non-structural proteins and virus-like particles (VLPs) were injected intraperitoneally (ip). VLPs carrying VP1/VP2, but not those with only VP1, induced increased contraction frequencies in the intestinal bulb in a dose-dependent manner. In conclusion, our findings suggest that the viral capsid and potentially the minor capsid protein VP2 play a crucial role in the aetiology of symptoms associated with HuNoV, potentially acting as a viral enterotoxin. This work contributes to the understanding of the pathophysiological mechanisms in HuNoV-induced disease and further attests zebrafish as a valuable HuNoV disease model.
Collapse
Affiliation(s)
- Arno Cuvry
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Leuven, Belgium
- KU Leuven, Translationeel Onderzoek van Gastro-enterologische Aandoeningen (TARGID), Leuven, Belgium
| | - Lorane Molineaux
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Leuven, Belgium
| | | | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Peter de Witte
- KU Leuven, Laboratory for Molecular Biodiscovery, KU Leuven-Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Joana Rocha-Pereira
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Leuven, Belgium
| |
Collapse
|
16
|
Izquierdo-Lara RW, Villabruna N, Hesselink DA, Schapendonk CME, Ribó Pons S, Nieuwenhuijse D, Meier JIJ, Goodfellow I, Dalm VASH, Fraaij PLA, van Kampen JJA, Koopmans MPG, de Graaf M. Patterns of the within-host evolution of human norovirus in immunocompromised individuals and implications for treatment. EBioMedicine 2024; 109:105391. [PMID: 39396425 DOI: 10.1016/j.ebiom.2024.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Currently, there is no licensed treatment for chronic norovirus infections, but the use of intra-duodenally-delivered immunoglobulins is promising; nevertheless, varying results have limited their wide use. Little is known about the relationship between norovirus genetic diversity and treatment efficacy. METHODS We analyzed the norovirus within-host diversity and evolution in a cohort of 20 immunocompromised individuals using next-generation sequencing (NGS) and clone-based sequencing of the capsid (VP1) gene. Representative VP1s were expressed and their glycan receptor binding affinity and antigenicity were evaluated. FINDINGS The P2 domain, within the VP1, accumulated up to 30-fold more non-synonymous mutations than other genomic regions. Intra-host virus populations in these patients tended to evolve into divergent lineages that were often antigenically distinct. Several of these viruses were widely resistant to binding-blocking antibodies in immunoglobulin preparations. Notably, for one patient, a single amino-acid substitution in the P2 domain resulted in an immune-escape phenotype, and it was likely the main contributor to treatment failure. Furthermore, we found evidence for transmission of late-stage viruses between two immunocompromised individuals. INTERPRETATION The findings demonstrated that within-host noroviruses in chronic infections tend to evolve into antigenically distinct subpopulations. This antigenic evolution was likely caused by the remaining low immunity levels exerted by immunocompromised individuals, possibly undermining antiviral treatment. Our observations provide insights into norovirus (within-host) evolution and treatment. FUNDING Erasmus MC grant mRACE, the European Union's Horizon 2020 research and innovation program under grant agreement No. 874735 (VEO), and the NWO STEVIN award (Koopmans).
Collapse
Affiliation(s)
- Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nele Villabruna
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Sol Ribó Pons
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jenny I J Meier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen J A van Kampen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Zhan X, Li Q, Tian P, Wang D. The attachment factors and attachment receptors of human noroviruses. Food Microbiol 2024; 123:104591. [PMID: 39038896 DOI: 10.1016/j.fm.2024.104591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Human noroviruses (HuNoVs) are the leading etiological agent causing the worldwide outbreaks of acute epidemic non-bacterial gastroenteritis. Histo-blood group antigens (HBGAs) are commonly acknowledged as cellular receptors or co-receptors for HuNoVs. However, certain genotypes of HuNoVs cannot bind with any HBGAs, suggesting potential additional co-factors and attachment receptors have not been identified yet. In addition, food items, such as oysters and lettuce, play an important role in the transmission of HuNoVs. In the past decade, a couple of attachment factors other than HBGAs have been identified and analyzed from foods and microbiomes. Attachment factors exhibit potential as inhibitors of viral binding to receptors on host cells. Therefore, it is imperative to further characterize the attachment factors for HuNoVs present in foods to effectively control the spread of HuNoVs within the food chain. This review summarizes the potential attachment factors/receptors of HuNoVs in humans, foods, and microbiome.
Collapse
Affiliation(s)
- Xiangjun Zhan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service-United States Department of Agriculture, Albany, CA, 94706, USA
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
18
|
Burton TD, Carrera Montoya J, Frota T, Mackenzie JM. Human norovirus cultivation models, immune response and vaccine landscape. Adv Virus Res 2024; 120:1-37. [PMID: 39455167 DOI: 10.1016/bs.aivir.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Norovirus infections are a leading cause of gastroenteritis worldwide. Despite the substantial global health burden and economic impact, there are currently no approved antiviral therapeutics or vaccines. Additionally, much of our knowledge of norovirus comes from experiments using surrogate viruses, such as murine norovirus and feline calicivirus. The challenge surrounding human norovirus research arises from a lack of robust cell culture systems and efficient animal models. In this review, we explore recent advances in the in vitro cultivation of human norovirus and reverse genetics systems and discuss commonly used in vivo models. We summarize the current understanding of both innate and adaptive immune responses to norovirus infection and provide an overview of vaccine strategies and the current clinical trial landscape, with a focus on the only vaccine candidate that has reached phase III clinical development stage.
Collapse
Affiliation(s)
- Thomas D Burton
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Thalia Frota
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
20
|
Falcó I, Randazzo W, Sánchez G. Antiviral Activity of Natural Compounds for Food Safety. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:280-296. [PMID: 38884930 PMCID: PMC11422275 DOI: 10.1007/s12560-024-09605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Gastroenteritis and hepatitis are the most common illnesses resulting from the consumption of food contaminated with human enteric viruses. Several natural compounds have demonstrated antiviral activity against human enteric viruses, such as human norovirus and hepatitis A virus, while little information is available for hepatitis E virus. Many in-vitro studies have evaluated the efficacy of different natural compounds against human enteric viruses or their surrogates. However, only few studies have investigated their antiviral activity in food applications. Among them, green tea extract, grape seed extract and carrageenans have been extensively investigated as antiviral natural compounds to improve food safety. Indeed, these extracts have been studied as sanitizers on food-contact surfaces, in produce washing solutions, as active fractions in antiviral food-packaging materials, and in edible coatings. The most innovative applications of these antiviral natural extracts include the development of coatings to extend the shelf life of berries or their combination with established food technologies for improved processes. This review summarizes existing knowledge in the underexplored field of natural compounds for enhancing the safety of viral-contaminated foods and underscores the research needs to be covered in the near future.
Collapse
Affiliation(s)
- Irene Falcó
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
- Department of Microbiology and Ecology, University of Valencia, C/Doctor Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Walter Randazzo
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
- Universidad Internacional de Valencia, Valencia, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| |
Collapse
|
21
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
22
|
Yang Y, An R, Lyu C, Wang D. Interactions between human norovirus and intestinal microbiota/microbes: A scoping review. Food Microbiol 2024; 119:104456. [PMID: 38225056 DOI: 10.1016/j.fm.2023.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.
Collapse
Affiliation(s)
- Yaqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Cafora M, Rovelli S, Cattaneo A, Pistocchi A, Ferrari L. Short-term exposure to fine particulate matter exposure impairs innate immune and inflammatory responses to a pathogen stimulus: A functional study in the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123841. [PMID: 38521398 DOI: 10.1016/j.envpol.2024.123841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Short-term exposure to fine particulate matter (PM2.5) is associated with the activation of adverse inflammatory responses, increasing the risk of developing acute respiratory diseases, such as those caused by pathogen infections. However, the functional mechanisms underlying this evidence remain unclear. In the present study, we generated a zebrafish model of short-term exposure to a specific PM2.5, collected in the northern metropolitan area of Milan, Italy. First, we assessed the immunomodulatory effects of short-term PM2.5 exposure and observed that it elicited pro-inflammatory effects by inducing the expression of cytokines and triggering hyper-activation of both neutrophil and macrophage cell populations. Moreover, we examined the impact of a secondary infectious pro-inflammatory stimulus induced through the injection of Pseudomonas aeruginosa lipopolysaccharide (Pa-LPS) molecules after exposure to short-term PM2.5. In this model, we demonstrated that the innate immune response was less responsive to a second pro-inflammatory infectious stimulus. Indeed, larvae exhibited dampened leukocyte activation and impaired production of reactive oxygen species. The obtained results indicate that short-term PM2.5 exposure alters the immune microenvironment and affects the inflammatory processes, thus potentially weakening the resistance to pathogen infections.
Collapse
Affiliation(s)
- Marco Cafora
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sabrina Rovelli
- RAHH LAB, Department of Science and High Technology, University of Insubria, Como, Italy
| | - Andrea Cattaneo
- RAHH LAB, Department of Science and High Technology, University of Insubria, Como, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Unit of Occupational Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.
| |
Collapse
|
24
|
Hayashi T, Kobayashi S, Hirano J, Murakami K. Human norovirus cultivation systems and their use in antiviral research. J Virol 2024; 98:e0166323. [PMID: 38470106 PMCID: PMC11019851 DOI: 10.1128/jvi.01663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
25
|
Wasielewski VV, Itani TM, Zakharova YA, Semenov AV. Current trends and new approaches for human norovirus replication in cell culture: a literature review. Arch Virol 2024; 169:71. [PMID: 38459228 DOI: 10.1007/s00705-024-05999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Human norovirus (HuNoV) is one of the world's leading causes of acute gastroenteritis. At present, effective reproduction of the virus in cell cultures remains a challenge for virologists, as there is a lack of a permissive cell line that allows the entire viral life cycle to be reproduced. This is a barrier to the study of the HuNoV life cycle, its tropism, and virus-host interactions. It is also a major hurdle for the development of viral detection platforms, and ultimately for the development of therapeutics. The lack of an inexpensive, technically simple, and easily implemented cultivation method also negatively affects our ability to evaluate the efficacy of a variety of control measures (disinfectants, food processes) for human norovirus. In the process of monitoring this pathogen, it is necessary to detect infectious viral particles in water, food, and other environmental samples. Therefore, improvement of in vitro replication of HuNoV is still needed. In this review, we discuss current trends and new approaches to HuNoV replication in cell culture. We highlight ways in which previous research on HuNoV and other noroviruses has guided and influenced the development of new HuNoV culture systems and discuss the improvement of in vitro replication of HuNoV.
Collapse
Affiliation(s)
- Valentin V Wasielewski
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
| | - Tarek M Itani
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation.
| | - Yuliya A Zakharova
- Institute of Disinfectology of the F.F. Erisman Federal Scientific Centre of Hygiene Rospotrebnadzor, Mosсow, Russian Federation
| | - Aleksandr V Semenov
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Federal Scientific Research Institute of Viral Infections «Virome», Ekaterinburg, 620030, Russian Federation
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation
| |
Collapse
|
26
|
Johne R, Scholz J, Falkenhagen A. Heat stability of foodborne viruses - Findings, methodological challenges and current developments. Int J Food Microbiol 2024; 413:110582. [PMID: 38290272 DOI: 10.1016/j.ijfoodmicro.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
Heat treatment of food represents an important measure to prevent pathogen transmission. Thus far, evaluation of heat treatment processes is mainly based on data from bacteria. However, foodborne viruses have gained increasing attention during the last decades. Here, the published literature on heat stability and inactivation of human norovirus (NoV), hepatitis A virus (HAV) and hepatitis E virus (HEV) was reviewed. Data for surrogate viruses were not included. As stability assessment for foodborne viruses is often hampered by missing infectivity assays, an overview of applied methods is also presented. For NoV, molecular capsid integrity assays were mainly applied, but data from initial studies utilizing novel intestinal enteroid or zebrafish larvae assays are available now. However, these methods are still limited in applicability and sensitivity. For HAV, sufficient cell culture-based inactivation data are available, but almost exclusively for one single strain, thus limiting interpretation of the data for the wide range of field strains. For HEV, data are now available from studies using pig inoculation or cell culture. The results of the reviewed studies generally indicate that NoV, HAV and HEV possess a high heat stability. Heating at 70-72 °C for 2 min significantly reduces infectious titers, but often does not result in a >4 log10 decrease. However, heat stability greatly varied dependent on virus strain, matrix and heating regime. In addition, the applied method largely influenced the result, e.g. capsid integrity assays tend to result in higher measured stabilities than cell culture approaches. It can be concluded that the investigated foodborne viruses show a high heat stability, but can be inactivated by application of appropriate heating protocols. For HAV, suggestions for safe time/temperature combinations for specific foods can be derived from the published studies, with the limitation that they are mostly based on one strain only. Although significant improvement of infectivity assays for NoV and HEV have been made during the last years, further method development regarding sensitivity, robustness and broader applicability is important to generate more reliable heat inactivation data for these foodborne viruses in future.
Collapse
Affiliation(s)
- Reimar Johne
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | - Johannes Scholz
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander Falkenhagen
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
27
|
Liu J, Yuan X, Fan C, Ma G. Application of the zebrafish model in human viral research. Virus Res 2024; 341:199327. [PMID: 38262567 PMCID: PMC10835014 DOI: 10.1016/j.virusres.2024.199327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Viruses are a leading cause of infectious diseases. Well-developed animal models are valuable for understanding the immune responses to viral infections and the pathogenesis of viral diseases. Zebrafish is a commonly used small vertebrate model organism with strong reproductive ability, a short life cycle, and rapid embryonic development. Moreover, zebrafish and human genomes are highly similar; they have approximately 70 % homology in protein-coding genes, and 84 % of genes associated with human diseases have zebrafish counterparts. Recent years, different groups have developed zebrafish models for human viral infections and diseases, offering new insights into the molecular mechanisms of human viral pathogenesis as well as the development of antiviral strategies. The zebrafish model has become a simple and effective model system for understanding host-virus interaction. This review provides a comprehensive summary of the use of zebrafish models in human viral research, particularly in SARS-CoV-2.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Xiaoyi Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China.
| | - Chunxin Fan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China
| | - Guangyong Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China.
| |
Collapse
|
28
|
Santos-Ferreira N, Van Dycke J, Chiu W, Neyts J, Matthijnssens J, Rocha-Pereira J. Molnupiravir inhibits human norovirus and rotavirus replication in 3D human intestinal enteroids. Antiviral Res 2024; 223:105839. [PMID: 38373532 DOI: 10.1016/j.antiviral.2024.105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Human norovirus (HuNoV) and human rotavirus (HRV) are the leading causes of gastrointestinal diarrhea. There are no approved antivirals and rotavirus vaccines are insufficient to cease HRV associated mortality. Furthermore, treatment of chronically infected immunocompromised patients is limited to off-label compassionate use of repurposed antivirals with limited efficacy, highlighting the urgent need of potent and specific antivirals for HuNoV and HRV. Recently, a major breakthrough in the in vitro cultivation of HuNoV and HRV derived from the use of human intestinal enteroids (HIEs). The replication of multiple circulating HuNoV and HRV genotypes can finally be studied and both in the same non-transformed and physiologically relevant model. Activity of previously described anti-norovirus or anti-rotavirus drugs, such as 2'-C-methylcytidine (2CMC), 7-deaza-2'-C-methyladenosine (7DMA), nitazoxanide, favipiravir and dasabuvir, was assessed against clinically relevant human genotypes using 3D-HIEs. 2CMC showed the best activity against HuNoV GII.4, while 7DMA was the most potent antiviral against HRV. We identified the anti-norovirus and -rotavirus activity of molnupiravir and its active metabolite, N4-hydroxycytidine (NHC), a broad-spectrum antiviral used to treat coronavirus disease 2019 (COVID-19). Molnupiravir and NHC inhibit HuNoV GII.4, HRV G1P[8], G2P[4] and G4P[6] in 3D-HIEs with high selectivity and show a potency comparable to 2CMC against HuNoV. Moreover, molnupiravir and NHC block HRV viroplasm formation, but do not alter its size or subcellular localization. Taken together, molnupiravir inhibits both HuNoV and HRV replication, suggesting that the drug could be a candidate for the treatment of patients chronically infected with either one of these diarrhea causing viruses.
Collapse
Affiliation(s)
- Nanci Santos-Ferreira
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jana Van Dycke
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Joana Rocha-Pereira
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| |
Collapse
|
29
|
Rimkute I, Chaimongkol N, Woods KD, Nagata BM, Darko S, Gudbole S, Henry AR, Sosnovtsev SV, Olia AS, Verardi R, Bok K, Todd JP, Woodward R, Kwong PD, Douek DC, Alves DA, Green KY, Roederer M. A non-human primate model for human norovirus infection. Nat Microbiol 2024; 9:776-786. [PMID: 38321182 DOI: 10.1038/s41564-023-01585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024]
Abstract
Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.
Collapse
Affiliation(s)
- Inga Rimkute
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Natthawan Chaimongkol
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kamron D Woods
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bianca M Nagata
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Samuel Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sucheta Gudbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stanislav V Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Karin Bok
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ruth Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Derron A Alves
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Kim Y Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
30
|
Wales SQ, Pandiscia A, Kulka M, Sanchez G, Randazzo W. Challenges for estimating human norovirus infectivity by viability RT-qPCR as compared to replication in human intestinal enteroids. Int J Food Microbiol 2024; 411:110507. [PMID: 38043474 DOI: 10.1016/j.ijfoodmicro.2023.110507] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Viability RT-qPCR, a molecular detection method combining viability marker pre-treatment with RT-qPCR, has been proposed to infer infectivity of viruses which is particularly relevant for non-culturable viruses or sophisticated cell culture systems. Being human noroviruses (HuNoV) most frequently associated with foodborne outbreaks, this study compared different viability techniques and infectivity in human intestinal enteroids (HIE) to ultimately determine whether the molecular approaches could serve as rapid assays to predict HuNoV inactivation in high-risk food. To this end, the performance of three viability RT-qPCR assays with different intercalating markers ((Viability PCR Crosslinker Kit (CL), propidium monoazide (PMAxx™), and platinum chloride (PtCl4)) in estimating survival of HuNoV exposed to thermal and high pressure (HPP) treatments was compared to replication tested in the HIE cell culture model. A nearly full-length genomic molecular assay coupled with PMAxx™ to infer HuNoV thermal inactivation was also assessed. The experimental design included HuNoV genogroup I.3 [P13], GII.4 Sydney [P16], GII.6 [P7], along with Tulane virus (TV) serving as surrogate. Finally, viability RT-qPCR was tested in HPP-treated strawberry puree, selected as a food matrix with high viral contamination risk. PMAxx™ and CL performed evenly, while PtCl4 affected HuNoV infectivity. Taking all experimental data together, viability RT-qPCR was demonstrated to be an improved method over direct RT-qPCR to estimate viral inactivation at extreme thermal (95 °C) and HPP (450 MPa) exposures, but not under milder conditions as amplification signals were detected. Despite its complexity and limitations, the HIE demonstrated a more robust model than viability RT-qPCR to assess HuNoV infectivity.
Collapse
Affiliation(s)
- Samantha Q Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain; Department of Veterinary Medicine, University of Bari, Provincial Road to Casamassima Km 3, Bari, Valenzano 70010, Italy
| | - Michael Kulka
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD, United States
| | - Gloria Sanchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Avda. Catedrático Agustín Escardino 7, Valencia, Paterna 46980, Spain.
| |
Collapse
|
31
|
Kreins AY, Roux E, Pang J, Cheng I, Charles O, Roy S, Mohammed R, Owens S, Lowe DM, Brugha R, Williams R, Howley E, Best T, Davies EG, Worth A, Solas C, Standing JF, Goldstein RA, Rocha-Pereira J, Breuer J. Favipiravir induces HuNoV viral mutagenesis and infectivity loss with clinical improvement in immunocompromised patients. Clin Immunol 2024; 259:109901. [PMID: 38218209 PMCID: PMC11933534 DOI: 10.1016/j.clim.2024.109901] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emma Roux
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Juanita Pang
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Iek Cheng
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Oscar Charles
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sunando Roy
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Stephen Owens
- Department of Paediatric Allergy, Immunology and Infectious Diseases, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - David M Lowe
- Immunology Department, Royal Free Hospital NHS Foundation Trust, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK
| | - Rossa Brugha
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Rachel Williams
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Timothy Best
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - E Graham Davies
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Caroline Solas
- Unité des Virus Émergents IRD 190, INSERM 1207, Aix-Marseille Université, Marseille, France; APHM, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, Marseille, France
| | - Joseph F Standing
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joana Rocha-Pereira
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Judith Breuer
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
32
|
DeWitt CAM, Nelson KA, Kim HJ, Kingsley DH. Ultralow temperature high pressure processing enhances inactivation of norovirus surrogates. Int J Food Microbiol 2024; 408:110438. [PMID: 37839148 DOI: 10.1016/j.ijfoodmicro.2023.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
High pressure processing (HPP) is a powerful non-thermal method for inactivating pathogens. Human norovirus and genetically-related caliciviruses are moderately sensitive to temperatures above 0 °C with >400 MPa (MPa) or higher required to inactivate multiple logs of virus. Sensitivity of murine norovirus (MNV) and Tulane virus (TV) to ice phase transitions was evaluated using ultra low temperature HPP. Identical samples containing MNV or TV were either equilibrated to +1.5 °C (thawed) or -40 °C (frozen) 24 h prior to pressurization. All samples (thawed and frozen) were then placed in a pre-chilled chamber which was then rapidly filled with -40 °C chamber fluid. Samples were immediately pressurized for 5 min at 200, 250 or 300 MPa. Controls were not pressurized. For samples that were thawed and then pressurized in 40 °C chamber fluid, the MNV average log reduction at 200 MPa was 4.4, while >6.1 log reduction (non-detectable) was achieved at 250 and 300 MPa. TV samples averaged 2.3, 5 and 4.3 log reduction at 200, 250, and 300 MPa respectively. For samples that were frozen and then pressurized in 40 °C chamber fluid, the MNV average log reductions were 2.3, 3.2 and 4.2 at 200 MPa, 250 MPa and 300 MPa, respectively, while TV samples averaged 0.81, 2.3 and 1.7 log reductions at 200, 250, and 300 MPa, respectively. Inactivation of TV within oysters at these pressures was also demonstrated. Overall, results indicate that in addition to enhancing inactivation of norovirus surrogates compared to higher temperatures, ultra-cold HPP performed on thawed samples especially enhances inactivation.
Collapse
Affiliation(s)
- Christina A M DeWitt
- Coastal Oregon Marine Experiment Station, Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| | - Kevin A Nelson
- Coastal Oregon Marine Experiment Station, Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| | - Hyung Joo Kim
- Coastal Oregon Marine Experiment Station, Seafood Research and Education Center, Oregon State University, Astoria, OR, USA
| | - David H Kingsley
- USDA ARS ERRC Residue Chemistry and Predictive Microbiology Research Unit, J.W.W. Baker Center Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
33
|
Roux E, Willms RJ, Van Dycke J, Cortes Calabuig Á, Van Espen L, Schoofs G, Matthijnssens J, Neyts J, de Witte P, Foley E, Rocha-Pereira J. Transcriptional profiling of zebrafish intestines identifies macrophages as host cells for human norovirus infection. Gut Microbes 2024; 16:2431167. [PMID: 39584740 PMCID: PMC11591593 DOI: 10.1080/19490976.2024.2431167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of diarrheal disease, yet critical aspects of their biology, including cellular tropism, remain unclear. Although research has traditionally focused on the intestinal epithelium, the hypothesis that HuNoV infects macrophages has been recurrently discussed and is investigated here using a zebrafish larval model. Through single-cell RNA sequencing of dissected zebrafish intestines, we unbiasedly identified macrophages as host cells for HuNoV replication, with all three open reading frames mapped to individual macrophages. Notably, HuNoV preferentially infects actively phagocytosing inflammatory macrophages. HuNoV capsid proteins and double-stranded RNA colocalized within intestinal macrophages of infected zebrafish larvae, and the negative-strand RNA intermediate was detected within FACS-sorted macrophages. Flow cytometry confirmed viral replication within these macrophages, constituting approximately 23% of HuNoV's host cells. Identifying macrophages as host cells prompts a reevaluation of their role in HuNoV pathogenesis, offering new directions for understanding and controlling this infection.
Collapse
Affiliation(s)
- Emma Roux
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, KU Leuven, Leuven, Belgium
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Van Dycke
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, KU Leuven, Leuven, Belgium
| | | | - Lore Van Espen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Geert Schoofs
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Structural and Translational Virology Research Group, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Virology, Antiviral Drug & Vaccine Research Group, KU Leuven, Leuven, Belgium
| | - Peter de Witte
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joana Rocha-Pereira
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Toh JYL, Zwe YH, Tan MTH, Gong Z, Li D. Sequential infection of human norovirus and Salmonella enterica resulted in higher mortality and ACOD1/IRG1 upregulation in zebrafish larvae. Microbes Infect 2024; 26:105229. [PMID: 37739029 DOI: 10.1016/j.micinf.2023.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Human norovirus (HNoVs) and Salmonella are both very important foodborne pathogens with mixed infection of HNoV and Salmonella reported clinically. With the use of model organism zebrafish (Danio rerio), it was observed that the sequential infection of HNoVs and Salmonella caused lower survival rates (12.5 ± 4.2%) than the single-pathogen infection by Salmonella (31.6 ± 7.3%, P < 0.05) or HNoVs (no mortality observed). Gene expression study with the use of RT-PCR and global transcriptomic analysis revealed that the mortality of zebrafish larvae was very likely due to the harmful inflammatory responses. Specifically, it was noted that the genes encoding aconitate decarboxylase 1 (ACOD1), also known as immunoresponsive gene 1 (IRG1), were significantly upregulated in the sequentially infected zebrafish larvae. The expression of acod1 could lead to mitochondrial reactive oxygen species (ROS) production. The ROS levels were indeed higher in sequentially infected zebrafish larvae than the single-pathogen infected ones (P < 0.05). An immersion treatment of glutathione or citraconate did not affect the microbial loads of HNoVs and Salmonella but significantly reduced the ROS levels and protected the zebrafish larvae by inducing higher survival rates in the sequentially infected zebrafish larvae (P < 0.05). Taken together, this study accumulated new knowledge over the function of ACOD1/IRG1 pathway in infectious diseases, and proposed possible treatment strategies accordingly.
Collapse
Affiliation(s)
- Jillinda Yi Ling Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Ye Htut Zwe
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.
| |
Collapse
|
35
|
Yu Y, Han F, Yang M, Zhang X, Chen Y, Yu M, Wang Y. Pseudomonas composti isolate from oyster digestive tissue specifically binds with norovirus GII.6 via Psl extracellular polysaccharide. Int J Food Microbiol 2023; 406:110369. [PMID: 37666026 DOI: 10.1016/j.ijfoodmicro.2023.110369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Oysters are recognized as important vectors for human norovirus transmission in the environment. Whether norovirus binds to bacteria in oyster digestive tissues (ODTs) remains unknown. To shed light on this concern, ODT-54 and ODT-32, positive for histo-blood group antigen (HBGA) -like substances, were isolated from ODTs and identified as Pseudomonas composti and Enterobacter cloacae, respectively. The binding of noroviruses (GII.4 and GII.6 P domains) to bacterial cells (ODT-32 and ODT-54; in situ assay) as well as extracted extracellular polysaccharides (EPSs; in vitro assay) was analyzed by flow cytometry, confocal laser scanning microscopy, ELISA, and gene knock-out mutants. ODT-32 bound to neither GII.4 nor GII.6 P domains, while ODT-54 specifically binds with GII.6 P domain through Psl, an exopolysaccharide encoded by the polysaccharide synthesis locus (psl), identified based on gene annotation, gene transcription, Psl specific staining, and ELISAs. These findings attest that ODT bacteria specifically bind with certain norovirus genotypes in a strain-dependent manner, contributing to a better understanding of the transmission and enrichment of noroviruses in the environment.
Collapse
Affiliation(s)
- Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, China
| | - Feng Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Mingshu Yang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Xiaoya Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yunfei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Mingxia Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, China.
| |
Collapse
|
36
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
37
|
Wobus CE, Peiper AM, McSweeney AM, Young VL, Chaika M, Lane MS, Lingemann M, Deerain JM, Strine MS, Alfajaro MM, Helm EW, Karst SM, Mackenzie JM, Taube S, Ward VK, Wilen CB. Murine Norovirus: Additional Protocols for Basic and Antiviral Studies. Curr Protoc 2023; 3:e828. [PMID: 37478303 PMCID: PMC10375541 DOI: 10.1002/cpz1.828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Murine norovirus (MNV) is a positive-sense, plus-stranded RNA virus in the Caliciviridae family. Viruses in this family replicate in the intestine and are transmitted by the fecal-oral route. MNV is related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Given the technical challenges in studying human norovirus, MNV is often used to study mechanisms in norovirus biology since it combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Adding to our previous protocol collection, here we describe additional techniques that have since been developed to study MNV biology. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Indirect method for measuring cell cytotoxicity and antiviral activity Basic Protocol 2: Measuring murine norovirus genome titers by RT-qPCR Support Protocol 1: Preparation of standard Basic Protocol 3: Generation of recombinant murine norovirus with minimal passaging Basic Protocol 4: Generation of recombinant murine norovirus via circular polymerase extension reaction (CPER) Basic Protocol 5: Expression of norovirus NS1-2 in insect cell suspension cultures using a recombinant baculovirus Support Protocol 2: Isotope labelling of norovirus NS1-2 in insect cells Support Protocol 3: Purification of the norovirus NS1-2 protein Support Protocol 4: Expression of norovirus NS1-2 in mammalian cells by transduction with a recombinant baculovirus Basic Protocol 6: Infection of enteroids in transwell inserts with murine norovirus Support Protocol 5: Preparation of conditioned medium for enteroids culture Support Protocol 6: Isolation of crypts for enteroids generation Support Protocol 7: Enteroid culture passaging and maintenance Basic Protocol 7: Quantification of murine norovirus-induced diarrhea using neonatal mouse infections Alternate Protocol 1: Intragastric inoculation of neonatal mice Alternate Protocol 2: Scoring colon contents.
Collapse
Affiliation(s)
- Christiane E. Wobus
- Department of Microbiology and Immunology, University of
Michigan, 1150 West Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Amy M. Peiper
- Department of Molecular Genetics & Microbiology,
College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alice M. McSweeney
- Department of Microbiology & Immunology, School of
Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New
Zealand
| | - Vivienne L. Young
- Department of Microbiology & Immunology, School of
Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New
Zealand
| | - Maryna Chaika
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Miranda Sophie Lane
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Marit Lingemann
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Joshua M. Deerain
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne,
VIC, Australia 3010
| | - Madison S. Strine
- Departments of Immunobiology and Laboratory Medicine, Yale
University School of Medicine, Clinic Building 407A. 330 Cedar Street New Haven, CT,
USA
| | - Mia M. Alfajaro
- Departments of Immunobiology and Laboratory Medicine, Yale
University School of Medicine, Clinic Building 407A. 330 Cedar Street New Haven, CT,
USA
| | - Emily W. Helm
- Department of Molecular Genetics & Microbiology,
College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stephanie M. Karst
- Department of Molecular Genetics & Microbiology,
College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of
Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne,
VIC, Australia 3010
| | - Stefan Taube
- Institute of Virology and Cell Biology, University of
Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany, tel.
+49-451-3101-4020
| | - Vernon K. Ward
- Department of Microbiology & Immunology, School of
Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New
Zealand
| | - Craig B. Wilen
- Departments of Immunobiology and Laboratory Medicine, Yale
University School of Medicine, Clinic Building 407A. 330 Cedar Street New Haven, CT,
USA
| |
Collapse
|
38
|
Hayashi T, Murakami K, Ando H, Ueno S, Kobayashi S, Muramatsu M, Tanikawa T, Kitamura M. Inhibitory effect of Ephedra herba on human norovirus infection in human intestinal organoids. Biochem Biophys Res Commun 2023; 671:200-204. [PMID: 37302295 DOI: 10.1016/j.bbrc.2023.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases worldwide with public health concern, yet no antiviral therapies have been developed. In this study, we aimed to screen crude drugs, which are components of Japanese traditional medicine, ''Kampo'' to see their effects on HuNoV infection using a reproducible HuNoV cultivation system, stem-cell derived human intestinal organoids/enteroids (HIOs). Among the 22 crude drugs tested, Ephedra herba significantly inhibited HuNoV infection in HIOs. A time-of-drug addition experiment suggested that this crude drug more preferentially targets post-entry step than entry step for the inhibition. To our knowledge, this is the first anti-HuNoV inhibitor screen targeting crude drugs, and Ephedra herba was identified as a novel inhibitor candidate that merits further study.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan.
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Hirokazu Ando
- Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Sayuri Ueno
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan; Laboratory of Virology, Department of Infection Control and Immunology, Graduate School of Infection Comtrol Sciences, Kitasato University, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan; Laboratory of Nutrition, Graduate School of Veterinary Science, Azabu University, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo, 208-0011, Japan; Department of Infectious Disease, Institute of Biomedical Research and Innovation, Research Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Takashi Tanikawa
- Laboratory of Nutri-Pharmacotherapeutics Management, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Keyakidai 1-1, Sakado, Saitama, 350-0295, Japan.
| | - Masashi Kitamura
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Keyakidai 1-1, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
39
|
Peiper AM, Helm EW, Nguyen Q, Phillips M, Williams CG, Shah D, Tatum S, Iyer N, Grodzki M, Eurell LB, Nasir A, Baldridge MT, Karst SM. Infection of neonatal mice with the murine norovirus strain WU23 is a robust model to study norovirus pathogenesis. Lab Anim (NY) 2023; 52:119-129. [PMID: 37142696 PMCID: PMC10234811 DOI: 10.1038/s41684-023-01166-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. The development of the murine norovirus (MNV) model nearly two decades ago has facilitated progress in understanding host-norovirus interactions and norovirus strain variability. However, MNV strains tested thus far either do not cause intestinal disease or were isolated from extraintestinal tissue, raising concerns about translatability of research findings to human norovirus disease. Consequently, the field lacks a strong model of norovirus gastroenteritis. Here we provide a comprehensive characterization of a new small animal model system for the norovirus field that overcomes prior weaknesses. Specifically, we demonstrate that the WU23 MNV strain isolated from a mouse naturally presenting with diarrhea causes a transient reduction in weight gain and acute self-resolving diarrhea in neonatal mice of several inbred mouse lines. Moreover, our findings reveal that norovirus-induced diarrhea is associated with infection of subepithelial cells in the small intestine and systemic spread. Finally, type I interferons (IFNs) are critical to protect hosts from norovirus-induced intestinal disease whereas type III IFNs exacerbate diarrhea. This latter finding is consistent with other emerging data implicating type III IFNs in the exacerbation of some viral diseases. This new model system should enable a detailed investigation of norovirus disease mechanisms.
Collapse
Affiliation(s)
- Amy M Peiper
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Emily W Helm
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Quyen Nguyen
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthew Phillips
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Caroline G Williams
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhairya Shah
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Tatum
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Neha Iyer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Grodzki
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura B Eurell
- Office of Research, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aqsa Nasir
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Karst
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
41
|
Tan MTH, Gong Z, Li D. Use of Zebrafish Embryos To Reproduce Human Norovirus and To Evaluate Human Norovirus Infectivity Decay after UV Treatment. Appl Environ Microbiol 2023; 89:e0011523. [PMID: 36943055 PMCID: PMC10132098 DOI: 10.1128/aem.00115-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
This study reports an essential improvement of the method for replication of human norovirus (HNoV) with the use of zebrafish (Danio rerio) embryos. With three HNoV genotypes and P-types GII.2[P16], GII.4[P16], and GII.17[P31], we demonstrated that this tool had higher efficiency and robustness than the zebrafish larvae as reported previously. When zebrafish larvae were injected with virus (1.6 ± 0.3 log genome copies/10 larvae), a significant increase of virus genome copies was detected at 2 days postinfection (dpi; 4.4 ± 0.8 log genome copies/10 larvae, P < 0.05) and the viral loads started to decrease gradually from 3 dpi. In comparison, when the viruses were injected into the zebrafish embryos, significant virus replication was noticed from 1 dpi and lasted to 6 dpi (P < 0.05). The virus levels detected at 3 dpi had the highest mean value and the smallest variation (7.7 ± 0.2 log genome copies/10 larvae). The high levels of virus replication enabled continuous passaging for all three strains up to four passages. The zebrafish embryo-generated HNoVs showed clear patterns of binding to human histo-blood group antigens (HBGAs) in human saliva by a simple saliva-binding reverse transcription-quantitative PCR (RT-qPCR). Last, in a disinfection study, it was shown that a dose of 6 mJ/cm2 UV254 was able induce a >2-log reduction in HNoV infectivity for all three HNoV strains tested, suggesting that HNoVs were more UV susceptible than multiple enteric viruses and commonly used HNoV surrogates as tested before. IMPORTANCE HNoVs are a leading cause of gastroenteritis outbreaks worldwide. The zebrafish embryo tool as developed in this study serves as an efficient way to generate viruses with high titers and clean background and a straightforward platform to evaluate HNoV inactivation efficacies. It is expected that this tool will not only benefit epidemiological research on HNoV but also be used to generate HNoV inactivation parameters which are highly needed by the water treatment and food industries.
Collapse
Affiliation(s)
- Malcolm Turk Hsern Tan
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Sato S. [In vitro propagation system for human norovirus]. Uirusu 2023; 73:9-16. [PMID: 39343533 DOI: 10.2222/jsv.73.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human norovirus (HuNoV) is an infectious virus that accounts for more than half of all cases of infectious gastroenteritis, but its mechanism of infection and multiplication within the host are largely unknown. Accordingly, there are no available vaccines or specific therapeutic agents applicable to HuNoV infection. The primary reason for this is the absence of an established in vitro culture and growth system for HuNoV. Therefore, virological analysis of HuNoV has been conducted using murine norovirus, which is most closely related to HuNoV and can be cultured in some cell-lines. Recently, several laboratories have reported successful in vitro cultivation of HuNoV using human intestinal epithelial cells, raising expectations for further advancements in HuNoV research. In this paper, we present recent findings regarding the in vitro propagation system of HuNoV. .
Collapse
Affiliation(s)
- Shintaro Sato
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University
- Department of Virology, Research Institute for Microbial Diseases, Osaka University
| |
Collapse
|
43
|
Lindesmith LC, Verardi R, Mallory ML, Edwards CE, Graham RL, Zweigart M, Brewer-Jensen PD, Debbink K, Kocher JF, Kwong PD, Baric RS. Norovirus. PLOTKIN'S VACCINES 2023:747-754.e5. [DOI: 10.1016/b978-0-323-79058-1.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
The Role of Histo-Blood Group Antigens and Microbiota in Human Norovirus Replication in Zebrafish Larvae. Microbiol Spectr 2022; 10:e0315722. [PMID: 36314930 PMCID: PMC9769672 DOI: 10.1128/spectrum.03157-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human norovirus (HuNoV) is the major agent for viral gastroenteritis, causing >700 million infections yearly. Fucose-containing carbohydrates named histo-blood group antigens (HBGAs) are known (co)receptors for HuNoV. Moreover, bacteria of the gut microbiota expressing HBGA-like structures have shown an enhancing effect on HuNoV replication in an in vitro model. Here, we studied the role of HBGAs and the host microbiota during HuNoV infection in zebrafish larvae. Using whole-mount immunohistochemistry, we visualized the fucose expression in the zebrafish gut for the HBGA Lewis X [LeX, α(1,3)-fucose] and core fucose [α(1,6)-fucose]. Costaining of HuNoV-infected larvae proved colocalization of LeX and to a lower extent core fucose with the viral capsid protein VP1, indicating the presence of fucose residues on infected cells. Upon blocking of fucose expression by a fluorinated fucose analogue, HuNoV replication was strongly reduced. Furthermore, by comparing HuNoV replication in conventional and germfree zebrafish larvae, we found that the natural zebrafish microbiome does not have an effect on HuNoV replication, contrary to earlier reports about the human gut microbiome. Interestingly, monoassociation with the HBGA-expressing Enterobacter cloacae resulted in a minor decrease in HuNoV replication, which was not triggered by a stronger innate immune response. Overall, we show here that fucose has an essential role for HuNoV infection in zebrafish larvae, as in the human host, but their natural gut microbiome does not affect viral replication. IMPORTANCE Despite causing over 700 million infections yearly, many gaps remain in the knowledge of human norovirus (HuNoV) biology due to an historical lack of efficient cultivation systems. Fucose-containing carbohydrate structures, named histo-blood group antigens, are known to be important (co)receptors for viral entry in humans, while the natural gut microbiota is suggested to enhance viral replication. This study shows a conserved mechanism of entry for HuNoV in the novel zebrafish infection model, highlighting the pivotal opportunity this model represents to study entry mechanisms and identify the cellular receptor of HuNoV. Our results shed light on the interaction of HuNoV with the zebrafish microbiota, contributing to the understanding of the interplay between gut microbiota and enteric viruses. The ease of generating germfree animals that can be colonized with human gut bacteria is an additional advantage of using zebrafish larvae in virology. This small animal model constitutes an innovative alternative to high-severity animal models.
Collapse
|
45
|
Soorneedi AR, Moore MD. Recent developments in norovirus interactions with bacteria. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Replication of Human Norovirus in Mice after Antibiotic-Mediated Intestinal Bacteria Depletion. Int J Mol Sci 2022; 23:ijms231810643. [PMID: 36142552 PMCID: PMC9505278 DOI: 10.3390/ijms231810643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Human noroviruses (HuNoVs) are the main cause of acute gastroenteritis causing more than 50,000 deaths per year. Recent evidence shows that the gut microbiota plays a key role in enteric virus infectivity. In this context, we tested whether microbiota depletion or microbiota replacement with that of human individuals susceptible to HuNoVs infection could favor viral replication in mice. Four groups of mice (n = 5) were used, including a control group and three groups that were treated with antibiotics to eliminate the autochthonous intestinal microbiota. Two of the antibiotic-treated groups received fecal microbiota transplantation from a pool of feces from infants (age 1–3 months) or an auto-transplantation with mouse feces that obtained prior antibiotic treatment. The inoculation of the different mouse groups with a HuNoVs strain (GII.4 Sydney [P16] genotype) showed that the virus replicated more efficiently in animals only treated with antibiotics but not subject to microbiota transplantation. Viral replication in animals receiving fecal microbiota from newborn infants was intermediate, whereas virus excretion in feces from auto-transplanted mice was as low as in the control mice. The analysis of the fecal microbiota by 16S rDNA NGS showed deep variations in the composition in the different mice groups. Furthermore, differences were observed in the gene expression of relevant immunological mediators, such as IL4, CXCL15, IL13, TNFα and TLR2, at the small intestine. Our results suggest that microbiota depletion eliminates bacteria that restrict HuNoVs infectivity and that the mechanism(s) could involve immune mediators.
Collapse
|
47
|
Tan MTH, Eshaghi Gorji M, Toh JYL, Park AY, Li Y, Gong Z, Li D. Fucoidan from Fucus versiculosus can inhibit human norovirus replication by enhancing the host innate immune response. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
48
|
Hirano J, Murakami K, Hayashi T. CRISPR-Cas9-Based Technology for Studying Enteric Virus Infection. Front Genome Ed 2022; 4:888878. [PMID: 35755450 PMCID: PMC9213734 DOI: 10.3389/fgeed.2022.888878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric viruses, including numerous viruses that initiate infection in enteric canal, are recognized as important agents that cause wide spectrum of illnesses in humans, depending on the virus type. They are mainly transmitted by fecal-oral route with several vector such as contaminated water or food. Infections by enteric viruses, such as noroviruses and rotaviruses, frequently cause widespread acute gastroenteritis, leading to significant health and economic burdens and therefore remain a public health concern. Like other viruses, enteric viruses ''hijack'' certain host factors (so called pro-viral factors) for replication in infected cells, while escaping the host defense system by antagonizing host anti-viral factors. Identification(s) of these factors is needed to better understand the molecular mechanisms underlying viral replication and pathogenicity, which will aid the development of efficient antiviral strategies. Recently, the advancement of genome-editing technology, especially the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, has precipitated numerous breakthroughs across the field of virology, including enteric virus research. For instance, unbiased genome-wide screening employing the CRISPR-Cas9 system has successfully identified a number of previously unrecognized host factors associated with infection by clinically relevant enteric viruses. In this review, we briefly introduce the common techniques of the CRISPR-Cas9 system applied to virological studies and discuss the major findings using this system for studying enteric virus infection.
Collapse
Affiliation(s)
- Junki Hirano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
49
|
Stream A, Madigan CA. Zebrafish: an underutilized tool for discovery in host-microbe interactions. Trends Immunol 2022; 43:426-437. [PMID: 35527182 PMCID: PMC11302990 DOI: 10.1016/j.it.2022.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Zebrafish are relatively new to the field of host-pathogen interactions, although they have been a valuable vertebrate model for decades in developmental biology and neuroscience. Transparent zebrafish larvae have most components of the human innate immune system, and adult zebrafish also produce cells of the adaptive immune system. Recent discoveries using zebrafish infection models include mechanisms of pathogen survival and host cell sensing of microbes. These discoveries were enabled by zebrafish technology, which is constantly evolving and providing new opportunities for immunobiology research. Recent tools include CRISPR/Cas9 mutagenesis, in vivo biotinylation, and genetically encoded biosensors. We argue that the zebrafish model - which remains underutilized in immunology - provides fertile ground for a new understanding of host-microbe interactions in a transparent host.
Collapse
Affiliation(s)
- Alexandra Stream
- Department of Biological Sciences, University of California San Diego (UCSD), San Diego, CA, USA
| | - Cressida A Madigan
- Department of Biological Sciences, University of California San Diego (UCSD), San Diego, CA, USA.
| |
Collapse
|
50
|
Hayashi T, Yamaoka Y, Ito A, Kamaishi T, Sugiyama R, Estes MK, Muramatsu M, Murakami K. Evaluation of Heat Inactivation of Human Norovirus in Freshwater Clams Using Human Intestinal Enteroids. Viruses 2022; 14:v14051014. [PMID: 35632754 PMCID: PMC9146323 DOI: 10.3390/v14051014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/07/2022] Open
Abstract
Foodborne disease attributed to the consumption of shellfish contaminated with human norovirus (HuNoV) is one of many global health concerns. Our study aimed to determine the conditions of the heat-inactivation of HuNoV in freshwater clams (Corbicula japonica) using a recently developed HuNoV cultivation system employing stem-cell derived human intestinal enteroids (HIEs). We first measured the internal temperature of the clam tissue in a water bath during boiling at 90 °C and found that approximately 2 min are required for the tissue to reach 90 °C. Next, GII.4 HuNoV was spiked into the center of the clam tissue, followed by boiling at 90 °C for 1, 2, 3, or 4 min. The infectivity of HuNoV in the clam tissue homogenates was evaluated using HIEs. We demonstrated that HuNoV in unboiled clam tissue homogenates replicated in HIEs, whereas infectivity was lost in all boiled samples, indicating that heat treatment at 90 °C for 1 min inactivates HuNoV in freshwater clams in our current HIE culture system. To our knowledge, this is the first study to determine the thermal tolerability of HuNoV in shellfish using HIEs, and our results could be informative for developing strategies to inactivate HuNoV in shellfish.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
| | - Yoko Yamaoka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
| | - Atsushi Ito
- Production Engineering Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hiroshima 722-0061, Japan;
| | - Takashi Kamaishi
- Pathology Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiise 516-0913, Japan;
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (T.H.); (Y.Y.); (R.S.); (M.M.)
- Correspondence:
| |
Collapse
|