1
|
Brady C, Tipton T, Carnell O, Longet S, Gooch K, Hall Y, Salguero J, Tomic A, Carroll M. A systems biology approach to define SARS-CoV-2 correlates of protection. NPJ Vaccines 2025; 10:69. [PMID: 40229322 PMCID: PMC11997207 DOI: 10.1038/s41541-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Correlates of protection (CoPs) for SARS-CoV-2 have yet to be sufficiently defined. This study uses the machine learning platform, SIMON, to accurately predict the immunological parameters that reduced clinical pathology or viral load following SARS-CoV-2 challenge in a cohort of 90 non-human primates. We found that anti-SARS-CoV-2 spike antibody and neutralising antibody titres were the best predictors of clinical protection and low viral load in the lung. Since antibodies to SARS-CoV-2 spike showed the greatest association with clinical protection and reduced viral load, we next used SIMON to investigate the immunological features that predict high antibody titres. It was found that a pre-immunisation response to seasonal beta-HCoVs and a high frequency of peripheral intermediate and non-classical monocytes predicted low SARS-CoV-2 spike IgG titres. In contrast, an elevated T cell response as measured by IFNγ ELISpot predicted high IgG titres. Additional predictors of clinical protection and low SARS-CoV-2 burden included a high abundance of peripheral T cells. In contrast, increased numbers of intermediate monocytes predicted clinical pathology and high viral burden in the throat. We also conclude that an immunisation strategy that minimises pathology post-challenge did not necessarily mediate viral control. This would be an important finding to take forward into the development of future vaccines aimed at limiting the transmission of SARS-CoV-2. These results contribute to SARS-CoV-2 CoP definition and shed light on the factors influencing the success of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Caolann Brady
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| | - Tom Tipton
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
| | - Oliver Carnell
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Stephanie Longet
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- International Center for Infectiology Research (CIRI), Team GIMAP, Claude Bernard Lyon 1 University, Saint-Etienne, France
| | - Karen Gooch
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Javier Salguero
- UK Health Security Agency; Porton Down, Salisbury, United Kingdom
| | - Adriana Tomic
- National Emerging Infectious Diseases Laboratories, Boston, MA, USA
- Department of Virology, Immunology & Microbiology, Boston University Medical School, Boston, MA, USA
- Biomedical Engineering, Boston University, College of Engineering, Boston, MA, USA
| | - Miles Carroll
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
3
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
4
|
Oliveira D, Mafra S. Implementation of an Intelligent Trap for Effective Monitoring and Control of the Aedes aegypti Mosquito. SENSORS (BASEL, SWITZERLAND) 2024; 24:6932. [PMID: 39517830 PMCID: PMC11548326 DOI: 10.3390/s24216932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Aedes aegypti is a mosquito species known for its role in transmitting dengue fever, a viral disease prevalent in tropical and subtropical regions. Recognizable by its white markings and preference for urban habitats, this mosquito breeds in standing water near human dwellings. A promising approach to combat the proliferation of mosquitoes is the use of smart traps, equipped with advanced technologies to attract, capture, and monitor them. The most significant results include 97% accuracy in detecting Aedes aegypti, 100% accuracy in identifying bees, and 90.1% accuracy in classifying butterflies in the laboratory. Field trials successfully validated and identified areas for continued improvement. The integration of technologies such as Internet of Things (IoT), cloud computing, big data, and artificial intelligence has the potential to revolutionize pest control, significantly improving mosquito monitoring and control. The application of machine learning (ML) algorithms and computer vision for the identification and classification of Aedes aegypti is a crucial part of this process. This article proposes the development of a smart trap for selective control of winged insects, combining IoT devices, high-resolution cameras, and advanced ML algorithms for insect detection and classification. The intelligent system features the YOLOv7 algorithm (You Only Look Once v7) that is capable of detecting and counting insects in real time, combined with LoRa/LoRaWan connectivity and IoT system intelligence. This adaptive approach is effective in combating Aedes aegypti mosquitoes in real time.
Collapse
Affiliation(s)
| | - Samuel Mafra
- Instituto Nacional de Telecomunições (INATEL), Santa Rita Sapucai 37536-001, Minas Gerais, Brazil;
| |
Collapse
|
5
|
Hameed M, Hossain MS, Daamen AR, Lipsky PE, Weger-Lucarelli J. Granulocyte colony-stimulating factor protects against arthritogenic alphavirus pathogenesis in a type I IFN-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617470. [PMID: 39416071 PMCID: PMC11482922 DOI: 10.1101/2024.10.09.617470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Arthritogenic alphaviruses cause disease characterized by fever, rash, and incapacitating joint pain. Alphavirus infection stimulates robust inflammatory responses in infected hosts, leading to the upregulation of several cytokines, including granulocyte colony-stimulating factor (G-CSF). G-CSF is secreted by endothelial cells, fibroblasts, macrophages, and monocytes and binds to colony stimulating factor 3 receptor (CSF3R, also known as G-CSFR) on the surface of myeloid cells. G-CSFR signaling initiates proliferation, differentiation, and maturation of myeloid cells, especially neutrophils. Importantly, G-CSF has been found at high levels in both the acute and chronic phases of chikungunya disease; however, the role of G-CSF in arthritogenic alphavirus disease remains unexplored. Here, we sought to test the effect of G-CSF on chikungunya virus (CHIKV) and Mayaro virus (MAYV) infection using G-CSFR-deficient mice (G-CSFR-/-). We observed sustained weight loss in G-CSFR-/- mice following viand MAYV infection compared to wild-type mice. Furthermore, G-CSFR-/- mice had a significantly higher percentage of inflammatory monocytes and reduction in neutrophils throughout infection. The difference in weight loss in G-CSFR-/- mice induced by alphavirus infection was corrected by blocking type I IFN signaling. In summary, these studies show that type I IFN signaling contributes to G-CSFR mediated control of arthritogenic alphavirus disease.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Hameed M, Daamen AR, Hossain MS, Coutermarsh-Ott S, Lipsky PE, Weger-Lucarelli J. Obesity-Associated Changes in Immune Cell Dynamics During Alphavirus Infection Revealed by Single Cell Transcriptomic Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617696. [PMID: 39416014 PMCID: PMC11482886 DOI: 10.1101/2024.10.10.617696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obesity induces diverse changes in host immunity, resulting in worse disease outcomes following infection with various pathogens, including arthritogenic alphaviruses. However, the impact of obesity on the functional landscape of immune cells during arthritogenic alphavirus infection remains unexplored. Here, we used single-cell RNA sequencing (scRNA-seq) to dissect the blood and tissue immune responses to Mayaro virus (MAYV) infection in lean and obese mice. Footpad injection of MAYV caused significant shifts in immune cell populations and induced robust expression of interferon response and proinflammatory cytokine genes and related pathways in both blood and tissue. In MAYV-infected lean mice, analysis of the local tissue response revealed a unique macrophage subset with high expression of IFN response genes that was not found in obese mice. This was associated with less severe inflammation in lean mice. These results provide evidence for a unique macrophage population that may contribute to the superior capacity of lean mice to control arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Shaikh MS, Faiyazuddin M, Khan MS, Pathan SK, Syed IJ, Gholap AD, Akhtar MS, Sah R, Mehta R, Sah S, Bonilla-Aldana DK, Luna C, Rodriguez-Morales AJ. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions. Front Microbiol 2024; 15:1413250. [PMID: 39104592 PMCID: PMC11298817 DOI: 10.3389/fmicb.2024.1413250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Chikungunya virus (CHIKV), a single-stranded RNA virus transmitted by Aedes mosquitoes, poses a significant global health threat, with severe complications observed in vulnerable populations. The only licensed vaccine, IXCHIQ, approved by the US FDA, is insufficient to address the growing disease burden, particularly in endemic regions lacking herd immunity. Monoclonal antibodies (mAbs), explicitly targeting structural proteins E1/E2, demonstrate promise in passive transfer studies, with mouse and human-derived mAbs showing protective efficacy. This article explores various vaccine candidates, including live attenuated, killed, nucleic acid-based (DNA/RNA), virus-like particle, chimeric, subunit, and adenovirus vectored vaccines. RNA vaccines have emerged as promising candidates due to their rapid response capabilities and enhanced safety profile. This review underscores the importance of the E1 and E2 proteins as immunogens, emphasizing their antigenic potential. Several vaccine candidates, such as CHIKV/IRES, measles vector (MV-CHIK), synthetic DNA-encoded antibodies, and mRNA-lipid nanoparticle vaccines, demonstrate encouraging preclinical and clinical results. In addition to identifying potential molecular targets for antiviral therapy, the study looks into the roles played by Toll-like receptors, RIG-I, and NOD-like receptors in the immune response to CHIKV. It also offers insights into novel tactics and promising vaccine candidates. This article discusses potential antiviral targets, the significance of E1 and E2 proteins, monoclonal antibodies, and RNA vaccines as prospective Chikungunya virus vaccine candidates.
Collapse
Affiliation(s)
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Shahbaz K. Pathan
- Medmecs Medical Coding & Billing Services, Universal Business Park, Mumbai, Maharashtra, India
| | - Imran J. Syed
- Y. B. Chavan College of Pharmacy, Aurangabad, Maharashtra, India
- SBSPM’s B. Pharmacy College, Beed, Maharashtra, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ranjit Sah
- Green City Hospital, Kathmandu, Nepal
- Research Unit, Department of Microbiology, Dr. DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
- Clinical Microbiology, School of Dental Science, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | | | | | - Camila Luna
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
8
|
Kasbe R, Tripathy AS, Wani MR, Mullick J. Elevated Complement Activation Fragments and C1q-Binding Circulating Immune Complexes in Varied Phases of Chikungunya Virus Infection. Curr Microbiol 2024; 81:242. [PMID: 38913141 DOI: 10.1007/s00284-024-03732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Chikungunya virus (CHIKV) is a causative agent of a disease continuum, ranging from an acute transient chikungunya fever to chronic incapacitating viral arthralgia. The interaction between anti-CHIKV antibodies and the complement system has recently received attention. However, the contribution of complement activation in CHIKV-induced pathologies has not been fully elucidated. The present study was undertaken to delineate the possible contribution of complement activation in CHIKV-induced disease progression. In this study, using plasma specimens of chikungunya patients in the acute, chronic, and recovered phases of infection, we explicated the involvement of complement activation in CHIKV disease progression by ELISAs and Bio-Plex assays. Correlation analysis was carried out to demonstrate interrelation among C1q-binding IgG-containing circulating immune complexes (CIC-C1q), complement activation fragments (C3a, C5a, sC5b-9), and complement-modulated pro-inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α). We detected elevated complement activation fragments, CIC-C1q, and complement-modulated cytokines in the varied patient groups compared with the healthy controls, indicating persistent activation of the complement system. Furthermore, we observed statistically significant correlations among CIC-C1q with complement activation fragments and C3a with complement modulatory cytokines IL-1β, IL-6, and IL-18 during the CHIKV disease progression. Taken together, the current data provide insight into the plausible association between CICs, complement activation, subsequent complement modulatory cytokine expression, and CHIKV etiopathology.
Collapse
Affiliation(s)
- Rewati Kasbe
- Poliovirus Group (Former Avian Influenza), ICMR-National Institute of Virology, Pashan Campus, 130/1 Sus Road, Pashan, Pune, 411021, India
| | - Anuradha S Tripathy
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, Pune, 411001, India
| | - Mohan R Wani
- National Centre for Cell Science, Pune, 411007, India
| | - Jayati Mullick
- Poliovirus Group (Former Avian Influenza), ICMR-National Institute of Virology, Pashan Campus, 130/1 Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
9
|
de Souza WM, Fumagalli MJ, de Lima STS, Parise PL, Carvalho DCM, Hernandez C, de Jesus R, Delafiori J, Candido DS, Carregari VC, Muraro SP, Souza GF, Simões Mello LM, Claro IM, Díaz Y, Kato RB, Trentin LN, Costa CHS, Maximo ACBM, Cavalcante KF, Fiuza TS, Viana VAF, Melo MEL, Ferraz CPM, Silva DB, Duarte LMF, Barbosa PP, Amorim MR, Judice CC, Toledo-Teixeira DA, Ramundo MS, Aguilar PV, Araújo ELL, Costa FTM, Cerqueira-Silva T, Khouri R, Boaventura VS, Figueiredo LTM, Fang R, Moreno B, López-Vergès S, Mello LP, Skaf MS, Catharino RR, Granja F, Martins-de-Souza D, Plante JA, Plante KS, Sabino EC, Diamond MS, Eugenin E, Proença-Módena JL, Faria NR, Weaver SC. Pathophysiology of chikungunya virus infection associated with fatal outcomes. Cell Host Microbe 2024; 32:606-622.e8. [PMID: 38479396 PMCID: PMC11018361 DOI: 10.1016/j.chom.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes acute, subacute, and chronic human arthritogenic diseases and, in rare instances, can lead to neurological complications and death. Here, we combined epidemiological, virological, histopathological, cytokine, molecular dynamics, metabolomic, proteomic, and genomic analyses to investigate viral and host factors that contribute to chikungunya-associated (CHIK) death. Our results indicate that CHIK deaths are associated with multi-organ infection, central nervous system damage, and elevated serum levels of pro-inflammatory cytokines and chemokines compared with survivors. The histopathologic, metabolite, and proteomic signatures of CHIK deaths reveal hemodynamic disorders and dysregulated immune responses. The CHIKV East-Central-South-African lineage infecting our study population causes both fatal and survival cases. Additionally, CHIKV infection impairs the integrity of the blood-brain barrier, as evidenced by an increase in permeability and altered tight junction protein expression. Overall, our findings improve the understanding of CHIK pathophysiology and the causes of fatal infections.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Global Virus Network, Baltimore, MD, USA.
| | - Marcilio J Fumagalli
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Shirlene T S de Lima
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil; Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Pierina L Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Deyse C M Carvalho
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Cristian Hernandez
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Darlan S Candido
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Victor C Carregari
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Stefanie P Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela F Souza
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Ingra M Claro
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Yamilka Díaz
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama, Panama
| | - Rodrigo B Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas N Trentin
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Clauber H S Costa
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Tayna S Fiuza
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil; Programa de Pós Graduação em Bioinformática, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Vânia A F Viana
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Débora B Silva
- Laboratório Central de Saúde Pública do Ceará, Fortaleza, Ceará, Brazil
| | | | - Priscilla P Barbosa
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mariene R Amorim
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carla C Judice
- Laboratory of Tropical Diseases, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Daniel A Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mariana S Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Patricia V Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Emerson L L Araújo
- Coordenação Geral de Atenção às Doenças Transmissíveis na Atenção Primária, Departamento de Gestão ao cuidado Integral, Secretaria de Atenção Primária à Saúde, Ministério da Saúde, Brasília, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago Cerqueira-Silva
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Bahia, Brazil; Fundação Oswaldo Cruz, Instituto Gonçalo Muniz, Laboratório de Medicina e Saúde Pública de Precisão, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Bahia, Brazil; Fundação Oswaldo Cruz, Instituto Gonçalo Muniz, Laboratório de Medicina e Saúde Pública de Precisão, Salvador, Bahia, Brazil
| | - Viviane S Boaventura
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Bahia, Brazil; Fundação Oswaldo Cruz, Instituto Gonçalo Muniz, Laboratório de Medicina e Saúde Pública de Precisão, Salvador, Bahia, Brazil; Hospital Santa Izabel, Santa Casa de Misericórdia da Bahia, Serviço de Otorrinolaringologia, Salvador, Bahia, Brazil
| | - Luiz Tadeu M Figueiredo
- Virology Research Centre, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Brechla Moreno
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama, Panama
| | - Sandra López-Vergès
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama, Panama; Sistema Nacional de Investigación from SENACYT, Panama, Panama
| | | | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiana Granja
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Biodiversity Research Centre, Federal University of Roraima, Boa Vista, Roraima, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; D'Or Institute for Research and Education, São Paulo, São Paulo, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, São Paulo, Brazil
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Ester C Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Eliseo Eugenin
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA; Global Virus Network, Baltimore, MD, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
10
|
Holmes AC, Lucas CJ, Brisse ME, Ware BC, Hickman HD, Morrison TE, Diamond MS. Ly6C + monocytes in the skin promote systemic alphavirus dissemination. Cell Rep 2024; 43:113876. [PMID: 38446669 PMCID: PMC11005330 DOI: 10.1016/j.celrep.2024.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Alphaviruses are mosquito-transmitted pathogens that induce high levels of viremia, which facilitates dissemination and vector transmission. One prevailing paradigm is that, after skin inoculation, alphavirus-infected resident dendritic cells migrate to the draining lymph node (DLN), facilitating further rounds of infection and dissemination. Here, we assess the contribution of infiltrating myeloid cells to alphavirus spread. We observe two phases of virus transport to the DLN, one that occurs starting at 1 h post infection and precedes viral replication, and a second that requires replication in the skin, enabling transit to the bloodstream. Depletion of Ly6C+ monocytes reduces local chikungunya (CHIKV) or Ross River virus (RRV) infection in the skin, diminishes the second phase of virus transport to the DLN, and delays spread to distal sites. Our data suggest that infiltrating monocytes facilitate alphavirus infection at the initial infection site, which promotes more rapid spread into circulation.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Morgan E Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Brian C Ware
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Microbiology and Immunology, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BA, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. JCI Insight 2024; 9:e176537. [PMID: 38194268 PMCID: PMC11143926 DOI: 10.1172/jci.insight.176537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology & Microbiology and
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Glennys V. Reynoso
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | | | - Aspen Martin
- Department of Biochemistry & Molecular Genetics and
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry & Molecular Genetics and
| | - Heather D. Hickman
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | - Beth A.J. Tamburini
- Department of Immunology & Microbiology and
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
12
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
13
|
Lucas CJ, Davenport BJ, Carpentier KS, Tinega AN, Morrison TE. Two Conserved Phenylalanine Residues in the E1 Fusion Loop of Alphaviruses Are Essential for Viral Infectivity. J Virol 2022; 96:e0006422. [PMID: 35416719 PMCID: PMC9093095 DOI: 10.1128/jvi.00064-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses infect cells by a low pH-dependent fusion reaction between viral and host cell membranes that is mediated by the viral E1 glycoprotein. Most reported alphavirus E1 sequences include two phenylalanines (F87 and F95) in the fusion loop, yet the role of these residues in viral infectivity remains to be defined. Following introduction of wild type (WT), E1-F87A, and E1-F95A chikungunya virus (CHIKV) RNA genomes into cells, viral particle production was similar in magnitude. However, CHIKV E1-F87A and E1-F95A virions displayed impaired infectivity compared with WT CHIKV particles. Although WT, E1-F87A, and E1-F95A particles bound cells with similar efficiencies, E1-F87A and E1-F95A particles were unable to undergo fusion and entry into cells. Introduction of an F95A mutation in the E1 fusion loop of Mayaro virus or Venezuelan equine encephalitis virus also resulted in poorly infectious virions. We further tested whether an E1-F87A or E1-F95A mutation could be incorporated into a live-attenuated vaccine strain, CHIKV 181/25, to enhance vaccine safety. Infection of immunocompromised Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice with 181/25E1-F87A or 181/25E1-F95A resulted in 0% mortality, compared with 100% mortality following 181/25 infection. Despite this enhanced attenuation, surviving Ifnar1-/- and Irf3-/-Irf5-/-Irf7-/- mice were protected against virulent virus re-challenge. Moreover, single-dose immunization of WT mice with either 181/25, 181/25E1-F87A, or 181/25E1-F95A elicited CHIKV-specific antibody responses and protected against pathogenic CHIKV challenge. These studies define a critical function for residues E1-F87 and E1-F95 in alphavirus fusion and entry into target cells and suggest that incorporation of these mutations could enhance the safety of live-attenuated alphavirus vaccine candidates. IMPORTANCE Alphaviruses are human pathogens that cause both debilitating acute and chronic musculoskeletal disease and potentially fatal encephalitis. In this study, we determined that two highly conserved phenylalanine residues in the alphavirus E1 glycoprotein are required for fusion of viral and host cell membranes and viral entry into target cells. We further demonstrated that mutation of these phenylalanines results in a substantial loss of viral virulence but not immunogenicity. These data enhance an understanding of the viral determinants of alphavirus entry into host cells and could contribute to the development of new antivirals targeting these conserved phenylalanines or new live-attenuated alphavirus vaccines.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathryn S. Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alex N. Tinega
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Biram A, Liu J, Hezroni H, Davidzohn N, Schmiedel D, Khatib-Massalha E, Haddad M, Grenov A, Lebon S, Salame TM, Dezorella N, Hoffman D, Abou Karam P, Biton M, Lapidot T, Bemark M, Avraham R, Jung S, Shulman Z. Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity 2022; 55:442-458.e8. [PMID: 35182483 DOI: 10.1016/j.immuni.2022.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jingjing Liu
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadas Hezroni
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Natalia Davidzohn
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eman Khatib-Massalha
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Montaser Haddad
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amalie Grenov
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sacha Lebon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tomer Meir Salame
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dotan Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moshe Biton
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Vrba SM, Hickman HD. Imaging viral infection in vivo to gain unique perspectives on cellular antiviral immunity. Immunol Rev 2022; 306:200-217. [PMID: 34796538 PMCID: PMC9073719 DOI: 10.1111/imr.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
The past decade has seen near continual global public health crises caused by emerging viral infections. Extraordinary increases in our knowledge of the mechanisms underlying successful antiviral immune responses in animal models and during human infection have accompanied these viral outbreaks. Keeping pace with the rapidly advancing field of viral immunology, innovations in microscopy have afforded a previously unseen view of viral infection occurring in real-time in living animals. Here, we review the contribution of intravital imaging to our understanding of cell-mediated immune responses to viral infections, with a particular focus on studies that visualize the antiviral effector cells responding to infection as well as virus-infected cells. We discuss methods to visualize viral infection in vivo using intravital microscopy (IVM) and significant findings arising through the application of IVM to viral infection. Collectively, these works underscore the importance of developing a comprehensive spatial understanding of the relationships between immune effectors and virus-infected cells and how this has enabled unique discoveries about virus/host interactions and antiviral effector cell biology.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D. Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
17
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Orozco SL, Canny SP, Hamerman JA. Signals governing monocyte differentiation during inflammation. Curr Opin Immunol 2021; 73:16-24. [PMID: 34411882 DOI: 10.1016/j.coi.2021.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Monocytes are innate immune cells that develop in the bone marrow and are continually released into circulation, where they are poised to enter tissues in response to homeostatic or inflammatory cues. Monocytes are highly plastic cells that can differentiate in tissues into a variety of monocyte-derived cells to replace resident tissue macrophages, promote inflammatory responses, or resolution of inflammation. As such, monocytes can support tissue homeostasis as well as productive and pathogenic immune responses. Recent work shows previously unappreciated heterogeneity in monocyte development and differentiation in the steady state and during infectious, autoimmune, and inflammatory diseases. Monocyte-derived cells can differentiate via signals from cytokines, pattern recognition receptors or other factors, which can influence development in the bone marrow or in tissues. An improved understanding of these monocyte-derived cells and the signals that drive their differentiation in distinct inflammatory settings could allow for targeting these pathways in pathological inflammation.
Collapse
Affiliation(s)
- Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Avenue, Seattle 98101, WA, USA
| | - Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Avenue, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle 98195, WA, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Avenue, Seattle 98101, WA, USA; Department of Immunology, University of Washington, 750 Republican St., Seattle 98109, WA, USA.
| |
Collapse
|
19
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
20
|
Müller BJ, Westheider A, Birkner K, Seelig B, Kirschnek S, Bogdan C, von Loewenich FD. Anaplasma phagocytophilum Induces TLR- and MyD88-Dependent Signaling in In Vitro Generated Murine Neutrophils. Front Cell Infect Microbiol 2021; 11:627630. [PMID: 33747981 PMCID: PMC7970703 DOI: 10.3389/fcimb.2021.627630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Anaplasma phagocytophilum is a tick-transmitted obligate intracellular Gram-negative bacterium that replicates in neutrophils. It elicits febrile disease in humans and in animals. In a mouse model, elimination of A. phagocytophilum required CD4+ T cells, but was independent of IFN-γ and other classical antibacterial effector mechanisms. Further, mice deficient for immune recognition and signaling via Toll-like receptor (TLR) 2, TLR4 or MyD88 were unimpaired in pathogen control. In contrast, animals lacking adaptor molecules of Nod-like receptors (NLR) such as RIP2 or ASC showed delayed clearance of A. phagocytophilum. In the present study, we investigated the contribution of further pattern recognition receptor (PRR) pathways to the control of A. phagocytophilum in vivo. Mice deficient for the NLR NOD2 had elevated bacterial loads in the early phase of infection, but were unimpaired in pathogen elimination. In contrast, animals lacking adaptor proteins of different C-type lectin receptors (CLR) such as DAP12, Fc-receptor γ-chain (FcRγ) and SYK controlled A. phagocytophilum as efficiently as wild-type mice. Further, we investigated which PRR pathways are involved in the sensing of A. phagocytophilum by in vitro generated Hoxb8 murine neutrophils. In vitro, recognition of A. phagocytophilum by murine neutrophils was dependent on TLR- and MyD88 signaling. However, it remained intact in the absence of the NLR NOD1, NOD2 and NALP3 and of the CLR adaptor molecules DAP12 and FcRγ. From these results, we conclude that TLR rather than NLR or CLR are critical for the detection of A. phagocytophilum by neutrophils although in vivo defective TLR-signaling is compensated probably because of the redundancy of the immune system.
Collapse
Affiliation(s)
- Beate J Müller
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Arne Westheider
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Katharina Birkner
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Birte Seelig
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
21
|
Plasmacytoid Dendritic Cells Mediate Control of Ross River Virus Infection via a Type I Interferon-Dependent, MAVS-Independent Mechanism. J Virol 2021; 95:JVI.01538-20. [PMID: 33361425 DOI: 10.1128/jvi.01538-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Ross River virus (RRV) is a mosquito-borne alphavirus that causes epidemics of debilitating musculoskeletal disease. To define the innate immune mechanisms that mediate control of RRV infection, we studied a RRV strain encoding 6 nonsynonymous mutations in nsP1 (RRV-T48-nsP16M) that is attenuated in wild-type (WT) mice and Rag1 -/- mice, which are unable to mount adaptive immune responses, but not in mice that lack the capacity to respond to type I interferon (IFN) (Ifnar1 -/- mice). Utilizing this attenuated strain, our prior studies revealed that mitochondrial antiviral signaling (MAVS)-dependent production of type I IFN by Ly6Chi monocytes is critical for control of acute RRV infection. Here, we infected Mavs -/- mice with either WT RRV or RRV-T48-nsP16M to elucidate MAVS-independent protective mechanisms. Mavs -/- mice infected with WT RRV developed severe disease and succumbed to infection, whereas those infected with RRV-T48-nsP16M exhibited minimal disease signs. Mavs -/- mice infected with RRV-T48-nsP16M had higher levels of systemic type I IFN than Mavs -/- mice infected with WT virus, and treatment of Mavs -/- mice infected with the attenuated nsP1 mutant virus with an IFNAR1-blocking antibody resulted in a lethal infection. In vitro, type I IFN expression was induced in plasmacytoid dendritic cells (pDCs) cocultured with RRV-infected cells in a MAVS-independent manner, and depletion of pDCs in Mavs -/- mice resulted in increased viral burdens in joint and muscle tissues, suggesting that pDCs are a source of the protective IFN in Mavs -/- mice. These data suggest that pDC production of type I IFN through a MAVS-independent pathway contributes to control of RRV infection.IMPORTANCE Arthritogenic alphaviruses, including Ross River virus (RRV), are human pathogens that cause debilitating acute and chronic musculoskeletal disease and are a significant public health burden. Using an attenuated RRV with enhanced susceptibility to host innate immune responses has revealed key cellular and molecular mechanisms that can mediate control of attenuated RRV infection and that are evaded by more virulent RRV strains. In this study, we found that pDCs contribute to the protective type I interferon response during RRV infection through a mechanism that is independent of the mitochondrial antiviral signaling (MAVS) adaptor protein. These findings highlight a key innate immune mechanism that contributes to control of alphavirus infections.
Collapse
|
22
|
Alexandre YO, Devi S, Park SL, Mackay LK, Heath WR, Mueller SN. Systemic Inflammation Suppresses Lymphoid Tissue Remodeling and B Cell Immunity during Concomitant Local Infection. Cell Rep 2020; 33:108567. [PMID: 33378682 DOI: 10.1016/j.celrep.2020.108567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Concurrent infection with multiple pathogens occurs frequently in individuals and can result in exacerbated infections and altered immunity. However, the impact of such coinfections on immune responses remains poorly understood. Here, we reveal that systemic infection results in an inflammation-induced suppression of local immunity. During localized infection or vaccination in barrier tissues including the skin or respiratory tract, concurrent systemic infection induces a type I interferon-dependent lymphopenia that impairs lymphocyte recruitment to the draining lymph node (dLN) and induces sequestration of lymphocytes in non-draining LN. This contributes to suppressed fibroblastic reticular cell and endothelial cell expansion and dLN remodeling and impairs induction of B cell responses and antibody production. Our data suggest that contemporaneous systemic inflammation constrains the induction of regional immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
23
|
Neupane B, Acharya D, Nazneen F, Gonzalez-Fernandez G, Flynt AS, Bai F. Interleukin-17A Facilitates Chikungunya Virus Infection by Inhibiting IFN-α2 Expression. Front Immunol 2020; 11:588382. [PMID: 33304351 PMCID: PMC7701120 DOI: 10.3389/fimmu.2020.588382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Interferons (IFNs) are the key components of innate immunity and are crucial for host defense against viral infections. Here, we report a novel role of interleukin-17A (IL-17A) in inhibiting IFN-α2 expression thus promoting chikungunya virus (CHIKV) infection. CHIKV infected IL-17A deficient (Il17a-/- ) mice expressed a higher level of IFN-α2 and developed diminished viremia and milder footpad swelling in comparison to wild-type (WT) control mice, which was also recapitulated in IL-17A receptor-deficient (Il17ra-/- ) mice. Interestingly, IL-17A selectively blocked IFN-α2 production during CHIKV, but not West Nile virus (WNV) or Zika virus (ZIKV), infections. Recombinant IL-17A treatment inhibited CHIKV-induced IFN-α2 expression and enhanced CHIKV replication in both human and mouse cells. We further found that IL-17A inhibited IFN-α2 production by modulating the expression of Interferon Regulatory Factor-5 (IRF-5), IRF-7, IFN-stimulated gene 49 (ISG-49), and Mx1 expression during CHIKV infection. Neutralization of IL-17A in vitro leads to the increase of the expression of these antiviral molecules and decrease of CHIKV replication. Collectively, these results suggest a novel function of IL-17A in inhibiting IFN-α2-mediated antiviral responses during CHIKV infection, which may have broad implications in viral infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Biswas Neupane
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Dhiraj Acharya
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Farzana Nazneen
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gabriel Gonzalez-Fernandez
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Alex Sutton Flynt
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Fengwei Bai
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
24
|
Dexmedetomidine Attenuates LPS-Induced Monocyte-Endothelial Adherence via Inhibiting Cx43/PKC- α/NOX2/ROS Signaling Pathway in Monocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2930463. [PMID: 32774667 PMCID: PMC7395996 DOI: 10.1155/2020/2930463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine is widely used for sedating patients in operation rooms or intensive care units. Its protective functions against oxidative stress, inflammation reaction, and apoptosis have been widely reported. In present study, we explored the effects of dexmedetomidine on monocyte-endothelial adherence. We built lipopolysaccharide- (LPS-) induced monocyte-endothelial adherence models with U937 monocytes and human umbilical vein endothelial cells (HUVECs) and observed the effects of dexmedetomidine on U937-HUVEC adhesion. Specific siRNA was designed to knock-down Connexin43 (Cx43) expression in U937 monocytes. Gö6976, GSK2795039, and NAC were used to inhibit PKC-α, NOX2, and ROS, respectively. Then, we detected whether dexmedetomidine could downregulate Cx43 expression and its downstream PKC-α/NOX2/ROS signaling pathway activation and ultimately result in the decrease of U937-HUVEC adhesion. The results showed that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), could inhibit adhesion of molecule expression (VLA-4 and LFA-1) and U937-HUVEC adhesion. Simultaneously, it also attenuated Cx43 expression in U937 monocytes. With the downregulation of Cx43 expression, the activity of PKC-α and its related NOX2/ROS signaling pathway were reduced. Inhibiting PKC-α/NOX2/ROS signaling pathway with Gö6976, GSK2795039, and NAC, respectively, VLA-4, LFA-1 expression, and U937-HUVEC adhesion were all decreased. In summary, we concluded that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), decreased Cx43 expression in U937 monocytes and PKC-α associated with carboxyl-terminal domain of Cx43 protein. With the downregulation of PKC-α, the NOX2/ROS signaling pathway was inhibited, resulting in the decrease of VLA-4 and LFA-1 expression. Ultimately, U937-HUVEC adhesion was reduced.
Collapse
|