1
|
Amarilla-Irusta A, Zenarruzabeitia O, Sevilla A, Sandá V, Lopez-Pardo A, Astarloa-Pando G, Pérez-Garay R, Pérez-Fernández S, Meijide S, Imaz-Ayo N, Arana-Arri E, Amo L, Borrego F. CD151 identifies an NK cell subset that is enriched in COVID-19 patients and correlates with disease severity. J Infect 2024; 89:106304. [PMID: 39374860 DOI: 10.1016/j.jinf.2024.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Severe coronavirus disease 2019 (COVID-19) often leads to acute respiratory distress syndrome and multi-organ dysfunction, driven by a dysregulated immune response, including a cytokine storm with elevated proinflammatory cytokine levels. Natural killer (NK) cells are part of the innate immune system with a fundamental role in the defense against viral infections. However, during COVID-19 acute infection, they exhibit an altered phenotype and impaired functionality contributing to the immunopathogenesis of the disease. In this work, we have studied a cohort of patients with COVID-19 (ranging from mild to severe) by analyzing IL-15, TGF-β, PlGF and GDF-15 plasma levels and performing multiparametric flow cytometry studies. Our results revealed that severe COVID-19 patients exhibited high levels of IL-15, PlGF and GDF-15, along with an enrichment of an NK cell subset expressing the CD151 tetraspanin, which correlated with IL-15 plasma levels and disease severity. In patients, these CD151+ NK cells displayed a more activated phenotype characterized by an increased expression of HLA-DR, CD38 and granzyme B, a distinct receptor repertoire, with lower levels of CD160 and CD31 and higher levels of CD55 and, remarkably, a higher expression of tissue-resident markers CD103 and the NK cell decidual marker CD9. Last of all, in individuals with severe disease, we identified an expansion of a CD151brightCD9+ NK cell subset, suggesting that these cells play a specific role in COVID-19. Altogether, our findings suggest that CD151+ NK cells may have a relevant role in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Arrate Sevilla
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Víctor Sandá
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Ainara Lopez-Pardo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Raquel Pérez-Garay
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Clinical Analysis Service, Cruces University Hospital, OSI Ezkerraldea-Enkarterri-Cruces, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Susana Meijide
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
3
|
Peluso MJ, Abdel-Mohsen M, Henrich TJ, Roan NR. Systems analysis of innate and adaptive immunity in Long COVID. Semin Immunol 2024; 72:101873. [PMID: 38460395 DOI: 10.1016/j.smim.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
Since the onset of the COVID-19 pandemic, significant progress has been made in developing effective preventive and therapeutic strategies against severe acute SARS-CoV-2 infection. However, the management of Long COVID (LC), an infection-associated chronic condition that has been estimated to affect 5-20% of individuals following SARS-CoV-2 infection, remains challenging due to our limited understanding of its mechanisms. Although LC is a heterogeneous disease that is likely to have several subtypes, immune system disturbances appear common across many cases. The extent to which these immune perturbations contribute to LC symptoms, however, is not entirely clear. Recent advancements in multi-omics technologies, capable of detailed, cell-level analysis, have provided valuable insights into the immune perturbations associated with LC. Although these studies are largely descriptive in nature, they are the crucial first step towards a deeper understanding of the condition and the immune system's role in its development, progression, and resolution. In this review, we summarize the current understanding of immune perturbations in LC, covering both innate and adaptive immune responses, and the cytokines and analytes involved. We explore whether these findings support or challenge the primary hypotheses about LC's underlying mechanisms. We also discuss the crosstalk between various immune system components and how it can be disrupted in LC. Finally, we emphasize the need for more tissue- and subtype-focused analyses of LC, and for enhanced collaborative efforts to analyze common specimens from large cohorts, including those undergoing therapeutic interventions. These collective efforts are vital to unravel the fundaments of this new disease, and could also shed light on the prevention and treatment of the larger family of chronic illnesses linked to other microbial infections.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, USA
| | | | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San Francisco, USA
| | - Nadia R Roan
- Gladstone Institutes, University of California, San Francisco, USA; Department of Urology, University of California, San Francisco, USA.
| |
Collapse
|
4
|
Cevirgel A, Vos M, Holtrop AF, Beckers L, Reukers DFM, Meijer A, Rots N, van Beek J, van Baarle D, de Wit J. Delineating immune variation between adult and children COVID-19 cases and associations with disease severity. Sci Rep 2024; 14:5090. [PMID: 38429462 PMCID: PMC10907598 DOI: 10.1038/s41598-024-55148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The SARS-CoV-2 pandemic has emphasized the need to explore how variations in the immune system relate to the severity of the disease. This study aimed to explore inter-individual variation in response to SARS-CoV-2 infection by comparing T cell, B cell, and innate cell immune subsets among primary infected children and adults (i.e., those who had never experienced SARS-CoV-2 infection nor received vaccination previously), with varying disease severity after infection. We also examined immune subset kinetics in convalescent individuals compared to those with persistent infection to identify possible markers of immune dysfunction. Distinct immune subset differences were observed between infected adults and children, as well as among adult cases with mild, moderate, and severe disease. IgM memory B cells were absent in moderate and severe cases whereas frequencies of B cells with a lack of surface immunoglobulin expression were significantly higher in severe cases. Interestingly, these immune subsets remained stable during recovery implying that these subsets could be associated with underlying baseline immune variation. Our results offer insights into the potential immune markers associated with severe COVID-19 and provide a foundation for future research in this area.
Collapse
Affiliation(s)
- Alper Cevirgel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne Floor Holtrop
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Daphne F M Reukers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Adam Meijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Nynke Rots
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
5
|
Fernández-Soto D, García-Jiménez ÁF, Casasnovas JM, Valés-Gómez M, Reyburn HT. Elevated levels of cell-free NKG2D-ligands modulate NKG2D surface expression and compromise NK cell function in severe COVID-19 disease. Front Immunol 2024; 15:1273942. [PMID: 38410511 PMCID: PMC10895954 DOI: 10.3389/fimmu.2024.1273942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.
Collapse
Affiliation(s)
- Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Perrone C, Bozzano F, Dal Bello MG, Del Zotto G, Antonini F, Munari E, Maggi E, Moretta F, Farshchi AH, Pariscenti G, Tagliamento M, Genova C, Moretta L, De Maria A. CD34 +DNAM-1 brightCXCR4 + haemopoietic precursors circulate after chemotherapy, seed lung tissue and generate functional innate-like T cells and NK cells. Front Immunol 2024; 15:1332781. [PMID: 38390333 PMCID: PMC10881815 DOI: 10.3389/fimmu.2024.1332781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Background There is little information on the trajectory and developmental fate of Lin-CD34+DNAM-1bright CXCR4+ progenitors exiting bone marrow during systemic inflammation. Objective To study Lin-CD34+DNAM-1bright CXCR4+ cell circulation in cancer patients, to characterize their entry into involved lung tissue and to characterize their progenies. Methods Flow cytometric analysis of PBMC from 18 patients with lung cancer on samples collected immediately before the first and the second treatment was performed to study Lin-CD34+DNAM-1bright CXCR4+ precursors. Precursors were purified (>99%) and cultured in vitro from all patients. Paired PBMC and tissue samples from patients undergoing tumor resection were analyzed by flow cytometry to assess tissue entry and compare phenotype and developmental potential of Lin-CD34+DNAM-1bright CXCR4+ cells in both compartments. Results Significant circulation of Lin-CD34+DNAM-1bright CXCR4+ precursors was observed 20d after the first treatment. Precursors express CXC3CR1, CXCR3, CXCR1 consistent with travel towards inflamed tissues. Flowcytometric analysis of lung tissue samples showed precursor presence in all patients in tumor and neighboring uninvolved areas. Successful purification and in vitro culture from both blood and lung tissue generates a minor proportion of maturing NK cells (<10%) and a predominant proportion (>85%) of α/β T-progenies with innate-like phenotype expressing NKG2D,NKp30,DNAM-1. Innate-like maturing T-cells in vitro are cytotoxic, can be triggered via NKR/TCR co-stimulation and display broad spectrum Th1,Th2 and Th1/Th17 cytokine production. Conclusion In advanced stage lung cancer CD34+DNAM-1brightCXCR4+ inflammatory precursors increase upon treatment, enter involved tissues, generate functional progenies and may thus represent an additional player contributing to immune balance in the highly SDF-1/CXCR4-biased pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Carola Perrone
- Experimental Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Bozzano
- Laboratorio Diagnostico di Autoimmunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Genny Del Zotto
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Antonini
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | | | - Gianluca Pariscenti
- Thoracic Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea De Maria
- Department of Health Sciences, University of Genova, Genova, Italy
- Infections of Immunocompromised Hosts Unit, Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
7
|
Hammer Q, Cuapio A, Bister J, Björkström NK, Ljunggren HG. NK cells in COVID-19-from disease to vaccination. J Leukoc Biol 2023; 114:507-512. [PMID: 36976012 DOI: 10.1093/jleuko/qiad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti-SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2-infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti-SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Angelica Cuapio
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Jonna Bister
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels allé 8, Stockholms län, 141 52 Huddinge, Sweden
| |
Collapse
|
8
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol 2023; 24:1628-1638. [PMID: 37460639 PMCID: PMC10538371 DOI: 10.1038/s41590-023-01560-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 09/20/2023]
Abstract
Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Claus M, Pieris N, Urlaub D, Bröde P, Schaaf B, Durak D, Renken F, Watzl C. Early expansion of activated adaptive but also exhausted NK cells during acute severe SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1266790. [PMID: 37712059 PMCID: PMC10499356 DOI: 10.3389/fcimb.2023.1266790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
The analysis of immunological parameters during the course of a SARS-CoV-2 infection is of great importance, both to identify diagnostic markers for the risk of a severe course of COVID-19, and to better understand the role of the immune system during the infection. By using multicolor flow cytometry we compared the phenotype of Natural Killer (NK) cells from hospitalized COVID-19 patients during early SARS-CoV-2 infection with samples from recovered and SARS-CoV-2 naïve subjects. Unsupervised high-dimensional analysis of 28-color flow cytometric data revealed a strong enrichment of NKG2C expressing NK cells in response to the acute viral infection. In addition, we found an overrepresentation of highly activated NK cell subsets with an exhausted phenotype. Moreover, our data show long-lasting phenotypic changes within the NK cell compartment that did not completely reverse up to 2 months after recovery. This demonstrates that NK cells are involved in the early innate immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Maren Claus
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Naomi Pieris
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Doris Urlaub
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Peter Bröde
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Bernhard Schaaf
- Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
- Faculty of Health, University Witten/Herdecke, Herdecke, Germany
| | - Deniz Durak
- Dortmund Health Department, Dortmund, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| |
Collapse
|
11
|
Graydon EK, Malloy AM, Machmach K, Sun P, Paquin-Proulx D, Lizewski S, Lizewski R, Weir DL, Goforth CW, Anderson SK, Letizia AG, Mitre E. High baseline frequencies of natural killer cells are associated with asymptomatic SARS-CoV-2 infection. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100064. [PMID: 37645658 PMCID: PMC10461189 DOI: 10.1016/j.crimmu.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 08/31/2023] Open
Abstract
This study tested the hypothesis that high frequencies of natural killer (NK) cells are protective against symptomatic SARS-CoV-2 infection. Samples were utilized from the COVID-19 Health Action Response for Marines study, a prospective, observational study of SARS-CoV-2 infection in which participants were enrolled prior to infection and then serially monitored for development of symptomatic or asymptomatic infection. Frequencies and phenotypes of NK cells (CD3-CD14-CD19-CD56+) were assessed by flow cytometry. Individuals that developed asymptomatic infections were found to have higher pre-infection frequencies of total NK cells compared to symptomatic individuals (10.61% [SD 4.5] vs 8.33% [SD 4.6], p = 0.011). Circulating total NK cells decreased over the course of infection, reaching a nadir at 4 weeks, while immature NK cells increased, a finding confirmed by multidimensional reduction analysis. These results indicate that NK cells likely play a key role in controlling the severity of clinical illness in individuals infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Elizabeth K. Graydon
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | | | - Kawthar Machmach
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Peifang Sun
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | - Dawn L. Weir
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Carl W. Goforth
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Stephen K. Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew G. Letizia
- Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
12
|
Gabr H, Abdel Aal AA, Bastawy S, Fateen M, Abd El Dayem OY, Youssef EA, Afifi R, Kamal M. Comparison of T Lymphocyte Subsets and Natural Killer Lymphocytes in Moderate Versus Severe COVID-19 Patients. Viral Immunol 2023; 36:250-258. [PMID: 36847755 DOI: 10.1089/vim.2022.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Severe respiratory involvement that follows a process of immune dysregulation and intense cytokine production remains to be the most dreaded complication of Coronavirus Disease-2019 (COVID-19) infection. The aim of this study was to analyze T lymphocyte subsets and natural killer (NK) lymphocytes in moderate and severe cases of COVID-19 infection and assess their significance in disease severity and prognosis. Twenty moderate cases and 20 severe cases of COVID-19 were studied and compared regarding blood picture, biochemical markers, T lymphocyte population subsets, and NK lymphocytes, which were determined by flow cytometric analysis. On analyzing the flow cytometric data of T lymphocyte cells and their subsets and NK cells in two groups of COVID-19 infection (one group moderate and the other severe cases), some immature NK lymphocyte relative and absolute counts were higher in the severe patients with worse outcome and death, while some mature NK lymphocyte relative and absolute counts were depressed in both groups. Also, interleukin (IL)-6 was significantly higher in severe cases when compared to moderate cases, and there was a positive significant correlation between immature NK lymphocyte relative and absolute counts and IL-6. There was no statistically significant difference between T lymphocyte subsets (T helper and T cytotoxic) with disease severity or outcome. Some immature NK lymphocyte subsets contribute to the widespread inflammatory response that complicates severe cases of COVID-19; therapeutic approaches directed to enhancing NK maturation or drugs that block NK cell inhibitory receptors have a potential role in controlling COVID-19 induced cytokine storm.
Collapse
Affiliation(s)
- Hala Gabr
- Clinical and Chemical Pathology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Asmaa A Abdel Aal
- Clinical and Chemical Pathology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samah Bastawy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mohamed Fateen
- Clinical and Chemical Pathology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omnia Y Abd El Dayem
- Clinical and Chemical Pathology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman A Youssef
- Clinical and Chemical Pathology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania Afifi
- Internal Medicine-Hematology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mostafa Kamal
- Clinical and Chemical Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
13
|
Singh M, Pushpakumar S, Bard N, Zheng Y, Homme RP, Mokshagundam SPL, Tyagi SC. Simulation of COVID-19 symptoms in a genetically engineered mouse model: implications for the long haulers. Mol Cell Biochem 2023; 478:103-119. [PMID: 35731343 PMCID: PMC9214689 DOI: 10.1007/s11010-022-04487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in "long haulers" including dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Nia Bard
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
14
|
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol 2023; 65:101706. [PMID: 36542944 DOI: 10.1016/j.smim.2022.101706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Department of Medicine and Life Sciences. Univ. Pompeu Fabra. Barcelona, Spain.
| | - Andrea De Maria
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Madrid, Spain.
| |
Collapse
|
15
|
Lee MJ, Leong MW, Rustagi A, Beck A, Zeng L, Holmes S, Qi LS, Blish CA. SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D. Cell Rep 2022; 41:111892. [PMID: 36543165 PMCID: PMC9742201 DOI: 10.1016/j.celrep.2022.111892] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic effector cells that target and lyse virally infected cells; many viruses therefore encode mechanisms to escape such NK cell killing. Here, we interrogate the ability of SARS-CoV-2 to modulate NK cell recognition and lysis of infected cells. We find that NK cells exhibit poor cytotoxic responses against SARS-CoV-2-infected targets, preferentially killing uninfected bystander cells. We demonstrate that this escape is driven by downregulation of ligands for the activating receptor NKG2D (NKG2D-L). Indeed, early in viral infection, prior to NKG2D-L downregulation, NK cells are able to target and kill infected cells; however, this ability is lost as viral proteins are expressed. Finally, we find that SARS-CoV-2 non-structural protein 1 (Nsp1) mediates downregulation of NKG2D-L and that Nsp1 alone is sufficient to confer resistance to NK cell killing. Collectively, our work demonstrates that SARS-CoV-2 evades direct NK cell cytotoxicity and describes a mechanism by which this occurs.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle W Leong
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leiping Zeng
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan Chem-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94157, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94157, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Fionda C, Ruggeri S, Sciumè G, Laffranchi M, Quinti I, Milito C, Palange P, Menichini I, Sozzani S, Frati L, Gismondi A, Santoni A, Stabile H. Age-dependent NK cell dysfunctions in severe COVID-19 patients. Front Immunol 2022; 13:1039120. [PMID: 36466890 PMCID: PMC9713640 DOI: 10.3389/fimmu.2022.1039120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/20/2023] Open
Abstract
Natural Killer (NK) cells are key innate effectors of antiviral immune response, and their activity changes in ageing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated the age-related changes of NK cell phenotype and function during SARS-CoV-2 infection, by comparing adult and elderly patients both requiring mechanical ventilation. Adult patients had a reduced number of total NK cells, while elderly showed a peculiar skewing of NK cell subsets towards the CD56lowCD16high and CD56neg phenotypes, expressing activation markers and check-point inhibitory receptors. Although NK cell degranulation ability is significantly compromised in both cohorts, IFN-γ production is impaired only in adult patients in a TGF-β-dependent manner. This inhibitory effect was associated with a shorter hospitalization time of adult patients suggesting a role for TGF-β in preventing an excessive NK cell activation and systemic inflammation. Our data highlight an age-dependent role of NK cells in shaping SARS-CoV-2 infection toward a pathophysiological evolution.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Silvia Ruggeri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ilaria Menichini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Luigi Frati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Neuromed, Pozzilli, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
17
|
Malengier-Devlies B, Filtjens J, Ahmadzadeh K, Boeckx B, Vandenhaute J, De Visscher A, Bernaerts E, Mitera T, Jacobs C, Vanderbeke L, Van Mol P, Van Herck Y, Hermans G, Meersseman P, Wilmer A, Gouwy M, Garg AD, Humblet-Baron S, De Smet F, Martinod K, Wauters E, Proost P, Wouters C, Leclercq G, Lambrechts D, Wauters J, Matthys P. Severe COVID-19 patients display hyper-activated NK cells and NK cell-platelet aggregates. Front Immunol 2022; 13:861251. [PMID: 36275702 PMCID: PMC9581751 DOI: 10.3389/fimmu.2022.861251] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/15/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jessica Filtjens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Jessica Vandenhaute
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Cato Jacobs
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Pierre Van Mol
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Meersseman
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Alexander Wilmer
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine (CMM), KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Els Wauters
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Herpes Simplex Virus 1 (HSV-1) Reactivation in Critically Ill COVID-19 Patients: A Brief Narrative Review. Infect Dis Ther 2022; 11:1779-1791. [PMID: 35913679 PMCID: PMC9340740 DOI: 10.1007/s40121-022-00674-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
Systemic or pulmonary reactivations of herpes simplex virus 1 (HSV-1) have been reported in critically ill patients with COVID-19, posing a dilemma for clinicians in terms of their diagnostic and clinical relevance. Prevalence of HSV-1 reactivation may be as high as > 40% in this population, but with large heterogeneity across studies, likely reflecting the different samples and/or cut-offs for defining reactivation. There is frequently agreement on the clinical significance of HSV-1 reactivation in the presence of severe manifestations clearly attributable to the virus. However, the clinical implications of HSV-1 reactivations in the absence of manifest signs and symptoms remain controversial. Our review aims at providing immunological background and at reviewing clinical findings on HSV-1 reactivations in critically ill patients with COVID-19.
Collapse
|
19
|
Scalia G, Raia M, Gelzo M, Cacciapuoti S, Rosa AD, Pinchera B, Scotto R, Tripodi L, Mormile M, Fabbrocini G, Gentile I, Parrella R, Castaldo G, Scialò F. Lymphocyte Population Changes at Two Time Points during the Acute Period of COVID-19 Infection. J Clin Med 2022; 11:4306. [PMID: 35893398 PMCID: PMC9329935 DOI: 10.3390/jcm11154306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022] Open
Abstract
We previously observed an increase of serum interleukins (IL) and a reduction of most lymphocyte subpopulations in hospitalized COVID-19 patients. Herein, we aimed to evaluate the changes in serum IL-6, IL-10, and IL-17A levels and cytometric lymphocyte profiles in 144 COVID-19 patients at admission and after one week, also in relation to steroid treatment before hospitalization. After one week of hospitalization, we found that: (i) total lymphocytes were increased in all patients; (ii) neutrophils and IL-6 were reduced in mild/moderate patients; (iii) B lymphocytes were increased in severe patients; (iv) T lymphocyte populations increased in mild/moderate patients. In the eight patients that died during hospitalization, total leukocytes increased while T, T helper, T cytotoxic, T regulatory, and NK lymphocytes showed a reducing trend in five of the eight patients. Even if seven days are too few to evaluate the adaptive immunity of patients, we found that the steroid therapy was associated with a reduced COVID-19 inflammation and cytokine activation only in patients with severe disease, while in patients with less severe disease, the steroid therapy seems to have immunosuppressive effects on lymphocyte populations, and this could hamper the antiviral response. A better knowledge of cytokine and lymphocyte alterations in each COVID-19 patient could be useful to plan better treatment with steroids or cytokine targeting.
Collapse
Affiliation(s)
- Giulia Scalia
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Sara Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Annunziata De Rosa
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy; (A.D.R.); (R.P.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Riccardo Scotto
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Mauro Mormile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Roberto Parrella
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy; (A.D.R.); (R.P.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Filippo Scialò
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Traslazionale, Università della Campania L. Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
20
|
Abstract
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Janet Gallardo-Zapata
- Laboratorio de investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gomez, Mexico City, Mexico.,Posgrado de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gomez, Mexico City, Mexico
| |
Collapse
|
21
|
Cortés-Sarabia K, Gutiérrez-Torres M, Mendoza-Renteria EM, Leyva-Vázquez MA, Vences-Velázquez A, Hernández-Sotelo D, Beltrán-Anaya FO, Del Moral-Hernández O, Illades-Aguiar B. Variation in the Humoral Immune Response Induced by the Administration of the BNT162b2 Pfizer/BioNTech Vaccine: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10060909. [PMID: 35746517 PMCID: PMC9229764 DOI: 10.3390/vaccines10060909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
The BNT162b2 Pfizer/BioNTech vaccine was the first emergency approved vaccine during the COVID-19 pandemic. The aim of this systematic review was to examine the variations in the humoral immune response induced by the administration of the BNT162b2 vaccine in patients with previous SARS-CoV-2 infection, the elderly, and those with comorbidities and immunosuppression states. Additionally, we analyzed the effect of generated neutralizing antibodies against the new variants of concern of SARS-CoV-2. Pubmed, Science Direct, Mendeley, and WorldWide Science were searched between 1 January 2020 and October 2021 using the keywords “BNT162b2”, “serology”, “comorbidity”, “immunosuppression”, and “variants of concern”dA total of 20 peer-reviewed publications were selected. The analysis showed that those individuals with previous infections have a considerably higher antibody response after the administration of BNT162b2 vaccine in contrast with seronegative individuals. With regard to variation in immune responses, elderly individuals, patients with cancer, or patients who had undergone a kidney transplant, dialysis, or who were pregnant had a lower antibody response in comparison to healthy individuals. Finally, antibodies developed against the S protein produced by the BNT162b2 vaccine, possessed lower neutralizing activity against the alpha, beta, gamma, and delta variants of SARS-CoV-2. In conclusion, patients with immunodeficiencies and comorbidities have a lesser antibody response, about which further studies need to be performed in order to analyze the effectiveness and duration of the humoral immunity associated with vaccination in these specific populations.
Collapse
Affiliation(s)
- Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico; (K.C.-S.); (M.G.-T.); (E.M.M.-R.); (A.V.-V.)
| | - Mayralina Gutiérrez-Torres
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico; (K.C.-S.); (M.G.-T.); (E.M.M.-R.); (A.V.-V.)
| | - Escarlet Maleny Mendoza-Renteria
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico; (K.C.-S.); (M.G.-T.); (E.M.M.-R.); (A.V.-V.)
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
| | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico; (K.C.-S.); (M.G.-T.); (E.M.M.-R.); (A.V.-V.)
| | - Daniel Hernández-Sotelo
- Laboratorio de Epigénetica del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
- Correspondence: (O.D.M.-H.); (B.I.-A.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico;
- Correspondence: (O.D.M.-H.); (B.I.-A.)
| |
Collapse
|
22
|
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
23
|
Farzad F, Yaghoubi N, Jabbari-Azad F, Mahmoudi M, Mohammadi M. Prognostic Value of Serum MICA Levels as a Marker of Severity in COVID-19 Patients. Immunol Invest 2022; 51:1856-1866. [PMID: 35481955 DOI: 10.1080/08820139.2022.2069035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The COVID-19 global pandemic and high mortality rates necessitate the development of diagnostic and prognostic tools, as well as expanding testing capacity. Existing methods for detecting and characterizing SARS-CoV-2 infection are typically based on viral genome detection or measuring COVID-19-specific antibody levels. Despite their value, these methods are unable to predict disease outcomes in patients. Given the critical role of innate immune cells, particularly natural killer (NK) cells, in antiviral defense, this study sought to determine the prognostic value of serum secretory MHC class I polypeptide-related sequence A (sMICA) levels as an essential ligand for the NKG2D receptor, the master regulator of NK cell development and responsiveness. Serum MICA levels were measured by ELISA assay. Sera (n = 60) from SARS-CoV-2 positive patients were collected, and disease severity was determined using clinical criteria. The patient group included 30 patients with mild disease and 30 severely ill patients, as well as 30 healthy controls. Our findings revealed that serum MICA levels were significantly higher in patients than in controls, especially in cases with severe complications (P < .0001). Higher serum MICA levels may be associated with respiratory failure in COVID-19 and may serve as a marker of clinical severity in patients infected with SARS-CoV-2, particularly when clinical manifestations are insufficient to make a confident prediction.
Collapse
Affiliation(s)
- Faramarz Farzad
- Department of Immunology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Yaghoubi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Exploring the Utility of NK Cells in COVID-19. Biomedicines 2022; 10:biomedicines10051002. [PMID: 35625739 PMCID: PMC9138257 DOI: 10.3390/biomedicines10051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) can manifest as acute respiratory distress syndrome and is associated with substantial morbidity and mortality. Extensive data now indicate that immune responses to SARS-CoV-2 infection determine the COVID-19 disease course. A wide range of immunomodulatory agents have been tested for the treatment of COVID-19. Natural killer (NK) cells play an important role in antiviral innate immunity, and anti-SARS-CoV-2 activity and antifibrotic activity are particularly critical for COVID-19 control. Notably, SARS-CoV-2 clearance rate, antibody response, and disease progression in COVID-19 correlate with NK cell status, and NK cell dysfunction is linked with increased SARS-CoV-2 susceptibility. Thus, NK cells function as the key element in the switch from effective to harmful immune responses in COVID-19. However, dysregulation of NK cells has been observed in COVID-19 patients, exhibiting depletion and dysfunction, which correlate with COVID-19 severity; this dysregulation perhaps contributes to disease progression. Given these findings, NK-cell-based therapies with anti-SARS-CoV-2 activity, antifibrotic activity, and strong safety profiles for cancers may encourage the rapid application of functional NK cells as a potential therapeutic strategy to eliminate SARS-CoV-2-infected cells at an early stage, facilitate immune–immune cell interactions, and favor inflammatory processes that prevent and/or reverse over-inflammation and inhibit fibrosis progression, thereby helping in the fight against COVID-19. However, our understanding of the role of NK cells in COVID-19 remains incomplete, and further research on the involvement of NK cells in the pathogenesis of COVID-19 is needed. The rationale of NK-cell-based therapies for COVID-19 has to be based on the timing of therapeutic interventions and disease severity, which may be determined by the balance between beneficial antiviral and potential detrimental pathologic actions. NK cells would be more effective early in SARS-CoV-2 infection and prevent the progression of COVID-19. Immunomodulation by NK cells towards regulatory functions could be useful as an adjunct therapy to prevent the progression of COVID-19.
Collapse
|
25
|
Maggi E, Azzarone BG, Canonica GW, Moretta L. What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy 2022; 77:1114-1128. [PMID: 34582050 PMCID: PMC8652765 DOI: 10.1111/all.15112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic started in March 2020 and caused over 5 million confirmed deaths worldwide as far August 2021. We have been recently overwhelmed by a wide literature on how the immune system recognizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contributes to COVID-19 pathogenesis. Although originally considered a respiratory viral disease, COVID-19 is now recognized as a far more complex, multi-organ-, immuno-mediated-, and mostly heterogeneous disorder. Though efficient innate and adaptive immunity may control infection, when the patient fails to mount an adequate immune response at the start, or in advanced disease, a high innate-induced inflammation can lead to different clinical outcomes through heterogeneous compensatory mechanisms. The variability of viral load and persistence, the genetic alterations of virus-driven receptors/signaling pathways and the plasticity of innate and adaptive responses may all account for the extreme heterogeneity of pathogenesis and clinical patterns. As recently applied to some inflammatory disorders as asthma, rhinosinusitis with polyposis, and atopic dermatitis, herein we suggest defining different endo-types and the related phenotypes along COVID-19. Patients should be stratified for evolving symptoms and tightly monitored for surrogate biomarkers of innate and adaptive immunity. This would allow to preventively identify each endo-type (and its related phenotype) and to treat patients precisely with agents targeting pathogenic mechanisms.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | | | | | - Lorenzo Moretta
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| |
Collapse
|
26
|
Maruthamuthu S, Rajalingam K, Kaur N, Morvan MG, Soto J, Lee N, Kong D, Hu Z, Reyes K, Ng D, Butte AJ, Chiu C, Rajalingam R. Individualized Constellation of Killer Cell Immunoglobulin-Like Receptors and Cognate HLA Class I Ligands that Controls Natural Killer Cell Antiviral Immunity Predisposes COVID-19. Front Genet 2022; 13:845474. [PMID: 35273641 PMCID: PMC8902362 DOI: 10.3389/fgene.2022.845474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-2019 (COVID-19) in some individuals, while the majority remain asymptomatic. Natural killer (NK) cells play an essential role in antiviral defense. NK cell maturation and function are regulated mainly by highly polymorphic killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands. Herein, we tested our hypothesis that the individualized KIR and HLA class I ligand combinations that control NK cell function determine the outcome of SARS-CoV-2 infection. Methods: We characterized KIR and HLA genes in 200 patients hospitalized for COVID-19 and 195 healthy general population controls. Results: The KIR3DL1+HLA-Bw4+ [Odds ratio (OR) = 0.65, p = 0.03] and KIR3DL2+HLA-A3/11+ (OR = 0.6, p = 0.02) combinations were encountered at significantly lower frequency in COVID-19 patients than in the controls. Notably, 40% of the patients lacked both of these KIR+HLA+ combinations compared to 24.6% of the controls (OR = 2.04, p = 0.001). Additionally, activating receptors KIR2DS1+KIR2DS5+ are more frequent in patients with severe COVID-19 than patients with mild disease (OR = 1.8, p = 0.05). Individuals carrying KIR2DS1+KIR2DS5+ genes but missing either KIR3DL1+HLA-Bw4+ combination (OR = 1.73, p = 0.04) or KIR3DL2+HLA-A3/11+ combination (OR = 1.75, p = 0.02) or both KIR3DL1+HLA-Bw4+ and KIR2DL2+HLA-A3/11+ combinations (OR = 1.63, p = 0.03) were more frequent in the COVID-19 cohort compared to controls. Conclusions: The absence of KIR3DL1+HLA-Bw4+ and KIR3DL2+HLA-A3/11+ combinations presumably yields inadequate NK cell maturation and reduces anti-SARS-CoV-2 defense, causing COVID-19. An increased frequency of KIR2DS1+KIR2DS5+ in severe COVID-19 patients suggests vigorous NK cell response triggered via these activating receptors and subsequent production of exuberant inflammatory cytokines responsible for severe COVID-19. Our results demonstrate that specific KIR-HLA combinations that control NK cell maturation and function are underlying immunogenetic variables that determine the dual role of NK cells in mediating beneficial antiviral and detrimental pathologic action. These findings offer a framework for developing potential host genetic biomarkers to distinguish individuals prone to COVID-19.
Collapse
Affiliation(s)
- Stalinraja Maruthamuthu
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Karan Rajalingam
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Navchetan Kaur
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Maelig G Morvan
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jair Soto
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy Lee
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Denice Kong
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Reyes
- UCSF-Abbott Viral Diagnostics and Discovery Center, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Dianna Ng
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Charles Chiu
- UCSF-Abbott Viral Diagnostics and Discovery Center, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
27
|
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. MOLECULAR BIOMEDICINE 2022; 3:6. [PMID: 35174448 PMCID: PMC8850486 DOI: 10.1186/s43556-021-00067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is a highly contagious microorganism, and despite substantial investigation, no progress has been achieved in treating post-COVID complications. However, the virus has made various mutations and has spread around the world. Researchers have tried different treatments to reduce the side effects of the COVID-19 symptoms. One of the most common and effective treatments now used is steroid therapy to reduce the complications of this disease. Long-term steroid therapy for chronic inflammation following COVID-19 is harmful and increases the risk of secondary infection, and effective treatment remains challenging owing to fibrosis and severe inflammation and infection. Sometimes our immune system can severely damage ourselves in disease. In the past, many researchers have conducted various studies on the immunomodulatory properties of stem cells. This property of stem cells led them to modulate the immune system of autoimmune diseases like diabetes, multiple sclerosis, and Parkinson's. Because of their immunomodulatory properties, stem cell-based therapy employing mesenchymal or hematopoietic stem cells may be a viable alternative treatment option in some patients. By priming the immune system and providing cytokines, chemokines, and growth factors, stem cells can be employed to build a long-term regenerative and protective response. This review addresses the latest trends and rapid progress in stem cell treatment for Acute Respiratory Distress Syndrome (ARDS) following COVID-19.
Collapse
Affiliation(s)
- Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Khatibi
- Babol University of Medical Sciences, Infection Diseases Centre, Mazandaran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Park SJ, Nam DE, Seong HC, Hahn YS. New Discovery of Myeloid-Derived Suppressor Cell's Tale on Viral Infection and COVID-19. Front Immunol 2022; 13:842535. [PMID: 35185933 PMCID: PMC8850309 DOI: 10.3389/fimmu.2022.842535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Da-eun Nam
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Hae Chang Seong
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
29
|
Galvan V, Quarleri J. Editorial: Comparison of antibody and T cell responses elicited by BBIBP-CorV (Sinopharm) and BNT162b2 (Pfizer-BioNTech) vaccines against SARS-CoV-2 in healthy adult humans. GeroScience 2022; 44:57-61. [PMID: 34935099 PMCID: PMC8691152 DOI: 10.1007/s11357-021-00501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vaccine development has become the main tool for reducing COVID-19 cases and the severity of the disease. Comparative analyses of adaptive immunity generated by different vaccines platforms are urgently needed. Multiple studies have compared different vaccines using similar platforms; however, comparative analyses of vaccines across different platforms are lacking. This Editorial provides a summary and commentary on the main findings reported in the observational and longitudinal study by Vályi-Nagy et al. (Geroscience 43:2321) that compared the adaptive (humoral and T cell-mediated) immune responses elicited by Sinopharm and BNT162b2 vaccines against SARS-CoV-2 virus among 57 healthy adult Hungarian volunteers.
Collapse
Affiliation(s)
- Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Research Health Scientist, US Department of Veterans Affairs, Oklahoma City VA Health Care System, Oklahoma City, OK, USA
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Consejo de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Ferraccioli G, Gremese E, Goletti D, Petrone L, Cantini F, Ugel S, Canè S, Bronte V. Immune-guided therapy of COVID-19. Cancer Immunol Res 2022; 10:384-402. [PMID: 35074758 DOI: 10.1158/2326-6066.cir-21-0675] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/08/2023]
|
31
|
Andargie TE, Zhou W, Karaba AH, Li T, Seifuddin F, Rittenhouse AG, Kong H, Singh K, Woodward R, Iacono A, Avery RK, Pirooznia M, Jang MK, Ji H, Cox AL, Agbor-Enoh S. Integrated cell-free DNA and cytokine analysis uncovers distinct tissue injury and immune response patterns in solid organ transplant recipients with COVID-19. RESEARCH SQUARE 2022:rs.3.rs-1262270. [PMID: 35075453 PMCID: PMC8786231 DOI: 10.21203/rs.3.rs-1262270/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
COVID-19 pathogenesis is associated with an exuberant inflammatory response. However, the tissue injury pattern and immune response in solid-organ transplant recipients (SOTRs) taking immunosuppressive therapy have not been well characterized. Here, we perform both cfDNA and cytokine profiling on plasma samples to map tissue damage, including allograft injury and delineate underlying immunopathology. We identified injuries from multiple-tissue types, including hematopoietic cells, vascular endothelium, hepatocyte, adipocyte, pancreas, kidney, heart, and lung in SOTRs with COVID-19 that correlates with disease severity. SOTRs with COVID-19 have higher plasma levels of cytokines such as IFN-λ1, IFN-γ, IL-15, IL-18 IL-1RA, IL-6, MCP-2, and TNF-α as compared to healthy controls, and the levels of GM-CSF, IL-15, IL-6, IL-8, and IL-10 were associated with disease severity in SOTRs. Strikingly, IFN-λ and IP-10 were markedly increased in SOTRs compared to immunocompetent patients with COVID-19. Correlation analyses showed a strong association between monocyte-derived cfDNA and inflammatory cytokines/chemokines in SOTRs with COVID-19. Moreover, compared to other respiratory viral infections, COVID-19 induced pronounced injury in hematopoietic, vascular endothelial and endocrine tissues. Allograft injury, measured as donor-derived cfDNA was elevated in SOTRs with COVID-19, including allografts distant from the primary site of infection. Allograft injury correlated with inflammatory cytokines and cfDNA from immune cells. Furthermore, longitudinal analysis identified a gradual decrease of cfDNA and inflammatory cytokine levels in patients with a favorable outcome. Our findings highlight distinct tissue injury and cytokine features in SOTRs with COVID-19 that correlate with disease severity.
Collapse
Affiliation(s)
- Temesgen E. Andargie
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
- Department of Biology, Howard University, Washington DC
| | - Weiqiang Zhou
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Taibo Li
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | | | - Alex G. Rittenhouse
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyesik Kong
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | | | | | - Aldo Iacono
- Department of Medicine, University of Maryland, College Park, MD
| | - Robin K Avery
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| | | | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Boyton RJ, Altmann DM. The immunology of asymptomatic SARS-CoV-2 infection: what are the key questions? Nat Rev Immunol 2021; 21:762-768. [PMID: 34667307 PMCID: PMC8525456 DOI: 10.1038/s41577-021-00631-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
An important challenge during the COVID-19 pandemic has been to understand asymptomatic disease and the extent to which this may be a source of transmission. As asymptomatic disease is by definition hard to screen for, there is a lack of clarity about this aspect of the COVID-19 spectrum. Studies have considered whether the prevalence of asymptomatic disease is determined by differences in age, demographics, viral load, duration of shedding, and magnitude or durability of immunity. It is clear that adaptive immunity is strongly activated during asymptomatic infection, but some features of the T cell and antibody response may differ from those in symptomatic disease. Areas that need greater clarity include the extent to which asymptomatic disease leads to persistent symptoms (long COVID), and the quality, quantity and durability of immune priming required to confer subsequent protection.
Collapse
Affiliation(s)
- Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- Lung Division, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
33
|
Sepulcri C, Dentone C, Mikulska M, Bruzzone B, Lai A, Fenoglio D, Bozzano F, Bergna A, Parodi A, Altosole T, Delfino E, Bartalucci G, Orsi A, Di Biagio A, Zehender G, Ballerini F, Bonora S, Sette A, De Palma R, Silvestri G, De Maria A, Bassetti M. The Longest Persistence of Viable SARS-CoV-2 With Recurrence of Viremia and Relapsing Symptomatic COVID-19 in an Immunocompromised Patient-A Case Study. Open Forum Infect Dis 2021; 8:ofab217. [PMID: 34796242 PMCID: PMC8135455 DOI: 10.1093/ofid/ofab217] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Immunocompromised patients show prolonged shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal swabs. We report a case of prolonged persistence of viable SARS-CoV-2 associated with clinical relapses of coronavirus disease 2019 (COVID-19) in a patient with mantle cell lymphoma who underwent treatment with rituximab, bendamustine, cytarabine with consequent lymphopenia and hypogammaglobulinemia. METHODS Nasopharyngeal swabs and blood samples were tested for SARS-CoV-2 by real-time polymerase chain reaction (RT-PCR). On 5 positive nasopharyngeal swabs, we performed viral culture and next-generation sequencing. We analyzed the patient's adaptive and innate immunity to characterize T- and NK-cell subsets. RESULTS SARS-CoV-2 RT-PCR on nasopharyngeal swabs samples remained positive for 268 days. All 5 performed viral cultures were positive, and genomic analysis confirmed a persistent infection with the same strain. Viremia resulted positive in 3 out of 4 COVID-19 clinical relapses and cleared each time after remdesivir treatment. The T- and NK-cell dynamic was different in aviremic and viremic samples, and no SARS-CoV-2-specific antibodies were detected throughout the disease course. CONCLUSIONS In our patient, SARS-CoV-2 persisted with proven infectivity for >8 months. Viremia was associated with COVID-19 relapses, and remdesivir treatment was effective in viremia clearance and symptom remission, although it was unable to clear the virus from the upper respiratory airways. During the viremic phase, we observed a low frequency of terminal effector CD8+ T lymphocytes in peripheral blood; these are probably recruited in inflammatory tissue for viral eradication. In addition, we found a high level of NK-cell repertoire perturbation with relevant involvement during SARS-CoV-2 viremia.
Collapse
Affiliation(s)
- Chiara Sepulcri
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Chiara Dentone
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Malgorzata Mikulska
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Cytofluorimetry Unit, University of Genoa, Genoa, Italy
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Federica Bozzano
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Alessia Parodi
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Tiziana Altosole
- Center of Excellence for Biomedical Research, Cytofluorimetry Unit, University of Genoa, Genoa, Italy
| | - Emanuele Delfino
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giulia Bartalucci
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Hygiene Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Gianguglielmo Zehender
- Hygiene Unit, Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
| | - Filippo Ballerini
- Hematology Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Ospedale Amedeo di Savoia, University of Turin, Turin, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Raffaele De Palma
- Biotherapy Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Immunology Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Andrea De Maria
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
34
|
Scalia G, Raia M, Gelzo M, Cacciapuoti S, De Rosa A, Pinchera B, Scotto R, Giaccone A, Mormile M, Fabbrocini G, Gentile I, Parrella R, Castaldo G. Cytometric analysis of patients with COVID-19: what is changed in the second wave? J Transl Med 2021; 19:403. [PMID: 34556132 PMCID: PMC8460184 DOI: 10.1186/s12967-021-03072-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) pandemic had a 1st wave in Europe from March to May 2020 and a 2nd wave since September 2020. We previously studied 35 hospitalized COVID-19 patients of the 1st wave demonstrating a cytokine storm and the exhaustion of most lymphocyte subpopulations. Herein, we describe the results obtained from COVID-19 patients of the 2nd wave. Methods We analyzed interleukin (IL)-6 by human-specific enzyme-linked immunosorbent assay and a large set of lymphocyte subpopulations by flow cytometry in 274 COVID-19 patients hospitalized from September 2020 to May 2021. Results Patients of 2nd wave compared with those of 1st wave showed lower serum IL-6 levels and a higher number of B and most T lymphocyte subpopulations in advanced stages, in relation with the age and the gender. On the other hand, we observed in 2nd wave patients: (i) a reduction of most lymphocyte subpopulations at mild and moderate stages; (ii) a reduction of natural killer cells and T regulatory cells together with a higher number of activated T helper (TH) 17 lymphocytes in all stages, which were mainly related to steroid and azithromycin therapies before hospitalization. Conclusions COVID-19 had a less severe impact in patients of the 2nd wave in advanced stages, while the impact appeared more severe in patients of mild and moderate stages, as compared with 1st wave patients. This finding suggests that in COVID-19 patients with milder expression at diagnosis, steroid and azithromycin therapies appear to worsen the immune response against the virus. Furthermore, the cytometric profile may help to drive targeted therapies by monoclonal antibodies to modulate specific IL/lymphocyte inhibition or activation in COVID-19 patients.
Collapse
Affiliation(s)
- Giulia Scalia
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Sara Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Annunziata De Rosa
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di malattie infettive respiratorie, Ospedale Cotugno, AORN dei Colli, Naples, Italy
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Riccardo Scotto
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Agnese Giaccone
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Mauro Mormile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Roberto Parrella
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di malattie infettive respiratorie, Ospedale Cotugno, AORN dei Colli, Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
35
|
Fu Y, Chen F, Cui L, Zhao Y, Zhang H, Fu S, Zhang J. Immunological Analysis of People in Northeast China after SARS-CoV-2 Inactivated Vaccine Injection. Vaccines (Basel) 2021; 9:vaccines9091028. [PMID: 34579267 PMCID: PMC8473348 DOI: 10.3390/vaccines9091028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Clarifying changes in the immune microenvironment caused by vaccination is crucial for the development and application of vaccines. In this study, we analyzed seroconversion of antibodies, 12 key cytokines, and 34 lymphocyte subsets at three time points (D-1, D14, and D42) around vaccination and differences between two inactivated vaccines (Sinopharm and Sinovas) to understand the immune response induced by inactivated vaccines in the real world. The results showed that 62.5% and 75% of the participants achieved neutralizing antibody seroconversion on D14 and D42, respectively. After vaccination, IL-5 and IL-6 increased, and INF-γ decreased. IL6, IL-1B, INF-γ, IL-8, and IL-12p70 showed statistical significance in the comparison of different groups. In terms of lymphocyte subsets, CD3 +, CD56 +, CD3 + CD8 +, CD8 + CD71 +, and CD56 + CD71 + showed upward trend, while CD19 +, CD4 + CD8 +, CD8 + CD45RA +, CD4 + HLA-DR +, CD8 + HLA-DR +, and CD8 + CD38 + showed downward trend. Additionally, we found certain differences between the two vaccines in neutralizing antibodies, cytokines, and lymphocyte subsets. This research is a clinical observation on the immune response after vaccination through detecting various immune indicators, which showed that the inactivated vaccines induced both humoral immunity by producing neutralizing antibodies and cellular immunity. The cellular immunity induced by these two vaccines was a Th2-biased response, and it may also lead to a mild Th1-type response.
Collapse
|
36
|
Mahroum N, Zoubi M, Lavine N, Ohayon A, Amital H, Shoenfeld Y. The mosaic of autoimmunity - A taste for more. The 12th international congress of autoimmunity 2021 (AUTO12) virtual. Autoimmun Rev 2021; 20:102945. [PMID: 34509655 DOI: 10.1016/j.autrev.2021.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Notwithstanding the fact that the 12th international congress of autoimmunity (AUTO12) was held virtual this year, the number of the abstracts submitted and those presented crossed the thousand marks. Leading investigators and researchers from all over the world presented the latest developments of their research in the domain of autoimmunity and its correlation with various diseases. In terms of mechanisms of autoimmunity, an update on the mechanisms behind the association of autoimmunity with systemic diseases focusing on hyperstimulation was presented during AUTO12. In addition, a new mechanism of ASIA syndrome caused by an intrauterine contraceptive device was revealed demonstrating a complete resolution of symptoms following device removal. In regard to the correlation between autoimmunity and neurogenerative diseases, the loss of structural protein integrity as the trigger of immunological response was shown. Schizophrenia as well, and its correlation to pro-inflammatory cytokines was also addressed. Furthermore, and as it was said AUTO12 virtual due to COVID-19 pandemic, various works were dedicated to SARS-CoV-2 infection and COVID-19 in terms of autoimmune mechanisms involved in the pathogenesis, treatment and complications of COVID-19. For instance, the correlation between autoimmunity and the severity of COVID-19 was viewed. Moreover, the presence and association of autoantibodies in COVID-19 was also demonstrated, as well as the clinical outcomes of COVID-19 in patients with rheumatic diseases. Finally, immune-mediated reactions and processes secondary to SARS-CoV-2 vaccination was displayed. Due to the immense importance of all of the topics addressed and while several hundreds of works were presented which cannot be summed up in one paper, we aimed hereby to highlight some of the outstanding abstracts and presentations during AUTO12.
Collapse
Affiliation(s)
- Naim Mahroum
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Magdi Zoubi
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Noy Lavine
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; St. George School of Medicine, University of London, London, UK
| | - Aviran Ohayon
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; St. George School of Medicine, University of London, London, UK
| | - Howard Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Ariel University, Ariel, Israel; Saint Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
37
|
Chen R, Zhang S, Su S, Ye H, Shu H. Interactions Between Specific Immune Status of Pregnant Women and SARS-CoV-2 Infection. Front Cell Infect Microbiol 2021; 11:721309. [PMID: 34458162 PMCID: PMC8387674 DOI: 10.3389/fcimb.2021.721309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the Coronavirus Disease 2019 (COVID-19) global pandemic. Because it is a new and highly contagious coronavirus, most people, especially pregnant women, lack immunity. It is therefore important to understand the interaction between why pregnant women are susceptible to SARS-CoV-2 and the specific immune systems of pregnant women. Here, we provide an overview of the changes that occur in the immune system during pregnancy, the activation and response of the immune system in pregnant women with COVID-19, adverse pregnancy outcomes in pregnant women with COVID-19, and the treatment and prevention of COVID-19 in this population.
Collapse
Affiliation(s)
- Ruirong Chen
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shaofen Zhang
- Department of Gynaecology and Obstetrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Sheng Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan Ye
- Department of Gynaecology and Obstetrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haihua Shu
- Department of Anesthesiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Lv D, Peng J, Long R, Lin X, Wang R, Wu D, He M, Liao S, Zhao Y, Deng D. Exploring the Immunopathogenesis of Pregnancy With COVID-19 at the Vaccination Era. Front Immunol 2021; 12:683440. [PMID: 34305916 PMCID: PMC8298030 DOI: 10.3389/fimmu.2021.683440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, Wuhan, China, has experienced an outbreak of coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pregnant women are deductively considered to be in immunosuppressive condition for the safety of semi-allograft fetuses, which increases the risk of being infected by the virus. In this review, we analyzed the unique immunological characteristics of pregnant women and reviewed their known outcomes at different trimesters from the perspective of underlying mechanisms that have been studied and speculated so far.
Collapse
Affiliation(s)
- Dan Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Peng
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingguang Lin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
NKG2D Natural Killer Cell Receptor-A Short Description and Potential Clinical Applications. Cells 2021; 10:cells10061420. [PMID: 34200375 PMCID: PMC8229527 DOI: 10.3390/cells10061420] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are natural cytotoxic, effector cells of the innate immune system. They can recognize transformed or infected cells. NK cells are armed with a set of activating and inhibitory receptors which are able to bind to their ligands on target cells. The right balance between expression and activation of those receptors is fundamental for the proper functionality of NK cells. One of the best known activating receptors is NKG2D, a member of the CD94/NKG2 family. Due to a specific NKG2D binding with its eight different ligands, which are overexpressed in transformed, infected and stressed cells, NK cells are able to recognize and attack their targets. The NKG2D receptor has an enormous significance in various, autoimmune diseases, viral and bacterial infections as well as for transplantation outcomes and complications. This review focuses on the NKG2D receptor, the mechanism of its action, clinical relevance of its gene polymorphisms and a potential application in various clinical settings.
Collapse
|
40
|
Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021; 55:101508. [PMID: 34728121 PMCID: PMC8547971 DOI: 10.1016/j.smim.2021.101508] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
One and half year following the occurrence of COVID-19 pandemic, significant efforts from laboratories all over the world generated a huge amount of data describing the prototypical features of immunity in the course of SARS-CoV-2 infection. In this Review, we rationalize and organize the main observations, trying to define a "core" signature of immunity in COVID-19. We identified six hallmarks describing the main alterations occurring in the early infection phase and in the course of the disease, which predispose to severe illness. The six hallmarks are dysregulated type I IFN activity, hyperinflammation, lymphopenia, lymphocyte impairment, dysregulated myeloid response, and heterogeneous adaptive immunity to SARS-CoV-2. Dysregulation and exhaustion came out as the trait d'union, connecting abnormalities affecting both innate and adaptive immunity, humoral and cellular responses.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|