1
|
Baindara P, Roy D, Boosani CS, Mandal SM, Green JA. AAV-based gene delivery of antimicrobial peptides to combat drug-resistant pathogens. Appl Environ Microbiol 2025; 91:e0170224. [PMID: 39760495 PMCID: PMC11837516 DOI: 10.1128/aem.01702-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as potential alternatives to conventional antibiotics due to their novelty and multiple mechanisms of action. Because they are peptides, AMPs are amenable to bioengineering and suitable for cloning and expression at large production scales. However, the efficient delivery of AMPs is an unaddressed issue, particularly due to their large size, possible toxicities, and the development of adverse immune responses. Here, we have reviewed the possibilities of adeno-associated virus (AAV)-based localized gene delivery of AMPs for the treatment of infectious diseases with a special focus on respiratory infections. By discussing the gene delivery mechanism of AAV and the accompanying technical and therapeutic challenges with AMPs, we describe a foundation that emphasizes the use of viral vector-based gene delivery of AMPs for disease treatment.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Dinata Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Chandra S. Boosani
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Santi M. Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Jonathan A. Green
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
2
|
Stocker WA, Olenick L, Maskey S, Skrombolas D, Luan H, Harrison SG, Wilson M, Traas A, Heffernan M, Busfield S, Walton KL, Harrison CA. Gene therapy with feline anti-Müllerian hormone analogs disrupts folliculogenesis and induces pregnancy loss in female domestic cats. Nat Commun 2025; 16:1668. [PMID: 39955296 PMCID: PMC11830062 DOI: 10.1038/s41467-025-56924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
For female domestic cats, ovariohysterectomy is the only method of inducing permanent infertility. However, hundreds-of-millions of free-roaming cats globally highlight the necessity for alternative contraceptive approaches. One strategy involves a single injection of vector delivering a fertility-inhibiting protein for lifetime contraception. Recent studies in mice and cats have identified anti-Müllerian hormone as an excellent candidate for this type of contraception. Here, we leverage our recent characterization of the molecular mechanisms underlying human anti-Müllerian hormone synthesis and activity, to generate potent feline anti-Müllerian hormone analogs. Single intramuscular delivery of these analogs to female cats using an adeno-associated viral vector leads to a greater than 1000-fold increase in feline anti-Müllerian hormone levels, which are sustained for 9 months. High serum anti-Müllerian hormone is associated with abnormal estrus cyclicity, non-follicular ovarian cyst formation, and a progressive decline in antral follicle numbers, however, the few surviving large follicles continue to ovulate. Unlike previous studies, supraphysiologic levels of anti-Müllerian hormone do not block conception, although they are incompatible with the maintenance of pregnancy. Our findings highlight the complexity of the effects of anti-Müllerian hormone on ovarian physiology but confirm that this growth factor is a candidate for fertility control in free-roaming cats.
Collapse
Affiliation(s)
- William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | | | - Shreya Maskey
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Haitong Luan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sophie G Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matt Wilson
- Scout Bio, 601 Walnut St, Philadelphia, PA, USA
| | - Anne Traas
- Scout Bio, 601 Walnut St, Philadelphia, PA, USA
| | | | | | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Batlle D, Hassler L, Wysocki J. ACE2, From the Kidney to SARS-CoV-2: Donald Seldin Award Lecture 2023. Hypertension 2025; 82:166-180. [PMID: 39624896 DOI: 10.1161/hypertensionaha.124.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ACE2 (angiotensin-converting enzyme 2) is a monocarboxypeptidase that cleaves Ang II (angiotensin II) among other substrates. ACE2 is present in the cell membrane of many organs, most abundantly in epithelial cells of kidney proximal tubules and the small intestine, and also exists in soluble forms in plasma and body fluids. Membrane-bound ACE2 exerts a renoprotective action by metabolizing Ang II and therefore attenuating the undesirable actions of excess Ang II. Therefore, soluble ACE2, by downregulating this peptide, may exert a therapeutic action. Our laboratory has designed ACE2 truncates that pass the glomerular filtration barrier to target the kidney renin-angiotensin system directly and, therefore, compensate for loss of kidney membrane-bound ACE2. Membrane-bound ACE2 is also the essential receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble ACE2 proteins have been studied as a way to intercept SARS-CoV-2 from binding to membrane-bound ACE2 and prevent cell entry of SARS-CoV-2 altogether. We bioengineered a soluble ACE2 protein, termed ACE2 618-DDC-ABD, with increased binding affinity for SARS-CoV-2 and prolonged duration of action, which, when administered intranasally, provides near-complete protection from lethality in k18hACE2 mice infected with different SARS-CoV-2 variants. The main advantage of soluble ACE2 proteins for the neutralization of SARS-CoV-2 is their immediate onset of action and universality for current and future emerging SARS-CoV-2 variants. It is notable that ACE2 is critically involved in 2 dissimilar functions: as a receptor for cell entry of many coronaviruses and as an enzyme in the metabolism of Ang II, and yet in both cases, it is a therapeutic target.
Collapse
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
4
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2025; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
5
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
6
|
Shirazi M, Cianfarini C, Ismail A, Wysocki J, Wang JJ, Ye M, Zhang ZJ, Batlle D. Altered kidney distribution and loss of ACE2 into the urine in acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F412-F425. [PMID: 38961845 PMCID: PMC11460339 DOI: 10.1152/ajprenal.00237.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin-angiotensin system (RAS) has been described. Angiotensin-converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of angiotensin II, this study aimed to characterize kidney and urinary ACE2 in a mouse model of AKI. Ischemia-reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 h after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and the presence of ACE2-positive luminal casts in the medulla. In cortical membranes, ACE2 protein and enzymatic activity were both markedly reduced (37 ± 4 vs. 100 ± 6 ACE2/β-actin, P = 0.0004, and 96 ± 14 vs. 152 ± 6 RFU/μg protein/h, P = 0.006). In urine, full-length membrane-bound ACE2 protein (100 kDa) was markedly increased (1,120 ± 405 vs. 100 ± 46 ACE2/µg creatinine, P = 0.04), and casts stained for ACE2 were recovered in the urine sediment. In conclusion, in AKI caused by IRI, there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2-positive material in the medulla and increased urinary excretion of full-length membrane-bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.NEW & NOTEWORTHY This study provides novel insights into the distribution of kidney ACE2 in a model of AKI by IRI showing a striking detachment of apical ACE2 from proximal tubules and its loss in urine and urine sediment. The observed deficiency of kidney ACE2 protein and enzymatic activity in severe AKI suggests that administration of forms of this enzyme may mitigate AKI and that urinary ACE2 may serve as a potential biomarker for tubular injury.
Collapse
Affiliation(s)
- Mina Shirazi
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Cianfarini
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed Ismail
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jan Wysocki
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jiao-Jing Wang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Minghao Ye
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Zheng Jenny Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Daniel Batlle
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
7
|
Yu B, Drelich A, Hsu J, Tat V, Peng BH, Wei Q, Wang J, Wang H, Wages J, Mendelsohn AR, Larrick JW, Tseng CT. Protective Efficacy of Novel Engineered Human ACE2-Fc Fusion Protein Against Pan-SARS-CoV-2 Infection In Vitro and in Vivo. J Med Chem 2023; 66:16646-16657. [PMID: 38100534 DOI: 10.1021/acs.jmedchem.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Enduring occurrence of severe COVID-19 for unvaccinated, aged, or immunocompromised individuals remains an urgent need. Soluble human angiotensin-converting enzyme 2 (ACE2) has been used as a decoy receptor to inhibit SARS-CoV-2 infection, which is limited by moderate affinity. We describe an engineered, high-affinity ACE2 that is consistently effective in tissue cultures in neutralizing all strains tested, including Delta and Omicron. We also found that treatment of AC70 hACE2 transgenic mice with hACE2-Fc receptor decoys effectively reduced viral infection, attenuated tissue histopathology, and delayed the onset of morbidity and mortality caused by SARS-CoV-2 infection. We believe that using this ACE2-Fc protein would be less likely to promote the escape mutants of SARS-CoV-2 as frequently as did those neutralizing antibody therapies. Together, our results emphasize the suitability of our newly engineered hACE2-Fc fusion protein for further development as a potent antiviral agent against Pan-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bo Yu
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Aleksandra Drelich
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jason Hsu
- Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Vivian Tat
- Pathology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Bi-Hung Peng
- Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Qisheng Wei
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Jianming Wang
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Hong Wang
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - John Wages
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | | | - James W Larrick
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Chien-Te Tseng
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Pathology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Guo H, Cho B, Hinton PR, He S, Yu Y, Ramesh AK, Sivaccumar JP, Ku Z, Campo K, Holland S, Sachdeva S, Mensch C, Dawod M, Whitaker A, Eisenhauer P, Falcone A, Honce R, Botten JW, Carroll SF, Keyt BA, Womack AW, Strohl WR, Xu K, Zhang N, An Z, Ha S, Shiver JW, Fu TM. An ACE2 decamer viral trap as a durable intervention solution for current and future SARS-CoV. Emerg Microbes Infect 2023; 12:2275598. [PMID: 38078382 PMCID: PMC10768737 DOI: 10.1080/22221751.2023.2275598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
The capacity of SARS-CoV-2 to evolve poses challenges to conventional prevention and treatment options such as vaccination and monoclonal antibodies, as they rely on viral receptor binding domain (RBD) sequences from previous strains. Additionally, animal CoVs, especially those of the SARS family, are now appreciated as a constant pandemic threat. We present here a new antiviral approach featuring inhalation delivery of a recombinant viral trap composed of ten copies of angiotensin-converting enzyme 2 (ACE2) fused to the IgM Fc. This ACE2 decamer viral trap is designed to inhibit SARS-CoV-2 entry function, regardless of viral RBD sequence variations as shown by its high neutralization potency against all known SARS-CoV-2 variants, including Omicron BQ.1, BQ.1.1, XBB.1 and XBB.1.5. In addition, it demonstrates potency against SARS-CoV-1, human NL63, as well as bat and pangolin CoVs. The multivalent trap is effective in both prophylactic and therapeutic settings since a single intranasal dosing confers protection in human ACE2 transgenic mice against viral challenges. Lastly, this molecule is stable at ambient temperature for more than twelve weeks and can sustain physical stress from aerosolization. These results demonstrate the potential of a decameric ACE2 viral trap as an inhalation solution for ACE2-dependent coronaviruses of current and future pandemic concerns.
Collapse
Affiliation(s)
| | | | | | - Sijia He
- IGM Biosciences, Mountain View, CA, USA
| | | | - Ashwin Kumar Ramesh
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jwala Priyadarsini Sivaccumar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | - Annalis Whitaker
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, USA
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Philip Eisenhauer
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Allison Falcone
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Rebekah Honce
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | | | | | | | | | - Kai Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA, USA
| | | | | |
Collapse
|
9
|
Sun CP, Chiu CW, Wu PY, Tsung SI, Lee IJ, Hu CW, Hsu MF, Kuo TJ, Lan YH, Chen LY, Ng HY, Chung MJ, Liao HN, Tseng SC, Lo CH, Chen YJ, Liao CC, Chang CS, Liang JJ, Draczkowski P, Puri S, Chang YC, Huang JS, Chen CC, Kau JH, Chen YH, Liu WC, Wu HC, Danny Hsu ST, Wang IH, Tao MH. Development of AAV-delivered broadly neutralizing anti-human ACE2 antibodies against SARS-CoV-2 variants. Mol Ther 2023; 31:3322-3336. [PMID: 37689971 PMCID: PMC10638075 DOI: 10.1016/j.ymthe.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the emergence of new variants that are resistant to existing vaccines and therapeutic antibodies, has raised the need for novel strategies to combat the persistent global COVID-19 epidemic. In this study, a monoclonal anti-human angiotensin-converting enzyme 2 (hACE2) antibody, ch2H2, was isolated and humanized to block the viral receptor-binding domain (RBD) binding to hACE2, the major entry receptor of SARS-CoV-2. This antibody targets the RBD-binding site on the N terminus of hACE2 and has a high binding affinity to outcompete the RBD. In vitro, ch2H2 antibody showed potent inhibitory activity against multiple SARS-CoV-2 variants, including the most antigenically drifted and immune-evading variant Omicron. In vivo, adeno-associated virus (AAV)-mediated delivery enabled a sustained expression of monoclonal antibody (mAb) ch2H2, generating a high concentration of antibodies in mice. A single administration of AAV-delivered mAb ch2H2 significantly reduced viral RNA load and infectious virions and mitigated pulmonary pathological changes in mice challenged with SARS-CoV-2 Omicron BA.5 subvariant. Collectively, the results suggest that AAV-delivered hACE2-blocking antibody provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and potentially other hACE2-dependent pathogens that may emerge in the future.
Collapse
Affiliation(s)
- Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Wen Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ping-Yi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-I Tsung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - I-Jung Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chih-Wei Hu
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Jiun Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hua Lan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Yao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Yee Ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Jhe Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Ni Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheng-Che Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Hui Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Jiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Che Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Shin Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Sarita Puri
- Department of Bioscience, University of Milan, Milan, Italy
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jing-Siou Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical College, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Chun Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| | - I-Hsuan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Department of Clinical Laboratory Science and Medical Biotechnology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Cesur-Ergün B, Demir-Dora D. Gene therapy in cancer. J Gene Med 2023; 25:e3550. [PMID: 37354071 DOI: 10.1002/jgm.3550] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/26/2023] Open
Abstract
Gene therapy, recently frequently investigated, is an alternative treatment method that introduces therapeutic genes into a cancer cell or tissue to cause cell death or slow down the growth of the cancer. This treatment has various strategies such as therapeutic gene activation or silencing of unwanted or defective genes; therefore a wide variety of genes and viral or nonviral vectors are being used in studies. Gene therapy strategies in cancer can be classified as inhibition of oncogene activation, activation of tumor suppressor gene, immunotherapy, suicide gene therapy and antiangiogenic gene therapy. In this review, we explain gene therapy, gene therapy strategies in cancer, approved gene medicines for cancer treatment and future of gene therapy in cancer. Today gene therapy has not yet reached the level of replacing conventional therapies. However, with a better understanding of the mechanism of cancer to determine the right treatment and target, in the future gene therapy, used as monotherapy or in combination with another existing treatment options, is likely to be used as a new medical procedure that will make cancer a controllable disease.
Collapse
Affiliation(s)
- Büşra Cesur-Ergün
- Faculty of Medicine, Department of Medical Pharmacology, Akdeniz University, Antalya, Turkey
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
| | - Devrim Demir-Dora
- Faculty of Medicine, Department of Medical Pharmacology, Akdeniz University, Antalya, Turkey
- Health Sciences Institute, Department of Gene and Cell Therapy, Akdeniz University, Antalya, Turkey
- Health Sciences Institue, Department of Medical Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
11
|
Llewellyn GN, Chen HY, Rogers GL, Huang X, Sell PJ, Henley JE, Cannon PM. Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides. J Virol 2023; 97:e0068423. [PMID: 37555663 PMCID: PMC10506483 DOI: 10.1128/jvi.00684-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
With increasing resistance of SARS-CoV-2 variants to antibodies, there is interest in developing entry inhibitors that target essential receptor-binding regions of the viral Spike protein and thereby present a high bar for viral resistance. Such inhibitors could be derivatives of the viral receptor, ACE2, or peptides engineered to interact specifically with the Spike receptor-binding pocket. We compared the efficacy of a series of both types of entry inhibitors, constructed as fusions to an antibody Fc domain. Such a design can increase protein stability and act to both neutralize free virus and recruit effector functions to clear infected cells. We tested the reagents against prototype variants of SARS-CoV-2, using both Spike pseudotyped vesicular stomatitis virus vectors and replication-competent viruses. These analyses revealed that an optimized ACE2 derivative could neutralize all variants we tested with high efficacy. In contrast, the Spike-binding peptides had varying activities against different variants, with resistance observed in the Spike proteins from Beta, Gamma, and Omicron (BA.1 and BA.5). The resistance mapped to mutations at Spike residues K417 and N501 and could be overcome for one of the peptides by linking two copies in tandem, effectively creating a tetrameric reagent in the Fc fusion. Finally, both the optimized ACE2 and tetrameric peptide inhibitors provided some protection to human ACE2 transgenic mice challenged with the SARS-CoV-2 Delta variant, which typically causes death in this model within 7-9 days. IMPORTANCE The increasing resistance of SARS-CoV-2 variants to therapeutic antibodies has highlighted the need for new treatment options, especially in individuals who do not respond to vaccination. Receptor decoys that block viral entry are an attractive approach because of the presumed high bar to developing viral resistance. Here, we compare two entry inhibitors based on derivatives of the ACE2 receptor, or engineered peptides that bind to the receptor-binding pocket of the SARS-CoV-2 Spike protein. In each case, the inhibitors were fused to immunoglobulin Fc domains, which can further enhance therapeutic properties, and compared for activity against different SARS-CoV-2 variants. Potent inhibition against multiple SARS-CoV-2 variants was demonstrated in vitro, and even relatively low single doses of optimized reagents provided some protection in a mouse model, confirming their potential as an alternative to antibody therapies.
Collapse
Affiliation(s)
- George N. Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Philip J. Sell
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jill E. Henley
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Lu M, Yao W, Li Y, Ma D, Zhang Z, Wang H, Tang X, Wang Y, Li C, Cheng D, Lin H, Yin Y, Zhao J, Zhong G. Broadly Effective ACE2 Decoy Proteins Protect Mice from Lethal SARS-CoV-2 Infection. Microbiol Spectr 2023; 11:e0110023. [PMID: 37395664 PMCID: PMC10434153 DOI: 10.1128/spectrum.01100-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.
Collapse
Affiliation(s)
- Mengjia Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Weitong Yao
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Yujun Li
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Danting Ma
- Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haimin Wang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaojuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dechun Cheng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hua Lin
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China
| | - Yandong Yin
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guocai Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Tada T, Minnee J, Landau NR. Vectored immunoprophylaxis and treatment of SARS-CoV-2 infection in a preclinical model. Proc Natl Acad Sci U S A 2023; 120:e2303509120. [PMID: 37252952 PMCID: PMC10266030 DOI: 10.1073/pnas.2303509120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| | - Julia Minnee
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| | - Nathaniel R. Landau
- Department of Microbiology, New York University (NYU) Grossman School of Medicine, New York, NY10016
| |
Collapse
|
14
|
Havranek B, Lindsey GW, Higuchi Y, Itoh Y, Suzuki T, Okamoto T, Hoshino A, Procko E, Islam SM. A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo. Commun Biol 2023; 6:513. [PMID: 37173421 PMCID: PMC10177734 DOI: 10.1038/s42003-023-04860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA
- ComputePharma, LLC., Chicago, IL, USA
| | | | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA
- Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- ComputePharma, LLC., Chicago, IL, USA.
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
15
|
Tada T, Dcosta BM, Minnee J, Landau NR. Vectored Immunoprophylaxis and Treatment of SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523649. [PMID: 36711584 PMCID: PMC9882093 DOI: 10.1101/2023.01.11.523649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vectored immunoprophylaxis was first developed as a means to establish engineered immunity to HIV through the use of an adeno-associated viral vector expressing a broadly neutralizing antibody. We have applied this concept to establish long-term prophylaxis against SARS-CoV-2 by adeno-associated and lentiviral vectors expressing a high affinity ACE2 decoy receptor. Administration of decoy-expressing AAV vectors based on AAV2.retro and AAV6.2 by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and active against recent SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective when administered up to 24 hours post-infection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.
Collapse
|
16
|
Du Y, Miah KM, Habib O, Meyer-Berg H, Conway CC, Viegas MA, Dean R, Satyapertiwi D, Zhao J, Wang Y, Temperton NJ, Gamlen TPE, Gill DR, Hyde SC. Lung directed antibody gene transfer confers protection against SARS-CoV-2 infection. Thorax 2022; 77:1229-1236. [PMID: 35165144 PMCID: PMC8861887 DOI: 10.1136/thoraxjnl-2021-217650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.
Collapse
Affiliation(s)
- Yue Du
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kamran M Miah
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Omar Habib
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena Meyer-Berg
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Catriona C Conway
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mariana A Viegas
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Dean
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Jincun Zhao
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Yanqun Wang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | | | - Toby P E Gamlen
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R Gill
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C Hyde
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Wang B, Zhao J, Liu S, Feng J, Luo Y, He X, Wang Y, Ge F, Wang J, Ye B, Huang W, Bo X, Wang Y, Xi JJ. ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants. Emerg Microbes Infect 2022; 11:1488-1499. [PMID: 35587428 PMCID: PMC9176695 DOI: 10.1080/22221751.2022.2079426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent global pandemic was a spillover from the SARS-CoV-2 virus. Viral entry involves the receptor binding domain (RBD) of the viral spike protein interacting with the protease domain (PD) of the cellular receptor, ACE2. We hereby present a comprehensive mutational landscape of the effects of ACE2-PD point mutations on RBD-ACE2 binding using a saturation mutagenesis approach based on microarray-based oligo synthesis and a single-cell screening assay. We observed that changes in glycosylation sites and directly interacting sites of ACE2-PD significantly influenced ACE2-RBD binding. We further engineered an ACE2 decoy receptor with critical point mutations, D30I, L79W, T92N, N322V, and K475F, named C4-1. C4-1 shows a 200-fold increase in neutralization for the SARS-CoV-2 D614G pseudotyped virus compared to wild-type soluble ACE2 and a sevenfold increase in binding affinity to wild-type spike compared to the C-terminal Ig-Fc fused wild-type soluble ACE2. Moreover, C4-1 efficiently neutralized prevalent variants, especially the omicron variant (EC50=16 ng/mL), and rescued monoclonal antibodies, vaccine, and convalescent sera neutralization from viral immune-escaping. We hope to next investigate translating the therapeutic potential of C4-1 for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Bolun Wang
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Junxuan Zhao
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jingyuan Feng
- College of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Yufeng Luo
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Xinyu He
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Yanmin Wang
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Feixiang Ge
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Junyi Wang
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Buqing Ye
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Zhang L, Narayanan KK, Cooper L, Chan KK, Skeeters SS, Devlin CA, Aguhob A, Shirley K, Rong L, Rehman J, Malik AB, Procko E. An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2. EMBO Mol Med 2022. [PMID: 36094679 DOI: 10.1101/2022.03.28.486075v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Monoclonal antibodies targeting the SARS-CoV-2 spike (S) neutralize infection and are efficacious for the treatment of COVID-19. However, SARS-CoV-2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22 .v2.4-IgG1 was previously shown to be effective against SARS-CoV-2 variants when administered intravenously. Here, inhalation of aerosolized sACE22 .v2.4-IgG1 increased survival and ameliorated lung injury in K18-hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE22 .v2.4-IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18-hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE22 .v2.4-IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Laura Cooper
- Department of Microbiology and Immunology, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Kui K Chan
- Cyrus Biotechnology, Inc., Seattle, WA, USA
| | | | | | | | | | - Lijun Rong
- Department of Microbiology and Immunology, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
- Cyrus Biotechnology, Inc., Seattle, WA, USA
| |
Collapse
|
19
|
Zhang L, Narayanan KK, Cooper L, Chan KK, Skeeters SS, Devlin CA, Aguhob A, Shirley K, Rong L, Rehman J, Malik AB, Procko E. An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2. EMBO Mol Med 2022; 14:e16109. [PMID: 36094679 PMCID: PMC9539395 DOI: 10.15252/emmm.202216109] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Monoclonal antibodies targeting the SARS-CoV-2 spike (S) neutralize infection and are efficacious for the treatment of COVID-19. However, SARS-CoV-2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22 .v2.4-IgG1 was previously shown to be effective against SARS-CoV-2 variants when administered intravenously. Here, inhalation of aerosolized sACE22 .v2.4-IgG1 increased survival and ameliorated lung injury in K18-hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE22 .v2.4-IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18-hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE22 .v2.4-IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular BiologyThe University of Illinois College of MedicineChicagoILUSA
- Present address:
Division of Pulmonary, Allergy and Critical Care Medicine, Department of MedicineUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | | | - Laura Cooper
- Department of Microbiology and ImmunologyThe University of Illinois College of MedicineChicagoILUSA
| | | | | | | | | | | | - Lijun Rong
- Department of Microbiology and ImmunologyThe University of Illinois College of MedicineChicagoILUSA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular BiologyThe University of Illinois College of MedicineChicagoILUSA
- Department of Biochemistry and Molecular GeneticsThe University of Illinois College of MedicineChicagoILUSA
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular BiologyThe University of Illinois College of MedicineChicagoILUSA
| | - Erik Procko
- Department of BiochemistryUniversity of IllinoisUrbanaILUSA
- Cyrus Biotechnology, Inc.SeattleWAUSA
| |
Collapse
|
20
|
Intranasal application of adeno-associated viruses: a systematic review. Transl Res 2022; 248:87-110. [PMID: 35597541 DOI: 10.1016/j.trsl.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/13/2023]
Abstract
Adeno-associated viruses (AAVs) represent some of the most commonly employed vectors for targeted gene delivery and their extensive study has resulted in the approval of multiple gene therapies to treat human diseases. The intranasal route of vector application in gene therapy offers several advantages over traditional ways of administration. In addition to targeting local tissue like the olfactory epithelium, it provides minimally invasive access to various organ systems, including the central nervous system and the respiratory tract. Through a systematic literature review, a total of 53 articles that investigated the intranasal application of AAVs were identified, included, and summarized in this manuscript. Within these studies, AAV-based gene therapy was mainly investigated for its application in various infectious, pulmonary, or neurologic and/or psychiatric diseases. This review gives a comprehensive overview of the current technological state of the art regarding the intranasal application of AAVs for gene transfer and discusses remaining hurdles, which still have to be resolved before this approach can effectively be implemented in the routine clinical setting.
Collapse
|
21
|
Arimori T, Ikemura N, Okamoto T, Takagi J, Standley DM, Hoshino A. Engineering ACE2 decoy receptors to combat viral escapability. Trends Pharmacol Sci 2022; 43:838-851. [PMID: 35902282 PMCID: PMC9312672 DOI: 10.1016/j.tips.2022.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Decoy receptor proteins that trick viruses to bind to them should be resistant to viral escape because viruses that require entry receptors cannot help but bind decoy receptors. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for coronavirus cell entry. Recombinant soluble ACE2 was previously developed as a biologic against acute respiratory distress syndrome (ARDS) and verified to be safe in clinical studies. The emergence of COVID-19 reignited interest in soluble ACE2 as a potential broad-spectrum decoy receptor against coronaviruses. In this review, we summarize recent developments in preclinical studies using various high-affinity mutagenesis and Fc fusion approaches to achieve therapeutic efficacy of recombinant ACE2 decoy receptor against coronaviruses. We also highlight the relevance of stimulating effector immune cells through Fc-receptor engagement and the potential of using liquid aerosol delivery of ACE2 decoy receptors for defense against ACE2-utilizing coronaviruses.
Collapse
Affiliation(s)
- Takao Arimori
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Nariko Ikemura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Daron M Standley
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan; Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
22
|
Lee M, Rice-Boucher PJ, Collins LT, Wagner E, Aulisa L, Hughes J, Curiel DT. A Novel Piggyback Strategy for mRNA Delivery Exploiting Adenovirus Entry Biology. Viruses 2022; 14:2169. [PMID: 36298724 PMCID: PMC9608319 DOI: 10.3390/v14102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Paul J. Rice-Boucher
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Logan Thrasher Collins
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Lorenzo Aulisa
- GreenLight Biosciences, Inc., 200 Boston Ave. #3100, Medford, MA 02155, USA
| | - Jeffrey Hughes
- GreenLight Biosciences, Inc., 200 Boston Ave. #3100, Medford, MA 02155, USA
| | - David T. Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
24
|
Kayabolen A, Akcan U, Özturan D, Ulbegi‐Polat H, Sahin GN, Pinarbasi‐Degirmenci N, Bayraktar C, Soyler G, Sarayloo E, Nurtop E, Ozer B, Guney‐Esken G, Barlas T, Yildirim IS, Dogan O, Karahuseyinoglu S, Lack NA, Kaya M, Albayrak C, Can F, Solaroglu I, Bagci‐Onder T. Protein Scaffold-Based Multimerization of Soluble ACE2 Efficiently Blocks SARS-CoV-2 Infection In Vitro and In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201294. [PMID: 35896894 PMCID: PMC9353362 DOI: 10.1002/advs.202201294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Ugur Akcan
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Doğancan Özturan
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Hivda Ulbegi‐Polat
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research CenterKocaeli41470Turkey
| | - Gizem Nur Sahin
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | | | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Gizem Soyler
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Ehsan Sarayloo
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of BiotechnologyBeykoz Institute of Life Sciences and Biotechnology (BILSAB)Bezmialem Vakif UniversityIstanbul34820Turkey
| | - Elif Nurtop
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Berna Ozer
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Gulen Guney‐Esken
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Tayfun Barlas
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
| | - Ismail Selim Yildirim
- Genetic Engineering and Biotechnology InstituteTUBITAK Marmara Research CenterKocaeli41470Turkey
| | - Ozlem Dogan
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
- Koç University School of MedicineDepartment of Medical MicrobiologyIstanbul34010Turkey
| | - Sercin Karahuseyinoglu
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Koç University School of Medicine, Department of Histology and EmbryologyIstanbul34450Türkiye
| | - Nathan A. Lack
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Vancouver Prostate CentreUniversity of British ColumbiaVancouverBC V6H 3Z6Canada
| | - Mehmet Kaya
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| | - Cem Albayrak
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of BiotechnologyBeykoz Institute of Life Sciences and Biotechnology (BILSAB)Bezmialem Vakif UniversityIstanbul34820Turkey
| | - Fusun Can
- Koç University Isbank Center for Infectious Diseases (KUISCID)Istanbul34010Turkey
- Koç University School of MedicineDepartment of Medical MicrobiologyIstanbul34010Turkey
| | - Ihsan Solaroglu
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
- Department of Basic SciencesLoma Linda UniversityLoma LindaCA92354USA
| | - Tugba Bagci‐Onder
- Koç University Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbul34450Turkey
| |
Collapse
|
25
|
Sims JJ, Lian S, Meggersee RL, Kasimsetty A, Wilson JM. High activity of an affinity-matured ACE2 decoy against Omicron SARS-CoV-2 and pre-emergent coronaviruses. PLoS One 2022; 17:e0271359. [PMID: 36006993 PMCID: PMC9409550 DOI: 10.1371/journal.pone.0271359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly its cell-binding spike protein gene, has undergone rapid evolution during the coronavirus disease 2019 (COVID-19) pandemic. Variants including Omicron BA.1 and Omicron BA.2 now seriously threaten the efficacy of therapeutic monoclonal antibodies and vaccines that target the spike protein. Viral evolution over a much longer timescale has generated a wide range of genetically distinct sarbecoviruses in animal populations, including the pandemic viruses SARS-CoV-2 and SARS-CoV-1. The genetic diversity and widespread zoonotic potential of this group complicates current attempts to develop drugs in preparation for the next sarbecovirus pandemic. Receptor-based decoy inhibitors can target a wide range of viral strains with a common receptor and may have intrinsic resistance to escape mutant generation and antigenic drift. We previously generated an affinity-matured decoy inhibitor based on the receptor target of the SARS-CoV-2 spike protein, angiotensin-converting enzyme 2 (ACE2), and deployed it in a recombinant adeno-associated virus vector (rAAV) for intranasal delivery and passive prophylaxis against COVID-19. Here, we demonstrate the exceptional binding and neutralizing potency of this ACE2 decoy against SARS-CoV-2 variants including Omicron BA.1 and Omicron BA.2. Tight decoy binding tracks with human ACE2 binding of viral spike receptor-binding domains across diverse clades of coronaviruses. Furthermore, in a coronavirus that cannot bind human ACE2, a variant that acquired human ACE2 binding was bound by the decoy with nanomolar affinity. Considering these results, we discuss a strategy of decoy-based treatment and passive protection to mitigate the ongoing COVID-19 pandemic and future airway virus threats.
Collapse
Affiliation(s)
- Joshua J. Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sharon Lian
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rosemary L. Meggersee
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Aradhana Kasimsetty
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
26
|
Wines BD, Kurtovic L, Trist HM, Esparon S, Lopez E, Chappin K, Chan LJ, Mordant FL, Lee WS, Gherardin NA, Patel SK, Hartley GE, Pymm P, Cooney JP, Beeson JG, Godfrey DI, Burrell LM, van Zelm MC, Wheatley AK, Chung AW, Tham WH, Subbarao K, Kent SJ, Hogarth PM. Fc engineered ACE2-Fc is a potent multifunctional agent targeting SARS-CoV2. Front Immunol 2022; 13:889372. [PMID: 35967361 PMCID: PMC9369017 DOI: 10.3389/fimmu.2022.889372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 01/26/2023] Open
Abstract
Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.
Collapse
Affiliation(s)
- Bruce D. Wines
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Halina M. Trist
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Sandra Esparon
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Klasina Chappin
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
| | - Li-Jin Chan
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Francesca L. Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sheila K. Patel
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Phillip Pymm
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James P. Cooney
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Monash University, Clayton VIC, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Louise M. Burrell
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Alfred Hospital, Melbourne, VIC, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune therapies Laboratory, Burnet Institute, Melbourne, VIC, Australia
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Matusewicz L, Golec M, Czogalla A, Kuliczkowski K, Konka A, Zembala-John J, Sikorski AF. COVID-19 therapies: do we see substantial progress? Cell Mol Biol Lett 2022; 27:42. [PMID: 35641916 PMCID: PMC9152818 DOI: 10.1186/s11658-022-00341-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 12/15/2022] Open
Abstract
The appearance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its spread all over the world is the cause of the coronavirus disease 2019 (COVID-19) pandemic, which has recently resulted in almost 400 million confirmed cases and 6 million deaths, not to mention unknown long-term or persistent side effects in convalescent individuals. In this short review, we discuss approaches to treat COVID-19 that are based on current knowledge of the mechanisms of viral cell receptor recognition, virus-host membrane fusion, and inhibition of viral RNA and viral assembly. Despite enormous progress in antiviral therapy and prevention, new effective therapies are still in great demand.
Collapse
Affiliation(s)
- Lucyna Matusewicz
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot Curie 14a, 50-383 Wrocław, Poland
| | - Marlena Golec
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. F. Joliot Curie 14a, 50-383 Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Joanna Zembala-John
- Chair and Department of Medicine and Environmental Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, 41-800 Zabrze, Poland
- Acellmed Ltd., M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland
- Acellmed Ltd., M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| |
Collapse
|
28
|
Becker J, Stanifer ML, Leist SR, Stolp B, Maiakovska O, West A, Wiedtke E, Börner K, Ghanem A, Ambiel I, Tse LV, Fackler OT, Baric RS, Boulant S, Grimm D. Ex vivo and in vivo suppression of SARS-CoV-2 with combinatorial AAV/RNAi expression vectors. Mol Ther 2022; 30:2005-2023. [PMID: 35038579 PMCID: PMC8758558 DOI: 10.1016/j.ymthe.2022.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.
Collapse
Affiliation(s)
- Jonas Becker
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Megan Lynn Stanifer
- Department of Infectious Diseases/Molecular Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Rebecca Leist
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Bettina Stolp
- Department of Infectious Diseases/Integrative Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Olena Maiakovska
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ande West
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Department of Infectious Diseases/Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany
| | - Ali Ghanem
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ina Ambiel
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Longping Victor Tse
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Oliver Till Fackler
- Department of Infectious Diseases/Integrative Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Ralph Steven Baric
- Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC 27599, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany; Department of Infectious Diseases/Virology, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
30
|
Zhang L, Narayanan KK, Cooper L, Chan KK, Devlin CA, Aguhob A, Shirley K, Rong L, Rehman J, Malik AB, Procko E. An engineered ACE2 decoy receptor can be administered by inhalation and potently targets the BA.1 and BA.2 omicron variants of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.28.486075. [PMID: 35378764 PMCID: PMC8978935 DOI: 10.1101/2022.03.28.486075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies targeting the SARS-CoV-2 spike (S) glycoprotein neutralize infection and are efficacious for the treatment of mild-to-moderate COVID-19. However, SARS-CoV-2 variants have emerged that partially or fully escape monoclonal antibodies in clinical use. Notably, the BA.2 sublineage of B.1.1.529/omicron escapes nearly all monoclonal antibodies currently authorized for therapeutic treatment of COVID-19. Decoy receptors, which are based on soluble forms of the host entry receptor ACE2, are an alternative strategy that broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE2 2 .v2.4-IgG1 was previously shown to be effective in vivo against SARS-CoV-2 variants when administered intravenously. Here, the inhalation of sACE2 2 .v2.4-IgG1 is found to increase survival and ameliorate lung injury in K18-hACE2 transgenic mice inoculated with a lethal dose of the virulent P.1/gamma virus. Loss of catalytic activity reduced the decoy’s therapeutic efficacy supporting dual mechanisms of action: direct blocking of viral S and turnover of ACE2 substrates associated with lung injury and inflammation. Binding of sACE2 2 .v2.4-IgG1 remained tight to S of BA.1 omicron, despite BA.1 omicron having extensive mutations, and binding exceeded that of four monoclonal antibodies approved for clinical use. BA.1 pseudovirus and authentic virus were neutralized at picomolar concentrations. Finally, tight binding was maintained against S from the BA.2 omicron sublineage, which differs from S of BA.1 by 26 mutations. Overall, the therapeutic potential of sACE2 2 .v2.4-IgG1 is further confirmed by inhalation route and broad neutralization potency persists against increasingly divergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | - Laura Cooper
- Department of Microbiology and Immunology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Kui K. Chan
- Cyrus Biotechnology, Inc., Seattle, WA 98101, USA
| | | | - Aaron Aguhob
- Cyrus Biotechnology, Inc., Seattle, WA 98101, USA
| | | | - Lijun Rong
- Department of Microbiology and Immunology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Cyrus Biotechnology, Inc., Seattle, WA 98101, USA
| |
Collapse
|
31
|
Qin X, Li S, Li X, Pei D, Liu Y, Ding Y, Liu L, Bi H, Shi X, Guo Y, Fang E, Huang F, Yu L, Zhu L, An Y, Valencia CA, Li Y, Dong B, Zhou Y. Development of an Adeno-Associated Virus-Vectored SARS-CoV-2 Vaccine and Its Immunogenicity in Mice. Front Cell Infect Microbiol 2022; 12:802147. [PMID: 35310850 PMCID: PMC8927296 DOI: 10.3389/fcimb.2022.802147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Owing to the outbreak of the novel coronavirus (SARS-CoV-2) worldwide at the end of 2019, the development of a SARS-CoV-2 vaccine became an urgent need. In this study, we developed a type 9 adeno-associated virus vectored vaccine candidate expressing a dimeric receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S protein) and evaluated its immunogenicity in a murine model. The vaccine candidate, named AAV9-RBD virus, was constructed by inserting a signal peptide to the N-terminus of two copies of RBD, spaced by a linker, into the genome of a type 9 adeno-associated virus. In vitro assays showed that HeLa cells infected by the recombinant AAV virus expressed high levels of the recombinant RBD protein, mostly found in the cell culture supernatant. The recombinant AAV9-RBD virus was cultured and purified. The genome titer of the purified recombinant AAV9-RBD virus was determined to be 2.4 × 1013 genome copies/mL (GC/mL) by Q-PCR. Balb/c mice were immunized with the virus by intramuscular injection or nasal drip administration. Eight weeks after immunization, neutralizing antibodies against the new coronavirus pseudovirus were detected in the sera of all mice; the mean neutralizing antibody EC50 values were 517.7 ± 292.1 (n=10) and 682.8 ± 454.0 (n=10) in the intramuscular injection group and nasal drip group, respectively. The results of this study showed that the recombinant AAV9-RBD virus may be used for the development of a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Xi Qin
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang Li
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Dening Pei
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Liu
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youxue Ding
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Lan Liu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Hua Bi
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xinchang Shi
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Guo
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Enyue Fang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Yu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Liuqiang Zhu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yifang An
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - C. Alexander Valencia
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| | - Biao Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| | - Yong Zhou
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| |
Collapse
|
32
|
Wang H, Li C, Obadan A, Frizzell H, Hsiang TY, Gil S, Germond A, Fountain C, Baldessari A, Roffler S, Kiem HP, Fuller D, Lieber A. In vivo HSC gene therapy for SARS-CoV2 infection using a decoy receptor. Hum Gene Ther 2022; 33:389-403. [PMID: 35057635 PMCID: PMC9063208 DOI: 10.1089/hum.2021.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong β-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500–1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, 7284, Seattle, Washington, United States
| | - chang Li
- University of Washington, 7284, Medicine, 1959 NE Pacific Street, HSB K-263, Box357720, Seattle, Washington, United States, 98195
| | - Adebimpe Obadan
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Hannah Frizzell
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Tien-Ying Hsiang
- University of Washington, 7284, Department of Immunology, Seattle, Washington, United States
| | - Sucheol Gil
- University of Washington, 7284, Department of Medicine, Seattle, Washington, United States
| | - Audrey Germond
- University of Washington, 7284, Washington National Primate Research Center , Seattle, Washington, United States
| | - Connie Fountain
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Audrey Baldessari
- University of Washington, 7284, WaNPRC, Seattle, Washington, United States
| | - Steve Roffler
- Academia Sinica Division Of Humanities and Social Sciences, 485001, Institute of Biomedical Sciences, Taipei, Taiwan,
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, 7286, Clinical Research Division, 1100 Fairview Avenue N, D1-100, Seattle, Washington, United States, 98109-1024
- University of Washington School of Medicine, 12353, Seattle, United States, 98195-6340
| | - Deborah Fuller
- University of Washington, 7284, Department of Microbiology, Seattle, Washington, United States
| | - Andre Lieber
- University of Washington, 7284, Department of Medicine, Box 357720, Seattle, Washington, United States, 98195
- University of Washington
| |
Collapse
|
33
|
Abstract
The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.
Collapse
Affiliation(s)
- Cody B Jackson
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Hyeryun Choe
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA.
| |
Collapse
|
34
|
Jing W, Procko E. ACE2-based decoy receptors for SARS coronavirus 2. Proteins 2021; 89:1065-1078. [PMID: 33973262 PMCID: PMC8242511 DOI: 10.1002/prot.26140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
SARS coronavirus 2 is neutralized by proteins that block receptor-binding sites on spikes that project from the viral envelope. In particular, substantial research investment has advanced monoclonal antibody therapies to the clinic where they have shown partial efficacy in reducing viral burden and hospitalization. An alternative is to use the host entry receptor, angiotensin-converting enzyme 2 (ACE2), as a soluble decoy that broadly blocks SARS-associated coronaviruses with limited potential for viral escape. Here, we summarize efforts to engineer higher affinity variants of soluble ACE2 that rival the potency of affinity-matured antibodies. Strategies have also been used to increase the valency of ACE2 decoys for avid spike interactions and to improve pharmacokinetics via IgG fusions. Finally, the intrinsic catalytic activity of ACE2 for the turnover of the vasoconstrictor angiotensin II may directly address COVID-19 symptoms and protect against lung and cardiovascular injury, conferring dual mechanisms of action unachievable by monoclonal antibodies. Soluble ACE2 derivatives therefore have the potential to be next generation therapeutics for addressing the immediate needs of the current pandemic and possible future outbreaks.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Erik Procko
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
- Department of Biochemistry and Cancer Center at IllinoisUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
35
|
Chen Y, Zhang YN, Yan R, Wang G, Zhang Y, Zhang ZR, Li Y, Ou J, Chu W, Liang Z, Wang Y, Chen YL, Chen G, Wang Q, Zhou Q, Zhang B, Wang C. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Target Ther 2021; 6:315. [PMID: 34433803 PMCID: PMC8385704 DOI: 10.1038/s41392-021-00740-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution of coronaviruses, such as SARS-CoV-2, makes broad-spectrum coronavirus preventional or therapeutical strategies highly sought after. Here we report a human angiotensin-converting enzyme 2 (ACE2)-targeting monoclonal antibody, 3E8, blocked the S1-subunits and pseudo-typed virus constructs from multiple coronaviruses including SARS-CoV-2, SARS-CoV-2 mutant variants (SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1, and P.1), SARS-CoV and HCoV-NL63, without markedly affecting the physiological activities of ACE2 or causing severe toxicity in ACE2 “knock-in” mice. 3E8 also blocked live SARS-CoV-2 infection in vitro and in a prophylactic mouse model of COVID-19. Cryo-EM and “alanine walk” studies revealed the key binding residues on ACE2 interacting with the CDR3 domain of 3E8 heavy chain. Although full evaluation of safety in non-human primates is necessary before clinical development of 3E8, we provided a potentially potent and “broad-spectrum” management strategy against all coronaviruses that utilize ACE2 as entry receptors and disclosed an anti-coronavirus epitope on human ACE2.
Collapse
Affiliation(s)
- Yuning Chen
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Nan Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-ScienceChinese Academy of Sciences, Wuhan, Hubei, China
| | - Renhong Yan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Guifeng Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhe-Rui Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-ScienceChinese Academy of Sciences, Wuhan, Hubei, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianxia Ou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wendi Chu
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijuan Liang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongmei Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Li Chen
- Dartsbio Pharmaceuticals, Zhongshan, Guangdong, China.,Fudan University, School of Pharmacy, Shanghai, China
| | - Ganjun Chen
- Dartsbio Pharmaceuticals, Zhongshan, Guangdong, China
| | - Qi Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-ScienceChinese Academy of Sciences, Wuhan, Hubei, China. .,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China.
| | - Chunhe Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China. .,Dartsbio Pharmaceuticals, Zhongshan, Guangdong, China. .,Fudan University, School of Pharmacy, Shanghai, China.
| |
Collapse
|