1
|
Kuo HJ, Srinivasan P, Lin YC, Lu M, Rungkittikhun C, Zhang Q, Hu WS. Transcriptomic functional characterization of recombinant adeno-associated virus producing cell line adapted to suspension-growth. Biotechnol Prog 2025:e70042. [PMID: 40396307 DOI: 10.1002/btpr.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used delivery vehicle in gene therapy. A scalable production technology is essential for its wide clinical applications. We have taken a synthetic biology approach to generate HEK293-based cell lines which harbor integrated genetic elements encoding essential AAV and adenoviral helper components and can be induced to produce rAAV. Through cycles of cell line enhancement, a high rAAV productivity could be achieved. The cell lines, like their parental HEK293, grew adherently. For scalable production, cell cultivation in suspension is highly desirable. A producer cell line GX6B was adapted to suspension growth in serum-free medium (named GX6Bs). However, it had substantially reduced virus titer. Returning GX6Bs cells to adherent culture conditions using adherent medium and cultured stationarily brought the productivity back to close to the level of adherent GX6B. A survey of the transcriptome revealed that induction and rAAV production elicited a wide range of cellular changes in various functional classes, including host immune defense response and nucleosome organization. The response was more subdued in suspension-growing GX6Bs. Upon reverting to adherent growth, the cellular transcriptome change regained its vigor to be more similar to that seen in GX6B. The GX6Bs maintained in suspension serum-free conditions were then reverted to the adherent culture medium but under an agitated culture environment to keep suspension growth for rAAV production. The productivity returned to within 25%-50% of GX6B. This work demonstrated the feasibility of the suspension culture of synthetic cell lines for the expansion and production of rAAV.
Collapse
Affiliation(s)
- Han-Jung Kuo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Prahalad Srinivasan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Carissa Rungkittikhun
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Gao Y, Yu B, Li L, Zhang J, Zhao T, Feng X, Hirayama R, Di C, Zhang Y, Ye Y, Li Y, Li Q, Jin X. mtDNA/RNA boosts radiation-induced abscopal effect via M1 macrophage polarization-promoted IFN-β-dependent inflammatory response. Int Immunopharmacol 2025; 155:114673. [PMID: 40245773 DOI: 10.1016/j.intimp.2025.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
The radiation-induced abscopal effect (RIAE) can suppress distal metastatic lesions and elicit a systemic anti-tumor response; however, the underlying mechanisms remain to be fully elucidated. Current research has shown that autophagy promotes the production of IFN-β by regulating mitochondrial DNA (mtDNA), thereby contributing to the modulation of RIAE. Nevertheless, the downstream pathways through which IFN-β influences RIAE require further investigation. In this study, we observed accumulation of an abundance of mtDNA in the cytosol of mammary tumor cells following RT, along with the presence of mitochondrial RNA (mtRNA). These molecules activated the cGAS-STING and RIG-I-MAVS signaling pathways, respectively, thereby synergistically promoting the production of IFN-β and secretion into the extracellular matrix. Subsequently, IFN-β facilitated the polarization of macrophages in distant non-irradiated tumor microenvironment towards the M1 phenotype through activating STAT1. Furthermore, our findings indicate that high linear energy transfer (LET) carbon ions are significantly more effective in inducing the production of IFN-β and promoting macrophage polarization compared to low-LET X-rays. Thus, our findings provide insights into the intricate mechanisms by which mtDNA/RNA and IFN-β mediate RIAE, suggesting that IFN-β could be a promising target for provoking RT immunogenicity in patients with breast cancer and high-LET radiation might effectively elicit RIAE.
Collapse
Affiliation(s)
- Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Xianglong Feng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ryoichi Hirayama
- National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Zhang
- Gansu Wuwei Tumor Hospital, Wuwei 733000, Gansu Province, China
| | - Yancheng Ye
- Gansu Wuwei Tumor Hospital, Wuwei 733000, Gansu Province, China
| | - Yuan Li
- School of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou 730070, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Chen L, Hu L, Chang H, Mao J, Ye M, Jin X. DNA-RNA hybrids in inflammation: sources, immune response, and therapeutic implications. J Mol Med (Berl) 2025; 103:511-529. [PMID: 40131443 DOI: 10.1007/s00109-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Cytoplasmic DNA-RNA hybrids are emerging as important immunogenic nucleic acids, that were previously underappreciated. DNA-RNA hybrids, formed during cellular processes like transcription and replication, or by exogenous pathogens, are recognized by pattern recognition receptors (PRRs), including cGAS, DDX41, and TLR9, which trigger immune responses. Post-translational modifications (PTMs) including ubiquitination, phosphorylation, acetylation, and palmitoylation regulate the activity of PRRs and downstream signaling molecules, fine-tuning the immune response. Targeting enzymes involved in DNA-RNA hybrid metabolism and PTMs regulation offers therapeutic potential for inflammatory diseases. Herein, we discuss the sources, immune response, and therapeutic implications of DNA-RNA hybrids in inflammation, highlighting the significance of DNA-RNA hybrids as potential targets for the treatment of inflammation.
Collapse
Affiliation(s)
- Litao Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lechen Hu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Han Chang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Lant S, Hood AJM, Holley JA, Ellis A, Eke L, Sumner RP, Ulaeto DO, Maluquer de Motes C. Poxin-deficient poxviruses are sensed by cGAS prior to genome replication. J Gen Virol 2024; 105. [PMID: 39431915 DOI: 10.1099/jgv.0.002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Poxviruses are dsDNA viruses infecting a wide range of cell types, where they need to contend with multiple host antiviral pathways, including DNA and RNA sensing. Accordingly, poxviruses encode a variety of immune antagonists, most of which are expressed early during infection from within virus cores before uncoating and genome release take place. Amongst these antagonists, the poxvirus immune nuclease (poxin) counteracts the cyclic 2'3'-GMP-AMP (2'3'-cGAMP) synthase (cGAS)/stimulator of interferon genes DNA sensing pathway by degrading the immunomodulatory cyclic dinucleotide 2'3'-cGAMP, the product of activated cGAS. Here, we use poxviruses engineered to lack poxin to investigate how virus infection triggers the activation of STING and its downstream transcription factor interferon-responsive factor 3 (IRF3). Our results demonstrate that poxin-deficient vaccinia virus (VACV) and ectromelia virus (ECTV) induce IRF3 activation in primary fibroblasts and differentiated macrophages, although to a lower extent in VACV compared to ECTV. In fibroblasts, IRF3 activation was detectable at 10 h post-infection (hpi) and was abolished by the DNA replication inhibitor cytosine arabinoside (AraC), indicating that the sensing was mediated by replicated genomes. In macrophages, IRF3 activation was detectable at 4 hpi, and this was not affected by AraC, suggesting that the sensing in this cell type was induced by genomes released from incoming virions. In agreement with this, macrophages expressing short hairpin RNA (shRNA) against the virus uncoating factor D5 showed reduced IRF3 activation upon infection. Collectively, our data show that the viral genome is sensed by cGAS prior to and during genome replication, but immune activation downstream of it is effectively suppressed by poxin. Our data also support the model where virus uncoating acts as an immune evasion strategy to simultaneously cloak the viral genome and allow the expression of early immune antagonists.
Collapse
Affiliation(s)
- Sian Lant
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Alasdair J M Hood
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Joe A Holley
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
- Present address: Division of Rheumatology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Pennsylvania, PA, USA
| | - Ailish Ellis
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Lucy Eke
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - David O Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Salisbury, SP4 0JQ, UK
| | | |
Collapse
|
6
|
Amurri L, Dumont C, Pelissier R, Reynard O, Mathieu C, Spanier J, Pályi B, Déri D, Karkowski L, Gonzalez C, Skerra J, Kis Z, Kalinke U, Horvat B, Iampietro M. Multifaceted activation of STING axis upon Nipah and measles virus-induced syncytia formation. PLoS Pathog 2024; 20:e1012569. [PMID: 39283943 PMCID: PMC11426520 DOI: 10.1371/journal.ppat.1012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/26/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Activation of the DNA-sensing STING axis by RNA viruses plays a role in antiviral response through mechanisms that remain poorly understood. Here, we show that the STING pathway regulates Nipah virus (NiV) replication in vivo in mice. Moreover, we demonstrate that following both NiV and measles virus (MeV) infection, IFNγ-inducible protein 16 (IFI16), an alternative DNA sensor in addition to cGAS, induces the activation of STING, leading to the phosphorylation of NF-κB p65 and the production of IFNβ and interleukin 6. Finally, we found that paramyxovirus-induced syncytia formation is responsible for loss of mitochondrial membrane potential and leakage of mitochondrial DNA in the cytoplasm, the latter of which is further detected by both cGAS and IFI16. These results contribute to improve our understanding about NiV and MeV immunopathogenesis and provide potential paths for alternative therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Amurri
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Bernadett Pályi
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Daniel Déri
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Ludovic Karkowski
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Jennifer Skerra
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Zoltán Kis
- National Biosafety Laboratory, National Center for Public Health and Pharmacy, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
- European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Brussels, Belgium
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, Hanover, Germany
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
7
|
Oh S, Mandell MA. Regulation of Mitochondria-Derived Immune Activation by 'Antiviral' TRIM Proteins. Viruses 2024; 16:1161. [PMID: 39066323 PMCID: PMC11281404 DOI: 10.3390/v16071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are key orchestrators of antiviral responses that serve as platforms for the assembly and activation of innate immune-signaling complexes. In response to viral infection, mitochondria can be triggered to release immune-stimulatory molecules that can boost interferon production. These same molecules can be released by damaged mitochondria to induce pathogenic, antiviral-like immune responses in the absence of infection. This review explores how members of the tripartite motif-containing (TRIM) protein family, which are recognized for their roles in antiviral defense, regulate mitochondria-based innate immune activation. In antiviral defense, TRIMs are essential components of immune signal transduction pathways and function as directly acting viral restriction factors. TRIMs carry out conceptually similar activities when controlling immune activation related to mitochondria. First, they modulate immune-signaling pathways that can be activated by mitochondrial molecules. Second, they co-ordinate the direct removal of mitochondria and associated immune-activating factors through mitophagy. These insights broaden the scope of TRIM actions in innate immunity and may implicate TRIMs in diseases associated with mitochondria-derived inflammation.
Collapse
Affiliation(s)
- Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Schäfer TE, Knol LI, Haas FV, Hartley A, Pernickel SCS, Jády A, Finkbeiner MSC, Achberger J, Arelaki S, Modic Ž, Schröer K, Zhang W, Schmidt B, Schuster P, Haferkamp S, Doerner J, Gebauer F, Ackermann M, Kvasnicka HM, Kulkarni A, Bots STF, Kemp V, Hawinkels LJAC, Poetsch AR, Hoeben RC, Ehrhardt A, Marchini A, Ungerechts G, Ball CR, Engeland CE. Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. EBioMedicine 2024; 105:105219. [PMID: 38941955 PMCID: PMC11260584 DOI: 10.1016/j.ebiom.2024.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking. METHODS We screened fourteen patient-derived PDAC cultures which reflect the intra- and intertumoural heterogeneity of PDAC for their sensitivity to five clinically relevant OVs, namely serotype 5 adenovirus Ad5-hTERT, herpes virus T-VEC, measles vaccine strain MV-NIS, reovirus jin-3, and protoparvovirus H-1PV. Live cell analysis, quantification of viral genome/gene expression, cell viability as well as cytotoxicity assays and titration of viral progeny were conducted. Transcriptome profiling was employed to identify potential predictive biomarkers for response to OV treatment. FINDINGS Patient-derived PDAC cultures showed individual response patterns to OV treatment. Twelve of fourteen cultures were responsive to at least one OV, with no single OV proving superior or inferior across all cultures. Known host factors for distinct viruses were retrieved as potential biomarkers. Compared to the classical molecular subtype, the quasi-mesenchymal or basal-like subtype of PDAC was found to be more sensitive to H-1PV, jin-3, and T-VEC. Generally, expression of viral entry receptors did not correlate with sensitivity to OV treatment, with one exception: Expression of Galectin-1 (LGALS1), a factor involved in H-1PV entry, positively correlated with H-1PV induced cell killing. Rather, cellular pathways controlling immunological, metabolic and proliferative signaling appeared to determine outcome. For instance, high baseline expression of interferon-stimulated genes (ISGs) correlated with relative resistance to oncolytic measles virus, whereas low cyclic GMP-AMP synthase (cGAS) expression was associated with exceptional response. Combination treatment of MV-NIS with a cGAS inhibitor improved tumour cell killing in several PDAC cultures and cells overexpressing cGAS were found to be less sensitive to MV oncolysis. INTERPRETATION Considering the heterogeneity of PDAC and the complexity of biological therapies such as OVs, no single biomarker can explain the spectrum of response patterns. For selection of a particular OV, PDAC molecular subtype, ISG expression as well as activation of distinct signaling and metabolic pathways should be considered. Combination therapies can overcome resistance in specific constellations. Overall, oncolytic virotherapy is a viable treatment option for PDAC, which warrants further development. This study highlights the need for personalised treatment in OVT. By providing all primary data, this study provides a rich source and guidance for ongoing developments. FUNDING German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG), German Cancer Aid (Deutsche Krebshilfe), German National Academic Scholarship Foundation (Studienstiftung des deutschen Volkes), Survival with Pancreatic Cancer Foundation.
Collapse
Affiliation(s)
- Theresa E Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Lisanne I Knol
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), A Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Ferdinand V Haas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center (DKFZ), Heidelberg, Germany; DNA Vector Laboratory, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie C S Pernickel
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Attila Jády
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), A Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Maximiliane S C Finkbeiner
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Johannes Achberger
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stella Arelaki
- German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Germany
| | - Živa Modic
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Schröer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Doerner
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Florian Gebauer
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany; Institute of Pathology, RWTH University Clinics University Aachen, Aachen, Germany
| | - Hans-Michael Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg
| | - Selas T F Bots
- Virus and Cell Biology Lab, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vera Kemp
- Virus and Cell Biology Lab, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna R Poetsch
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rob C Hoeben
- Virus and Cell Biology Lab, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, Luxembourg
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), A Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Research Center (DKFZ) Heidelberg, Translational Functional Cancer Genomics, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; Faculty of Biology, TUD Dresden University of Technology, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany; Experimental Hematology and Immunotherapy, Department of Hematology, Hemostaseology, Cellular Therapy and Infectious Diseases, Faculty of Medicine and Leipzig University Hospital, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.
| |
Collapse
|
9
|
Lin YC, Lu M, Cai W, Hu WS. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol 2024; 108:385. [PMID: 38896252 PMCID: PMC11186941 DOI: 10.1007/s00253-024-13203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a major gene delivery vehicle. We have constructed a stable rAAV producer cell line by integrating essential rAAV genome, viral and helper genes into the genome of HEK293 cell under the control of inducible promoters. Upon induction, the cell line produces transducing rAAV. To gain insight into enhancing rAAV productivity and vector quality, we performed a comparative transcriptomic and proteomic analysis of our synthetic cell line GX2 and two wild-type AAV (wtAAV) production systems, one by virus co-infection and the other by multi-plasmid transfection. The three systems had different kinetics in viral component synthesis but generated comparable copies of AAV genomes; however, the capsid titer of GX2 was an order of magnitude lower compared to those two wtAAV systems, indicating that its capsid production may be insufficient. The genome packaging efficiency was also lower in GX2 despite it produced higher levels of Rep52 proteins than either wtAAV systems, suggesting that Rep52 protein expression may not limit genome packaging. In the two wtAAV systems, VP were the most abundant AAV proteins and their levels continued to increase, while GX2 had high level of wasteful cargo gene expression. Furthermore, upregulated inflammation, innate immune responses, and MAPK signaling, as well as downregulated mitochondrial functions, were commonly observed in either rAAV or wtAAV systems. Overall, this comparative multi-omics study provided rich insights into host cell and viral factors that are potential targets for genetic and process intervention to enhance the productivity of synthetic rAAV producer cell lines. KEY POINTS: • wtAAV infection was more efficient in producing full viral particles than the synthetic cell GX2. • Capsid protein synthesis, genome replication, and packaging may limit rAAV production in GX2. • wtAAV infection and rAAV production in GX2 elicited similar host cell responses.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E, Minneapolis, MN, 55455-0132, USA.
| |
Collapse
|
10
|
Lin J(C, Hwang S(W, Luo H, Mohamud Y. Double-Edged Sword: Exploring the Mitochondria-Complement Bidirectional Connection in Cellular Response and Disease. BIOLOGY 2024; 13:431. [PMID: 38927311 PMCID: PMC11200454 DOI: 10.3390/biology13060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Jingfei (Carly) Lin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo (Wendy) Hwang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
11
|
Purandare N, Ghosalkar E, Grossman LI, Aras S. Mitochondrial Oxidative Phosphorylation in Viral Infections. Viruses 2023; 15:2380. [PMID: 38140621 PMCID: PMC10747082 DOI: 10.3390/v15122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria have been identified as the "powerhouse" of the cell, generating the cellular energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own replication in the absence of a bonafide replication machinery. Replication being an energy intensive process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive therapeutic target by limiting energy for viral replication. In this review we focus on the physiology of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses induce on the electron transport chain.
Collapse
Affiliation(s)
- Neeraja Purandare
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Esha Ghosalkar
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
12
|
Meade N, Toreev HK, Chakrabarty RP, Hesser CR, Park C, Chandel NS, Walsh D. The poxvirus F17 protein counteracts mitochondrially orchestrated antiviral responses. Nat Commun 2023; 14:7889. [PMID: 38036506 PMCID: PMC10689448 DOI: 10.1038/s41467-023-43635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Poxviruses are unusual DNA viruses that replicate in the cytoplasm. To do so, they encode approximately 100 immunomodulatory proteins that counteract cytosolic nucleic acid sensors such as cGAMP synthase (cGAS) along with several other antiviral response pathways. Yet most of these immunomodulators are expressed very early in infection while many are variable host range determinants, and significant gaps remain in our understanding of poxvirus sensing and evasion strategies. Here, we show that after infection is established, subsequent progression of the viral lifecycle is sensed through specific changes to mitochondria that coordinate distinct aspects of the antiviral response. Unlike other viruses that cause extensive mitochondrial damage, poxviruses sustain key mitochondrial functions including membrane potential and respiration while reducing reactive oxygen species that drive inflammation. However, poxvirus replication induces mitochondrial hyperfusion that independently controls the release of mitochondrial DNA (mtDNA) to prime nucleic acid sensors and enables an increase in glycolysis that is necessary to support interferon stimulated gene (ISG) production. To counter this, the poxvirus F17 protein localizes to mitochondria and dysregulates mTOR to simultaneously destabilize cGAS and block increases in glycolysis. Our findings reveal how the poxvirus F17 protein disarms specific mitochondrially orchestrated responses to later stages of poxvirus replication.
Collapse
Affiliation(s)
- Nathan Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Helen K Toreev
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ram P Chakrabarty
- Department of Medicine, and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Charles R Hesser
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chorong Park
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Shoraka S, Mohebbi SR, Hosseini SM, Zali MR. Comparison of plasma mitochondrial DNA copy number in asymptomatic and symptomatic COVID-19 patients. Front Microbiol 2023; 14:1256042. [PMID: 37869674 PMCID: PMC10587688 DOI: 10.3389/fmicb.2023.1256042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Durnell LA, Hippee CE, Cattaneo R, Bartlett JA, Singh BK, Sinn PL. Interferon-independent processes constrain measles virus cell-to-cell spread in primary human airway epithelial cells. Microbiol Spectr 2023; 11:e0136123. [PMID: 37724882 PMCID: PMC10580916 DOI: 10.1128/spectrum.01361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
Amplification of measles virus (MeV) in human airway epithelia may contribute to its extremely high contagious nature. We use well-differentiated primary cultures of human airway epithelial cells (HAE) to model ex vivo how MeV spreads in human airways. In HAE, MeV spreads cell-to-cell for 3-5 days, but then, infectious center growth is arrested. What stops MeV spread in HAE is not understood, but interferon (IFN) is known to slow MeV spread in other in vitro and in vivo models. Here, we assessed the role of type I and type III IFN in arresting MeV spread in HAE. The addition of IFN-β or IFN-λ1 to the medium of infected HAE slowed MeV infectious center growth, but when IFN receptor signaling was blocked, infectious center size was not affected. In contrast, blocking type-I IFN receptor signaling enhanced respiratory syncytial virus spread. HAE were also infected with MeV mutants defective for the V protein. The V protein has been demonstrated to interact with both MDA5 and STAT2 to inhibit activation of innate immunity; however, innate immune reactions were unexpectedly muted against the V-defective MeV in HAE. Minimal innate immunity activation was confirmed by deep sequencing, quantitative RT-PCR, and single-cell RNA-seq analyses of the transcription of IFN and IFN-stimulated genes. We conclude that in HAE, IFN-signaling can contribute to slowing infectious center growth; however, IFN-independent processes are most important for limiting cell-to-cell spread. IMPORTANCE Fundamental biological questions remain about the highly contagious measles virus (MeV). MeV amplifies within airway epithelial cells before spreading to the next host. This final step likely contributes to the ability of MeV to spread host-to-host. Over the course of 3-5 days post-infection of airway epithelial cells, MeV spreads directly cell-to-cell and forms infectious centers. Infectious center formation is unique to MeV. In this study, we show that interferon (IFN) signaling does not explain why MeV cell-to-cell spread is ultimately impeded within the cell layer. The ability of MeV to spread cell-to-cell in airway cells without appreciable IFN induction may contribute to its highly contagious nature. This study contributes to the understanding of a significant global health concern by demonstrating that infectious center formation occurs independent of the simplest explanation for limiting viral transmission within a host.
Collapse
Affiliation(s)
- Lorellin A. Durnell
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Camilla E. Hippee
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer A. Bartlett
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Lara-Hernandez I, Muñoz-Escalante JC, Bernal-Silva S, Noyola DE, Wong-Chew RM, Comas-García A, Comas-Garcia M. Ultrastructural and Functional Characterization of Mitochondrial Dynamics Induced by Human Respiratory Syncytial Virus Infection in HEp-2 Cells. Viruses 2023; 15:1518. [PMID: 37515204 PMCID: PMC10386036 DOI: 10.3390/v15071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections in children under five years of age and older adults worldwide. During hRSV infection, host cells undergo changes in endomembrane organelles, including mitochondria. This organelle is responsible for energy production in the cell and plays an important role in the antiviral response. The present study focuses on characterizing the ultrastructural and functional changes during hRSV infection using thin-section transmission electron microscopy and RT-qPCR. Here we report that hRSV infection alters mitochondrial morphodynamics by regulating the expression of key genes in the antiviral response process, such as Mfn1, VDAC2, and PINK1. Our results suggest that hRSV alters mitochondrial morphology during infection, producing a mitochondrial phenotype with shortened cristae, swollen matrix, and damaged membrane. We also observed that hRSV infection modulates the expression of the aforementioned genes, possibly as an evasion mechanism in the face of cellular antiviral response. Taken together, these results advance our knowledge of the ultrastructural alterations associated with hRSV infection and might guide future therapeutic efforts to develop effective antiviral drugs for hRSV treatment.
Collapse
Affiliation(s)
- Ignacio Lara-Hernandez
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Juan Carlos Muñoz-Escalante
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sofía Bernal-Silva
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Genomic Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Daniel E Noyola
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Rosa María Wong-Chew
- Research Division, School of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Andreu Comas-García
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Science Department, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Molecular and Translation Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
16
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
17
|
Amurri L, Horvat B, Iampietro M. Interplay between RNA viruses and cGAS/STING axis in innate immunity. Front Cell Infect Microbiol 2023; 13:1172739. [PMID: 37077526 PMCID: PMC10106766 DOI: 10.3389/fcimb.2023.1172739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the function of cGAS/STING signalling axis in the innate immune response to DNA viruses is well deciphered, increasing evidence demonstrates its significant contribution in the control of RNA virus infections. After the first evidence of cGAS/STING antagonism by flaviviruses, STING activation has been detected following infection by various enveloped RNA viruses. It has been discovered that numerous viral families have implemented advanced strategies to antagonize STING pathway through their evolutionary path. This review summarizes the characterized cGAS/STING escape strategies to date, together with the proposed mechanisms of STING signalling activation perpetrated by RNA viruses and discusses possible therapeutic approaches. Further studies regarding the interaction between RNA viruses and cGAS/STING-mediated immunity could lead to major discoveries important for the understanding of immunopathogenesis and for the treatment of RNA viral infections.
Collapse
|
18
|
Katsiougiannis S, Stergiopoulos A, Moustaka K, Havaki S, Samiotaki M, Stamatakis G, Tenta R, Skopouli FN. Salivary gland epithelial cell in Sjögren's syndrome: Metabolic shift and altered mitochondrial morphology toward an innate immune cell function. J Autoimmun 2023; 136:103014. [PMID: 36898185 DOI: 10.1016/j.jaut.2023.103014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
Salivary gland epithelial cells (SGEC) are the main targets of the autoimmune reactivity in Sjögren's syndrome (SS). This study aimed to investigate the core proteomic differences between SS and Control- (Ct) -derived SGEC. Proteome analysis of cultured SGEC from five SS patients and four Ct was performed in a label-free quantitation format (LFQ). Electron microscopy was applied for analysis of the mitochondrial ultrastructure of SGEC in minor salivary gland sections from six SS patients and four Ct. Four hundred seventy-four proteins were identified differentially abundant in SS- compared to Ct-SGEC. After proteomic analysis, two distinct protein expression patterns were revealed. Gene ontology (GO) pathway analysis of each protein block revealed that the cluster with highly abundant proteins in SS-SGEC showed enrichment in pathways associated with membrane trafficking, exosome-mediated transport and exocytosis as well as innate immunity related mainly to neutrophil degranulation. In contrast, the low abundance protein cluster in SS-SGEC was enriched for proteins regulating the translational process of proteins related to metabolic pathways associated to mitochondria. Electron microscopy showed decreased total number of mitochondria in SS-SGEC, which appeared elongated and swollen with less and abnormal cristae compared to Ct-SGEC mitochondria. This study defines, for the first time, the core proteomic differences of SGEC between SS and Ct, substantiates the metamorphosis of SGEC into an innate immune cell and reveals that these cells are translationally shifted towards metabolism rewiring. These metabolic alterations are related mainly to mitochondria and are mirrored in situ with heavy morphological changes.
Collapse
Affiliation(s)
- S Katsiougiannis
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece; Laboratory of Autoimmunity, Biomedical Research Foundation of the Academy of Athens, Greece
| | - A Stergiopoulos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - K Moustaka
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - S Havaki
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Samiotaki
- Institute for Bio-Innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - G Stamatakis
- Institute for Bio-Innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - R Tenta
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - F N Skopouli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece; Euroclinic of Athens, Athens, Greece.
| |
Collapse
|
19
|
Liu H, Zhu Z, Xue Q, Yang F, Li Z, Xue Z, Cao W, He J, Guo J, Liu X, Shaw AE, King DP, Zheng H. Innate sensing of picornavirus infection involves cGAS-STING-mediated antiviral responses triggered by mitochondrial DNA release. PLoS Pathog 2023; 19:e1011132. [PMID: 36745686 PMCID: PMC9934381 DOI: 10.1371/journal.ppat.1011132] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) plays a key role in the innate immune responses to both DNA and RNA virus infection. Here, we found that enterovirus 71 (EV-A71), Seneca Valley virus (SVV), and foot-and-mouth disease virus (FMDV) infection triggered mitochondria damage and mitochondrial DNA (mtDNA) release in vitro and vivo. These responses were mediated by picornavirus 2B proteins which induced mtDNA release during viral replication. SVV infection caused the opening of mitochondrial permeability transition pore (mPTP) and led to voltage-dependent anion channel 1 (VDAC1)- and BCL2 antagonist/killer 1 (Bak) and Bak/BCL2-associated X (Bax)-dependent mtDNA leakage into the cytoplasm, while EV-A71 and FMDV infection induced mPTP opening and resulted in VDAC1-dependent mtDNA release. The released mtDNA bound to cGAS and activated cGAS-mediated antiviral immune response. cGAS was essential for inhibiting EV-A71, SVV, and FMDV replication by regulation of IFN-β production. cGAS deficiency contributed to higher mortality of EV-A71- or FMDV-infected mice. In addition, we found that SVV 2C protein was responsible for decreasing cGAS expression through the autophagy pathway. The 9th and 153rd amino acid sites in 2C were critical for induction of cGAS degradation. Furthermore, we also show that EV-A71, CA16, and EMCV 2C antagonize the cGAS-stimulator of interferon genes (STING) pathway through interaction with STING, and highly conserved amino acids Y155 and S156 were critical for this inhibitory effect. In conclusion, these data reveal novel mechanisms of picornaviruses to block the antiviral effect mediated by the cGAS-STING signaling pathway, which will provide insights for developing antiviral strategies against picornaviruses.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zongqiang Li
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jijun He
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianhong Guo
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Andrew E. Shaw
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Donald P. King
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail:
| |
Collapse
|
20
|
Khalfi P, Suspène R, Raymond KA, Caval V, Caignard G, Berry N, Thiers V, Combredet C, Rufie C, Rigaud S, Ghozlane A, Volant S, Komarova AV, Tangy F, Vartanian JP. Antagonism of ALAS1 by the Measles Virus V protein contributes to degradation of the mitochondrial network and promotes interferon response. PLoS Pathog 2023; 19:e1011170. [PMID: 36802406 PMCID: PMC9983871 DOI: 10.1371/journal.ppat.1011170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/03/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.
Collapse
Affiliation(s)
- Pierre Khalfi
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, Complexité du Vivant, ED515, Paris, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Kyle A. Raymond
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, Complexité du Vivant, ED515, Paris, France
| | - Vincent Caval
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
| | | | - Noémie Berry
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, Complexité du Vivant, ED515, Paris, France
- UMR1161 Virologie, ANSES-INRAE-ENVA, Maisons-Alfort, France
| | - Valérie Thiers
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Chantal Combredet
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Claude Rufie
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Stéphane Rigaud
- Image Analysis Hub, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics HUB, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics HUB, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Anastassia V. Komarova
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Frédéric Tangy
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
22
|
Singh B, Avula K, Sufi SA, Parwin N, Das S, Alam MF, Samantaray S, Bankapalli L, Rani A, Poornima K, Prusty B, Mallick TP, Shaw SK, Dodia H, Kabi S, Pagad TT, Mohanty S, Syed GH. Defective Mitochondrial Quality Control during Dengue Infection Contributes to Disease Pathogenesis. J Virol 2022; 96:e0082822. [PMID: 36197108 PMCID: PMC9599662 DOI: 10.1128/jvi.00828-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial fitness is governed by mitochondrial quality control pathways comprising mitochondrial dynamics and mitochondrial-selective autophagy (mitophagy). Disruption of these processes has been implicated in many human diseases, including viral infections. Here, we report a comprehensive analysis of the effect of dengue infection on host mitochondrial homeostasis and its significance in dengue disease pathogenesis. Despite severe mitochondrial stress and injury, we observed that the pathways of mitochondrial quality control and mitochondrial biogenesis are paradoxically downregulated in dengue-infected human liver cells. This leads to the disruption of mitochondrial homeostasis and the onset of cellular injury and necrotic death in the infected cells. Interestingly, dengue promotes global autophagy but selectively disrupts mitochondrial-selective autophagy (mitophagy). Dengue downregulates the expression of PINK1 and Parkin, the two major proteins involved in tagging the damaged mitochondria for elimination through mitophagy. Mitophagy flux assays also suggest that Parkin-independent pathways of mitophagy are also inactive during dengue infection. Dengue infection also disrupts mitochondrial biogenesis by downregulating the master regulators PPARγ and PGC1α. Dengue-infected cells release mitochondrial damage-associated molecular patterns (mtDAMPs) such as mitochondrial DNA into the cytosol and extracellular milieu. Furthermore, the challenge of naive immune cells with culture supernatants from dengue-infected liver cells was sufficient to trigger proinflammatory signaling. In correlation with our in vitro observations, dengue patients have high levels of cell-free mitochondrial DNA in their blood in proportion to the degree of thrombocytopenia. Overall, our study shows how defective mitochondrial homeostasis in dengue-infected liver cells can drive dengue disease pathogenesis. IMPORTANCE Many viruses target host cell mitochondria to create a microenvironment conducive to viral dissemination. Dengue virus also exploits host cell mitochondria to facilitate its viral life cycle. Dengue infection of liver cells leads to severe mitochondrial injury and inhibition of proteins that regulate mitochondrial quality control and biogenesis, thereby disrupting mitochondrial homeostasis. A defect in mitochondrial quality control leads to the accumulation of damaged mitochondria and promotes cellular injury. This leads to the release of mitochondrial damage-associated molecular patterns (mt-DAMPs) into the cell cytoplasm and extracellular milieu. These mt-DAMPs activate the naive immune cells and trigger proinflammatory signaling, leading to the release of cytokines and chemokines, which may trigger systemic inflammation and contribute to dengue disease pathogenesis. In correlation with this, we observed high levels of cell-free mitochondrial DNA in dengue patient blood. This study provides insight into how the disruption of mitochondrial quality control in dengue-infected cells can trigger inflammation and drive dengue disease pathogenesis.
Collapse
Affiliation(s)
- Bharati Singh
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Kalinga Institute of Information and Technology, Bhubaneswar, Odisha, India
| | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Nahid Parwin
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sayani Das
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | | | | | | | | | | - Hiren Dodia
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Shobhitendu Kabi
- Department of Medicine, Institute of Medical Sciences & SUM Hospital, Bhubaneswar, Odisha, India
| | - Trupti T. Pagad
- Department of Medicine, Institute of Medical Sciences & SUM Hospital, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
23
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
24
|
Ge Z, Ding S. Regulation of cGAS/STING signaling and corresponding immune escape strategies of viruses. Front Cell Infect Microbiol 2022; 12:954581. [PMID: 36189363 PMCID: PMC9516114 DOI: 10.3389/fcimb.2022.954581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of defense against invading external pathogens, and pattern recognition receptors (PRRs) are the key receptors that mediate the innate immune response. Nowadays, there are various PRRs in cells that can activate the innate immune response by recognizing pathogen-related molecular patterns (PAMPs). The DNA sensor cGAS, which belongs to the PRRs, plays a crucial role in innate immunity. cGAS detects both foreign and host DNA and generates a second-messenger cGAMP to mediate stimulator of interferon gene (STING)-dependent antiviral responses, thereby exerting an antiviral immune response. However, the process of cGAS/STING signaling is regulated by a wide range of factors. Multiple studies have shown that viruses directly target signal transduction proteins in the cGAS/STING signaling through viral surface proteins to impede innate immunity. It is noteworthy that the virus utilizes these cGAS/STING signaling regulators to evade immune surveillance. Thus, this paper mainly summarized the regulatory mechanism of the cGAS/STING signaling pathway and the immune escape mechanism of the corresponding virus, intending to provide targeted immunotherapy ideas for dealing with specific viral infections in the future.
Collapse
Affiliation(s)
- Zhe Ge
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- *Correspondence: Shuzhe Ding,
| |
Collapse
|
25
|
Brokatzky D, Häcker G. Mitochondria: intracellular sentinels of infections. Med Microbiol Immunol 2022; 211:161-172. [PMID: 35790577 PMCID: PMC9255486 DOI: 10.1007/s00430-022-00742-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/14/2022] [Indexed: 01/19/2023]
Abstract
Structure and integrity of the mitochondrial network play important roles in many cellular processes. Loss of integrity can lead to the activation of a variety of signalling pathways and affect the cell’s response to infections. The activation of such mitochondria-mediated cellular responses has implications for infection recognition, signal transduction and pathogen control. Although we have a basic understanding of mitochondrial factors such as mitochondrial DNA or RNA that may be involved in processes like pro-inflammatory signalling, the diverse roles of mitochondria in host defence remain unclear. Here we will first summarise the functions of mitochondria in the host cell and provide an overview of the major known mitochondrial stress responses. We will then present recent studies that have contributed to the understanding of the role of mitochondria in infectious diseases and highlight a number of recently investigated models of bacterial and viral infections.
Collapse
Affiliation(s)
- Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Centre University of Freiburg, Faculty of Medicine, 79104, Freiburg, Germany
| |
Collapse
|
26
|
Mosallanejad K, Kagan JC. Control of innate immunity by the cGAS-STING pathway. Immunol Cell Biol 2022; 100:409-423. [PMID: 35485309 PMCID: PMC9250635 DOI: 10.1111/imcb.12555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Within the cytoplasm of mammalian cells is a protein called cyclic GMP-AMP synthase (cGAS), which acts to defend against infection and other threats to the host. cGAS operates in this manner through its ability to detect a molecular occurrence that should not exist in healthy cells - the existence of DNA in the cytosol. Upon DNA binding, cGAS synthesizes cyclic GMP-AMP (cGAMP), a cyclic dinucleotide that activates the endoplasmic reticulum-localized protein stimulator of interferon genes (STING). STING-mediated signaling culminates in host defensive responses typified by inflammatory cytokine and interferon expression, and the induction of autophagy. Studies over the past several years have established a consensus in the field of the enzymatic activities of cGAS in vitro, as it relates to DNA-induced production of cGAMP. However, much additional work is needed to understand the regulation of cGAS functions within cells, where multiple sources of DNA can create a problem of self and non-self discrimination. In this review, we provide an overview of how the cGAS-STING pathway mediates innate immune responses during infection and other cellular stresses. We then highlight recent progress in the understanding of the increasingly diverse ways in which this DNA-sensing machinery is regulated inside cells, including how cGAS remains inactive to host-derived DNA under conditions of homeostasis.
Collapse
Affiliation(s)
- Kenta Mosallanejad
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital Boston, MA 02115, USA
| |
Collapse
|
27
|
Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Rev Med Virol 2022; 32:e2343. [DOI: 10.1002/rmv.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yiyun Michelle Fan
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Yizhuo Lyanne Zhang
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Honglin Luo
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Yasir Mohamud
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|