1
|
Safaei S, Derakhshan-sefidi M, Karimi A. Wolbachia: A bacterial weapon against dengue fever- a narrative review of risk factors for dengue fever outbreaks. New Microbes New Infect 2025; 65:101578. [PMID: 40176883 PMCID: PMC11964561 DOI: 10.1016/j.nmni.2025.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Arboviruses constitute the largest known group of viruses and are responsible for various infections that impose significant socioeconomic burdens worldwide, particularly due to their link with insect-borne diseases. The increasing incidence of dengue fever in non-endemic regions underscores the urgent need for innovative strategies to combat this public health threat. Wolbachia, a bacterium, presents a promising biological control method against mosquito vectors, offering a novel approach to managing dengue fever. We systematically investigated biomedical databases (PubMed, Web of Science, Google Scholar, Science Direct, and Embase) using "AND" as a Boolean operator with keywords such as "dengue fever," "dengue virus," "risk factors," "Wolbachia," and "outbreak." We prioritized articles that offered significant insights into the risk factors contributing to the outbreak of dengue fever and provided an overview of Wolbachia's characteristics and functions in disease management, considering studies published until December 25, 2024. Field experiments have shown that introducing Wolbachia-infected mosquitoes can effectively reduce mosquito populations and lower dengue transmission rates, signifying its potential as a practical approach for controlling this disease.
Collapse
Affiliation(s)
- Sahel Safaei
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
2
|
LaReau JC, Gloria-Soria A. Aedes aegypti (Yellow fever mosquito). Trends Parasitol 2025; 41:418-419. [PMID: 40180880 DOI: 10.1016/j.pt.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Jacquelyn C LaReau
- Environmental Sciences and Forestry Department, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| | - Andrea Gloria-Soria
- Entomology Department, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| |
Collapse
|
3
|
Shepard DS, Lee SR, Halasa-Rappel YA, Rincon Perez CW, Harker Roa A. Economic evaluation of Wolbachia deployment in Colombia: A modeling study. PLoS One 2025; 20:e0307045. [PMID: 40305550 PMCID: PMC12043165 DOI: 10.1371/journal.pone.0307045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND AND AIMS Wolbachia are bacteria that inhibit dengue virus replication within the mosquito. A cluster-randomized trial in Indonesia found Wolbachia reduced virologically-confirmed dengue cases by 77.1%. Previous models predicted Wolbachia to be highly cost-effective in Indonesia, Vietnam, and Brazil. To inform decisions about future extensions in Colombia, we performed economic evaluations of potential Wolbachia deployments in 11 target cities. METHODS We assembled the numbers and distribution by severity of reported dengue cases from Colombia's national disease surveillance system and the health service provision registry (RIPS). An epidemiological panel of three experts estimated the shares of dengue that were non-medical, under-reported, or misreported as another disease. We determined costs (in 2020 US dollars at market prices) of treating dengue illness from the benchmark insurance tariff and RIPS data on treatment services per symptomatic dengue case. Our central estimates projected 10 years of efficacy and focused on Cali, the target city with the highest number of dengue cases. RESULTS For Cali, we estimated a net health-sector savings of US$4.95 per person and averting 369 disability-adjusted life years (DALYs) per 100,000 population. From a societal perspective, at 10 years Wolbachia deployment is expected to have highly favorable benefit-cost ratios, with benefits per dollar invested of US$5.50 in Cali and US$4.68 over all target cities. CONCLUSIONS Over 10 years, Wolbachia is highly beneficial on economic grounds, and almost universally cost saving. The Wolbachia program's economic benefits exceeded its costs in all 11 cities. The program's savings in healthcare costs alone would more than offset deployment costs nationally and in 9 of 11 target cities. Wolbachia is likely to be the most cost-effective or cost-saving dengue control option in municipalities with both high incidence of dengue and high population density, whereas areas with high dengue incidence but low population density should consider vaccination.
Collapse
Affiliation(s)
- Donald S. Shepard
- Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, United States of America
| | - Samantha R. Lee
- Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yara A. Halasa-Rappel
- Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts, United States of America
| | | | | |
Collapse
|
4
|
Al-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Xi Z, Rašić G, Beebe NW, Hugo LE, Devine GJ. Fitness compatibility and dengue virus Inhibition in a Bangladeshi strain of Aedes aegypti infected with the Wolbachia strain wAlbB. Sci Rep 2025; 15:13425. [PMID: 40251382 PMCID: PMC12008268 DOI: 10.1038/s41598-025-98093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Dengue cases in Bangladesh have surged in recent years. The existing insecticide-based control program is challenged by issues of insufficient household coverage and high levels of insecticide resistance in the primary dengue virus (DENV) vector, Aedes aegypti. A more sustainable, effective alternative could be the implementation of a Wolbachia-mediated disease management strategy. Hence, we created and characterised a Wolbachia-infected Ae. aegypti strain with a Dhaka wild-type genetic background, and compared its reproductive compatibility, maternal inheritance, fitness, and virus-blocking ability to the parental strains (Dhaka wild-type and wAlbB2-F4). The new Ae. aegypti strain wAlbB2-Dhaka demonstrated complete cytoplasmic incompatibility with the wild-type and complete maternal transmission, retaining levels of pyrethroid resistance of the Dhaka wild-type. No significant fitness costs were detected during laboratory comparison. Compared to the wild-type, wAlbB2-Dhaka mosquitoes demonstrated a significantly reduced genome copies of DENV in the bodies (44.4%, p = 0.0034); a two-fold reduction in dissemination to legs and wings (47.6%, p < 0.0001); and > 13-fold reduction of DENV in saliva expectorates (proxy of transmission potential) (92.7%, p < 0.0001) 14 days after ingesting dengue-infected blood. Our work indicates that the wAlbB2-Dhaka strain could be used for Ae. aegypti suppression or replacement strategies for dengue management in Bangladesh.
Collapse
Affiliation(s)
- Hasan Mohammad Al-Amin
- School of the Environment, University of Queensland, Brisbane, QLD, Australia.
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Public Health Virology, Queensland Health, Coopers Plains, QLD, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mohammad Shafiul Alam
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nigel W Beebe
- School of the Environment, University of Queensland, Brisbane, QLD, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Fernandes R, Melo T, Zé-Zé L, Freitas IC, Silva M, Dias E, Santos NC, Gouveia BR, Seixas G, Osório HC. Wolbachia Screening in Aedes aegypti and Culex pipiens Mosquitoes from Madeira Island, Portugal. INSECTS 2025; 16:418. [PMID: 40332988 PMCID: PMC12027595 DOI: 10.3390/insects16040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 Ae. aegypti and 40 Cx. pipiens mosquitoes collected exclusively in the municipality of Funchal, Madeira Island, to assess the presence and diversity of Wolbachia, a naturally occurring bacterium known to reduce mosquitos' ability to transmit viruses. Molecular identification confirmed that all Cx. pipiens specimens belonged to the molestus biotype, with three individuals identified as hybrids between molestus and pipiens biotypes. This is the first evidence of such hybrids in Madeira. Wolbachia was not detected in any of the Ae. aegypti samples. In contrast, all Cx. pipiens mosquitoes were positive, showing a 100% prevalence. Genetic characterization placed these infections within the wPip clade, supergroup B, sequence type 9. These findings provide key baseline data to inform future mosquito control strategies on the island. As Ae. aegypti showed no natural Wolbachia infection, introducing Wolbachia-infected mosquitoes may be necessary to implement such biocontrol approaches in Madeira.
Collapse
Affiliation(s)
- Rita Fernandes
- CEVDI-INSA, Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal; (T.M.); (L.Z.-Z.); (I.C.F.); (M.S.)
| | - Tiago Melo
- CEVDI-INSA, Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal; (T.M.); (L.Z.-Z.); (I.C.F.); (M.S.)
| | - Líbia Zé-Zé
- CEVDI-INSA, Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal; (T.M.); (L.Z.-Z.); (I.C.F.); (M.S.)
- Center for the Study of Animal Science (CECA)/Institute for Agricultural and Agroalimentary Science and Technology (ICETA), University of Porto, 4051-401 Porto, Portugal
| | - Inês C. Freitas
- CEVDI-INSA, Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal; (T.M.); (L.Z.-Z.); (I.C.F.); (M.S.)
| | - Manuel Silva
- CEVDI-INSA, Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal; (T.M.); (L.Z.-Z.); (I.C.F.); (M.S.)
| | - Eva Dias
- GIMM—Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (E.D.); (N.C.S.); (G.S.)
| | - Nuno C. Santos
- GIMM—Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (E.D.); (N.C.S.); (G.S.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Bruna R. Gouveia
- Direção Regional da Saúde, Rua 31 de Janeiro, nº. 54 e 55, 9054-511 Funchal, Portugal;
- Interactive Technologies Institute—LARSyS, Polo Científico e Tecnológico da Madeira, Caminho da Penteada, Piso-2, 9020-105 Funchal, Portugal
| | - Gonçalo Seixas
- GIMM—Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; (E.D.); (N.C.S.); (G.S.)
| | - Hugo Costa Osório
- CEVDI-INSA, Centre for Vectors and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Avenida da Liberdade n.-5, 2965-575 Águas de Moura, Portugal; (T.M.); (L.Z.-Z.); (I.C.F.); (M.S.)
- Environment and Infectious Diseases Research Group, Environmental Health Institute (ISAMB), Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| |
Collapse
|
6
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
7
|
Bhattacharyya J, Roelke DL. Wolbachia-based mosquito control: Environmental perspectives on population suppression and replacement strategies. Acta Trop 2025; 262:107517. [PMID: 39740726 DOI: 10.1016/j.actatropica.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens. This review evaluates the effectiveness of different Wolbachia strains transinfected into mosquitoes in reducing mosquito-borne diseases. It explores how Wolbachia contributes to mosquito population control and pathogen interference, highlighting the importance of mathematical models in understanding Wolbachia transmission dynamics. Additionally, the review addresses the potential impact on arboviral transmission and the challenges posed by environmental fluctuations in mosquito control programs.
Collapse
Affiliation(s)
- Joydeb Bhattacharyya
- Department of Mathematics, Karimpur Pannadevi College, Nadia, West Bengal 741152, India.
| | - Daniel L Roelke
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA
| |
Collapse
|
8
|
Wang GH, Hoffmann A, Champer J. Gene Drive and Symbiont Technologies for Control of Mosquito-Borne Diseases. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:229-249. [PMID: 39353088 DOI: 10.1146/annurev-ento-012424-011039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose a significant burden to global health. Current control strategies with insecticides are only moderately effective. Scalable solutions are needed to reduce the transmission risk of these diseases. Symbionts and genome engineering-based mosquito control strategies have been proposed to address these problems. Bacterial, fungal, and viral symbionts affect mosquito reproduction, reduce mosquito lifespan, and block pathogen transmission. Field tests of endosymbiont Wolbachia-based methods have yielded promising results, but there are hurdles to overcome due to the large-scale rearing and accurate sex sorting required for Wolbachia-based suppression approaches and the ecological impediments to Wolbachia invasion in replacement approaches. Genome engineering-based methods, in which mosquitoes are genetically altered for the modification or suppression of wild populations, offer an additional approach for control of mosquito-borne diseases. In particular, the use of gene drive alleles that bias inheritance in their favor is a potentially powerful approach. Several drives are frequency dependent, potentially giving them broadly similar population dynamics to Wolbachia. However, public acceptance and the behavior of released drives in natural mosquito populations remain challenges. We summarize the latest developments and discuss the knowledge gaps in both symbiont- and gene drive-based methods.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia;
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
9
|
Brettell LE, Hoque AF, Joseph TS, Dhokiya V, Hornett EA, Hughes GL, Heinz E. Mosquitoes Reared in Nearby Insectaries at the Same Institution Have Significantly Divergent Microbiomes. Environ Microbiol 2025; 27:e70027. [PMID: 39779320 PMCID: PMC11711076 DOI: 10.1111/1462-2920.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded. While developmental success was similar across all three insectaries, differences in microbiome composition were observed between mosquitoes from each insectary. Environmental conditions and bacterial input via food sources varied between insectaries, potentially contributing to the observed differences in microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; the insectary with less stable and cooler conditions resulted in a slower pupation rate and higher diversity of the larval microbiome. These findings underscore that even minor inconsistencies in rearing conditions can affect the composition of the mosquito microbiome, which may influence experimental outcomes.
Collapse
Affiliation(s)
- Laura E. Brettell
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- School of Science, Engineering and EnvironmentUniversity of SalfordManchesterUK
| | - Ananya F. Hoque
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- The Roslin Institute, Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Tara S. Joseph
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
| | - Vishaal Dhokiya
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
| | - Emily A. Hornett
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Grant L. Hughes
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Tropical Disease Biology, Centre for Neglected Tropical DiseasesLiverpool School of Tropical MedicineLiverpoolUK
| | - Eva Heinz
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeGlasgowUK
| |
Collapse
|
10
|
Ogoyi DO, Njagi J, Tonui W, Dass B, Quemada H, James S. Post-release monitoring pathway for the deployment of gene drive-modified mosquitoes for malaria control in Africa. Malar J 2024; 23:351. [PMID: 39567982 PMCID: PMC11580452 DOI: 10.1186/s12936-024-05179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Gene drive-modified mosquitoes (GDMMs) have been promoted as one of the innovative technologies that may control and eliminate malaria and other mosquito-borne diseases. Several products are in early stages of development, targeting either population suppression or population modification of the mosquito vector. However, there is no direct experience of conducting risk assessment for environmental releases and subsequent policies regarding conditions for post-release. This study was carried out to gain additional insights on the possible post-release concerns that may arise, as they may inform future risk assessment and planning for deployment. METHODS This study involved desktop reviews on post release monitoring experiences with previously released biological control products. Stakeholder consultations involving online surveys, and face to face workshop with experts from selected African countries from Eastern, Western, and Southern African regions was then carried out to establish post-release monitoring concerns for GDMMs. RESULTS Review of genetic biocontrol technologies showed only limited lessons from post-release monitoring regimes with a focus largely limited to efficacy. For genetically modified organisms general surveillance and case-specific monitoring is expected in some of the regions. A number of post-release monitoring concerns in relation to the protection goals of human and animal health, biodiversity, and water quality were identified. CONCLUSION Based on established- protection goals, several post-release monitoring concerns have been identified. Subject to a rigorous risk assessment process for future GDMMs products, the concerns may then be prioritized for post-release monitoring.
Collapse
Affiliation(s)
- Dorington O Ogoyi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O BOX 52428, Nairobi, 00200, Kenya.
| | - Julia Njagi
- National Biosafety Authority, P.O. BOX 28251, Nairobi, 00100, Kenya
| | - Willy Tonui
- African Genetic Biocontrol Consortium (AGBC), Nairobi, Kenya
| | - Brinda Dass
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Hector Quemada
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| | - Stephanie James
- GeneConvene Global Collaborative, Foundation for the National Institutes of Health (FNIH), North Bethesda, MD, USA
| |
Collapse
|
11
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of transient Wolbachia infections on alphaviruses in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012633. [PMID: 39495807 PMCID: PMC11575829 DOI: 10.1371/journal.pntd.0012633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of transient somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB had more modest effects. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sujit Pujhari
- Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, South Carolina, United States of America
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
12
|
Bickerstaff JRM, Walsh T, Court L, Pandey G, Ireland K, Cousins D, Caron V, Wallenius T, Slipinski A, Rane R, Escalona HE. Chromosome Structural Rearrangements in Invasive Haplodiploid Ambrosia Beetles Revealed by the Genomes of Euwallacea fornicatus (Eichhoff) and Euwallacea similis (Ferrari) (Coleoptera, Curculionidae, Scolytinae). Genome Biol Evol 2024; 16:evae226. [PMID: 39431789 PMCID: PMC11542627 DOI: 10.1093/gbe/evae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Bark and ambrosia beetles are among the most ecologically and economically damaging introduced plant pests worldwide. Life history traits including polyphagy, haplodiploidy, inbreeding polygyny, and symbiosis with fungi contribute to their dispersal and impact. Species vary in their interactions with host trees, with many attacking stressed or recently dead trees, such as the globally distributed Euwallacea similis (Ferrari). Other species, like the Polyphagous Shot Hole Borer Euwallacea fornicatus (Eichhoff), can attack over 680 host plants and is causing considerable economic damage in several countries. Despite their notoriety, publicly accessible genomic resources for Euwallacea Hopkins species are scarce, hampering our understanding of their invasive capabilities as well as modern control measures, surveillance, and management. Using a combination of long and short read sequencing platforms, we assembled and annotated high quality (BUSCO > 98% complete) pseudo-chromosome-level genomes for these species. Comparative macrosynteny analysis identified an increased number of pseudo-chromosome scaffolds in the haplodiploid inbreeding species of Euwallacea compared to diploid outbred species, due to fission events. This suggests that life history traits can impact chromosome structure. Further, the genome of E. fornicatus had a higher relative proportion of repetitive elements, up to 17% more, than E. similis. Metagenomic assembly pipelines identified microbiota associated with both species including Fusarium fungal symbionts and a novel Wolbachia strain. These novel genomes of haplodiploid inbreeding species will contribute to the understanding of how life history traits are related to their evolution and to the management of these invasive pests.
Collapse
Affiliation(s)
- James R M Bickerstaff
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Tom Walsh
- Environment, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Leon Court
- Environment, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Gunjan Pandey
- Environment, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Kylie Ireland
- Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
- Department of Biodiversity, Conservation and Attractions, Perth, Western Australia 6151, Australia
| | - David Cousins
- Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Valerie Caron
- Health and Biosecurity, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2615, Australia
| | - Thomas Wallenius
- Department of Agriculture, Fisheries and Forestry, GPO Box 858, Canberra, ACT 2601, Australia
| | - Adam Slipinski
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Rahul Rane
- Health and Biosecurity, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
13
|
Tiley K, Entwistle J, Thomas B, Yakob L, Brady O. Using models and maps to inform Target Product Profiles and Preferred Product Characteristics: the example of Wolbachia replacement. Gates Open Res 2024; 7:68. [PMID: 39525364 PMCID: PMC11549085 DOI: 10.12688/gatesopenres.14300.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background The global prevalence of diseases transmitted by Aedes aegypti mosquitoes, such as dengue, Zika and Yellow Fever, is increasing, but development of promising new mosquito control technologies could reverse this trend. Target Product Profiles (TPPs) and Preferred Product Characteristics (PPCs) documents issued by the World Health Organization can guide the research and development pathways of new products and product combinations transitioning from proof of concept to operational use. Methods We used high resolution global maps of the case and economic burden of dengue to derive programmatic cost targets to support a TPP for Wolbachia replacement. A compartmental entomological model was used to explore how release size, spacing and timing affect replacement speed and acceptability. To support a PPC for a hybrid suppress-then-replace approach we tested whether Wolbachia replacement could be achieved faster, more acceptably or at a lower cost if preceded by a mosquito suppression programme. Results We show how models can reveal trade-offs, identify quantitative thresholds and prioritise areas and intervention strategies for further development. We estimate that for Wolbachia replacement to be deployable in enough areas to make major contributions to reducing global dengue burden by 25% (in line with 2030 WHO targets), it must have the potential for cost to be reduced to between $7.63 and $0.24 (USD) per person protected or less. Suppression can reduce the number of Wolbachia mosquitoes necessary to achieve replacement fixation by up to 80%. A hybrid approach can also achieve fixation faster and potentially improve acceptability, but may not justify their cost if they require major new investments in suppression technologies. Conclusions Here we demonstrate the value dedicated modelling can provide for interdisciplinary groups of experts when developing TPPs and PPCs. These models could be used by product developers to prioritise and shape development decisions for new Wolbachia replacement products.
Collapse
Affiliation(s)
- Katie Tiley
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Laith Yakob
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Oliver Brady
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
14
|
Brettell LE, Hoque AF, Joseph TS, Dhokiya V, Hornett EA, Hughes GL, Heinz E. Mosquitoes reared in distinct insectaries within an institution in close spatial proximity possess significantly divergent microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610121. [PMID: 39257775 PMCID: PMC11383675 DOI: 10.1101/2024.08.28.610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The microbiome affects important aspects of mosquito biology and differences in microbial composition can affect the outcomes of laboratory studies. To determine how the biotic and abiotic conditions in an insectary affect the composition of the bacterial microbiome of mosquitoes we reared mosquitoes from a single cohort of eggs from one genetically homogeneous inbred Aedes aegypti colony, which were split into three batches, and transferred to each of three different insectaries located within the Liverpool School of Tropical Medicine. Using three replicate trays per insectary, we assessed and compared the bacterial microbiome composition as mosquitoes developed from these eggs. We also characterised the microbiome of the mosquitoes' food sources, measured environmental conditions over time in each climate-controlled insectary, and recorded development and survival of mosquitoes. While mosquito development was overall similar between all three insectaries, we saw differences in microbiome composition between mosquitoes from each insectary. Furthermore, bacterial input via food sources, potentially followed by selective pressure of temperature stability and range, did affect the microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; and the insectary with less stable and cooler conditions resulted in slower pupation rate and higher diversity of the larval microbiome. Tray and cage effects were also seen in all insectaries, with different bacterial taxa implicated between insectaries. These results highlight the necessity of considering the variability and effects of different microbiome composition even in experiments carried out in a laboratory environment starting with eggs from one batch; and highlights the impact of even minor inconsistencies in rearing conditions due to variation of temperature and humidity.
Collapse
Affiliation(s)
- Laura E. Brettell
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK
| | - Ananya F. Hoque
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tara S. Joseph
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Vishaal Dhokiya
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Emily A. Hornett
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Grant L. Hughes
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| |
Collapse
|
15
|
Lin YH, Joubert DA, Kaeser S, Dowd C, Germann J, Khalid A, Denton JA, Retski K, Tavui A, Simmons CP, O'Neill SL, Gilles JRL. Field deployment of Wolbachia-infected Aedes aegypti using uncrewed aerial vehicle. Sci Robot 2024; 9:eadk7913. [PMID: 39083575 DOI: 10.1126/scirobotics.adk7913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Over the past 50 years, there has been a marked increase in diseases like dengue fever, chikungunya, and Zika. The World Mosquito Program (WMP) has developed an approach that, instead of attempting to eliminate vector species, introduces Wolbachia into native Aedes aegypti populations through the release of Wolbachia-infected mosquitoes. Using this approach, a randomized controlled study recently demonstrated a 77% reduction in dengue across a treatment area within Yogyakarta, Indonesia. Existing release methods use the ground-based release of mosquito eggs or adults that are labor-intensive, are logistically challenging to scale up, and can be restrictive in areas where staff safety is a concern. To overcome these limitations, we developed a fully automated mosquito dosing release system that released smaller cohorts of mosquitoes over a wide area and integrated it into an uncrewed aerial vehicle. We established the effectiveness of this system using an aerial mark, release, and recapture approach. We then demonstrated that using only the aerial release method, we can establish Wolbachia infection in a naive Ae. aegypti population. In both cases, the use of aerial releases demonstrated comparable outcomes to ground-based releases without the required labor or risk. These two trials demonstrated the feasibility of using an aerial release approach for large-scale mosquito releases.
Collapse
Affiliation(s)
- Ya-Hsun Lin
- World Mosquito Program, Melbourne, VIC, Australia
| | | | | | | | | | - Anam Khalid
- World Mosquito Program, Melbourne, VIC, Australia
| | | | - Kate Retski
- World Mosquito Program, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
16
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
17
|
Jia H, Tan S, Cai Y, Guo Y, Shen J, Zhang Y, Ma H, Zhang Q, Chen J, Qiao G, Ruan J, Zhang YE. Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun 2024; 15:5644. [PMID: 38969648 PMCID: PMC11226609 DOI: 10.1038/s41467-024-49992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.
Collapse
Affiliation(s)
- Hangxing Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yingao Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhu Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Salje H, Jiggins FM. Risks of releasing imperfect Wolbachia strains for arbovirus control. THE LANCET. MICROBE 2024; 5:622-623. [PMID: 38642566 DOI: 10.1016/s2666-5247(24)00072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/22/2024]
Affiliation(s)
- Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
19
|
Orozco-Gonzales JL, Dos Santos Benedito A, Cardona-Salgado D, Ferreira CP, de Oliveira Florentino H, Sepulveda-Salcedo LS, Vasilieva O. Comparing the long-term persistence of different Wolbachia strains after the release of bacteria-carrying mosquitoes. Math Biosci 2024; 372:109190. [PMID: 38631561 DOI: 10.1016/j.mbs.2024.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model's parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures.
Collapse
|
20
|
Ambrose L, Allen SL, Iro'ofa C, Butafa C, Beebe NW. Genetic and geographic population structure in the malaria vector, Anopheles farauti, provides a candidate system for pioneering confinable gene-drive releases. Heredity (Edinb) 2024; 132:232-246. [PMID: 38494530 PMCID: PMC11074138 DOI: 10.1038/s41437-024-00677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.
Collapse
Affiliation(s)
- Luke Ambrose
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| | - Scott L Allen
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Charlie Iro'ofa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Charles Butafa
- Solomon Islands Ministry of Health, Honiara, Guadalcanal, Solomon Islands
| | - Nigel W Beebe
- School of the Environment, University of Queensland, St Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Fox T, Sguassero Y, Chaplin M, Rose W, Doum D, Arevalo-Rodriguez I, Villanueva G. Wolbachia-carrying Aedes mosquitoes for preventing dengue infection. Cochrane Database Syst Rev 2024; 4:CD015636. [PMID: 38597256 PMCID: PMC11005084 DOI: 10.1002/14651858.cd015636.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
BACKGROUND Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated. OBJECTIVES To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024. SELECTION CRITERIA Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy. DATA COLLECTION AND ANALYSIS Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE. MAIN RESULTS One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events. AUTHORS' CONCLUSIONS The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Marty Chaplin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Winsley Rose
- Department of Child Health, Christian Medical College, Vellore, India
| | - Dyna Doum
- Health Forefront Organization, Phnom Penh, Cambodia
| | - Ingrid Arevalo-Rodriguez
- Cochrane Response, Cochrane, London, UK
- Evidence Production & Methods Directorate, Cochrane, London, UK
| | | |
Collapse
|
22
|
Reyes JIL, Suzuki T, Suzuki Y, Watanabe K. Detection and quantification of natural Wolbachia in Aedes aegypti in Metropolitan Manila, Philippines using locally designed primers. Front Cell Infect Microbiol 2024; 14:1360438. [PMID: 38562961 PMCID: PMC10982481 DOI: 10.3389/fcimb.2024.1360438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The Philippines bears health and economic burden caused by high dengue cases annually. Presently, the Philippines still lack an effective and sustainable vector management. The use of Wolbachia, a maternally transmitted bacterium, that mitigate arbovirus transmission has been recommended. Cytoplasmic incompatibility and viral blocking, two characteristics that make Wolbachia suitable for vector control, depend on infection prevalence and density. There are no current Wolbachia release programs in the Philippines, and studies regarding the safety of this intervention. Here, we screened for Wolbachia in Aedes aegypti collected from Metropolitan Manila, Philippines. We designed location-specific primers for qPCR to test whether this improved Wolbachia detection in Ae. aegypti. We explored if host sex and Wolbachia strain could be potential factors affecting Wolbachia density. Methods Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia by taqman qPCR using location-specific Wolbachia surface protein primers (wspAAML) and known 16S rRNA primers. Samples positive for wspAAML (n=267) were processed for Sanger sequencing. We constructed a phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present in the Philippine Ae. aegypti. We then compared Wolbachia densities between Wolbachia groups and host sex. Statistical analyses were done using GraphPad Prism 9.0. Results Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%) markers were high. Wolbachia relative densities for 16S rRNA ranged from -3.84 to 2.71 and wspAAML from -4.02 to 1.81. Densities were higher in male than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered into supergroup B. Some 54% (123/226) of these sequences clustered under a group referred to here as "wAegML," that belongs to the supergroup B, which had a significantly lower density than wAegB/wAlbB, and wAlbA strains. Conclusion Location-specific primers improved detection of natural Wolbachia in Ae. aegypti and allowed for relative quantification. Wolbachia density is relatively low, and differed between host sexes and Wolbachia strains. An economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is necessary while considering host sex and bacterial strain.
Collapse
Affiliation(s)
- Jerica Isabel L. Reyes
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Takahiro Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Kozo Watanabe
- Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
23
|
Dye D, Cain JW. Efficacy of Wolbachia-based mosquito control: Predictions of a spatially discrete mathematical model. PLoS One 2024; 19:e0297964. [PMID: 38437189 PMCID: PMC10911593 DOI: 10.1371/journal.pone.0297964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/14/2024] [Indexed: 03/06/2024] Open
Abstract
Wolbachia is an endosymbiont bacterium present in many insect species. When Wolbachia-carrying male Aedes aegypti mosquitoes mate with non-carrier females, their embryos are not viable due to cytoplasmic incompatibility. This phenomenon has been exploited successfully for the purpose of controlling mosquito populations and the spread of mosquito-borne illnesses: Wolbachia carriers are bred and released into the environment. Because Wolbachia is not harmful to humans, this method of mosquito control is regarded as a safer alternative to pesticide spraying. In this article, we introduce a mathematical framework for exploring (i) whether a one-time release of Wolbachia carriers can elicit a sustained presence of carriers near the release site, and (ii) the extent to which spatial propagation of carriers may allow them to establish fixation in other territories. While some prior studies have formulated mosquito dispersal models using advection-reaction-diffusion PDEs, the predictive power of such models requires careful ecological mapping: advection and diffusion coefficients exhibit significant spatial dependence due to heterogeneity of resources and topography. Here, we adopt a courser-grained view, regarding the environment as a network of discrete, diffusively-coupled "habitats"-distinct zones of high mosquito density such as stagnant ponds. We extend two previously published single-habitat mosquito models to multiple habitats, and calculate rates of migration between pairs of habitats using dispersal kernels. Our primary results are quantitative estimates regarding how the success of carrier fixation in one or more habitats is determined by: the number of carriers released, sizes of habitats, distances between habitats, and the rate of migration between habitats. Besides yielding sensible and potentially useful predictions regarding the success of Wolbachia-based control, our framework applies to other approaches (e.g., gene drives) and contexts beyond the realm of insect pest control.
Collapse
Affiliation(s)
- David Dye
- Department of Mathematics, Harvard University, Cambridge, MA, United States of America
| | - John W. Cain
- Department of Mathematics, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
24
|
Simmons CP, Donald W, Tagavi L, Tarivonda L, Quai T, Tavoa R, Noran T, Manikaoti E, Kareaua L, Abwai TT, Chand D, Rama V, Deo V, Deo KK, Tavuii A, Valentine W, Prasad R, Seru E, Naituku L, Ratu A, Hesketh M, Kenny N, Beebe SC, Goundar AA, McCaw A, Buntine M, Green B, Frossard T, Gilles JRL, Joubert DA, Wilson G, Duong LQ, Bouvier JB, Stanford D, Forder C, Duyvestyn JM, Pacidônio EC, Flores HA, Wittmeier N, Retzki K, Ryan PA, Denton JA, Smithyman R, Tanamas SK, Kyrylos P, Dong Y, Khalid A, Hodgson L, Anders KL, O’Neill SL. Successful introgression of wMel Wolbachia into Aedes aegypti populations in Fiji, Vanuatu and Kiribati. PLoS Negl Trop Dis 2024; 18:e0012022. [PMID: 38484041 PMCID: PMC10980184 DOI: 10.1371/journal.pntd.0012022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/29/2024] [Accepted: 02/25/2024] [Indexed: 04/01/2024] Open
Abstract
Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.
Collapse
Affiliation(s)
| | - Wesley Donald
- Ministry of Health, Government of Vanuatu, Port Vila, Vanuatu
| | - Lekon Tagavi
- Ministry of Health, Government of Vanuatu, Port Vila, Vanuatu
| | - Len Tarivonda
- Ministry of Health, Government of Vanuatu, Port Vila, Vanuatu
| | | | | | - Tebikau Noran
- Ministry of Health and Medical Services, Kiribati Government, Kiribati
| | - Erirau Manikaoti
- Ministry of Health and Medical Services, Kiribati Government, Kiribati
| | - Lavinia Kareaua
- Ministry of Health and Medical Services, Kiribati Government, Kiribati
| | | | - Dip Chand
- Ministry of Health and Medical Services, Government of Fiji, Suva, Fiji
| | - Vineshwaran Rama
- Ministry of Health and Medical Services, Government of Fiji, Suva, Fiji
| | - Vimal Deo
- Ministry of Health and Medical Services, Government of Fiji, Suva, Fiji
| | | | - Aminiasi Tavuii
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | | | | | - Anaseini Ratu
- World Mosquito Program, Monash University, Clayton, Australia
| | - Mark Hesketh
- World Mosquito Program, Monash University, Clayton, Australia
| | - Nichola Kenny
- World Mosquito Program, Monash University, Clayton, Australia
| | - Sarah C. Beebe
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Andrew McCaw
- World Mosquito Program, Monash University, Clayton, Australia
| | - Molly Buntine
- World Mosquito Program, Monash University, Clayton, Australia
| | - Ben Green
- World Mosquito Program, Monash University, Clayton, Australia
| | - Tibor Frossard
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | - Geoff Wilson
- World Mosquito Program, Monash University, Clayton, Australia
| | - Le Quyen Duong
- World Mosquito Program, Monash University, Clayton, Australia
| | - Jean B Bouvier
- World Mosquito Program, Monash University, Clayton, Australia
| | - Darren Stanford
- World Mosquito Program, Monash University, Clayton, Australia
| | - Carolyn Forder
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | | | | | | - Kate Retzki
- World Mosquito Program, Monash University, Clayton, Australia
| | - Peter A. Ryan
- World Mosquito Program, Monash University, Clayton, Australia
| | - Jai A. Denton
- World Mosquito Program, Monash University, Clayton, Australia
| | - Ruth Smithyman
- World Mosquito Program, Monash University, Clayton, Australia
| | | | - Peter Kyrylos
- World Mosquito Program, Monash University, Clayton, Australia
| | - Yi Dong
- World Mosquito Program, Monash University, Clayton, Australia
| | - Anam Khalid
- World Mosquito Program, Monash University, Clayton, Australia
| | - Lauren Hodgson
- World Mosquito Program, Monash University, Clayton, Australia
| | | | | |
Collapse
|
25
|
Sohail A, Anders KL, McGuinness SL, Leder K. The epidemiology of imported and locally acquired dengue in Australia, 2012-2022. J Travel Med 2024; 31:taae014. [PMID: 38243558 PMCID: PMC10911064 DOI: 10.1093/jtm/taae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Dengue is the most important arboviral disease globally and poses ongoing challenges for control including in non-endemic countries with competent mosquito vectors at risk of local transmission through imported cases. We examined recent epidemiological trends in imported and locally acquired dengue in Australia, where the Wolbachia mosquito population replacement method was implemented throughout dengue-prone areas of northern Queensland between 2011 and 2019. METHODS We analysed dengue cases reported to the Australian National Notifiable Disease Surveillance System between January 2012 and December 2022, and Australian traveller movement data. RESULTS Between 2012 and 2022, 13 343 dengue cases were reported in Australia (median 1466 annual cases); 12 568 cases (94.2%) were imported, 584 (4.4%) were locally acquired and 191 (1.4%) had no origin recorded. Locally acquired cases decreased from a peak in 2013 (n = 236) to zero in 2021-22. Annual incidence of imported dengue ranged from 8.29/100 000 (n = 917 cases) to 22.10/100 000 (n = 2203) annual traveller movements between 2012 and 2019, decreased in 2020 (6.74/100 000 traveller movements; n = 191) and 2021 (3.32/100 000 traveller movements; n = 10) during COVID-19-related border closures, then rose to 34.79/100 000 traveller movements (n = 504) in 2022. Imported cases were primarily acquired in Southeast Asia (n = 9323; 74%), Southern and Central Asia (n = 1555; 12%) and Oceania (n = 1341; 11%). Indonesia (n = 5778; 46%) and Thailand (n = 1483; 12%) were top acquisition countries. DENV-2 (n = 2147; 42%) and DENV-1 (n = 1526; 30%) were predominant serotypes. CONCLUSION Our analysis highlights Australia's successful control of locally acquired dengue with Wolbachia. Imported dengue trends reflect both Australian travel destinations and patterns and local epidemiology in endemic countries.
Collapse
Affiliation(s)
- Asma Sohail
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
- Infectious Diseases Department, Grampians Health Service, 1 Drummond Street North, Ballarat, Victoria 3350, Australia
| | - Katherine L Anders
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
- World Mosquito Program, Monash University, 12 Innovation Walk, Clayton, Victoria 3800, Australia
| | - Sarah L McGuinness
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
- Infectious Diseases Department, Alfred Health, 55 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria 3004, Australia
- Victorian Infectious Diseases Service, Melbourne Health, 300 Grattan Street, Parkville, Victoria 3050, Australia
| |
Collapse
|
26
|
Egyirifa RK, Akorli J. Two promising candidates for paratransgenesis, Elizabethkingia and Asaia, increase in both sexes of Anopheles gambiae mosquitoes after feeding. Malar J 2024; 23:45. [PMID: 38347591 PMCID: PMC10863137 DOI: 10.1186/s12936-024-04870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The male mosquito microbiome may be important for identifying ideal candidates for disease control. Among other criteria, mosquito-associated symbionts that have high localization in both male and female mosquitoes and are transmissible through both vertical and sexual routes are desirable. However, mosquito microbiome studies have mainly been female-focused. In this study, the microbiota of male and female Anopheles gambiae sensu lato (s.l.) were compared to identify shared or unique bacteria. METHODS Late larval instars of Anopheles mosquitoes were collected from the field and raised to adults. Equal numbers of males and females of 1-day-old non-sugar-fed, 4-5-day-old sugar-fed and post-blood-fed females were randomly selected for whole-body analyses of bacteria 16S rRNA. RESULTS Results revealed that male and female mosquitoes generally share similar microbiota except when females were blood-fed. Compared to newly emerged unfed mosquitoes, feeding on sugar and/or blood increased variability in microbial composition (⍺-diversity), with a higher disparity among females (39% P = 0.01) than in males (29% P = 0.03). Elizabethkingia meningoseptica and Asaia siamensis were common discriminants between feeding statuses in both males and females. While E. meningoseptica was particularly associated with sugar-fed mosquitoes of both sexes and sustained after blood feeding in females, A. siamensis was also increased in sugar-fed mosquitoes but decreased significantly in blood-fed females (LDA score > 4.0, P < 0.05). Among males, A. siamensis did not differ significantly after sugar meals. CONCLUSIONS Results indicate the opportunities for stable infection in mosquitoes should these species be used in bacteria-mediated disease control. Further studies are recommended to investigate possible host-specific tissue tropism of bacteria species which will inform selection of the most appropriate microbes for effective transmission-blocking strategies.
Collapse
Affiliation(s)
- Richardson K Egyirifa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana.
| |
Collapse
|
27
|
Corrêa-Antônio J, David MR, Couto-Lima D, Garcia GA, Keirsebelik MSG, Maciel-de-Freitas R, Pavan MG. DENV-1 Titer Impacts Viral Blocking in wMel Aedes aegypti with Brazilian Genetic Background. Viruses 2024; 16:214. [PMID: 38399990 PMCID: PMC10891765 DOI: 10.3390/v16020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Several countries have been using Wolbachia deployments to replace highly competent native Aedes aegypti populations with Wolbachia-carrying mosquitoes with lower susceptibility to arboviruses such as dengue, Zika, and chikungunya. In Rio de Janeiro, Wolbachia deployments started in 2015 and still present a moderate introgression with a modest reduction in dengue cases in humans (38%). Here, we evaluated the vector competence of wild-type and wMel-infected Ae. aegypti with a Brazilian genetic background to investigate whether virus leakage could contribute to the observed outcomes in Brazil. We collected the specimens in three areas of Rio de Janeiro with distinct frequencies of mosquitoes with wMel strain and two areas with wild Ae. aegypti. The mosquitoes were orally exposed to two titers of DENV-1 and the saliva of DENV-1-infected Ae. aegypti was microinjected into wMel-free mosquitoes to check their infectivity. When infected with the high DENV-1 titer, the presence of wMel did not avoid viral infection in mosquitoes' bodies and saliva but DENV-1-infected wMel mosquitoes produced lower viral loads than wMel-free mosquitoes. On the other hand, wMel mosquitoes infected with the low DENV-1 titer were less susceptible to virus infection than wMel-free mosquitoes, although once infected, wMel and wMel-free mosquitoes exhibited similar viral loads in the body and the saliva. Our results showed viral leakage in 60% of the saliva of wMel mosquitoes with Brazilian background; thus, sustained surveillance is imperative to monitor the presence of other circulating DENV-1 strains capable of overcoming the Wolbachia blocking phenotype, enabling timely implementation of action plans.
Collapse
Affiliation(s)
- Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Gabriela Azambuja Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Milan S. G. Keirsebelik
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Márcio Galvão Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (J.C.-A.); (M.R.D.); (D.C.-L.); (G.A.G.); (M.S.G.K.); (R.M.-d.-F.)
| |
Collapse
|
28
|
Thia JA, Endersby-Harshman N, Collier S, Nassar MS, Tawfik EA, Alfageeh MB, Elfekih S, Hoffmann AA. Mitochondrial DNA variation in Aedes aegypti (Diptera: Culicidae) mosquitoes from Jeddah, Saudi Arabia. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:250-256. [PMID: 37738428 PMCID: PMC10784777 DOI: 10.1093/jme/tjad131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023]
Abstract
Wolbachia (Hertig 1936) (Rickettsiales: Ehrlichiaceae) has emerged as a valuable biocontrol tool in the fight against dengue by suppressing the transmission of the virus through mosquitoes. Monitoring the dynamics of Wolbachia is crucial for evaluating the effectiveness of release programs. Mitochondrial (mtDNA) markers serve as important tools for molecular tracking of infected mitochondrial backgrounds over time but require an understanding of the variation in release sites. In this study, we investigated the mitochondrial lineages of Aedes aegypti (Linnaeus 1762) in Jeddah, Saudi Arabia, which is a prospective release site for the "wAlbBQ" Wolbachia-infected strain of this mosquito species. We employed a combination of comprehensive mitogenomic analysis (including all protein-coding genes) and mtDNA marker analysis (cox1 and nad5) using data collected from Jeddah. We combined our mitogenome and mtDNA marker data with those from previous studies to place mitochondrial variation in Saudi Arabia into a broader global context. Our findings revealed the presence of 4 subclades that can be broadly categorized into 2 major mitochondrial lineages. Ae. aegypti mosquitoes from Jeddah belonged to both major lineages. Whilst mitogenomic data offered a higher resolution for distinguishing Jeddah mosquitoes from the wAlbBQ strain, the combination of cox1 and nad5 mtDNA markers alone proved to be sufficient. This study provides the first important characterization of Ae. aegypti mitochondrial lineages in Saudi Arabia and offers essential baseline information for planning future molecular monitoring efforts during the release of Wolbachia-infected mosquitoes.
Collapse
Affiliation(s)
- Joshua A Thia
- Pest and Environmental Adaptation Research Group, Bio21 Institute and The School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Nancy Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and The School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Sophie Collier
- Pest and Environmental Adaptation Research Group, Bio21 Institute and The School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Majed S Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Mohamed B Alfageeh
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Samia Elfekih
- Pest and Environmental Adaptation Research Group, Bio21 Institute and The School of Biosciences, University of Melbourne, Parkville, VIC, Australia
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and The School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Zhang M, Xi Z. Wolbachia Transinfection Via Embryonic Microinjection. Methods Mol Biol 2024; 2739:175-188. [PMID: 38006552 DOI: 10.1007/978-1-0716-3553-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The process of transferring Wolbachia from one species to another to establish a stable, maternally inherited infection in the target species is known as transinfection. The success of transinfection is primarily achieved through embryonic microinjection, which is the most direct and efficient means of delivering Wolbachia into the germline of the target species and establishing stable maternal transmission. For the fundamental studies, transinfection is often used to characterize Wolbachia-host interactions, including Wolbachia host range, the role of host or bacterial factors in symbiosis, and evolution of Wolbachia-host associations. For the applied studies, use of transinfection to generate a novel infection in the target species is the first step to build the weapon for both population replacement and population suppression for controlling insect pests or their transmitted diseases. For the primary dengue vector Aedes aegypti and Anopheles vectors of malaria, which either do not naturally carry Wolbachia or are infected with strains that lack necessary features for implementation, transinfection can be established by introducing a novel strain capable of inducing both cytoplasmic incompatibility (CI) and pathogen blocking. For A. albopictus and Culex mosquito species, which naturally harbor CI-inducing Wolbachia, transinfection can be achieved by either introducing a novel strain to generate superinfection or replacing the native infection with a different Wolbachia strain in a symbiont-free line, which is derived from antibiotic treatment of the wild type. Here, we use A. aegypti as an example to describe the Wolbachia transinfection method, which can be adapted to other insect species, such as planthoppers, according to their specific developmental requirements.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
30
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
31
|
Mouillaud T, Berger A, Buysse M, Rahola N, Daron J, Agbor J, Sango SN, Neafsey DE, Duron O, Ayala D. Limited association between Wolbachia and Plasmodium falciparum infections in natural populations of the major malaria mosquito Anopheles moucheti. Evol Appl 2023; 16:1999-2006. [PMID: 38143905 PMCID: PMC10739076 DOI: 10.1111/eva.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/26/2023] Open
Abstract
Since the discovery of natural malaria vector populations infected by the endosymbiont bacterium Wolbachia, a renewed interest has arisen for using this bacterium as an alternative for malaria control. Among naturally infected mosquitoes, Anopheles moucheti, a major malaria mosquito in Central Africa, exhibits one of the highest prevalences of Wolbachia infection. To better understand whether this maternally inherited bacterium could be used for malaria control, we investigated Wolbachia influence in An. moucheti populations naturally infected by the malaria parasite Plasmodium falciparum. To this end, we collected mosquitoes in a village from Cameroon, Central Africa, where this mosquito is the main malaria vector. We found that the prevalence of Wolbachia bacterium was almost fixed in the studied mosquito population, and was higher than previously recorded. We also quantified Wolbachia in whole mosquitoes and dissected abdomens, confirming that the bacterium is also elsewhere than in the abdomen, but at lower density. Finally, we analyzed the association of Wolbachia presence and density on P. falciparum infection. Wolbachia density was slightly higher in mosquitoes infected with the malaria parasite than in uninfected mosquitoes. However, we observed no correlation between the P. falciparum and Wolbachia densities. In conclusion, our study indicates that naturally occurring Wolbachia infection is not associated to P. falciparum development within An. moucheti mosquitoes.
Collapse
Affiliation(s)
| | - Audric Berger
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Marie Buysse
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Montpellier Ecology and Evolution of Disease Network (MEEDiN)MontpellierFrance
| | - Nil Rahola
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Josquin Daron
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
| | - Jean‐Pierre Agbor
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDoualaCameroon
| | - Sandrine N. Sango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de DoualaDoualaCameroon
| | - Daniel E. Neafsey
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Infectious Disease and Microbiome ProgramBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Olivier Duron
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Montpellier Ecology and Evolution of Disease Network (MEEDiN)MontpellierFrance
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRDMontpellierFrance
- Medical Entomology UnitInstitut Pasteur de MadagascarAntananarivoMadagascar
| |
Collapse
|
32
|
Velez ID, Tanamas SK, Arbelaez MP, Kutcher SC, Duque SL, Uribe A, Zuluaga L, Martínez L, Patiño AC, Barajas J, Muñoz E, Mejia Torres MC, Uribe S, Porras S, Almanza R, Pulido H, O’Neill SL, Santacruz-Sanmartin E, Gonzalez S, Ryan PA, Denton JA, Jewell NP, Dufault SM, Simmons CP, Anders KL. Reduced dengue incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian cities: Interrupted time series analysis and a prospective case-control study. PLoS Negl Trop Dis 2023; 17:e0011713. [PMID: 38032857 PMCID: PMC10688673 DOI: 10.1371/journal.pntd.0011713] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The introduction of Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Randomised and non-randomised studies in multiple countries have shown significant reductions in dengue incidence following field releases of wMel-infected Ae. aegypti. We report the public health outcomes from phased, large-scale releases of wMel-Ae. aegypti mosquitoes throughout three contiguous cities in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS Following pilot releases in 2015-2016, staged city-wide wMel-Ae. aegypti deployments were undertaken in the cities of Bello, Medellín and Itagüí (3.3 million people) between October 2016 and April 2022. The impact of the Wolbachia intervention on dengue incidence was evaluated in two parallel studies. A quasi-experimental study using interrupted time series analysis showed notified dengue case incidence was reduced by 95% in Bello and Medellín and 97% in Itagüí, following establishment of wMel at ≥60% prevalence, compared to the pre-intervention period and after adjusting for seasonal trends. A concurrent clinic-based case-control study with a test-negative design was unable to attain the target sample size of 63 enrolled virologically-confirmed dengue (VCD) cases between May 2019 and December 2021, consistent with low dengue incidence throughout the Aburrá Valley following wMel deployments. Nevertheless, VCD incidence was 45% lower (OR 0.55 [95% CI 0.25, 1.17]) and combined VCD/presumptive dengue incidence was 47% lower (OR 0.53 [95% CI 0.30, 0.93]) among participants resident in wMel-treated versus untreated neighbourhoods. CONCLUSIONS/SIGNIFICANCE Stable introduction of wMel into local Ae. aegypti populations was associated with a significant and sustained reduction in dengue incidence across three Colombian cities. These results from the largest contiguous Wolbachia releases to-date demonstrate the real-world effectiveness of the method across large urban populations and, alongside previously published results, support the reproducibility of this effectiveness across different ecological settings. TRIAL REGISTRATION NCT03631719.
Collapse
Affiliation(s)
- Ivan Dario Velez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | - Sandra L. Duque
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Alexander Uribe
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Lina Zuluaga
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Luis Martínez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | - Jovany Barajas
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Estefanía Muñoz
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | - Sandra Uribe
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Sandra Porras
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | | - Sandra Gonzalez
- World Mosquito Program, Universidad de Antioquia, Medellín, Colombia
| | - Peter A. Ryan
- World Mosquito Program, Monash University, Melbourne, Australia
| | - Jai A. Denton
- World Mosquito Program, Monash University, Melbourne, Australia
| | - Nicholas P. Jewell
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Suzanne M. Dufault
- Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, California, United States of America
| | | | | |
Collapse
|
33
|
Boehm EC, Jaeger AS, Ries HJ, Castañeda D, Weiler AM, Valencia CC, Weger-Lucarelli J, Ebel GD, O’Connor SL, Friedrich TC, Zamanian M, Aliota MT. Wolbachia-mediated resistance to Zika virus infection in Aedes aegypti is dominated by diverse transcriptional regulation and weak evolutionary pressures. PLoS Negl Trop Dis 2023; 17:e0011674. [PMID: 37782672 PMCID: PMC10569609 DOI: 10.1371/journal.pntd.0011674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the wMel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of wMel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia-infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia. Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia-mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system.
Collapse
Affiliation(s)
- Emma C. Boehm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Hunter J. Ries
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Corina C. Valencia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - James Weger-Lucarelli
- Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Gregory D. Ebel
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
34
|
Vinayagam S, Nirmolia T, Chetry S, Kumar NP, Saini P, Bhattacharyya DR, Bhowmick IP, Sattu K, Patgiri SJ. Molecular Evidence of Wolbachia Species in Wild-Caught Aedes albopictus and Aedes aegypti Mosquitoes in Four States of Northeast India. J Trop Med 2023; 2023:6678627. [PMID: 37706052 PMCID: PMC10497363 DOI: 10.1155/2023/6678627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Wolbachia, a Gram-negative intracellular bacterium, naturally infects many arthropods, including mosquito vectors responsible for the spread of arboviral diseases such as Zika, chikungunya, and dengue fever. Certain Wolbachia strains are involved in inhibiting arbovirus replication in mosquitoes, and this phenomenon is currently being studied to combat disease vectors. A study was conducted in four states in north-eastern India to investigate the presence of natural Wolbachia infection in wild-caught Aedes albopictus and Aedes aegypti mosquitoes, the established vectors of dengue. The detection of a Wolbachia infection was confirmed by nested PCR and sequencing in the two mosquito species Ae. aegypti and Ae. albopictus. Positivity rates observed in Ae. aegypti and Ae. albopictus pools were 38% (44 of 115) and 85% (41 of 48), respectively, and the difference was significant (chi-square = 28.3174, p = 0.00000010). Sequencing revealed that all detected Wolbachia strains belonged to supergroup B. Although Wolbachia infection in Ae. aegypti has been previously reported from India, no such reports are available from north-eastern India. Data on naturally occurring Wolbachia strains are essential for selecting the optimal strain for the development of Wolbachia-based control measures. This information will be helpful for the future application of Wolbachia-based vector control measures in this part of the country.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
- Periyar University, Centre for PG & Research Studies, Dharmapuri 635205, India
| | - Tulika Nirmolia
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Sumi Chetry
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | | | - Prasanta Saini
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| | | | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Kamaraj Sattu
- Periyar University, Centre for PG & Research Studies, Dharmapuri 635205, India
| | - Saurav Jyoti Patgiri
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| |
Collapse
|
35
|
Osorio J, Villa-Arias S, Camargo C, Ramírez-Sánchez LF, Barrientos LM, Bedoya C, Rúa-Uribe G, Dorus S, Alfonso-Parra C, Avila FW. wMel Wolbachia alters female post-mating behaviors and physiology in the dengue vector mosquito Aedes aegypti. Commun Biol 2023; 6:865. [PMID: 37604924 PMCID: PMC10442437 DOI: 10.1038/s42003-023-05180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Globally invasive Aedes aegypti disseminate numerous arboviruses that impact human health. One promising method to control Ae. aegypti populations is transinfection with Wolbachia pipientis, which naturally infects ~40-52% of insects but not Ae. aegypti. Transinfection of Ae. aegypti with the wMel Wolbachia strain induces cytoplasmic incompatibility (CI), allows infected individuals to invade native populations, and inhibits transmission of medically relevant arboviruses by females. Female insects undergo post-mating physiological and behavioral changes-referred to as the female post-mating response (PMR)-required for optimal fertility. PMRs are typically elicited by male seminal fluid proteins (SFPs) transferred with sperm during mating but can be modified by other factors, including microbiome composition. Wolbachia has modest effects on Ae. aegypti fertility, but its influence on other PMRs is unknown. Here, we show that Wolbachia influences female fecundity, fertility, and re-mating incidence and significantly extends the longevity of virgin females. Using proteomic methods to examine the seminal proteome of infected males, we found that Wolbachia moderately affects SFP composition. However, we identified 125 paternally transferred Wolbachia proteins, but the CI factor proteins (Cifs) were not among them. Our findings indicate that Wolbachia infection of Ae. aegypti alters female PMRs, potentially influencing control programs that utilize Wolbachia-infected individuals.
Collapse
Affiliation(s)
- Jessica Osorio
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Sara Villa-Arias
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Carolina Camargo
- Centro de Investigación de la caña de azúcar CENICAÑA, Valle del Cauca, Colombia
| | | | - Luisa María Barrientos
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Bedoya
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | | | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, USA
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
36
|
Oladipupo SO, Laidoudi Y, Beckmann JF, Hu XP, Appel AG. The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1307-1316. [PMID: 37247378 DOI: 10.1093/jee/toad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
37
|
Vásquez VN, Kueppers LM, Rašić G, Marshall JM. wMel replacement of dengue-competent mosquitoes is robust to near-term change. NATURE CLIMATE CHANGE 2023; 13:848-855. [PMID: 37546688 PMCID: PMC10403361 DOI: 10.1038/s41558-023-01746-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
Rising temperatures are impacting the range and prevalence of mosquito-borne diseases. A promising biocontrol technology replaces wild mosquitoes with those carrying the virus-blocking Wolbachia bacterium. Because the most widely used strain, wMel, is adversely affected by heat stress, we examined how global warming may influence wMel-based replacement. We simulated interventions in two locations with successful field trials using Coupled Model Intercomparison Project Phase 5 climate projections and historical temperature records, integrating empirical data on wMel's thermal sensitivity into a model of Aedes aegypti population dynamics to evaluate introgression and persistence over one year. We show that in Cairns, Australia, climatic futures necessitate operational adaptations for heatwaves exceeding two weeks. In Nha Trang, Vietnam, projected heatwaves of three weeks and longer eliminate wMel under the most stringent assumptions of that symbiont's thermal limits. We conclude that this technology is generally robust to near-term (2030s) climate change. Accelerated warming may challenge this in the 2050s and beyond.
Collapse
Affiliation(s)
- Váleri N. Vásquez
- Energy and Resources Group, University of California, Berkeley, CA USA
- Department of Electrical Engineering and Computer Sciences, College of Engineering, University of California, Berkeley, CA USA
| | - Lara M. Kueppers
- Energy and Resources Group, University of California, Berkeley, CA USA
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland Australia
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, CA USA
| |
Collapse
|
38
|
Boehm EC, Jaeger AS, Ries HJ, Castañeda D, Weiler AM, Valencia CC, Weger-Lucarelli J, Ebel GD, O’Connor SL, Friedrich TC, Zamanian M, Aliota MT. Wolbachia -mediated resistance to Zika virus infection in Aedes aegypti is dominated by diverse transcriptional regulation and weak evolutionary pressures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546271. [PMID: 37425681 PMCID: PMC10327090 DOI: 10.1101/2023.06.26.546271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the w Mel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of w Mel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia -infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia . Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia -mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system. Author Summary When Wolbachia bacteria infect Aedes aegypti mosquitoes, they dramatically reduce the mosquitoes' susceptibility to infection with a range of arthropod-borne viruses, including Zika virus (ZIKV). Although this pathogen-blocking effect has been widely recognized, its mechanisms remain unclear. Furthermore, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to Wolbachia -mediated blocking. Here, we use host transcriptomics and viral genome sequencing to examine the mechanisms of ZIKV pathogen blocking by Wolbachia and viral evolutionary dynamics in Ae. aegypti mosquitoes. We find complex transcriptome patterns that do not suggest a single clear mechanism for pathogen blocking. We also find no evidence that Wolbachia exerts detectable selective pressures on ZIKV in coinfected mosquitoes. Together our data suggest that it may be difficult for ZIKV to evolve Wolbachia resistance, perhaps due to the complexity of the pathogen blockade mechanism.
Collapse
Affiliation(s)
- Emma C. Boehm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Hunter J. Ries
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Corina C. Valencia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | | | | | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| |
Collapse
|
39
|
Beckmann J, Gillespie J, Tauritz D. Modeling emergence of Wolbachia toxin-antidote protein functions with an evolutionary algorithm. Front Microbiol 2023; 14:1116766. [PMID: 37362913 PMCID: PMC10288140 DOI: 10.3389/fmicb.2023.1116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down population ecology models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors (cifs), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions and sequence length can bias evolution of cifs toward one mechanism or another.
Collapse
Affiliation(s)
- John Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Joe Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Daniel Tauritz
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| |
Collapse
|
40
|
Turner HC, Quyen DL, Dias R, Huong PT, Simmons CP, Anders KL. An economic evaluation of Wolbachia deployments for dengue control in Vietnam. PLoS Negl Trop Dis 2023; 17:e0011356. [PMID: 37253037 PMCID: PMC10256143 DOI: 10.1371/journal.pntd.0011356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
INTRODUCTION Dengue is a major public health challenge and a growing problem due to climate change. The release of Aedes aegypti mosquitoes infected with the intracellular bacterium Wolbachia is a novel form of vector control against dengue. However, there remains a need to evaluate the benefits of such an intervention at a large scale. In this paper, we evaluate the potential economic impact and cost-effectiveness of scaled Wolbachia deployments as a form of dengue control in Vietnam-targeted at the highest burden urban areas. METHODS Ten settings within Vietnam were identified as priority locations for potential future Wolbachia deployments (using a population replacement strategy). The effectiveness of Wolbachia deployments in reducing the incidence of symptomatic dengue cases was assumed to be 75%. We assumed that the intervention would maintain this effectiveness for at least 20 years (but tested this assumption in the sensitivity analysis). A cost-utility analysis and cost-benefit analysis were conducted. RESULTS From the health sector perspective, the Wolbachia intervention was projected to cost US$420 per disability-adjusted life year (DALY) averted. From the societal perspective, the overall cost-effectiveness ratio was negative, i.e. the economic benefits outweighed the costs. These results are contingent on the long-term effectiveness of Wolbachia releases being sustained for 20 years. However, the intervention was still classed as cost-effective across the majority of the settings when assuming only 10 years of benefits. CONCLUSION Overall, we found that targeting high burden cities with Wolbachia deployments would be a cost-effective intervention in Vietnam and generate notable broader benefits besides health gains.
Collapse
Affiliation(s)
- Hugo C. Turner
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Reynold Dias
- World Mosquito Program, Monash University, Clayton, Australia
| | - Phan Thi Huong
- Department of Preventive Medicine, Ministry of Health, Hanoi, Vietnam
| | | | | |
Collapse
|
41
|
Gong JT, Li TP, Wang MK, Hong XY. Wolbachia-based strategies for control of agricultural pests. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101039. [PMID: 37105498 DOI: 10.1016/j.cois.2023.101039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023]
Abstract
Wolbachia-based incompatible insect technique (IIT) and pathogen blocking technique (PBT) have been shown to be effective at protecting humans from mosquito-borne diseases in the past decades. Population suppression based on IIT and population replacement based on PBT have become major field application strategies that have continuously been improved by the translational research on Wolbachia-transinfected mosquitoes. Similarly, Wolbachia-based approaches have been proposed for the protection of plants from agricultural pests and their associated diseases. However, a bottleneck in Wolbachia-based strategies for the control of agricultural pests is the need for methods to establish Wolbachia-transinfected insect lines. As a first step in this direction, we compare field control strategies for mosquitos with the potential strategies for agricultural pests based on Wolbachia. Our results show that there is a critical need for establishing productive insect lines and accumulating field test data.
Collapse
Affiliation(s)
- Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Guangzhou Wolbaki Biotech Co., Ltd., Guangzhou, Guangdong 510535, China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
42
|
Oladipupo SO, Carroll JD, Beckmann JF. Convergent Aedes and Drosophila CidB interactomes suggest cytoplasmic incompatibility targets are conserved. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103931. [PMID: 36933571 DOI: 10.1016/j.ibmb.2023.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/10/2023]
Abstract
Wolbachia-mediated cytoplasmic incompatibility (CI) is a conditional embryonic lethality induced when Wolbachia-modified sperm fertilizes an uninfected egg. The Wolbachia proteins, CidA and CidB control CI. CidA is a rescue factor that reverses lethality. CidA binds to CidB. CidB contains a deubiquitinating enzyme and induces CI. Precisely how CidB induces CI and what it targets are unknown. Likewise, how CidA prevents sterilization by CidB is not clear. To identify CidB substrates in mosquitos we conducted pull-down assays using recombinant CidA and CidB mixed with Aedes aegypti lysates to identify the protein interactomes of CidB and the CidB/CidA protein complex. Our data allow us to cross compare CidB interactomes across taxa for Aedes and Drosophila. Our data replicate several convergent interactions, suggesting that CI targets conserved substrates across insects. Our data support a hypothesis that CidA rescues CI by tethering CidB away from its substrates. Specifically, we identify ten convergent candidate substrates including P32 (protamine-histone exchange factor), karyopherin alpha, ubiquitin-conjugating enzyme, and bicoid stabilizing factor. Future analysis on how these candidates contribute to CI will clarify mechanisms.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jazmine D Carroll
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - John F Beckmann
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
43
|
Wimalasiri-Yapa BMCR, Huang B, Ross PA, Hoffmann AA, Ritchie SA, Frentiu FD, Warrilow D, van den Hurk AF. Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. PLoS Negl Trop Dis 2023; 17:e0011222. [PMID: 36989319 PMCID: PMC10085034 DOI: 10.1371/journal.pntd.0011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.
Collapse
Affiliation(s)
- B M C Randika Wimalasiri-Yapa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Open University of Sri Lanka, Nugegoda, Colombo, Sri Lanka
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| |
Collapse
|
44
|
Beckmann J, Gillespie J, Tauritz D. Modelling Emergence of Wolbachia Toxin-Antidote Protein Functions with an Evolutionary Algorithm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533954. [PMID: 36993585 PMCID: PMC10055314 DOI: 10.1101/2023.03.23.533954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down ecological population models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors ( cifs ), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions, genetic diversity, and sequence length can bias evolution of cifs towards one mechanism or another.
Collapse
Affiliation(s)
- John Beckmann
- Auburn University Department of Entomology and Plant Pathology,
301 Funchess Hall, Auburn, AL; 36849
| | - Joe Gillespie
- University of Maryland Baltimore, School of Medicine, Department
of Microbiology and Immunology, Baltimore, 685 W. Baltimore St., HSF I Suite 380, Baltimore,
MD 21201
| | - Daniel Tauritz
- Auburn University Department of Computer Science and Software
Engineering, 3101 Shelby Center Auburn, Alabama 36849
| |
Collapse
|
45
|
Fox T, Sguassero Y, Chaplin M, Rose W, Doum D, Arevalo-Rodriguez I, Villanueva G. Wolbachia‐carrying Aedes mosquitoes for preventing dengue infection. Cochrane Database Syst Rev 2023; 2023:CD015636. [PMCID: PMC9983298 DOI: 10.1002/14651858.cd015636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy of wMel‐, wMelPop‐, and wAlbB‐carrying Aedes species deployments for preventing dengue virus infection.
Collapse
Affiliation(s)
| | - Tilly Fox
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Marty Chaplin
- Department of Clinical SciencesLiverpool School of Tropical MedicineLiverpoolUK
| | - Winsley Rose
- Department of Child HealthChristian Medical CollegeVelloreIndia
| | - Dyna Doum
- Health Forefront OrganizationPhnom PenhCambodia
| | - Ingrid Arevalo-Rodriguez
- Cochrane ResponseCochraneLondonUK,Clinical Biostatistics UnitHospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP)MadridSpain
| | | |
Collapse
|
46
|
Thi Hue Kien D, Edenborough K, da Silva Goncalves D, Thuy Vi T, Casagrande E, Thi Le Duyen H, Thi Long V, Thi Dui L, Thi Tuyet Nhu V, Thi Giang N, Thi Xuan Trang H, Lee E, Donovan-Banfield I, Thi Thuy Van H, Minh Nguyet N, Thanh Phong N, Van Vinh Chau N, Wills B, Yacoub S, Flores H, Simmons C. Genome evolution of dengue virus serotype 1 under selection by Wolbachia pipientis in Aedes aegypti mosquitoes. Virus Evol 2023; 9:vead016. [PMID: 37744653 PMCID: PMC10517695 DOI: 10.1093/ve/vead016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 09/26/2023] Open
Abstract
The introgression of antiviral strains of Wolbachia into Aedes aegypti mosquito populations is a public health intervention for the control of dengue. Plausibly, dengue virus (DENV) could evolve to bypass the antiviral effects of Wolbachia and undermine this approach. Here, we established a serial-passage system to investigate the evolution of DENV in Ae. aegypti mosquitoes infected with the wMel strain of Wolbachia. Using this system, we report on virus genetic outcomes after twenty passages of serotype 1 of DENV (DENV-1). An amino acid substitution, E203K, in the DENV-1 envelope protein was more frequently detected in the consensus sequence of virus populations passaged in wMel-infected Ae. aegypti than wild-type counterparts. Positive selection at residue 203 was reproducible; it occurred in passaged virus populations from independent DENV-1-infected patients and also in a second, independent experimental system. In wild-type mosquitoes and human cells, the 203K variant was rapidly replaced by the progenitor sequence. These findings provide proof of concept that wMel-associated selection of virus populations can occur in experimental conditions. Field-based studies are needed to explore whether wMel imparts selective pressure on DENV evolution in locations where wMel is established.
Collapse
Affiliation(s)
| | - Kathryn Edenborough
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Daniela da Silva Goncalves
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Tran Thuy Vi
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Etiene Casagrande
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vo Thi Long
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Le Thi Dui
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vu Thi Tuyet Nhu
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Giang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Huynh Thi Xuan Trang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Elvina Lee
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - I’ah Donovan-Banfield
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Thuy Van
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | | | - Nguyen Thanh Phong
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Vinh Chau
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Heather Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Cameron Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| |
Collapse
|
47
|
Dodson BL, Pujhari S, Brustolin M, Metz HC, Rasgon JL. Variable effects of Wolbachia on alphavirus infection in Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524939. [PMID: 36711723 PMCID: PMC9884506 DOI: 10.1101/2023.01.20.524939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wolbachia pipientis (=Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB did not influence MAYV infection. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit.
Collapse
Affiliation(s)
- Brittany L Dodson
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Sujit Pujhari
- Current address: Department of Pharmacology Physiology and Neuroscience, School of Medicine, University of South Carolina, United States
| | - Marco Brustolin
- Current address: Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
48
|
Ross PA, Hoffmann AA. Fitness costs of Wolbachia shift in locally-adapted Aedes aegypti mosquitoes. Environ Microbiol 2022; 24:5749-5759. [PMID: 36200325 PMCID: PMC10947380 DOI: 10.1111/1462-2920.16235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/04/2022] [Indexed: 01/12/2023]
Abstract
Aedes aegypti mosquito eggs can remain quiescent for many months before hatching, allowing populations to persist through unfavourable conditions. A. aegypti infected with the Wolbachia strain wMel have been released in tropical and subtropical regions for dengue control. wMel reduces the viability of quiescent eggs, but this physiological cost might be expected to evolve in natural mosquito populations that frequently experience stressful conditions. We found that the cost of wMel infection differed consistently between mosquitoes collected from different locations and became weaker across laboratory generations, suggesting environment-specific adaptation of mosquitoes to the wMel infection. Reciprocal crossing experiments show that differences in the cost of wMel to quiescent egg viability were mainly due to mosquito genetic background and not Wolbachia origin. wMel-infected mosquitoes hatching from long-term quiescent eggs showed partial loss of cytoplasmic incompatibility and female infertility, highlighting additional costs of long-term quiescence. Our study provides the first evidence for a shift in Wolbachia phenotypic effects following deliberate field release and establishment and it highlights interactions between Wolbachia infections and mosquito genetic backgrounds. The unexpected changes in fitness costs observed here suggest potential tradeoffs with undescribed fitness benefits of the wMel infection.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
49
|
Martinez J, Ross PA, Gu X, Ant TH, Murdochy SM, Tong L, da Silva Filipe A, Hoffmann AA, Sinkins SP. Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB. Appl Environ Microbiol 2022; 88:e0141222. [PMID: 36318064 PMCID: PMC9680635 DOI: 10.1128/aem.01412-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
Collapse
Affiliation(s)
- Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Thomas H. Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Steven P. Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
50
|
Mejia AJ, Jimenez L, Dutra HLC, Perera R, McGraw EA. Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities. Heredity (Edinb) 2022; 129:215-224. [PMID: 35869302 PMCID: PMC9519544 DOI: 10.1038/s41437-022-00553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Wolbachia is an insect endosymbiont being used for biological control in the mosquito Aedes aegypti because it causes cytoplasmic incompatibility (CI) and limits viral replication of dengue, chikungunya, and Zika viruses. While the genetic mechanism of pathogen blocking (PB) is not fully understood, the strength of both CI and PB are positively correlated with Wolbachia densities in the host. Wolbachia densities are determined by a combination of Wolbachia strain and insect genotype, as well as interactions with the environment. We employed both artificial selection and inbreeding with the goal of creating lines of Ae. aegypti with heritable and distinct Wolbachia densities so that we might better dissect the mechanism underlying PB. We were unable to shift the mean relative Wolbachia density in Ae. aegypti lines by either strategy, with relative densities instead tending to cycle over a narrow range. In lieu of this, we used Wolbachia densities in mosquito legs as predictors of relative densities in the remaining individual's carcass. Because we worked with outbred mosquitoes, our findings indicate either a lack of genetic variation in the mosquito for controlling relative density, natural selection against extreme densities, or a predominance of environmental factors affecting densities. Our study reveals that there are moderating forces acting on relative Wolbachia densities that may help to stabilize density phenotypes post field release. We also show a means to accurately bin vector carcasses into high and low categories for non-DNA omics-based studies of Wolbachia-mediated traits.
Collapse
Affiliation(s)
- A. J. Mejia
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA
| | - L. Jimenez
- grid.1002.30000 0004 1936 7857School of Life Sciences, Monash University, Clayton, Vic 3800 Australia
| | - H. L. C. Dutra
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - R. Perera
- grid.47894.360000 0004 1936 8083Center for Vector-borne Infectious Diseases and Center for Metabolism of Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - E. A. McGraw
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|