1
|
Nakayama T, Hayashi T, Makino K, Oe K. The efficacy and safety of a quadrivalent live attenuated influenza nasal vaccine in Japanese children: A phase 3, randomized, placebo-controlled study. J Infect Chemother 2025; 31:102460. [PMID: 38959995 DOI: 10.1016/j.jiac.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Vaccination is the primary method of preventing influenza infection and complications in young children. We evaluated the efficacy and safety of a single dose of MEDI3250 (intranasal, quadrivalent, live attenuated influenza vaccine) in healthy Japanese children during the 2016/17 influenza season. METHODS In this multicenter, randomized, double-blind, phase 3 study (jRCT2080223345), participants aged 2-18 years received MEDI3250 or placebo (2:1), stratified by age (2-6 years, 7-18 years). The primary and secondary endpoints were the incidence of confirmed symptomatic onset of influenza caused by a circulating wild-type strain or by a vaccine-matched strain, respectively. Safety outcomes included the incidence of adverse events (AEs) and vaccine-related AEs. RESULTS Overall, 910 participants received MEDI3250 (n = 608) or placebo (n = 302). For the primary endpoint (regardless of the influenza subtype), the incidence of influenza onset was 25.5 % (MEDI3250) and 35.9 % (placebo); relative risk reduction, 28.8 % (95 % confidence interval, 12.5 %, 42.0 %). For the secondary endpoint (vaccine-matched strain), the incidence was 10.9 % (MEDI3250) and 17.2 % (placebo); relative risk reduction, 36.6 % (95 % confidence interval, 6.5 %, 56.8 %). Solicited AEs occurred in 67.6 % (MEDI3250) and 63.6 % (placebo). Most events were mild; nasal discharge was most common (59.2 % [MEDI3250] and 52.6 % [placebo]). Unsolicited AEs occurred in 36.0 % (MEDI3250) and 33.1 % (placebo). The most common unsolicited vaccine-related AE was diarrhea (2.3 %, both groups). CONCLUSIONS MEDI3250 had a greater preventive effect against influenza onset in Japanese children than placebo; no new safety signals were observed relative to previous clinical and post-marketing studies of MEDI3250.
Collapse
Affiliation(s)
- Tetsuo Nakayama
- Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan.
| | | | | | - Keiji Oe
- Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| |
Collapse
|
2
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
3
|
Jones CH, Hauguel T, Beitelshees M, Davitt M, Welch V, Lindert K, Allen P, True JM, Dolsten M. Deciphering immune responses: a comparative analysis of influenza vaccination platforms. Drug Discov Today 2024; 29:104125. [PMID: 39097221 DOI: 10.1016/j.drudis.2024.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Influenza still poses a significant challenge due to its high mutation rates and the low effectiveness of traditional vaccines. At present, antibodies that neutralize the highly variable hemagglutinin antigen are a major driver of the observed variable protection. To decipher how influenza vaccines can be improved, an analysis of licensed vaccine platforms was conducted, contrasting the strengths and limitations of their different mechanisms of protection. Through this review, it is evident that these vaccines do not elicit the robust cellular immune response critical for protecting high-risk groups. Emerging platforms, such as RNA vaccines, that induce robust cellular responses that may be additive to the recognized mechanism of protection through hemagglutinin inhibition may overcome these constraints to provide broader, protective immunity. By combining both humoral and cellular responses, such platforms could help guide the future influenza vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Verna Welch
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | | | - Pirada Allen
- Pfizer, Hudson Boulevard, New York, NY 10018, USA
| | - Jane M True
- Pfizer, Hudson Boulevard, New York, NY 10018, USA.
| | | |
Collapse
|
4
|
Liang R, Liu K, Li Y, Zhang X, Duan L, Huang M, Sun L, Yuan F, Zhao J, Zhao Y, Zhang G. Adaptive truncation of the S gene in IBV during chicken embryo passaging plays a crucial role in its attenuation. PLoS Pathog 2024; 20:e1012415. [PMID: 39078847 PMCID: PMC11315334 DOI: 10.1371/journal.ppat.1012415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.
Collapse
Affiliation(s)
- Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangchengyin Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingfei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xuehui Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linqing Duan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Yuan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Lei R, Liang W, Ouyang WO, Hernandez Garcia A, Kikuchi C, Wang S, McBride R, Tan TJC, Sun Y, Chen C, Graham CS, Rodriguez LA, Shen IR, Choi D, Bruzzone R, Paulson JC, Nair SK, Mok CKP, Wu NC. Epistasis mediates the evolution of the receptor binding mode in recent human H3N2 hemagglutinin. Nat Commun 2024; 15:5175. [PMID: 38890325 PMCID: PMC11189414 DOI: 10.1038/s41467-024-49487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.
Collapse
MESH Headings
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Epistasis, Genetic
- Animals
- Evolution, Molecular
- Mice
- Binding Sites
- Influenza, Human/virology
- Mutation
- Crystallography, X-Ray
- Influenza Vaccines
- Protein Binding
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/chemistry
- Female
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Chika Kikuchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shengyang Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunke Chen
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire S Graham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lucia A Rodriguez
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ivana R Shen
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Cell Biology and Infection, Institut Pasteur, Paris, Cedex, 75015, France
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chris K P Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- S.H. Ho Research Centre for Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Zhang T, Han Y, Huang W, Wei H, Zhao Y, Shu L, Guo Y, Ye B, Zhou J, Liu J. Neutralizing antibody responses against contemporary and future influenza A(H3N2) viruses in paradoxical clades elicited by repeated and single vaccinations. J Med Virol 2024; 96:e29743. [PMID: 38884419 DOI: 10.1002/jmv.29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
As one of the most effective measures to prevent seasonal influenza viruses, annual influenza vaccination is globally recommended. Nevertheless, evidence regarding the impact of repeated vaccination to contemporary and future influenza has been inconclusive. A total of 100 subjects singly or repeatedly immunized with influenza vaccines including 3C.2a1 or 3C.3a1 A(H3N2) during 2018-2019 and 2019-2020 influenza season were recruited. We investigated neutralization antibody by microneutralization assay using four antigenically distinct A(H3N2) viruses circulating from 2018 to 2023, and tracked the dynamics of B cell receptor (BCR) repertoire for consecutive vaccinations. We found that vaccination elicited cross-reactive antibody responses against future emerging strains. Broader neutralizing antibodies to A(H3N2) viruses and more diverse BCR repertoires were observed in the repeated vaccination. Meanwhile, a higher frequency of BCR sequences shared among the repeated-vaccinated individuals with consistently boosting antibody response was found than those with a reduced antibody response. Our findings suggest that repeated seasonal vaccination could broaden the breadth of antibody responses, which may improve vaccine protection against future emerging viruses.
Collapse
MESH Headings
- Humans
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Adult
- Cross Reactions/immunology
- Male
- Female
- Vaccination
- Middle Aged
- Young Adult
- Neutralization Tests
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Adolescent
Collapse
Affiliation(s)
- Ting Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weijuan Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hejiang Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingze Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| | - Liumei Shu
- Department of Health Care, Beijing Daxing District Hospital, Beijing, China
| | - Yaxin Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| | - Beiwei Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Shah SAW, Palomar DP, Barr I, Poon LLM, Quadeer AA, McKay MR. Seasonal antigenic prediction of influenza A H3N2 using machine learning. Nat Commun 2024; 15:3833. [PMID: 38714654 PMCID: PMC11076571 DOI: 10.1038/s41467-024-47862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.
Collapse
Affiliation(s)
- Syed Awais W Shah
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Daniel P Palomar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Industrial Engineering & Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Matthew R McKay
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Lou J, Liang W, Cao L, Hu I, Zhao S, Chen Z, Chan RWY, Cheung PPH, Zheng H, Liu C, Li Q, Chong MKC, Zhang Y, Yeoh EK, Chan PKS, Zee BCY, Mok CKP, Wang MH. Predictive evolutionary modelling for influenza virus by site-based dynamics of mutations. Nat Commun 2024; 15:2546. [PMID: 38514647 PMCID: PMC10958014 DOI: 10.1038/s41467-024-46918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Influenza virus continuously evolves to escape human adaptive immunity and generates seasonal epidemics. Therefore, influenza vaccine strains need to be updated annually for the upcoming flu season to ensure vaccine effectiveness. We develop a computational approach, beth-1, to forecast virus evolution and select representative virus for influenza vaccine. The method involves modelling site-wise mutation fitness. Informed by virus genome and population sero-positivity, we calibrate transition time of mutations and project the fitness landscape to future time, based on which beth-1 selects the optimal vaccine strain. In season-to-season prediction in historical data for the influenza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic matching compared to existing approaches. In prospective validations, the model shows superior or non-inferior genetic matching and neutralization against circulating virus in mice immunization experiments compared to the current vaccine. The method offers a promising and ready-to-use tool to facilitate vaccine strain selection for the influenza virus through capturing heterogeneous evolutionary dynamics over genome space-time and linking molecular variants to population immune response.
Collapse
Affiliation(s)
- Jingzhi Lou
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Beth Bioinformatics Co. Ltd, Hong Kong SAR, China
| | - Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lirong Cao
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Inchi Hu
- Department of Statistics, George Mason University, Fairfax, VA, USA
| | - Shi Zhao
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zigui Chen
- Department of Microbiology, CUHK, Hong Kong SAR, China
| | - Renee Wan Yi Chan
- Department of Paediatrics, CUHK, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, CUHK, Hong Kong SAR, China
| | | | - Hong Zheng
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Caiqi Liu
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Qi Li
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Marc Ka Chun Chong
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Yexian Zhang
- Beth Bioinformatics Co. Ltd, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Eng-Kiong Yeoh
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Health Systems and Policy Research, CUHK, Hong Kong SAR, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, CUHK, Hong Kong SAR, China
- Stanley Ho Centre for Emerging Infectious Diseases, CUHK, Hong Kong SAR, China
| | - Benny Chung Ying Zee
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Chris Ka Pun Mok
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, CUHK, Hong Kong SAR, China.
| | - Maggie Haitian Wang
- JC School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong (CUHK), Hong Kong SAR, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
9
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
10
|
Hu M, Kackos C, Banoth B, Ojha CR, Jones JC, Lei S, Li L, Kercher L, Webby RJ, Russell CJ. Hemagglutinin destabilization in H3N2 vaccine reference viruses skews antigenicity and prevents airborne transmission in ferrets. SCIENCE ADVANCES 2023; 9:eadf5182. [PMID: 36989367 PMCID: PMC10058244 DOI: 10.1126/sciadv.adf5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/28/2023] [Indexed: 06/14/2023]
Abstract
During influenza virus entry, the hemagglutinin (HA) protein binds receptors and causes membrane fusion after endosomal acid activation. To improve vaccine efficiency and pandemic risk assessment for currently-dominant H3N2 influenza viruses, we investigated HA stability of 6 vaccine reference viruses and 42 circulating viruses. Recent vaccine reference viruses had destabilized HA proteins due to egg-adaptive mutation HA1-L194P. Virus growth in cell culture was independent of HA stability. In ferrets, the vaccine reference viruses and circulating viruses required a relatively stable HA (activation and inactivation pH < 5.5) for airborne transmissibility. The recent vaccine reference viruses with destabilized HA proteins had reduced infectivity, had no airborne transmissibility unless reversion to HA1-P194L occurred, and had skewed antigenicity away from the studied viruses and circulating H3N2 viruses. Other vaccine reference viruses with stabilized HAs retained infectivity, transmissibility, and antigenicity. Therefore, HA stabilization should be prioritized over destabilization in vaccine reference virus selection to reduce mismatches between vaccine and circulating viruses.
Collapse
Affiliation(s)
- Meng Hu
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Christina Kackos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- St. Jude Children’s Research Hospital Graduate School of Biomedical Sciences, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Balaji Banoth
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Chet Raj Ojha
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Jeremy C. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Shaohua Lei
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Lei Li
- Drukier Institute for Children’s Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|