1
|
Wu L, Yuan Y, Zhao Z, Yan Y, Wang H, Li X. Z-VAD(OMe)-FMK suppresses Seneca Valley Virus replication by targeting the active sites of the 3C protease. Int J Biol Macromol 2025; 306:141587. [PMID: 40032110 DOI: 10.1016/j.ijbiomac.2025.141587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Seneca Valley Virus (SVV) is a picornavirus that causes vesicular lesions in pigs, significantly affecting global swine farming. The SVV 3C protease is essential for processing the viral polyprotein and facilitates immune evasion by cleaving or degrading multiple innate immune proteins. In this study, we identified three caspase inhibitors, including Z-VAD(OMe)-FMK (Z-VAD), Z-FA-FMK (Z-FA), and Z-VDVAD-FMK (Z-VDVAD), which significantly inhibit the cleavage activity of SVV 3C protease using a recombinant protein system. Comparative analysis revealed that Z-VAD exhibited the most potent inhibitory effect in a cell transfection system. Further investigations confirmed that Z-VAD, Z-FA, and Z-VDVAD bound directly to the 3C protein. Molecular docking analysis showed that Z-VAD interacted with key enzymatic site residues His48 and Cys160 of the 3C protease, while Z-VDVAD and Z-FA interacted only with residue Cys160. Infection experiments demonstrated that Z-VAD significantly suppressed the replication by targeting 3C protease. Furthermore, Z-VAD significantly suppressed the replication of Enterovirus A71 (EV-A71) and encephalomyocarditis virus (EMCV). Our findings provide a comprehensive understanding of SVV 3C protease inhibitors and their mechanisms of action, offering valuable insights for the development of strategies to control SVV and other picornaviruses.
Collapse
Affiliation(s)
- Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Wu L, Yan Y, Yuan Y, Zhao Z, Qu W, Huang X, Wang H, Li P, Li X. Viral protease binds to nucleosomal DNA and cleaves nuclear cGAS that attenuates type I interferon. mBio 2025; 16:e0339524. [PMID: 39998223 PMCID: PMC11980361 DOI: 10.1128/mbio.03395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Nuclear cyclic GMP-AMP synthetase (cGAS) binds to nucleosome with high affinity to prevent its activation by self-DNA. Upon stimulation with double-stranded DNA, cGAS is activated and translocates from the nucleus to the cytoplasm, guided by its N-terminal domain. However, it remains unclear whether viruses can hijack cGAS translocation and regulate its activation. Here, we discovered that the protease 3C of picornavirus Seneca Valley virus (SVV) translocates from the cytoplasm to the nucleus upon viral infection and binds to nuclear DNA. Protease 3C specifically cleaves histone H2A while leaving other histone proteins unaffected. Additionally, DNA binding enhances the protease 3C's ability to cleave nuclear cGAS, leading to its retention in the nucleus. This, in turn, suppresses the induction of type I interferon (IFN-I) following poly(dA:dT) stimulation. These findings reveal a novel mechanism by which a viral protease binds nuclear DNA, cleaves nuclear cGAS and histone H2A, and thereby mislocalizes cGAS, facilitating immune evasion. IMPORTANCE Cyclic GMP-AMP synthetase (cGAS) is robustly expressed in the nucleus and tightly tethered by chromatin to prevent its activation with self-DNA. During stimulation or infection, nuclear cGAS is activated and translocates from the nucleus to the cytoplasm. However, the viral strategies specifically targeting nuclear cGAS are completely unexplored. Here, we discovered that protease 3C of Seneca Valley virus translocates from the cytoplasm to the nucleus upon viral infection, binds to nuclear DNA, and specifically cleaves H2A. Furthermore, DNA binding to 3C enhances the cleavage of nuclear cGAS within its N-terminal domain. The hindrance of cGAS translocation from the nucleus to the cytoplasm results in the suppression of IFN-I induction and leads to immune evasion. This work uncovers a unique mechanism wherein a viral protease binds to nuclear DNA and cleaves nuclear cGAS and histone H2A, leading to viral evasion of cGAS-mediated immune restriction.
Collapse
Affiliation(s)
- Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyu Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Li Z, Yang J, Ma R, Xie S, Wang D, Quan R, Wen X, Liu J, Song J. Seneca Valley virus 3C protease cleaves HDAC4 to antagonize type I interferon signaling. J Virol 2025; 99:e0217624. [PMID: 39927774 PMCID: PMC11915795 DOI: 10.1128/jvi.02176-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Seneca Valley virus (SVV) is a newly identified pathogen that poses a notable threat to the global pig industry. SVV has evolved multiple strategies to evade host antiviral innate immune responses. However, the underlying molecular mechanisms have not yet been fully elucidated. Histone deacetylases (HDACs) have been shown to function as host antiviral innate immune factors. In this study, we examined the mechanisms underlying SVV evasion of host innate immunity and found that SVV infection induced degradation and cleavage of HDAC4. Ectopic expression of HDAC4 suppressed SVV replication, whereas siRNA-mediated knockdown of HDAC4 enhanced SVV replication. Further studies showed that the viral 3C protease (3Cpro) degraded HDAC4 in a protease activity- and caspase pathway-dependent manner. In addition, 3Cpro cleaved HDAC4 at Q599, which blocked its ability to limit viral replication. We also found that HDAC4 interacted with the SVV viral RNA-dependent RNA polymerase 3D and induced its proteasomal degradation. The cleaved HDAC4 products did not block SVV replication or induce 3D degradation and did not induce type I interferon (IFN) activation and expression of IFN-stimulated genes (ISGs). Collectively, these findings identified HDAC4 as an antiviral factor with effects against SVV infection and provided mechanistic insights into how SVV 3Cpro antagonizes its function, which has implications for viral evasion of innate immunity. IMPORTANCE Seneca Valley virus (SVV) is an emerging pathogen that causes vesicular disease in pigs and poses a threat to the pork industry. Histone deacetylases (HDACs) are important in the regulation of innate immunity. However, little is known about their roles in SVV infection. Our results revealed HDAC4 as an anti-SVV infection factor that targets the viral RNA-dependent RNA polymerase, 3D, for degradation. The SVV proteinase 3Cpro targets HDAC4 for degradation and cleavage, and cleavage of HDAC4 abrogated its antiviral effect. HDAC4 promotes type I interferon (IFN) signaling, and SVV 3Cpro-mediated cleavage of HDAC4 antagonized induction of type I IFN and interferon-stimulated genes (ISGs). Our findings reveal a novel molecular mechanism by which SVV 3Cpro counteracts type I IFN signaling by targeting HDAC4.
Collapse
Affiliation(s)
- Zijian Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jingjing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruiyi Ma
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shijie Xie
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xuexia Wen
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang D, Xie Y, Cao J, Huang L, Fan W. Enteroviral 3C protease cleaves N4BP1 to impair the host inflammatory response. J Virol 2025; 99:e0175824. [PMID: 39655957 PMCID: PMC11784292 DOI: 10.1128/jvi.01758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025] Open
Abstract
Enteroviral 3C protease (3Cpro) is an essential enzyme for viral replication and is responsible for combating the host anti-viral immune response by targeting cellular proteins for cleavage. The identification and characterization of 3Cpro substrates will contribute to our understanding of viral pathogenesis. In this study, we performed a motif search for 3Cpro substrates in the human protein database using FIMO, which refers to a common cleavage sequence of 3Cpro. We identified and characterized NEDD4-binding protein 1 (N4BP1), a key negative regulator of the NF-κB pathway, as a novel 3Cpro substrate. N4BP1 is cleaved at residue Q816 by 3Cpro from several human enteroviruses, resulting in the loss of its ability to regulate tumor necrosis factor alpha-activated NF-κB signaling. In addition, we found that mouse N4BP1, which has a threonine at the P1' site, is resistant to human enteroviral 3Cpro cleavage. However, rodent enteroviral 3Cpro derived from encephalomyocarditis virus (EMCV) can cleave both human and mouse N4BP1 at a species-specific site. By combining bioinformatic, biochemical, and cell biological approaches, we identified and characterized N4BP1 as a novel substrate of enteroviral 3Cpro. These findings provide valuable insights into the interplay between 3Cpro, its substrates, and viral pathogenesis. IMPORTANCE Targeting cellular proteins for cleavage by enteroviral 3Cpro is a conserved strategy used by enteroviruses to promote viral replication. While the cleavage of certain host proteins by 3Cpro may not affect viral replication, it is strongly associated with the pathogenesis of viral infection. In this study, we identified and characterized N4BP1, which plays such a role, using a combination of bioinformatic, biochemical, and cell biological approaches. Our data show that multiple 3Cpros cleave N4BP1 at residue Q816 and that cleavage of endogenous N4BP1 can occur during viral infection. N4BP1 has no effect on coxsackievirus B3 replication, but 3Cpro-induced N4BP1 cleavage abolishes its regulatory function in NF-κB signaling. We also show that mouse N4bp1 resists human enteroviral 3Cpro cleavage. In contrast, rodent enteroviral EMCV 3Cpro can target human and mouse N4BP1 for cleavage at different residues, which indicates that future investigations are needed to elucidate the potential mechanisms involved.
Collapse
Affiliation(s)
- Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisu Huang
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Bhattacharya M, Bhowmik D, Yin Q. In Vitro Cleavage Assay to Characterize DENV NS2B3 Antagonism of cGAS. Methods Mol Biol 2025; 2854:153-170. [PMID: 39192127 DOI: 10.1007/978-1-0716-4108-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
cGAS is a key cytosolic dsDNA receptor that senses viral infection and elicits interferon production through the cGAS-cGAMP-STING axis. cGAS is activated by dsDNA from viral and bacterial origins as well as dsDNA leaked from damaged mitochondria and nucleus. Eventually, cGAS activation launches the cell into an antiviral state to restrict the replication of both DNA and RNA viruses. Throughout the long co-evolution, viruses devise many strategies to evade cGAS detection or suppress cGAS activation. We recently reported that the Dengue virus protease NS2B3 proteolytically cleaves human cGAS in its N-terminal region, effectively reducing cGAS binding to DNA and consequent production of the second messenger cGAMP. Several other RNA viruses likely adopt the cleavage strategy. Here, we describe a protocol for the purification of recombinant human cGAS and Dengue NS2B3 protease, as well as the in vitro cleavage assay.
Collapse
Affiliation(s)
| | - Debipreeta Bhowmik
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Qian Yin
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Xue Q, Ma K, Yang F, Liu H, Cao W, Liu P, Zhu Z, Zheng H. Foot-and-mouth disease virus 2B protein antagonizes STING-induced antiviral activity by targeting YTHDF2. FASEB J 2024; 38:e70224. [PMID: 39641410 DOI: 10.1096/fj.202402209r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Foot-and-mouth disease virus (FMDV) infection modulates the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) pathways to inhibit the innate immune responses in the host. However, the mechanism by which FMDV antagonizes the DNA-induced signaling pathway remains to be clarified. In this study, we determined that FMDV infection inhibited stimulator of interferon genes (STING) at the levels of both mRNA and protein expression, and FMDV 2B and 3Cpro proteins promoted STING decline. FMDV 3Cpro induced the decrease in STING depending on its protease activity. FMDV 2B reduced STING expression by disrupting its mRNA level. Mechanistically, 2B inhibited the mRNA of STING by recruiting YTH m6A RNA-binding protein 2 (YTHDF2) to bind to STING mRNA, repressing the generation of FMDV-induced type-I interferon and facilitating virus replication. This effect was triggered by residue 105 of 2B. The 2B K105A mutant FMDV was successfully rescued, and further studies showed that the pathogenicity was attenuated by mutation at site K105 of FMDV 2B. YTHDF2 also promoted FMDV replication through interferon-dependent and interferon-independent pathways. Moreover, YTHDF2-deficient mice showed stronger resistance to FMDV infection. Our study reveals a potential mechanism for FMDV 2B negatively modulating innate immunity at transcriptional levels, promoting the understanding of immune evasion and YTHDF2 function in the FMDV infection process.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
Li M, Zhu C, Yuan Y, Huang X, Wu L, Wu J, Yin H, Chai L, Qu W, Yan Y, Li P, Li X. Porcine NLRC3 specially binds short dsDNA to regulate cGAS activation. iScience 2024; 27:111145. [PMID: 39524340 PMCID: PMC11544074 DOI: 10.1016/j.isci.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Host immune system has evolved multiple sensors to detect pathogenic and damaged DNA, where precise regulation is critical for distinguishing self from non-self. Our previous studies showed that NLRC3 is an inhibitory nucleic acid sensor that binds to viral DNA and thereby unleashing STING activation. In this study, we demonstrate that human NLRC3 favors long dsDNA, while porcine NLRC3 shows an affinity for shorter dsDNA. Mechanistically, a conserved arginine residue within the leucine-rich repeats of primates NLRC3 forms a structural bridge facilitating the binding of long dsDNA. Conversely, a glycine residue that replaces the arginine in non-primates disrupts this bridge. Furthermore, porcine NLRC3 negatively regulates type I interferon by interacting with cyclic GMP-AMP synthase (cGAS) to inhibit its DNA binding, thereby preventing cGAS activation. These results reveal an unrecognized mechanism by which a species-specific amino acid variation of NLRC3 influences nucleic acid recognition, providing insights into the evolution of innate immunity to pathogens.
Collapse
Affiliation(s)
- Minjie Li
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyu Huang
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiayang Wu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Hongyan Yin
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lvye Chai
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Yin H, Zhao Z, Yan Y, Yuan Y, Qu W, Wang H, Zhu C, Li P, Li X. Seneca Valley virus circumvents Gasdermin A-mediated inflammation by targeting the pore-formation domain for cleavage. mBio 2024; 15:e0168024. [PMID: 39207099 PMCID: PMC11481571 DOI: 10.1128/mbio.01680-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Members of the gasdermin (GSDM) family are critical for inducing programmable pyroptosis by forming pores on the cell membrane. GSDMB, GSDMC, GSDMD, and GSDME are activated by caspases or granzyme, leading to the release of their autoinhibitory domains. The protease SpeB from group A Streptococcus has been shown to cleave and activate GSDMA-mediated pyroptosis. Meanwhile, African Swine Fever Virus infection regulates pyroptosis by cleaving porcine GSDMA (pGSDMA) via active caspase-3 and caspase-4. However, it is not known whether virus-encoded proteases also target GSDMA. Here, we show that residues 1-252 of pGSDMA (pGSDMA1-252) is the pore-forming fragment that induces lytic cell death and pyroptosis. Interestingly, Seneca Valley Virus (SVV) infection induces the cleavage of both pGSDMA and human GSDMA and suppresses GSDMA-mediated cell death. Mechanistically, SVV protease 3C cleaves pGSDMA between Q187 and G188 to generate a shorter fragment, pGSDMA1-186, which fails to induce lytic cell death and lactate dehydrogenase release. Furthermore, pGSDMA1-186 does not localize to the plasma membrane and does not induce cell death, thereby promoting viral replication by suppressing host immune responses. These studies reveal a sophisticated evolutionary adaptation of SVV to bypass GSDMA-mediated pyroptosis, allowing it to overcome host inflammatory defenses. IMPORTANCE Gasdermin A (GSDMA) remains a protein shrouded in mystery, particularly regarding its regulation by virus-encoded proteases. Previous studies have identified human GSDMA (hGSDMA) as a sensor and substrate of the SpeB from group A Streptococcus, which initiates pyroptosis. However, it is not clear if viral proteases also cleave GSDMA. In this study, we show that a fragment of porcine GSDMA (pGSDMA) containing the first 252 residues constitutes the pore-forming domain responsible for inducing lytic cell death and pyroptosis. Interestingly, picornavirus Seneca Valley Virus (SVV) protease 3C cleaves both pGSDMA and hGSDMA, generating a shorter fragment that fails to associate with the plasma membrane and does not induce pyroptosis. This cleavage by SVV 3C suppresses GSDMA-mediated lactate dehydrogenase release, bactericidal activity, and lytic cell death. This study reveals how SVV subverts host inflammatory defense by disrupting GSDMA-induced pyroptosis, thereby advancing our understanding of antiviral immunity and opening avenues for treating GSDMA-associated autoimmune diseases.
Collapse
Affiliation(s)
- Hongyan Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Huang X, Zhao Z, Zhu C, Chai L, Yan Y, Yuan Y, Wu L, Li M, Jiang X, Wang H, Liu Z, Li P, Li X. Species-specific IL-1β is an inflammatory sensor of Seneca Valley Virus 3C Protease. PLoS Pathog 2024; 20:e1012398. [PMID: 39038050 PMCID: PMC11293702 DOI: 10.1371/journal.ppat.1012398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Inflammasomes play pivotal roles in inflammation by processing and promoting the secretion of IL-1β. Caspase-1 is involved in the maturation of IL-1β and IL-18, while human caspase-4 specifically processes IL-18. Recent structural studies of caspase-4 bound to Pro-IL-18 reveal the molecular basis of Pro-IL-18 activation by caspase-4. However, the mechanism of caspase-1 processing of pro-IL-1β and other IL-1β-converting enzymes remains elusive. Here, we observed that swine Pro-IL-1β (sPro-IL-1β) exists as an oligomeric precursor unlike monomeric human Pro-IL-1β (hPro-IL-1β). Interestingly, Seneca Valley Virus (SVV) 3C protease cleaves sPro-IL-1β to produce mature IL-1β, while it cleaves hPro-IL-1β but does not produce mature IL-1β in a specific manner. When the inflammasome is blocked, SVV 3C continues to activate IL-1β through direct cleavage in porcine alveolar macrophages (PAMs). Through molecular modeling and mutagenesis studies, we discovered that the pro-domain of sPro-IL-1β serves as an 'exosite' with its hydrophobic residues docking into a positively charged 3C protease pocket, thereby directing the substrate to the active site. The cleavage of sPro-IL-1β generates a monomeric and active form of IL-1β, initiating the downstream signaling. Thus, these studies provide IL-1β is an inflammatory sensor that directly detects viral protease through an independent pathway operating in parallel with host inflammasomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhenchao Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lvye Chai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minjie Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohan Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haiwei Wang
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zheng Liu
- Koblika Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Sokolinskaya EL, Ivanova ON, Fedyakina IT, Ivanov AV, Lukyanov KA. Natural-Target-Mimicking Translocation-Based Fluorescent Sensor for Detection of SARS-CoV-2 PLpro Protease Activity and Virus Infection in Living Cells. Int J Mol Sci 2024; 25:6635. [PMID: 38928340 PMCID: PMC11203561 DOI: 10.3390/ijms25126635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1-4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins-red mScarlet I and green mNeonGreen-separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture.
Collapse
Affiliation(s)
- Elena L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.I.); (A.V.I.)
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology of the Ministry of Russia, 132098 Moscow, Russia;
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.I.); (A.V.I.)
| | - Konstantin A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| |
Collapse
|
11
|
Sanz MÁ, Polo M, Rodríguez-Pulido M, Huildore Bommanna R, Sáiz M. The antiviral response triggered by the cGAS/STING pathway is subverted by the foot-and-mouth disease virus proteases. Cell Mol Life Sci 2024; 81:148. [PMID: 38509419 PMCID: PMC10954996 DOI: 10.1007/s00018-024-05190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.
Collapse
Affiliation(s)
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
12
|
Mohamud Y, Fu C, Fan YM, Zhang YL, Lin JFC, Hwang SW, Wang ZC, Luo H. Activation of cGAS-STING suppresses coxsackievirus replication via interferon-dependent signaling. Antiviral Res 2024; 222:105811. [PMID: 38242503 DOI: 10.1016/j.antiviral.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Coxsackievirus B3 (CVB3) is a non-enveloped, single-stranded, positive RNA virus known for its role in provoking inflammatory diseases that affect the heart, pancreas, and brain, leading to conditions such as myocarditis, pancreatitis, and meningitis. Currently, there are no FDA-approved drugs treating CVB3 infection; therefore, identifying potential molecular targets for antiviral drug development is imperative. In this study, we examined the possibility of activating the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that triggers a type-I interferon (IFN) response, in inhibiting CVB3 infection. We found that activation of the cGAS-STING pathway through the application of cGAS (poly dA:dT and herring testes DNA) or STING agonists (2'3'-cGAMP and diamidobenzimidazole), or the overexpression of STING, significantly suppresses CVB3 replication. Conversely, gene-silencing of STING enhances viral replication. Mechanistically, we demonstrated that cGAS-STING activation combats CVB3 infection by inducing IFN response. Notably, we discovered that knockdown of IFN-α/β receptor, a key membrane receptor in type-I IFN signaling, or inhibition of the downstream JAK1/2 signaling with ruxolitinib, mitigates the effects of STING activation, resulting in increased viral protein production. Furthermore, we investigated the interplay between CVB3 and the cGAS-STING pathway. We showed that CVB3 does not trigger cGAS-STING activation; instead, it antagonizes STING and the downstream TBK1 activation induced by cGAMP. In summary, our results provide insights into the interaction of an RNA virus and the DNA-sensing pathway, highlighting the potential for agonist activation of the cGAS-STING pathway in the development of anti-CVB3 drugs.
Collapse
Affiliation(s)
- Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Cathy Fu
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yiyun Michelle Fan
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yizhuo Lyanne Zhang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Jing Fei Carly Lin
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Sinwoo Wendy Hwang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Zhihan Claire Wang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada; Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|