1
|
Figueiredo-Junior AT, Marques BCB, dos Santos DG, Gouveia WL, Meza RMP, Tinoco LW, Lima LM, Valenca SS, Lanzetti M. Mechanistic Advances in the Therapeutic Application of Bixin for Lung Inflammation In Vitro and In Vivo. Pharmaceuticals (Basel) 2025; 18:530. [PMID: 40283965 PMCID: PMC12030059 DOI: 10.3390/ph18040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Nrf2 plays a key role in regulating the antioxidant response against oxidative stress. Therefore, it is imperative to examine the advantages of Nrf2 activation by new small molecules capable of inhibiting the Nrf2-Keap1 protein interaction that do not present electrophilic sites, since electrophilic compounds have intrinsic toxicity. The bixin pigment has been used as a form of treatment and prevention of several pathological conditions in animal models since it was described as an Nrf2 activator without electrophilic sites. This study aims to synthetize a soluble derivate KBx (potassium bixinate) and evaluate its ability to activate Nrf2/ARE in a model of exposure to cigarette smoke extract (CSE; in vitro) and intranasal LPS administration (in vivo). Methods: In the in vivo study, C57BL/6 mice were pretreated with 200 mg/kg of KBx (gavage) during 5 consecutive days and then challenged with 60 µg of LPS i.n. for 16 h. Bronchoalveolar lavage was collected to examine cytokines dosage. In the in vitro study, RAW 264.7 macrophages were exposed to CSE and post-treated with KBx to evaluate their ability to revert the redox imbalance caused by the stressor. Results: KBx was characterized using mass spectrometry (433.1778 m/z). KC levels were increased in the LPS group (p = 0.021), and KBx inhibited this (p = 0.001). IL-10 levels were decreased (p = 0.055) in the LPS group that was prevented when pretreated with KBx (p = 0.037). The in vitro study showed KBx to be a more potent derivate of bixin through its ability to intercept ROS formation with three-fold more potency, and it showed an anti-inflammatory propriety by reducing the nuclear translocation of p65 (p < 0.001). Conclusions: In conclusion, these data suggest that KBx was able to activate the Nrf2/ARE pathway and intercept ROS formation induced by CSE and LPS in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Alexsandro Tavares Figueiredo-Junior
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
| | - Bruno Clemente Brandão Marques
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
| | - Douglas Galdino dos Santos
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
| | - Wesley Leandro Gouveia
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
| | - Raysa Magali Pillpe Meza
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
| | - Luzineide Wanderley Tinoco
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
- Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lídia Moreira Lima
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
| | - Samuel Santos Valenca
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
| | - Manuella Lanzetti
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil; (A.T.F.-J.); (B.C.B.M.); (D.G.d.S.); (W.L.G.); (R.M.P.M.); (L.W.T.); (L.M.L.); (M.L.)
| |
Collapse
|
2
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Khayal EES. Perfluorooctanoic acid induced lung toxicity via TGF-β1/Smad pathway, crosstalk between airway hyperresponsiveness and fibrosis: withdrawal impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4989-5007. [PMID: 39900883 DOI: 10.1007/s11356-025-36005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Perfluorooctanoic acid (PFOA) is an environmental persistent agent to which humans are exposed daily through food and water. This study investigated the lung toxic effects induced by ingested PFOA (30 mg/kg/day) for 8 weeks in adult male rats and the impact following 8 weeks of its withdrawal. PFOA increased MDA and reduced TAC inducing oxidative stress. It induced airway hyperresponsiveness (AHR) via increased bronchoalveolar lavage fluid (BALF) IL-4, IL-5, IL-13, IL-9, eosinophil count, TNF-α, and IL-1ß; reduced IL-12; increased serum IgE; and increased urocortin expression in lung tissues. Moreover, it induced pulmonary fibrosis via increased serum KL-6, and SFTP-D, altered pulmonary structure, and increased deposition of collagen fibers in lung tissues. Furthermore, it increased TGF-β1, Smad2, and Smad3 and reduced Smad7 gene expression in lung tissues. These gene alterations were positively correlated with AHR and fibrosis-related factors. The recovered lung upon PFOA withdrawal showed complete resolution of oxidative stress and slight amelioration of other studying parameters. Exposure to PFOA induced lung toxicity by disrupting the TGF-β1/Smad signaling pathway, which acts as a crosstalk between AHR and fibrosis. Additionally, PFOA altered pulmonary architecture, triggered inflammation, and caused oxidative stress. The lung exhibited partial alleviation upon recovery.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
3
|
Takagi A, Hamada H, Sekikawa K, Ueoka H, Namba H, Sato YM, Kanda N, Miyazaki R. Plasma Oxidative State Induced by Exercise in Young Heat-Not-Burn Cigarette Users. Nicotine Tob Res 2024; 26:1045-1048. [PMID: 38242704 DOI: 10.1093/ntr/ntae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
INTRODUCTION Oxidative state, a risk factor for several diseases, is increased by habitual conventional cigarette (CC) smoking. Reports have demonstrated that heat-not-burn cigarettes (HNBCs), which have recently become popular among smokers, generate less oxidative state than CC in smokers with a long smoking history. However, no previous study has examined oxidative state in young HNBC users. Previously, we reported that exercise induces a greater oxidative state in young CC smokers than in never-smokers of similar age, but there was no difference in resting oxidative state. This study aimed to clarify the resting and exercise-induced oxidative states in young HNBC users, compared with those in never-smokers and CC users of similar age. METHODS Healthy young never-smokers, HNBC users, and CC users were recruited, and they underwent the Wingate anaerobic test. Blood samples were collected before and after exercise, and the plasma hydroperoxide concentration, a marker of oxidative state, was measured. RESULTS No significant differences in pre-exercise plasma hydroperoxide concentrations were detected among never-smokers, HNBC users, and CC users (n = 10 each). Plasma hydroperoxide concentration was significantly increased after exercise in all participants. The exercise induced a significant increase in plasma hydroperoxide concentration in HNBC users compared with that in never-smokers (p < .005), but it was significantly decreased compared with that in CC users (p < .01). CONCLUSIONS The use of HNBC increased exercise-induced plasma oxidative state compared with that in never-smokers, indicating that HNBC may lead to the risk of oxidative damage. IMPLICATIONS This study, for the first time, reports exercise-induced oxidative state in young HNBC users compared with never-smokers and CC users. The exercise-induced oxidative state in HNBC users was higher than that in never-smokers and lower than that in CC users. Our study suggests that the use of HNBCs increases the risk of acute oxidative damage.
Collapse
Affiliation(s)
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyokazu Sekikawa
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hatsumi Ueoka
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruchi Namba
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshinobu M Sato
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoto Kanda
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Miyazaki
- Department of Physical Analysis and Therapeutic Sciences, Graduate school of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
5
|
Gao Z, Xiu M, Liu J, Wu F, Zhang X. Smoking, Symptoms Improvement, and Total Antioxidant Capacity in Patients with Drug-naive First-episode Schizophrenia: A Prospective Cohort Study. Curr Neuropharmacol 2024; 22:1733-1741. [PMID: 37859307 PMCID: PMC11284715 DOI: 10.2174/1570159x22666231019105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND It has been hypothesized that smoking is associated with the severity of negative symptoms. Until now, no studies have investigated whether the impact of smoking on negative symptoms is dependent on antioxidants. This study was designed to evaluate the effect of smoking on therapeutic response and total antioxidants capacity (TAOC) in antipsychotic-naïve first-episode (ANFE) patients. METHODS The severity of the patient's symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). A total of 237 ANFE patients were recruited and treated with risperidone (oral tablets, 4-6 mg/day twice a day) for 12 weeks. PANSS was assessed at baseline and a 12-week follow-up. Plasma TAOC levels were also assayed at baseline and week 12. RESULTS Relative to nonsmokers with ANFE SZ, smokers had higher PANSS negative subscores. There was no significant difference in TAOC changes after 12 weeks of treatment with risperidone between smokers and non-smokers. However, we found greater improvement in negative symptoms in smokers compared to non-smokers. Further analysis in smokers with SZ demonstrated that improvements in negative symptoms were not associated with changes in TAOC. CONCLUSION Our study suggested that smoking affected the severity of baseline negative symptoms and further contributed to their reduction after risperidone treatment. However, improvement in negative symptoms was not dependent on the changes in TAOC.
Collapse
Affiliation(s)
- Zhiyong Gao
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Meihong Xiu
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Jiahong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangyang Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
6
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
7
|
Chen Y, Zhang Y, Yang H, Ma Y, Zhou L, Lin J, Hou Y, Yu B, Wang Y. Association of Coffee and Tea Consumption with Cardiovascular Disease, Chronic Respiratory Disease, and their Comorbidity. Mol Nutr Food Res 2022; 66:e2200419. [PMID: 36281921 DOI: 10.1002/mnfr.202200419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/15/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Since associations between coffee and tea consumption with cardiovascular disease (CVD) and chronic respiratory disease (CRD) remain controversial. This study aims to investigate the separate and combined associations of coffee and tea consumption with CVD, CRD, and their comorbidity. METHODS AND RESULTS Within the UK Biobank, 390 039 participants (56.2 ± 8.1 years) free of CVD and CRD are included. Coffee and tea consumption are self-reported at baseline. During a median follow-up of 12.1 years, 31126 CVD, 34132 CRD, and 6071 CVD-CRD comorbidity cases are identified. J-shaped associations between coffee and tea consumption with CVD, CRD, and CVD-CRD comorbidity are observed (p for nonlinearity <0.001). Compared with neither coffee nor tea consumption, hazard ratios (HRs) and 95% confidence intervals (CIs) of combined consumption of moderate coffee and tea (each 2-3 cups per day) are 0.88 (0.81-0.96) for CVD, 0.78 (0.72-0.84) for CRD, and 0.74 (0.61-0.91) for CVD-CRD comorbidity. CONCLUSION Moderate consumption of coffee and tea separately or in combination are associated with lower risks of CVD, CRD, and their comorbidity.
Collapse
Affiliation(s)
- Yanchun Chen
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hongxi Yang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yue Ma
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Lihui Zhou
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Lin
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yabing Hou
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Bin Yu
- International Exchanges Department & International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
8
|
Zeng LH, Fatima M, Syed S, Shaukat S, Mahdy A, Hussain N, Al Haddad AH, Said AS, Alqahtani A, Alqahtani T, Majeed A, Tariq M, Hussain M. Anti-inflammatory and anti-oxidant properties of Ipomoea nil (Linn.) Roth significantly alleviates cigarette smoke (CS)-induced acute lung injury via possibly inhibiting the NF-κB pathway. Biomed Pharmacother 2022; 155:113267. [DOI: 10.1016/j.biopha.2022.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
|
9
|
Chen N, Liu H, Yao J, Chen S, Xiu M, Wu F, Zhang X. Smoke, GPx activity and symptoms improvement in patients with drug-naive first-episode schizophrenia: A large-scale 12-week follow-up study. Asian J Psychiatr 2022; 77:103267. [PMID: 36202003 DOI: 10.1016/j.ajp.2022.103267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
The relationship between tobacco smoke and schizophrenia (SZ) is well established. Smoking is hypothesized to alleviate symptoms and reduce the adverse effects of antipsychotic medications in patients with SZ. However, the underlying biological mechanisms by which smoke improves symptoms in SZ remain unclear. The aim of this study was to investigate the effect of smoking on clinical symptoms and antioxidant enzyme activity after risperidone treatment in a 12-week prospective cohort study of drug-naïve first-episode (DNFE) SZ patients. Two hundred and fifteen DNFE patients were recruited and received 12 weeks of risperidone monotherapy. The Positive and Negative Syndrome Scale (PANSS) was used to assess the severity of patient's symptoms at baseline and post-treatment. Plasma GPx activity was also measured at baseline and at the end of 12 weeks. Smokers showed greater improvement in negative symptoms relative to nonsmokers with DNFE SZ. In addition, repeated ANCOVA analysis showed no significant interaction of time and group on GPx activity. Improvement in negative symptoms was not associated with changes in GPx activity. However, in nonsmokers, increased GPx activity was correlated with improvement in positive symptoms.
Collapse
Affiliation(s)
- Nan Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, China
| | - Jing Yao
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.
| |
Collapse
|
10
|
Glucosamine use, smoking and risk of incident chronic obstructive pulmonary disease: a large prospective cohort study. Br J Nutr 2022; 128:721-732. [PMID: 34526168 PMCID: PMC9892851 DOI: 10.1017/s000711452100372x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40-69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29-9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
Collapse
|
11
|
Ouyang Y, Liu J, Wen S, Xu Y, Zhang Z, Pi Y, Chen D, Su Z, Liang Z, Wang Y, Guo L. Association between chronic obstructive pulmonary disease and periodontitis: The common role of innate immune cells? Cytokine 2022; 158:155982. [PMID: 35932499 DOI: 10.1016/j.cyto.2022.155982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Innate immune cells are of broad interest in a variety of diseases. These cells include neutrophils, macrophages, dendritic cells and mast cells, etc. Innate immune cells are often mentioned in inflammatory diseases as the first line of defense against pathogens' invasion. As chronic obstructive pulmonary disease and periodontitis are inflammatory diseases, innate immune cells play an important role in the development of both diseases. COPD and periodontitis are common epidemic diseases with a very high prevalence, thus affecting a large number of people and also reducing the quality of life of patients. In addition, epidemiological studies suggested a link between the two, creating a co-morbid burden, but the mechanism of the link is yet to be explained. This article discusses the possible mechanism of the link between the two diseases in terms of innate immune cells and discusses possible future targeted therapies that could alleviate the burden on patients.
Collapse
Affiliation(s)
- Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Siyi Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yixin Xu
- Department of Orthodontic, Stomatological Hospital, Southern Medical University, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yixing Pi
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yan Wang
- Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China.
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Efferocytosis in lung mucosae: implications for health and disease. Immunol Lett 2022; 248:109-118. [PMID: 35843361 DOI: 10.1016/j.imlet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Efferocytosis is imperative to maintain lung homeostasis and control inflammation. Populations of lung macrophages are the main efferocytes in this tissue, responsible for controlling immune responses and avoiding unrestrained inflammation and autoimmunity through the expression of a plethora of receptors that recognize multiple 'eat me' signals on apoptotic cells. Efferocytosis is essentially anti-inflammatory and tolerogenic. However, in some situations, apoptotic cells phagocytosis can elicit inflammatory and immunogenic immune responses. Here, we summarized the current knowledge of the mechanisms of efferocytosis, and how any abnormality in this process may have an important contribution to the lung pathophysiology of many chronic inflammatory lung diseases such as asthma, acute lung injury, chronic obstructive pulmonary disease, and cystic fibrosis. Further, we consider the consequences of the dual role of efferocytosis on the susceptibility or resistance to pulmonary microbial infections. Understanding how efferocytosis works in different contexts will be useful to the development of new and more effective strategies to control the diversity of lung diseases.
Collapse
|
13
|
Figueiredo-Junior AT, Valença SS, Finotelli PV, dos Anjos FDF, de Brito-Gitirana L, Takiya CM, Lanzetti M. Treatment with Bixin-Loaded Polymeric Nanoparticles Prevents Cigarette Smoke-Induced Acute Lung Inflammation and Oxidative Stress in Mice. Antioxidants (Basel) 2022; 11:antiox11071293. [PMID: 35883784 PMCID: PMC9311961 DOI: 10.3390/antiox11071293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
The use of annatto pigments has been evaluated as a therapeutic strategy in animal models of several health disorders. Beneficial effects were generally attributed to the inhibition of oxidative stress. Bixin is the main pigment present in annatto seeds and has emerged as an important scavenger of reactive oxygen (ROS) and nitrogen species (RNS). However, this carotenoid is highly hydrophobic, affecting its therapeutic applicability. Therefore, bixin represents an attractive target for nanotechnology to improve its pharmacokinetic parameters. In this study, we prepared bixin nanoparticles (npBX) and evaluated if they could prevent pulmonary inflammation and oxidative stress induced by cigarette smoke (CS). C57BL/6 mice were exposed to CS and treated daily (by gavage) with different concentrations of npBX (6, 12 and 18%) or blank nanoparticles (npBL, 18%). The negative control group was sham smoked and received 18% npBL. On day 6, the animals were euthanized, and bronchoalveolar lavage fluid (BALF), as well as lungs, were collected for analysis. CS exposure led to an increase in ROS and nitrite production, which was absent in animals treated with npBX. In addition, npBX treatment significantly reduced leukocyte numbers and TNF-α levels in the BALF of CS-exposed mice, and it strongly inhibited CS-induced increases in MDA and PNK in lung homogenates. Interestingly, npBX protective effects against oxidative stress seemed not to act via Nrf2 activation in the CS + npBX 18% group. In conclusion, npBX prevented oxidative stress and acute lung inflammation in a murine model of CS-induced acute lung inflammation.
Collapse
Affiliation(s)
- Alexsandro Tavares Figueiredo-Junior
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Samuel Santos Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Priscilla Vanessa Finotelli
- Departamento de Produtos Naturais e Alimentos da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Francisca de Fátima dos Anjos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
- Correspondence:
| |
Collapse
|
14
|
Vitamin E relieves chronic obstructive pulmonary disease by inhibiting COX2-mediated p-STAT3 nuclear translocation through the EGFR/MAPK signaling pathway. J Transl Med 2022; 102:272-280. [PMID: 34799662 DOI: 10.1038/s41374-021-00652-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/08/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) are characterized by an imbalance between oxidant enzymes and antioxidant enzymes. In the present study, we explored the protective effect of vitamin E on COPD and the underlying mechanisms. Targets of vitamin E were predicted by bioinformatics analysis. After establishing cigarette smoke (CS)-induced COPD rats, the expression levels of epidermal growth factor receptor (EGFR), cyclooxygenase 2 (COX2), and transcriptional activity of signal transducer and activator of transcription 3 (STAT3) were measured. Additionally, the effects of vitamin E on CS-induced COPD were explored by assessing inflammation, the reactive oxygen species (ROS), the activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA), viability of human bronchial epithelioid (HBE) cells, and the expression of EGFR/MAPK pathway-related factors after loss- and gain- function assays. Vitamin E alleviated COPD. Vitamin E inhibited MAPK signaling pathway through decreasing EGFR expression. Additionally, vitamin E suppressed CS-induced HBE cell damage. Functionally, vitamin E attenuated CS-induced inflammation, apoptosis, and ROS by inhibiting the EGFR/MAPK axis, thereby inhibiting COX2-mediated p-STAT3 nuclear translocation. Moreover, overexpression of COX2 attenuated the protective effect of vitamin E on COPD rats. The present study shows that vitamin E inhibits the expression of COX2 by negatively regulating the EGFR/MAPK pathway, thereby inhibiting the translocation of phosphorylated STAT3 to the nucleus and relieving COPD.
Collapse
|
15
|
Paraoxonase 1 and Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Antioxidants (Basel) 2021; 10:antiox10121891. [PMID: 34942993 PMCID: PMC8750165 DOI: 10.3390/antiox10121891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a driving factor in the pathophysiology of chronic obstructive pulmonary disease (COPD). While paraoxonase 1 (PON1) is an antioxidant enzyme and a potential biomarker of this disease, data regarding the status of PON-1 in COPD are inconclusive. In this regard, to shed light on this issue, we performed a meta-analysis of data on PON1 activity in COPD. Electronic databases (MEDLINE, Embase and CENTRAL) were searched for available studies on PON1 activity in patients with stable COPD published before October 2021. A meta-analysis was performed using random-effects models. Twelve studies (12 studies on paraoxonase and three on arylesterase) were identified. Patients with COPD had lower levels of paraoxonase activity (standard mean difference [SMD] -0.77, 95% confidence interval [CI] -1.35 to -0.18) and arylesterase activity (SMD -1.15, 95% CI -1.95 to -0.36) in comparison to healthy controls. In subgroup analyses, paraoxonase activity was lower in patients of studies as consisted of mainly non-severe COPD (SMD -1.42, 95% CI -2.04 to -0.79) and, by contrast, slightly higher in patients of studies including severe COPD (SMD 0.33, 95% CI 0.02 to 0.64) in comparison to healthy controls. Arylesterase activity showed a similar trend. Overall, PON1 activity was lower in patients with COPD, suggesting that PON1-related antioxidant defense is impaired in COPD. Future studies are warranted.
Collapse
|
16
|
Mizumura K, Gon Y. Iron-Regulated Reactive Oxygen Species Production and Programmed Cell Death in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2021; 10:antiox10101569. [PMID: 34679704 PMCID: PMC8533398 DOI: 10.3390/antiox10101569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation. However, the pathogenesis of COPD remains unclear. Currently, it is known to involve the loss of alveolar surface area (emphysema) and airway inflammation (bronchitis), primarily due to exposure to cigarette smoke (CS). CS causes epithelial cell death, resulting in pulmonary emphysema. Moreover, CS induces iron accumulation in the mitochondria and cytosol, resulting in programmed cell death. Although apoptosis has long been investigated as the sole form of programmed cell death in COPD, accumulating evidence indicates that a regulated form of necrosis, called necroptosis, and a unique iron-dependent form of non-apoptotic cell death, called ferroptosis, is implicated in the pathogenesis of COPD. Iron metabolism plays a key role in producing reactive oxygen species (ROS), including mitochondrial ROS and lipid peroxidation end-products, and activating both necroptosis and ferroptosis. This review outlines recent studies exploring CS-mediated iron metabolism and ROS production, along with the regulation of programmed cell death in COPD. Elucidating the mechanisms of these pathways may provide novel therapeutic targets for COPD.
Collapse
|
17
|
Fazleen A, Wilkinson T. The emerging role of proteases in α 1-antitrypsin deficiency and beyond. ERJ Open Res 2021; 7:00494-2021. [PMID: 34820446 PMCID: PMC8607071 DOI: 10.1183/23120541.00494-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
α1-Antitrypsin deficiency (AATD) has been historically under-recognised and under-diagnosed; recently it has begun to receive greater interest in terms of attempts at deeper elucidation of pathology and treatment options. However, the concept of disease phenotypes within AATD (emphysema, chronic bronchitis, bronchiectasis or a combination of phenotypes) has not been proposed or studied. Of the three neutrophil serine proteases, neutrophil elastase was historically believed to be the sole contributor to disease pathology in AATD. Recently, Proteinase-3 has been increasingly studied as an equal, if not greater, contributor to the disease process. Cathepsin G, however, has not been extensively evaluated in this area. Matrix metalloproteinases have also been mentioned in the pathogenesis of AATD but have not been widely explored. This article considers the available evidence for differential protease activity in patients with AATD, including the contribution to distinct phenotypes of the disease. Owing to limited literature in this area, extrapolations from studies of other chronic lung diseases with similar phenotypes, including COPD and bronchiectasis, have been made. We consider a new framework of understanding defined by protease-driven endotypes of disease which may lead to new opportunities for precision medicine.
Collapse
Affiliation(s)
- Aishath Fazleen
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tom Wilkinson
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Wielsøe M, Berthelsen D, Mulvad G, Isidor S, Long M, Bonefeld-Jørgensen EC. Dietary habits among men and women in West Greenland: follow-up on the ACCEPT birth cohort. BMC Public Health 2021; 21:1426. [PMID: 34281541 PMCID: PMC8290613 DOI: 10.1186/s12889-021-11359-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In the past decades, the diet in Greenland has been in transition resulting in a lower intake of traditional food and a higher intake of imported western food. This diet transition can affect public health negatively, and thus, continued monitoring of dietary habits is important. The present study aimed to follow up on the dietary habits of pregnant women included in the Greenlandic ACCEPT birth cohort (2013-2015) and the children's father. METHODS The follow-up food intake was assessed in 2019-2020 using food frequency questionnaires for 101 mothers and 76 fathers aged 24-55 years living in Nuuk, Sisimiut, and Ilulissat. Non-parametric statistical methods were used (Mann-Whitney U test/Spearman correlation) to assess the dietary pattern and influencing factors. RESULTS The proportion of traditional and imported food was 14 and 86%, respectively. Intake frequency differed by gender (vegetables, fruits, fast food), the living town (terrestrial animals, vegetables, fruits), and age (fish, meat products, fruits, fast food). Socioeconomic and lifestyle factors significantly correlated with the intake frequency of several traditional and imported foods. Few changes in the mother's dietary habits from inclusion (during pregnancy) to follow-up (3-5 years later) were found, showing less frequent intake of seabirds and fruits and more frequent meat intake. CONCLUSION We identified several factors that could affect dietary habits, and the results may be used to target future food recommendation for relevant population groups.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public Health, Aarhus University, Centre for Arctic Health & Molecular Epidemiology, Aarhus, Denmark.
| | | | - Gert Mulvad
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Silvia Isidor
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Manhai Long
- Department of Public Health, Aarhus University, Centre for Arctic Health & Molecular Epidemiology, Aarhus, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, Centre for Arctic Health & Molecular Epidemiology, Aarhus, Denmark.,Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| |
Collapse
|
19
|
Tang M, Long Y, Liu S, Yue X, Shi T. Prevalence of Cardiovascular Events and Their Risk Factors in Patients With Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnea Overlap Syndrome. Front Cardiovasc Med 2021; 8:694806. [PMID: 34336955 PMCID: PMC8318267 DOI: 10.3389/fcvm.2021.694806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSA) have been identified as independent risk factors for cardiovascular diseases. However, the impact of COPD and OSA overlap syndrome (OS) on cardiovascular outcomes remains to be elucidated. Objective: To determine the prevalence of cardiovascular events and their risk factors in OS patients. Methods: Seventy-four patients who had OS between January 2015 and July 2020 were retrospectively enrolled, and 222 COPD-only patients and 222 OSA-only patients were pair-matched for age and sex from the same period and served as the OS-free control group. The prevalence rates of coronary heart disease (CHD), arrhythmia, heart failure, and pulmonary arterial hypertension (PAH) were compared among the three groups, and multivariable logistic regression models were used to screen the risk factors for specific cardiovascular events. Results: OS patients had higher prevalence rates of heart failure (10.8 vs. 0.5 and 1.4%, respectively) and PAH (31.1 vs. 4.5 and 17.1%, respectively) than those with OSA alone or COPD alone (all P < 0.01). The CHD prevalence was also significantly higher in the OS group than in the COPD-alone group (25.7 vs. 11.7%, P < 0.01). There was no significant difference in the prevalence of arrhythmia among the three groups (20.3, 22.5, and 13.1%, respectively, P > 0.05). In OS patients, risk factors for CHD included hypertension, diabetes, body mass index, lactate dehydrogenase level, and tidal volume; risk factors for heart failure included diabetes, partial pressure of oxygen, partial pressure of carbon dioxide, maximum ventilatory volume, and neutrophilic granulocyte percentage; and risk factors for PAH included minimum nocturnal oxygen saturation, partial pressure of carbon dioxide, and brain natriuretic peptide and lactate dehydrogenase levels. Conclusions: OS patients have a higher prevalence of cardiovascular events, which is associated with hypoxemia, hypercapnia, and impaired lung function in these patients.
Collapse
Affiliation(s)
- Manyun Tang
- Arrhythmia Unit, Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunxiang Long
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shihong Liu
- East Unit, Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Yue
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Voulgaris A, Archontogeorgis K, Steiropoulos P, Papanas N. Cardiovascular Disease in Patients with Chronic Obstructive Pulmonary Disease, Obstructive Sleep Apnoea Syndrome and Overlap Syndrome. Curr Vasc Pharmacol 2021; 19:285-300. [PMID: 32188387 DOI: 10.2174/1570161118666200318103553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea syndrome (OSAS) are among the most prevalent chronic respiratory disorders. Accumulating data suggest that there is a significant burden of cardiovascular disease (CVD) in patients with COPD and OSAS, affecting negatively patients' quality of life and survival. Overlap syndrome (OS), i.e. the co-existence of both COPD and OSAS in the same patient, has an additional impact on the cardiovascular system multiplying the risk of morbidity and mortality. The underlying mechanisms for the development of CVD in patients with either OSAS or COPD and OS are not entirely elucidated. Several mechanisms, in addition to smoking and obesity, may be implicated, including systemic inflammation, increased sympathetic activity, oxidative stress and endothelial dysfunction. Early diagnosis and proper management of these patients might reduce cardiovascular risk and improve patients' survival. In this review, we summarize the current knowledge regarding epidemiological aspects, pathophysiological mechanisms and present point-to-point specific associations between COPD, OSAS, OS and components of CVD, namely, pulmonary hypertension, coronary artery disease, peripheral arterial disease and stroke.
Collapse
Affiliation(s)
- A Voulgaris
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - K Archontogeorgis
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - P Steiropoulos
- MSc Programme in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - N Papanas
- Diabetes Centre, Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
21
|
Le Floc'h N, Gondret F, Resmond R. Identification of blood immune and metabolic indicators explaining the variability of growth of pigs under contrasted sanitary conditions. BMC Vet Res 2021; 17:166. [PMID: 33858408 PMCID: PMC8048059 DOI: 10.1186/s12917-021-02872-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background Health and growth of pigs are affected by the hygiene of housing. Lower growth performance observed in poor hygiene of housing conditions is explained by reduced feed intake and metabolic changes caused by the activation of body defences. In a previous experiment, we reported contrasted average values of body weight gain, concentrations of circulating metabolites, redox and immune indicators in blood of pigs housed in good or poor hygiene conditions during the growing period. This study addressed inter-individual variability in these responses to determine whether a particular blood profile explains average daily gain (ADG) of the pig. Results The data originated from 160 growing pigs, half of which subjected to a hygiene challenge for 6 weeks (W0 to W6) and the others housed in good hygiene conditions. Pigs originated from two lines divergently selected for residual feed intake (RFI). Individual body weights were recorded during this period, and relative ADG (rADGW0-W6) was calculated as the ADG corrected by the initial body weight measured at W0. Blood samples were taken before (W0) and 3 weeks (W3) after the beginning of the challenge. The analysed dataset consisted of 51 metabolites and indicators of immune and inflammatory responses measured on 136 pigs having no missing value for any variables, when calculated as the differences W3 minus W0 in circulating concentrations. An algorithm tested all possible linear regression models and then selected the best ones to explain rADGW0-W6. Six variables were identified across the best models and correlated with rADGW0-W6 with a goodness of fit (adjusted R2) of about 67%. They were changes in haptoglobin, global antioxidant capacity of plasma (Biological Antioxidant Power or BAP), free fatty acids, and 3 amino acids: leucine, tryptophan, and 1-methylhistidine. The effects of housing conditions and RFI lines were comprised in the variables of the selected models and none of these conditions improved accuracy of the predictive models, leading to genericity of the pinpointed metabolic changes in relation to variability of ADG. Conclusions This approach allows us to identify blood variables, whose changes in blood concentrations correlated to ADG under contrasted sanitary conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02872-3.
Collapse
Affiliation(s)
- N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| | - F Gondret
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - R Resmond
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| |
Collapse
|
22
|
Akinnusi M, El-Masri AR, Lawson Y, El-Solh AA. Association of overlap syndrome with incident atrial fibrillation. Intern Emerg Med 2021; 16:633-642. [PMID: 32803632 DOI: 10.1007/s11739-020-02469-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/03/2020] [Indexed: 01/14/2023]
Abstract
Increasingly compelling data link chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSA) to cardiovascular complications independent of known comorbidities. It remains unclear whether the association is amplified in the presence of both conditions. The aims of this study are to assess the prevalence of atrial fibrillation (AF) in overlap syndrome (OS) and to identify risk factors predisposing to this atrial arrhythmia. We conducted a retrospective cohort study of 268 adults without past or current AF who were referred for an initial diagnostic polysomnogram from 2012 to 2019. A logistic regression analysis was performed to identify risk factors for incident AF. Incident AF occurred in 64 subjects [cumulative probability 24%, 95% confidence interval (CI) 19-29]. Independent predictors of incident AF were age-adjusted Charlson index [Odds ratio (OR) 1.62; 95% confidence interval (CI) 1.3-2.0], percentage of time spent with O2 saturation below 90% (CT90) (OR 3.72, 95% CI 1.18-11.71), and CPAP adherence (OR 0.32, 95% CI 0.13-0.71). OS patients with AF experienced higher hospitalization rates (OR 1.25, 95% CI 1.03-2.37) and worse mortality rates (OR 1.92, 95% CI 1.04-3.54). In multivariate Cox proportional regression, age-adjusted Charlson Index, severity of airflow obstruction, and CPAP adherence were independent predictors of mortality. The burden of hypoxemia and severity of comorbidities are independent factors for incident AF in individuals with OS. CPAP adherence may mitigate the risk of AF and reduce the rate of mortality in this population.
Collapse
Affiliation(s)
- Morohunfolu Akinnusi
- The Veterans Affairs Western New York Healthcare System, 3495 Bailey Avenue, Buffalo, NY, 14215, USA
| | - Abdul Rahman El-Masri
- The Veterans Affairs Western New York Healthcare System, 3495 Bailey Avenue, Buffalo, NY, 14215, USA
| | - Yolanda Lawson
- The Veterans Affairs Western New York Healthcare System, 3495 Bailey Avenue, Buffalo, NY, 14215, USA
| | - Ali Albert El-Solh
- The Veterans Affairs Western New York Healthcare System, 3495 Bailey Avenue, Buffalo, NY, 14215, USA.
- Department of Medicine, Jacob's School of Medicine, Buffalo, NY, USA.
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
23
|
Ashtiwi NM, Sarr D, Rada B. DUOX1 in mammalian disease pathophysiology. J Mol Med (Berl) 2021; 99:743-754. [PMID: 33704512 PMCID: PMC8315118 DOI: 10.1007/s00109-021-02058-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/17/2023]
Abstract
Dual oxidase 1 (DUOX1) is a member of the protein family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. DUOX1 has several normal physiological, immunological, and biochemical functions in different parts of the body. Dysregulated oxidative metabolism interferes with various disease pathologies and numerous therapeutic options are based on targeting cellular redox pathways. DUOX1 forms an important enzymatic source of biological oxidants, and DUOX1 expression is frequently dysregulated in various diseases. While this review shortly addresses the biochemical and cellular properties and proposed physiological roles of DUOX1, its main purpose is to summarize the current knowledge with respect to the potential role of DUOX1 enzyme in disease pathology, especially in mammalian organisms. Although DUOX1 is normally prominently expressed in epithelial lineages, it is frequently silenced in epithelial-derived cancers by epigenetic mechanisms. While an abundance of information is available on DUOX1 transcription in different diseases, an increasing number of mechanistic studies indicate a causative relationship between DUOX1 function and disease pathophysiology. Additionally, specific functions of the DUOX1 maturation factor, DUOXA1, will also be addressed. Lastly, urgent and outstanding questions on the field of DUOX1 will be discussed that could provide valuable new diagnostic tools and novel therapeutic options.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
24
|
Zozina VI, Covantev S, Kukes VG, Corlateanu A. Coenzyme Q10 in COPD: An Unexplored Opportunity? COPD 2021; 18:114-122. [PMID: 33441012 DOI: 10.1080/15412555.2020.1849084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
COPD represents a major cause of mortality and morbidity worldwide, is linked to systemic inflammation and tends to coexist with a variety of comorbidities. Inflammation, oxidative stress and protease-antiprotease imbalance represent the pathogenic triad of COPD. Even though oxidative stress and mitochondrial dysfunction is a well-studied phenomenon in COPD and there is a variety of studies that aim to counteract its effect, there is limited data available on the use of coenzyme Q10 in COPD. The aim of the current review is to analyze the current data on the use of coenzyme Q10 in the management of COPD and frequently encountered comorbidities.
Collapse
Affiliation(s)
- V I Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - S Covantev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - V G Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - A Corlateanu
- Department of Respiratory Medicine, State University of Medicine and Pharmacy N. Testemitanu, Chisinau, Republic of Moldova
| |
Collapse
|
25
|
Patterson T, Isales CM, Fulzele S. Low level of Vitamin C and dysregulation of Vitamin C transporter might be involved in the severity of COVID-19 Infection. Aging Dis 2021; 12:14-26. [PMID: 33532123 PMCID: PMC7801272 DOI: 10.14336/ad.2020.0918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been spreading around the world at an exponential pace, leading to millions of individuals developing the associated disease called COVID-19. Due to the novel nature and the lack of immunity within humans, there has been a collective global effort to find effective treatments against the virus. This has led the scientific community to repurpose Food and Drug Administration (FDA) approved drugs with known safety profiles. Of the many possible drugs, vitamin C has been on the shortlist of possible interventions due to its beneficial role as an immune booster and inherent antioxidant properties. Within this manuscript, a detailed discussion regarding the intracellular function and inherent properties of vitamin C is conducted. It also provides a comprehensive review of published research pertaining to the differences in expression of the vitamin C transporter under several pathophysiologic conditions. Finally, we review recently published research investigating the efficacy of vitamin C administration in treating viral infection and life-threatening conditions. Overall, this manuscript aims to present existing information regarding the extent to which vitamin C can be an effective treatment for COVID-19 and possible explanations as to why it may work in some individuals but not in others.
Collapse
Affiliation(s)
- Taylor Patterson
- Department of Medicine, Augusta University, Augusta, GA 30912, USA.
| | - Carlos M Isales
- Center for Healthy Aging, Augusta University, Augusta, GA 30912, USA
- Department of Cell biology and anatomy, Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA 30912, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA 30912, USA
- Department of Cell biology and anatomy, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
26
|
Zhuang Y, Yan Y, Yang X, Cao J. Osteoporosis in a Rat Model Co-Exposed to Cigarette Smoke and Intermittent Hypoxia. Int J Chron Obstruct Pulmon Dis 2020; 15:2817-2825. [PMID: 33177819 PMCID: PMC7652222 DOI: 10.2147/copd.s276913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose There are few studies on osteoporosis in chronic obstructive pulmonary disease-obstructive sleep apnea overlap syndrome, and the results obtained are inconsistent. The purpose of our study is to observe the occurrence of osteoporosis and its possible mechanism in rat model co-exposed to cigarette smoke and intermittent hypoxia. Materials and Methods The rats were randomly divided into four groups: air exposed group, cigarette smoke (CS) exposed group, 10% concentration of intermittent hypoxia exposed group, CS combined with 10% concentration of intermittent hypoxia exposed group. All animals completed lung function and lung tissue morphology assessment. The femurs were examined by microcomputer tomography (microCT). Tartrate-resistant acidic phosphatase (TRAP) staining was used to evaluate the osteoclasts. We also assessed the interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in peripheral blood. Results There was no difference in the femoral length between each group, but the quantitative analyses of microCT showed that compared with the air exposed group, the percent bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), cortical thickness (Ct.Th) and bone mineral density (BMD) decreased, and the trabecular separation (Tb.Sp) and the proportion of trap-positive cells increased significantly in the overlapping exposed group. There were higher levels of BV/TV in the overlapping group than CS exposed group. Compared with the intermittent hypoxia exposed group, there were lower levels of Tb.Th and Ct.Th and higher levels of Tb.Sp in the overlapping exposed group. However, there was no statistical difference of trap-positive cell between the overlapping exposed group and the CS exposed single group or the intermittent hypoxia exposed group. There were higher levels of IL-6 and TNF-α in the overlapping exposed group than those in the air-exposed group. Conclusion Bone destruction increased in the overlapping exposed rat model compared with the rat exposed to air, which may be related to the upregulation of inflammation.
Collapse
Affiliation(s)
- Yan Zhuang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yuxia Yan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
27
|
DNA Methylation in Chronic Obstructive Pulmonary Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:83-98. [PMID: 32949392 DOI: 10.1007/978-981-15-4494-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a lung disease affected by both genetic and environmental factors. Therefore, the role of epigenetics in the pathogenesis of COPD has attracted much attention. As one of the three epigenetic mechanisms, DNA methylation has been extensively studied in COPD. The present review aims at overviewing the effect of DNA methylation on etiology, pathogenesis, pathophysiological changes, and complications of COPD. The clarification of aberrant methylation of target genes, which play important roles in the initiation and progression of COPD, will provide new disease-specific biomarker and targets for early diagnosis and therapy.
Collapse
|
28
|
Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NC. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sci 2020; 259:118260. [PMID: 32795541 DOI: 10.1016/j.lfs.2020.118260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Cigarette smoke (CS), the major risk factor of chronic obstructive pulmonary disease (COPD), contains numerous free radicals that can cause oxidative stress and exaggerated inflammatory responses in the respiratory system. Lipid peroxidation which is oxidative degradation of polyunsaturated fatty acids and results in cell damage has also been associated with COPD pathogenesis. Increased levels of lipid peroxidation as well as its end product 4-hydroxynonenal have indeed been detected in COPD patients. Additionally, reactive oxygen species such as those contained in CS can activate nuclear factor-κB signaling pathway, initiating cascades of proinflammatory mediator expression. As emerging evidence attests to the antioxidative and anti-inflammatory properties of tea catechins, we sought to determine whether epigallocatechin gallate, the most abundant tea catechin, can provide protection against oxidative stress, lipid peroxidation, and inflammatory responses caused by CS. We found that EGCG treatment blocked cigarette smoke extract (CSE)-induced oxidative stress as indicated by decreased production and accumulation of reactive oxygen species in airway epithelial cells (AECs). Likewise, lipid peroxidation in CSE-stimulated AECs was suppressed by EGCG. Our findings further suggest that EGCG sequestered 4-hydroxynonenal and interfered with its protein adduct formation. Lastly, we show that EGCG inhibited nuclear factor-κB activation and the downstream expression of proinflammatory mediators. In summary, our study describing the antioxidative and anti-inflammatory effects of EGCG in CSE-exposed AECs provide valuable information about the therapeutic potential of this tea catechin for COPD.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India.
| | - Aravind T Reddy
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - N Ch Varadacharyulu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
29
|
Parvizian MK, Dhaliwal M, Li J, Satia I, Kurmi OP. Relationship between dietary patterns and COPD: a systematic review and meta-analysis. ERJ Open Res 2020; 6:00168-2019. [PMID: 32420316 PMCID: PMC7211952 DOI: 10.1183/23120541.00168-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Findings from previous studies reporting on the associations between chronic obstructive pulmonary disease (COPD) and various dietary patterns have been inconsistent. This review aims to summarise the evidence on the strength of the association between dietary patterns and the prevalence and incidence of COPD. Methods We conducted a comprehensive search of seven databases between 1 January 1980 and 30 November 2019. Two reviewers independently reviewed each manuscript through the screening, selection, data extraction and quality assessment stages. Data from eight observational studies that met the inclusion criteria were extracted and random-effects meta-analysis was subsequently conducted. Results Eight observational studies (all eight reporting on healthy dietary patterns and three on unhealthy dietary patterns) met the inclusion criteria and data were extracted to include in the meta-analysis. Consumption of a healthy dietary pattern was associated with a lower risk of COPD (pooled OR 0.88, 95% CI 0.82–0.94). Consumption of unhealthy dietary patterns was associated with a higher risk of COPD (OR 1.22, 95% CI 0.84–1.76); however, the results were not statistically significant and had high heterogeneity (I2=91%). Conclusion Our results suggests that healthy dietary patterns are associated with a lower prevalence of COPD, while unhealthy dietary patterns are not. More studies, particularly adequately powered longitudinal studies, are needed to further elucidate the effects of healthy and unhealthy dietary patterns on risk of COPD. This review suggests that individuals with healthy dietary pattern have lower risk of chronic obstructive pulmonary diseasehttp://bit.ly/331PVJ1
Collapse
Affiliation(s)
| | | | - Jeremy Li
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Imran Satia
- Dept of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada.,Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Om P Kurmi
- Dept of Medicine, Division of Respirology, McMaster University, Hamilton, ON, Canada.,Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Exposure to Air Pollution Exacerbates Inflammation in Rats with Preexisting COPD. Mediators Inflamm 2020; 2020:4260204. [PMID: 32454790 PMCID: PMC7231193 DOI: 10.1155/2020/4260204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Particulate matter with an aerodynamic diameter equal or less than 2.5 micrometers (PM2.5) is associated with the development of chronic obstructive pulmonary disease (COPD). The mechanisms by which PM2.5 accelerates disease progression in COPD are poorly understood. In this study, we aimed to investigate the effect of PM2.5 on lung injury in rats with hallmark features of COPD. Cardinal features of human COPD were induced in a rat model by repeated cigarette smoke inhalation and bacterial infection for 8 weeks. Then, from week 9 to week 16, some of these rats with COPD were subjected to real-time concentrated atmospheric PM2.5. Lung function, pathology, inflammatory cytokines, oxidative stress, and mucus and collagen production were measured. As expected, the COPD rats had developed emphysema, inflammation, and deterioration in lung function. PM2.5 exposure resulted in greater lung function decline and histopathological changes, as reflected by increased Mucin (MUC) 5ac, MUC5b, Collagen I, Collagen III, and the profibrotic cytokine α-smooth muscle-actin (SMA), transforming growth factor- (TGF-) β1 in lung tissues. PM2.5 also aggravated inflammation, increasing neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF) and cytokines including Interleukin- (IL-) 1β, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-4. The likely mechanism is through oxidative stress as antioxidants levels were decreased, whereas oxidants were increased, indicating a detrimental shift in the oxidant-antioxidant balance. Altogether, these results suggest that PM2.5 exposure could promote the development of COPD by impairing lung function and exacerbating pulmonary injury, and the potential mechanisms are related to inflammatory response and oxidative stress.
Collapse
|
31
|
Ghorani V, Rajabi O, Mirsadraee M, Rezaeitalab F, Saadat S, Boskabady MH. A Randomized, Doubled‐Blind Clinical Trial on the Effect of
Zataria multiflora
on Clinical Symptoms, Oxidative Stress, and C‐Reactive Protein in COPD Patients. J Clin Pharmacol 2020; 60:867-878. [DOI: 10.1002/jcph.1586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Vahideh Ghorani
- Department of Physiology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of PharmacyMashhad University of Medical Sciences Mashhad Iran
| | - Majid Mirsadraee
- Department of Internal Medicine, Faculty of MedicineIslamic Azad University‐Mashhad Branch Mashhad Iran
| | - Fariba Rezaeitalab
- Department of Internal Medicine, Imam Reza Hospital, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Saeideh Saadat
- Department of Physiology, School of MedicineZahedan University of Medical Sciences Zahedan Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research CenterMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
32
|
Reddy AT, Lakshmi SP, Banno A, Jadhav SK, Pulikkal Kadamberi I, Kim SC, Reddy RC. Cigarette smoke downregulates Nur77 to exacerbate inflammation in chronic obstructive pulmonary disease (COPD). PLoS One 2020; 15:e0229256. [PMID: 32084204 PMCID: PMC7034866 DOI: 10.1371/journal.pone.0229256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoke (CS) contains multiple gaseous and particulate materials that can cause lung inflammation, and smoking is the major cause of chronic obstructive pulmonary disease (COPD). We sought to determine the mechanisms of how CS triggers lung inflammation. Nur77, a nuclear hormone receptor belonging to the immediate-early response gene family, controls inflammatory responses, mainly by suppressing the NF-κB signaling pathway. Because it is unknown if Nur77's anti-inflammatory role modulates COPD, we assessed if and how Nur77 expression and activity are altered in CS-induced airway inflammation. In lung tissues and bronchial epithelial cells from COPD patients, we found Nur77 was downregulated. In a murine model of CS-induced airway inflammation, CS promoted lung inflammation and also reduced Nur77 activity in wild type (WT) mice, whereas lungs of Nur77-deficient mice showed exaggerated CS-induced inflammatory responses. Our findings in in vitro studies of human airway epithelial cells complemented those in vivo data in mice, together showing that CS induced threonine-phosphorylation of Nur77, which is known to interfere with its anti-inflammatory functions. In summary, our findings point to Nur77 as an important regulator of CS-induced inflammatory responses and support the potential benefits of Nur77 activation for COPD treatment.
Collapse
Affiliation(s)
- Aravind T. Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Sowmya P. Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Asoka Banno
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Shantanu Krishna Jadhav
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Ishaque Pulikkal Kadamberi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Seong C. Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Raju C. Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
33
|
Pandey S, Garg R, Kant S, Gaur P. Vitamin D, C-reactive protein, and oxidative stress markers in chronic obstructive pulmonary disease. Tzu Chi Med J 2019; 33:80-86. [PMID: 33505883 PMCID: PMC7821825 DOI: 10.4103/tcmj.tcmj_198_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 10/29/2019] [Indexed: 01/24/2023] Open
Abstract
Objective: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Systemic inflammation and oxidant/antioxidant imbalance has been seen to play a key role in pathogenesis of COPD. The present study investigated the levels of inflammatory and antioxidant/oxidative stress biomarker in COPD patients and healthy subjects. Materials and Methods: The present study enrolled seventy COPD patients and seventy healthy controls from Department of Respiratory Medicine at a tertiary care hospital. Vitamin D, C-reactive protein (CRP), superoxide dismutase (SOD), catalase, and malondialdehyde (MDA) levels were measured in both cases and control. GraphPad PRISM version 6.01 was used for analysis of data. Results: The levels of Vitamin D, SOD, Catalase, were found to be significantly lower among the COPD patients in comparison to healthy controls while levels of MDA and CRP were significantly higher (P = 0.0001). Conclusion: The results showed oxidant/antioxidant imbalance and Vitamin D deficiency in COPD patients. Higher levels of CRP and oxidative stress markers were observed in COPD patients in comparison to healthy controls. A biomarker based study testing the efficacy of novel antioxidant or other agents will be helpful that can modify the course of this disease.
Collapse
Affiliation(s)
- Sarika Pandey
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rajiv Garg
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Priyanka Gaur
- Department of Physiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
34
|
Targeting Chronic Obstructive Pulmonary Disease Phenotypes, Endotypes, and Biomarkers. Ann Am Thorac Soc 2019; 15:S234-S238. [PMID: 30758998 DOI: 10.1513/annalsats.201808-533mg] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is now well recognized to be a phenotypically heterogeneous disease, and this heterogeneity is underpinned by biological heterogeneity. An "endotype" is a group of patients who share the same observed characteristic(s) because of shared underlying biology, and the "endotype" concept has emerged as one way of bringing order to this phenotypic heterogeneity by focusing on its biological underpinnings. In principle, biomarkers can help identify endotypes and mark these specific groups of patients as suitable candidates for targeted biological therapies. Among the better-described endotypes of COPD are alpha-1 antitrypsin deficiency and eosinophilic COPD. Both of these endotypes have biomarkers and at least some evidence of preferential benefit from targeted therapy. Other biological pathways that may define endotypes of COPD include more general pathways of type 2 inflammation, IL-17-driven inflammation (due to autoimmunity or deposition of nanoparticulate carbon black), bacterial colonization, pathological alterations of the airway mucus gel, and others that are beyond the scope of this review. Whether these biological pathways ultimately are found to segregate patients into very distinct endotypes or subsets (like alpha-1 antitrypsin deficiency) or, instead, are present as "treatable traits" in various combinations is uncertain. However imperfect, the endotype concept forces a focus on heterogeneity at a biological level, and the development of biomarkers of biological heterogeneity should help advance the goal of developing new therapies for COPD.
Collapse
|
35
|
Sierżant K, Perruchot MH, Merlot E, Le Floc’h N, Gondret F. Tissue-specific responses of antioxidant pathways to poor hygiene conditions in growing pigs divergently selected for feed efficiency. BMC Vet Res 2019; 15:341. [PMID: 31619228 PMCID: PMC6794813 DOI: 10.1186/s12917-019-2107-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Poor hygiene of housing induces a systemic inflammatory response. Because inflammation and oxidative stress are processes that can sustain each other, the ways pigs are able to activate their antioxidant defenses are critical for production performance and health during periods when the immune system is solicited. Selection for production performance can also influence reactive oxygen species (ROS) production and expression levels of genes involved in cellular response to oxidative stress in different tissues. To establish the extent by which poor hygiene and selection for feed efficiency affected redox status, pigs divergently selected for residual feed intake (RFI) were housed in poor or good hygiene during 6 weeks. At the end, blood was collected in all pigs, and half of them were killed for tissue sampling. The remaining pigs were reared in good hygiene conditions during a recovery period of 7-8 weeks. RESULTS At week 6, poor hygiene was associated with a lower total antioxidant capacity assessed by plasma ferric reducing ability in all pigs, and with greater plasma levels of hydrogen peroxides in the high RFI pigs (less efficient). Adipose tissue of high RFI pigs exhibited higher activities of catalase and glutathione reductase, and greater thiobarbituric acid reactive substances (TBARS) concentrations when compared with the low RFI pigs (more efficient). Poor hygiene conditions activated the antioxidant enzymes activities (glutathione reductase, superoxide dismutase and catalase) in adipose tissue of both lines, but led to higher ROS production by mature adipocytes isolated from the high RFI pigs only. In liver and muscle, there were only minor changes in antioxidant molecules due to genetics and hygiene conditions. After the resilience period, adipose tissue of pigs previously challenged by poor hygiene maintained higher antioxidant enzyme activities, and for the high RFI line, displayed higher TBARS concentrations. CONCLUSIONS Pigs selected for improved feed efficiency showed a lower susceptibility to oxidative stress induced by poor hygiene conditions. This could led to a lower inflammatory response and less impaired growth when these pigs are facing sanitary challenges during the production period.
Collapse
Affiliation(s)
- K. Sierżant
- Faculty of Biology and Animal Science, Department of Animal Nutrition and Feed Science, Wroclaw University of Environmental and Life Sciences, 51630 Wroclaw, Poland
| | - M-H. Perruchot
- PEGASE, INRA, AGROCAMPUS OUEST, 35590 Saint-Gilles, France
| | - E. Merlot
- PEGASE, INRA, AGROCAMPUS OUEST, 35590 Saint-Gilles, France
| | - N. Le Floc’h
- PEGASE, INRA, AGROCAMPUS OUEST, 35590 Saint-Gilles, France
| | - F. Gondret
- PEGASE, INRA, AGROCAMPUS OUEST, 35590 Saint-Gilles, France
| |
Collapse
|
36
|
The effect of cysteine oxidation on DJ-1 cytoprotective function in human alveolar type II cells. Cell Death Dis 2019; 10:638. [PMID: 31474749 PMCID: PMC6717737 DOI: 10.1038/s41419-019-1833-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
DJ-1 is a multifunctional protein with cytoprotective functions. It is localized in the cytoplasm, nucleus, and mitochondria. The conserved cysteine residue at position 106 (Cys106) within DJ-1 serves as a sensor of redox state and can be oxidized to both the sulfinate (-SO2−) and sulfonate (-SO3−) forms. DJ-1 with Cys106-SO2− has cytoprotective activity but high levels of reactive oxygen species can induce its overoxidation to Cys106-SO3−. We found increased oxidative stress in alveolar type II (ATII) cells isolated from emphysema patients as determined by 4-HNE expression. DJ-1 with Cys106-SO3− was detected in these cells by mass spectrometry analysis. Moreover, ubiquitination of Cys106-SO3− DJ-1 was identified, which suggests that this oxidized isoform is targeted for proteasomal destruction. Furthermore, we performed controlled oxidation using H2O2 in A549 cells with DJ-1 knockout generated using CRISPR-Cas9 strategy. Lack of DJ-1 sensitized cells to apoptosis induced by H2O2 as detected using Annexin V and propidium iodide by flow cytometry analysis. This treatment also decreased both mitochondrial DNA amount and mitochondrial ND1 (NADH dehydrogenase 1, subunit 1) gene expression, as well as increased mitochondrial DNA damage. Consistent with the decreased cytoprotective function of overoxidized DJ-1, recombinant Cys106-SO3− DJ-1 exhibited a loss of its thermal unfolding transition, mild diminution of secondary structure in CD spectroscopy, and an increase in picosecond–nanosecond timescale dynamics as determined using NMR. Altogether, our data indicate that very high oxidative stress in ATII cells in emphysema patients induces DJ-1 overoxidation to the Cys106-SO3− form, leading to increased protein flexibility and loss of its cytoprotective function, which may contribute to this disease pathogenesis.
Collapse
|
37
|
Singh B, Ghosh N, Saha D, Sarkar S, Bhattacharyya P, Chaudhury K. Effect of doxycyline in chronic obstructive pulmonary disease - An exploratory study. Pulm Pharmacol Ther 2019; 58:101831. [PMID: 31349003 DOI: 10.1016/j.pupt.2019.101831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Various mechanisms, including oxidative stress, inflammation, and protease-antiprotease imbalance are proposed for the progressive decline in lung function in chronic obstructive pulmonary disease (COPD). Doxycycline, a broad spectrum tetracycline antibiotic, is reported to have non-antimicrobial matrix metalloproteinases (MMP) inhibitory action in various inflammatory conditions. The effect of doxycycline in COPD is hereby assessed in the present randomized prospective study. PATIENTS AND METHODS The first group of COPD patients (n = 30; mild (n = 3), moderate (n = 6), severe (n = 7), very severe (n = 14) as per GOLD II & III criteria was prescribed the standard therapy, a combination of (i) short acting anti-muscarinic agent (SAMA) + short acting β2 agonist (SABA) inhaled and (ii) corticosteroid inhaled (ICS) + long acting β2 agonist (LABA) (iii) ICS + LABA + LAMA. Whereas doxycycline (100 mg), was used daily once or twice as per Body Mass Index (BMI), as an add-on to existing standard therapy for the second group of patients (n = 30; mild (n = 2), moderate (n = 7), severe (n = 8), very severe (n = 13). All recruited patients were followed-up after 3 months of treatment. Lung function index FEV1(%) predicted, FEV1/FVC (%), quality of life status including COPD Assessment Test (CAT), St. George's Respiratory Questionnaire (SGRQ) were assessed. Routine blood cell count also was performed. RESULTS Biochemical analysis included estimation of oxidative stress markers, inflammatory cytokines and proteases in plasma of both the groups. Reduction in oxidative stress is evidenced by a significant decrease in Lipid hydro peroxides (LPO), total oxidative stress (TOS) and increase in glutathione peroxidase (GSH-PX), reduced glutathione (GSH) and total anti-oxidant capacity (TAO) nitrite and nitrate (NOx) along with peroxynitrate following 3 months of add-on doxycycline treatment. Reduced levels of cytokines such as interleukin IL-6, TNF-α, IL-8 were also observed. Multivariate analysis identified TNF-α major effective discriminant among pre and post doxycycline treated COPD patients. The expression of TNF-α was inversely correlated with FEV1/FVC (%) changes. The levels of MMP-2 and MMP-9/tissue inhibitors of metalloproteinases (TIMP)-1 ratio (MMP-9/ TIMP-1), also decreased significantly and the decline could be associated with TOS. A significant increase in bilirubin and reduced glutathione (GSH) level was noticed in standard therapy group. CONCLUSION These data suggest that the improvement in lung function and quality of life in COPD patients may probably be attributed to the antioxidant, anti-inflammatory and anti-MMP activity of doxycycline. The potential therapeutic role of long-term doxycycline, in addition to its traditional antibiotic effect, definitely warrants further attention.
Collapse
Affiliation(s)
- Brajesh Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | | | - Surita Sarkar
- Department of Applied Physics, University of Calcutta, Kolkata, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
38
|
N-acetylcysteine tiherapeutically protects against pulmonary fibrosis in a mouse model of silicosis. Biosci Rep 2019; 39:BSR20190681. [PMID: 31273057 PMCID: PMC6639458 DOI: 10.1042/bsr20190681] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Silicosis is a lethal pneumoconiosis disease characterized by chronic lung inflammation and fibrosis. The present study was to explore the effect of against crystalline silica (CS)-induced pulmonary fibrosis. A total of 138 wild-type C57BL/6J mice were divided into control and experimental groups, and killed on month 0, 1, 2, 3, 4, and 5. Different doses of N-acetylcysteine (NAC) were gavaged to the mice after CS instillation to observe the effect of NAC on CS induced pulmonary fibrosis and inflammation. The pulmonary injury was evaluated with Hematoxylin and eosin/Masson staining. Reactive oxygen species level was analyzed by DCFH-DA labeling. Commercial ELISA kits were used to determine antioxidant activity (T-AOC, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) and cytokines (TNF-α, IL-1β, IL-4, and IL-6). The expression of oxidising enzymes (NOX2, iNOS, SOD2, and XO) were detected by real time PCR. Immunohistochemistry (IHC) staining was performed to examine epithelial-mesenchymal transition-related markers. The mice treated with NAC presented markedly reduced CS-induced pulmonary injury and ameliorated CS-induced pulmonary fibrosis and inflammation. The level of malondialdehyde was reduced, while the activities of GSH-PX, SOD, and T-AOC were markedly enhanced by NAC. We also found the down-regulation of oxidising enzymes (NOX2, iNOS, SOD2, and XO) after NAC treatment. Moreover, E-cadherin expression was increased while vimentin and Cytochrome C expressions were decreased by NAC. These encouraging findings suggest that NAC exerts pulmonary protective effects in CS-induced pulmonary fibrosis and might be considered as a promising agent for the treatment of silicosis.
Collapse
|
39
|
Brassington K, Selemidis S, Bozinovski S, Vlahos R. New frontiers in the treatment of comorbid cardiovascular disease in chronic obstructive pulmonary disease. Clin Sci (Lond) 2019; 133:885-904. [PMID: 30979844 PMCID: PMC6465303 DOI: 10.1042/cs20180316] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterised by persistent airflow limitation that is not fully reversible and is currently the fourth leading cause of death globally. It is now well established that cardiovascular-related comorbidities contribute to morbidity and mortality in COPD, with approximately 50% of deaths in COPD patients attributed to a cardiovascular event (e.g. myocardial infarction). Cardiovascular disease (CVD) and COPD share various risk factors including hypertension, sedentarism, smoking and poor diet but the underlying mechanisms have not been fully established. However, there is emerging and compelling experimental and clinical evidence to show that increased oxidative stress causes pulmonary inflammation and that the spill over of pro-inflammatory mediators from the lungs into the systemic circulation drives a persistent systemic inflammatory response that alters blood vessel structure, through vascular remodelling and arterial stiffness resulting in atherosclerosis. In addition, regulation of endothelial-derived vasoactive substances (e.g. nitric oxide (NO)), which control blood vessel tone are altered by oxidative damage of vascular endothelial cells, thus promoting vascular dysfunction, a key driver of CVD. In this review, the detrimental role of oxidative stress in COPD and comorbid CVD are discussed and we propose that targeting oxidant-dependent mechanisms represents a novel strategy in the treatment of COPD-associated CVD.
Collapse
Affiliation(s)
- Kurt Brassington
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
40
|
Wells JM, Arenberg DA, Barjaktarevic I, Bhatt SP, Bowler RP, Christenson SA, Couper DJ, Dransfield MT, Han MK, Hoffman EA, Kaner RJ, Kim V, Kleerup E, Martinez FJ, Moore WC, O’Beirne SL, Paine R, Putcha N, Raman SM, Barr RG, Rennard SI, Woodruff PG, Curtis JL. Safety and Tolerability of Comprehensive Research Bronchoscopy in Chronic Obstructive Pulmonary Disease. Results from the SPIROMICS Bronchoscopy Substudy. Ann Am Thorac Soc 2019; 16:439-446. [PMID: 30653926 PMCID: PMC6441692 DOI: 10.1513/annalsats.201807-441oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
RATIONALE There is an unmet need to investigate the lower airways in chronic obstructive pulmonary disease (COPD) to define pathogenesis and to identify potential markers to accelerate therapeutic development. Although bronchoscopy is well established to sample airways in various conditions, a comprehensive COPD research protocol has yet to be published. OBJECTIVES To evaluate the safety and tolerability of a comprehensive research bronchoscopy procedure suitable for multicenter trials and to identify factors associated with adverse events. METHODS We report the detailed methodology used to conduct the bronchoscopy used in SPIROMICS (the Subpopulations and Intermediate Outcome Measures in COPD Study). The protocol entailed collection of tongue scrapings and oral rinses as well as bronchoscopy with airway inspection, bronchoalveolar lavage (BAL), protected brushings, and endobronchial biopsies. Visual airway characteristics were graded on a scale of 0 (normal appearance) to 3 (severe abnormality) in four domains: erythema, edema, secretions, and friability. Adverse events were defined as events requiring intervention. Logistic regression modeling assessed associations between adverse event occurrence and key variables. RESULTS We enrolled 215 participants. They were 61 ± 9 years old, 71% were white, 53% were male, and post-bronchodilator forced expiratory volume in 1 second was 89 ± 19% predicted. Self-reported asthma was present in 22% of bronchoscopy participants. Oral samples were obtained in greater than or equal to 99% of participants. Airway characteristics were recorded in 99% and were most often characterized as free of edema (61.9%). Less than 50% reported secretions, friability, or erythema. BAL yielded 111 ± 57 ml (50%) of the 223 ± 65 ml of infusate, brushes were completed in 98%, and endobronchial biopsies were performed in 82% of procedures. Adverse events requiring intervention occurred in 14 (6.7%) of 208 bronchoscopies. In logistic regression models, female sex (risk ratio [RR], 1.10; 95% confidence interval [CI], 1.02-1.19), self-reported asthma (RR, 1.17; 95% CI, 1.02-1.34), bronchodilator reversibility (RR, 1.17; 95% CI, 1.04-1.32), COPD (RR, 1.10; 95% CI, 1.02-1.20), forced expiratory volume in 1 second (RR, 0.97; 95% CI, 0.95-0.99), and secretions (RR, 1.85; 1.08-3.16) or friability (RR, 1.64; 95% CI, 1.04-2.57) observed during bronchoscopy were associated with adverse events. CONCLUSIONS A research bronchoscopy procedure that includes oral sampling, BAL, endobronchial biopsy, and brushing can be safely performed. Airway characteristics during bronchoscopy, demographics, asthma or COPD, and lung function may convey increased risk for procedure-related events necessitating intervention.
Collapse
Affiliation(s)
- J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama
| | - Douglas A. Arenberg
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, Los Angeles, California
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Russell P. Bowler
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, Colorado
- University of Colorado at Denver, Aurora, Colorado
| | - Stephanie A. Christenson
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - David J. Couper
- Marsico Lung Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, and
- UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham VA Medical Center, Birmingham, Alabama
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Robert J. Kaner
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York
| | - Victor Kim
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Kleerup
- Wake Forest University, Winston-Salem, North Carolina
| | - Fernando J. Martinez
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York
| | | | - Sarah L. O’Beirne
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
- Salt Lake City VA Medical Center, Salt Lake City, Utah
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sanjeev M. Raman
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - R. Graham Barr
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, New York
| | - Stephen I. Rennard
- IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| |
Collapse
|
41
|
Sanders KA, Delker DA, Huecksteadt T, Beck E, Wuren T, Chen Y, Zhang Y, Hazel MW, Hoidal JR. RAGE is a Critical Mediator of Pulmonary Oxidative Stress, Alveolar Macrophage Activation and Emphysema in Response to Cigarette Smoke. Sci Rep 2019; 9:231. [PMID: 30659203 PMCID: PMC6338799 DOI: 10.1038/s41598-018-36163-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE), a cell membrane receptor, recognizes ligands produced by cigarette smoke (CS) and has been implicated in the pathogenesis of COPD. We demonstrate that deletion or pharmacologic inhibition of RAGE prevents development of CS-induced emphysema. To identify molecular pathways by which RAGE mediates smoking related lung injury we performed unbiased gene expression profiling of alveolar macrophages (AM) obtained from RAGE null and C57BL/6 WT mice exposed to CS for one week or four months. Pathway analysis of RNA expression identified a number of genes integral to the pathogenesis of COPD impacted by the absence of RAGE. Altered expression of antioxidant response genes and lung protein 4-HNE immunostaining suggest attenuated oxidative stress in the RAGE null mice despite comparable CS exposure and lung leukocyte burden as the WT mice. Reduced endoplasmic reticulum stress in response to CS exposure also was observed in the AM from RAGE null mice. These findings provide novel insight into the sources of oxidative stress, macrophage activation, and the pathogenesis of lung disease due to CS exposure.
Collapse
Affiliation(s)
- Karl A Sanders
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Don A Delker
- Division of Gastroenterology, Hepatology, and Nutrition, University of Utah, Salt Lake City, Utah, USA
| | - Tom Huecksteadt
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Emily Beck
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tanna Wuren
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Yuntian Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mark W Hazel
- Division of Gastroenterology, Hepatology, and Nutrition, University of Utah, Salt Lake City, Utah, USA
| | - John R Hoidal
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| |
Collapse
|
42
|
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Shastri MD, Chellappan DK, Maurya PK, Satija S, Mehta M, Gulati M, Hansbro N, Collet T, Awasthi R, Gupta G, Hsu A, Hansbro PM. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2018; 299:168-178. [PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Rapalli Vamshi Krishna
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, 123031, Haryana, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Nicole Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Trudi Collet
- Indigenous Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Sec. 125, Noida, 201303, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| |
Collapse
|
43
|
Risk of cataract in smokers: A meta-analysis of observational studies. ACTA ACUST UNITED AC 2018; 94:60-74. [PMID: 30528895 DOI: 10.1016/j.oftal.2018.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aim of the study was to compare the risk of cataract in smokers and ex-smokers. METHODS A systematic search of observational studies was carried out in Medline, Embase, and Lilacs databases. Studies that have evaluated the association between cigarette smoking and any type of clinically diagnosed cataract were selected. The association estimators were extracted, adjusted at least by age, and were combined using random-effects models, by subtype of study (cohort, case control and cross sectional), subtype of cataract (nuclear, cortical, and posterior subcapsular), and exposure (current smoker or ex-smoker). Statistical heterogeneity, meta-regression analysis and publication bias were assessed. RESULTS A total of 13 cohort studies, 12 case-control studies, and 18 cross-sectional studies were selected. A risk of cataract was found in current smokers: cohort (OR: 1.41; 95%CI: 1.24-1.60), cases and controls (OR: 1.45; 95%CI: 1.08-1.96), and cross-sectional studies (OR: 1.21; 95%CI: 1.09-1.34); risk of nuclear cataract: cohort (OR: 1.71; 95%CI: 1.47-1.98), case-control (OR: 1.79; 95%CI: 1.43-2.25), and cross sectional studies (OR: 1.45; 95%CI: 1.27-1.65). There was no risk of cortical or posterior subcapsular cataract in ex-smokers. CONCLUSIONS There is a risk of cataract in smokers, particularly nuclear type. With cross-sectional studies, similar results are obtained with cohorts and cases and controls.
Collapse
|
44
|
Kim YS, Hong G, Kim DH, Kim YM, Kim YK, Oh YM, Jee YK. The role of FGF-2 in smoke-induced emphysema and the therapeutic potential of recombinant FGF-2 in patients with COPD. Exp Mol Med 2018; 50:1-10. [PMID: 30429461 PMCID: PMC6235987 DOI: 10.1038/s12276-018-0178-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Although the positive effects of recombinant fibroblast growth factor-2 (rFGF-2) in chronic obstructive pulmonary disease (COPD) have been implicated in previous studies, knowledge of its role in COPD remains limited. The mechanism of FGF2 in a COPD mouse model and the therapeutic potential of rFGF-2 were investigated in COPD. The mechanism and protective effects of rFGF-2 were evaluated in cigarette smoke-exposed or elastase-induced COPD animal models. Inflammation was assessed in alveolar cells and lung tissues from mice. FGF-2 was decreased in the lungs of cigarette smoke-exposed mice. Intranasal use of rFGF-2 significantly reduced macrophage-dominant inflammation and alveolar destruction in the lungs. In the elastase-induced emphysema model, rFGF-2 improved regeneration of the lungs. In humans, plasma FGF-2 was decreased significantly in COPD compared with normal subjects (10 subjects, P = 0.037). The safety and efficacy of inhaled rFGF-2 use was examined in COPD patients, along with changes in respiratory symptoms and pulmonary function. A 2-week treatment with inhaled rFGF-2 in COPD (n = 6) resulted in significantly improved respiratory symptoms compared with baseline levels (P < 0.05); however, the results were not significant compared with the placebo. The pulmonary function test results of COPD improved numerically compared with those in the placebo, but the difference was not statistically significant. No serious adverse events occurred during treatment with inhaled rFGF-2. The loss of FGF-2 production is an important mechanism in the development of COPD. Inhaling rFGF-2 may be a new therapeutic option for patients with COPD because rFGF-2 decreases inflammation in lungs exposed to cigarette smoke.
Collapse
Affiliation(s)
- You-Sun Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Goohyeon Hong
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Doh Hyung Kim
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Young Min Kim
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare, Inc, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Young-Koo Jee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
45
|
Reddy AT, Lakshmi SP, Banno A, Reddy RC. Role of GPx3 in PPARγ-induced protection against COPD-associated oxidative stress. Free Radic Biol Med 2018; 126:350-357. [PMID: 30118830 PMCID: PMC6368849 DOI: 10.1016/j.freeradbiomed.2018.08.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Cigarette smoke, a source of numerous oxidants, produces oxidative stress and exaggerated inflammatory responses that lead to irreversible lung tissue damage. It is the single, most significant risk factor for chronic obstructive pulmonary disease (COPD). Although an intrinsic defense system that includes both enzymatic and non-enzymatic modulators exists to protect lung tissues against oxidative stress, impairment of these protective mechanisms has been demonstrated in smokers and COPD patients. The antioxidant enzyme GSH peroxidase (GPx) is an important part of this intrinsic defense system. Although cigarette smoke has been shown to downregulate its expression and activity, the underlying mechanism is not known. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor with antioxidant effects. PPARγ activation has demonstrated protective effects against cigarette smoke-induced oxidative stress and inflammation. Molecular mechanisms for PPARγ's antioxidant function likewise remain to be elucidated. This study explored the link between PPARγ and GPx3 and found a positive association in cigarette smoke extract (CSE)-exposed human bronchial epithelial cells. Moreover, we provide evidence that identifies GPx3 as a PPARγ transcriptional target. Attenuation of antioxidant effects in the absence of GPx3 highlights the antioxidant's prominent role in mediating PPARγ's function. We also demonstrate that ligand-mediated PPARγ activation blocks CSE-induced reactive oxygen species and hydrogen peroxide production via upregulation of GPx3. In summary, our findings describing the molecular mechanisms involving GPx3 and PPARγ in CSE-induced oxidative stress and inflammation may provide valuable information for the development of more effective therapeutics for COPD.
Collapse
Affiliation(s)
- Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Asoka Banno
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
46
|
Guo X, Fan Y, Cui J, Hao B, Zhu L, Sun X, He J, Yang J, Dong J, Wang Y, Liu X, Chen J. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. BMC Pulm Med 2018; 18:111. [PMID: 29986678 PMCID: PMC6038356 DOI: 10.1186/s12890-018-0680-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Background Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is suggested as the consequence of emphysematous destruction of vascular bed and hypoxia of pulmonary microenvironment, mechanisms underpinning its pathogenesis however remain elusive. The dysregulated expression of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases and superoxide generation by pulmonary vasculatures have significant implications in the hypoxia-induced PH. Methods In this study, the involvement of NADPH oxidase subunit 4 (NOX4) in pulmonary arteriolar remodeling of PH in COPD was investigated by ascertaining the morphological alteration of pulmonary arteries and pulmonary blood flow using cardiac magnetic resonance imaging (cMRI), and the expression and correlation of NOX4 with pulmonary vascular remodeling and pulmonary functions in COPD lungs. Results Results demonstrated that an augmented expression of NOX4 was correlated with the increased volume of pulmonary vascular wall in COPD lung. While the volume of distal pulmonary arteries was inversely correlated with pulmonary functions, despite it was positively associated with the main pulmonary artery distensibility, right ventricular myocardial mass end-systolic and right ventricular myocardial mass end-diastolic in COPD. In addition, an increased malondialdehyde and a decreased superoxide dismutase were observed in sera of COPD patients. Mechanistically, the abundance of NOX4 and production of reactive oxygen species (ROS) in pulmonary artery smooth muscle cells could be dynamically induced by transforming growth factor-beta (TGF-β), which in turn led pulmonary arteriolar remodeling in COPD lungs. Conclusion These results suggest that the NOX4-derived ROS production may play a key role in the development of PH in COPD by promoting distal pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Yuchun Fan
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.,Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Binwei Hao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiao Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinxi He
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiali Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianda Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanyang Wang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China. .,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
47
|
SIRT1 Activity in Peripheral Blood Mononuclear Cells Correlates with Altered Lung Function in Patients with Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9391261. [PMID: 29861836 PMCID: PMC5971245 DOI: 10.1155/2018/9391261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
Abstract
Background Oxidative stress is a recognized pathogenic mechanism in chronic obstructive pulmonary disease (COPD). Expression of the NAD+-dependent deacetylase Sirtuin 1 (SIRT1), an antiaging molecule with a key role in oxidative stress response, has been described as decreased in the lung of COPD patients. No studies so far investigated whether systemic SIRT1 activity was associated to decreased lung function in this disease. Methods We measured SIRT1 protein expression and activity in peripheral blood mononuclear cells (PBMCs) and total oxidative status (TOS), total antioxidant capacity (TEAC), and oxidative stress index (TOS/TEAC) in the plasma of 25 COPD patients, 20 healthy nonsmokers (HnS), and 20 healthy smokers (HS). Results The activity of SIRT1 was significantly lower in COPD patients compared to both control groups while protein expression decreased progressively (HnS > HS > COPD). TOS levels were significantly lower in HnS than in smoke-associated subjects (COPD and HS), while TEAC levels were progressively lower according (HnS > HS > COPD). In COPD patients, SIRT1 activity, but not protein levels, correlated significantly with both lung function parameters (FEV1/FVC and FEV1) and TEAC. Conclusions These findings suggest loss of SIRT1-driven antioxidant activity as relevant in COPD pathogenesis and identify SIRT1 activity as a potential convenient biomarker for identification of mild/moderate, stable COPD.
Collapse
|
48
|
Brozmanova M, Hanacek J. Hyperoxia-induced regulation of cough reflex and its effect after antioxidant supplementation. Respir Physiol Neurobiol 2018; 257:75-81. [PMID: 29438812 DOI: 10.1016/j.resp.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Hyperoxia-induced lung injury is well known in animal and human studies. The respiratory epithelium including sensory nerve endings is a major target for oxidative injury that manifested in lung function changes including cough. On the basis of available information we supposed that hyperoxia alone or in combination with primary lung tissue injury should have a damaging effect on lungs, including the airway nerve endings with the changes in the sensitivity of the central and peripheral neuronal pathways regulating cough. We have previously demonstrated that long-term exposure to 100% oxygen inhibits the cough reflex in cat. This review article summarizes the effect of hyperoxia on the cough reflex in guinea pig model using different concentrations of oxygen and different time of exposure. We also present information on the potential role of antioxidants in reversal of the detrimental effects of hyperoxia on coughing and additional analysis of experiments from previously published studies were obtained and analysed for the cough reflex sensitivity.
Collapse
Affiliation(s)
- Mariana Brozmanova
- Biomedical Center Martin JFM CU, Slovakia; Department of Pathophysiology JFM CU, Slovakia.
| | - Jan Hanacek
- Department of Pathophysiology JFM CU, Slovakia
| |
Collapse
|
49
|
Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharmacological effects of Zataria multiflora
Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam Clin Pharmacol 2018; 32:26-50. [DOI: 10.1111/fcp.12331] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Reza Khazdair
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Vahideh Ghorani
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Azam Alavinezhad
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
50
|
Liu Y, Li A, Feng X, Sun X, Zhu X, Zhao Z. Pharmacological Investigation of the Anti-Inflammation and Anti-Oxidation Activities of Diallyl Disulfide in a Rat Emphysema Model Induced by Cigarette Smoke Extract. Nutrients 2018; 10:E79. [PMID: 29329251 PMCID: PMC5793307 DOI: 10.3390/nu10010079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/15/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Diallyl disulfide (DADS) is the main organosulfur ingredient in garlic, with known antioxidant and anti-inflammatory activities. The aim of the present study was to investigate the effect of DADS on reducing the inflammation and redox imbalance in a rat emphysema model that was induced by intraperitoneal injection of cigarette smoke extract (CSE). Briefly, DADS exerted an anti-inflammation effect on emphysema rats through decreasing cell influx in the bronchoalveolar lavage fluid (BALF) and suppressing pro-inflammation cytokine production including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) via inhibiting the NF-κB pathway. In addition, levels of oxidative stress markers including malondialdehyde (MDA) and myeloperoxidase (MPO) were reduced, while the activities of glutathione (GSH), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were markedly enhanced by DADS. Moreover, MMP-9 and TIMP-1 expression were down-regulated by DADS. Furthermore, the regulation effects of DADS on CD4⁺ and CD8⁺ T cells were observed. In conclusion, these encouraging findings suggest that DADS could be considered as a promising anti-inflammation and antioxidative agent for the treatment of emphysema.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiuli Feng
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiao Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, China.
| |
Collapse
|