1
|
Kumar S, Granados J, Aceves M, Peralta J, Leandro AC, Thomas J, Williams-Blangero S, Curran JE, Blangero J. Pre-Infection Innate Immunity Attenuates SARS-CoV-2 Infection and Viral Load in iPSC-Derived Alveolar Epithelial Type 2 Cells. Cells 2024; 13:369. [PMID: 38474333 PMCID: PMC10931100 DOI: 10.3390/cells13050369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Jose Granados
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Miriam Aceves
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Juan Peralta
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Ana C. Leandro
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Thomas
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA; (J.G.); (M.A.); (J.T.)
| | - Sarah Williams-Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - Joanne E. Curran
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| | - John Blangero
- Division of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA; (J.P.); (A.C.L.); (S.W.-B.); (J.E.C.); (J.B.)
| |
Collapse
|
2
|
Kruckow KL, Zhao K, Bowdish DME, Orihuela CJ. Acute organ injury and long-term sequelae of severe pneumococcal infections. Pneumonia (Nathan) 2023; 15:5. [PMID: 36870980 PMCID: PMC9985869 DOI: 10.1186/s41479-023-00110-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a major public health problem, as it is a main cause of otitis media, community-acquired pneumonia, bacteremia, sepsis, and meningitis. Acute episodes of pneumococcal disease have been demonstrated to cause organ damage with lingering negative consequences. Cytotoxic products released by the bacterium, biomechanical and physiological stress resulting from infection, and the corresponding inflammatory response together contribute to organ damage accrued during infection. The collective result of this damage can be acutely life-threatening, but among survivors, it also contributes to the long-lasting sequelae of pneumococcal disease. These include the development of new morbidities or exacerbation of pre-existing conditions such as COPD, heart disease, and neurological impairments. Currently, pneumonia is ranked as the 9th leading cause of death, but this estimate only considers short-term mortality and likely underestimates the true long-term impact of disease. Herein, we review the data that indicates damage incurred during acute pneumococcal infection can result in long-term sequelae which reduces quality of life and life expectancy among pneumococcal disease survivors.
Collapse
Affiliation(s)
- Katherine L Kruckow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Zhao
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Dawn M E Bowdish
- McMaster Immunology Research Centre and the Firestone Institute for Respiratory Health, McMaster University, Hamilton, Canada
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Cui N, Jiang C, Chen H, Zhang L, Feng X. Prevalence, risk, and outcome of deep vein thrombosis in acute respiratory distress syndrome. Thromb J 2021; 19:71. [PMID: 34645471 PMCID: PMC8511290 DOI: 10.1186/s12959-021-00325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Few data exist on deep vein thrombosis (DVT) in patients with acute respiratory distress syndrome (ARDS), a group of heterogeneous diseases characterized by acute hypoxemia. STUDY DESIGN AND METHODS We retrospectively enrolled 225 adults with ARDS admitted to the Beijing Chao-Yang Hospital and the First Affiliated Hospital of Shandong First Medical University between 1 January 2015 and 30 June 2020. We analyzed clinical, laboratory, and echocardiography data for groups with and without DVT and for direct (pulmonary) and indirect (extrapulmonary) ARDS subgroups. RESULTS Ninety (40.0%) patients developed DVT. Compared with the non-DVT group, patients with DVT were older, had lower serum creatinine levels, lower partial pressure of arterial oxygen/fraction of inspired oxygen, higher serum procalcitonin levels, higher Padua prediction scores, and higher proportions of sedation and invasive mechanical ventilation (IMV). Multivariate analysis showed an association between age, serum creatinine level, IMV, and DVT in the ARDS cohort. The sensitivity and specificity of corresponding receiver operating characteristic curves were not inferior to those of the Padua prediction score and the Caprini score for screening for DVT in the three ARDS cohorts. Patients with DVT had a significantly lower survival rate than those without DVT in the overall ARDS cohort and in the groups with direct and indirect ARDS. CONCLUSIONS The prevalence of DVT is high in patients with ARDS. The risk factors for DVT are age, serum creatinine level, and IMV. DVT is associated with decreased survival in patients with ARDS.
Collapse
Affiliation(s)
- Na Cui
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Chunguo Jiang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China
| | - Hairong Chen
- Department of Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Ji'nan, People's Republic of China
| | - Liming Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China.
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing, 100020, People's Republic of China.
- Beijing Institute of Respiratory Medicine, Beijing, 100020, People's Republic of China.
| |
Collapse
|
4
|
Revercomb L, Hanmandlu A, Wareing N, Akkanti B, Karmouty-Quintana H. Mechanisms of Pulmonary Hypertension in Acute Respiratory Distress Syndrome (ARDS). Front Mol Biosci 2021; 7:624093. [PMID: 33537342 PMCID: PMC7848216 DOI: 10.3389/fmolb.2020.624093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a severe and often fatal disease. The causes that lead to ARDS are multiple and include inhalation of salt water, smoke particles, or as a result of damage caused by respiratory viruses. ARDS can also arise due to systemic complications such as blood transfusions, sepsis, or pancreatitis. Unfortunately, despite a high mortality rate of 40%, there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies. Aim of review: A complication of ARDS is the development of pulmonary hypertension (PH); however, the mechanisms that lead to PH in ARDS are not fully understood. In this review, we summarize the known mechanisms that promote PH in ARDS. Key scientific concepts of review: (1) Provide an overview of acute respiratory distress syndrome; (2) delineate the mechanisms that contribute to the development of PH in ARDS; (3) address the implications of PH in the setting of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Lucy Revercomb
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ankit Hanmandlu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nancy Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Bindu Akkanti
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: A physio-pathological theory. Med Hypotheses 2021; 146:110412. [PMID: 33308936 PMCID: PMC7681037 DOI: 10.1016/j.mehy.2020.110412] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
The Corona Virus Disease (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) requires a rapid solution and global collaborative efforts in order to define preventive and treatment strategies. One of the major challenges of this disease is the high number of patients needing advanced respiratory support due to the Acute Respiratory Distress Syndrome (ARDS) as the lung is the major - although not exclusive - target of the virus. The molecular mechanisms, pathogenic drivers and the target cell type(s) in SARS-CoV-2 infection are still poorly understood, but the development of a "hyperactive" immune response is proposed to play a role in the evolution of the disease and it is envisioned as a major cause of morbidity and mortality. Here we propose a theory by which the main targets for SARS-CoV-2 are the Type II Alveolar Epithelial Cells and the clinical manifestations of the syndrome are a direct consequence of their involvement. We propose the existence of a vicious cycle by which once alveolar damage starts in AEC II cells, the inflammatory state is supported by macrophage pro-inflammatory polarization (M1), cytokines release and by the activation of the NF-κB pathway. If this theory is confirmed, future therapeutic efforts can be directed to target Type 2 alveolar cells and the molecular pathogenic drivers associated with their dysfunction with currently available therapeutic strategies.
Collapse
Affiliation(s)
| | - Cristina Caruso
- Radiation Oncology, San Giovanni Addolorata Hospital, Rome, Italy
| |
Collapse
|
6
|
Weiskirchen R. Severity of Coronavirus Disease 2019 (COVID-19): Does Surfactant Matter? Front Microbiol 2020; 11:1905. [PMID: 32982999 PMCID: PMC7479844 DOI: 10.3389/fmicb.2020.01905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
|
7
|
Kharlamovа OS, Nikolaev KY, Ragino YI, Voevoda MI. [Surfactant proteins A and D: role in the pathogenesis of community-acquired pneumonia and possible predictive perspectives]. TERAPEVT ARKH 2020; 92:109-115. [PMID: 32598802 DOI: 10.26442/00403660.2020.03.000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Community-acquired pneumonia is one of the most common infectious diseases and remains one of the leading causes of death in this group of diseases. Studies of community-acquired pneumonia are extremely relevant for modern clinical practice. One of the important role in the pathogenesis of bacterial, viral, fungal invasion in the system of a human lung system belongs to the pulmonary surfactant, in particular, its proteins SP-A and SP-D. This article reviews the well-known mechanisms of important biological properties of immunomodulatory activity of the proteins SP-A and SP-D in response to microbial infection in the lungs. The mechanisms of participation of surfactant proteins SP-A and SP-D in the cascade of reactions that lead to severe life-threatening complications in community-acquired pneumonia are considered. The use of serum levels of surfactant proteins SP-A and SP-D can help finding new diagnostic and prognostic approaches in patients with community-acquired pneumonia.
Collapse
Affiliation(s)
- O S Kharlamovа
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics.,City Clinical Hospital №25
| | - K Y Nikolaev
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics.,Novosibirsk National Research State University
| | - Y I Ragino
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| | - M I Voevoda
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| |
Collapse
|
8
|
Abstract
Sepsis, pneumonia, and shock are the most common conditions predisposing to acute respiratory distress syndrome (ARDS) and certain host genetic variants have been associated with the development of ARDS. Risk modifiers include abuse of alcohol and tobacco, malnutrition, and obesity. The Lung Injury Prediction Score (LIPS) and the simplified Early Acute Lung Injury Score predict ARDS based on clinical and investigational criteria. Hospital-acquired ARDS may result from a medley factors of which high tidal volume ventilation, high oxygen concentration, and plasma transfusion are most commonly implicated. The Checklist for Lung Injury Prevention (CLIP) has been developed to ensure compliance with evidence-based practice that may affect ARDS occurrence. To date, no pharmacologic intervention has been shown to prevent ARDS
Collapse
|
9
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Kuldanek SA, Kelher M, Silliman CC. Risk factors, management and prevention of transfusion-related acute lung injury: a comprehensive update. Expert Rev Hematol 2019; 12:773-785. [PMID: 31282773 PMCID: PMC6715498 DOI: 10.1080/17474086.2019.1640599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Introduction: Despite mitigation strategies that include the exclusion of females from plasma donation or the exclusion of females with a history of pregnancy or known anti-leukocyte antibody, transfusion-related acute lung injury (TRALI) remains a leading cause of transfusion-related morbidity and mortality. Areas covered: The definition of TRALI is discussed and re-aligned with the new Berlin Diagnostic Criteria for the acute respiratory distress syndrome (ARDS). The risk factors associated with TRALI are summarized as are the mitigation strategies to further reduce TRALI. The emerging basic research studies that may translate to clinical therapeutics for the prevention or treatment of TRALI are discussed. Expert opinion: At risk patients, including the genetic factors that may predispose patients to TRALI are summarized and discussed. The re-definition of TRALI employing the Berlin Criteria for ARDS will allow for increased recognition and improved research into pathophysiology and mitigation to reduce this fatal complication of hemotherapy.
Collapse
Affiliation(s)
- Susan A. Kuldanek
- The Division of Transfusion Medicine, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pathology, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Christopher C. Silliman
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Vitalant Research Institute, Vitalant Mountain Division, Denver, CO, USA
| |
Collapse
|
11
|
Pavić I, Tješić Drinković D, Galić S, Tješić Drinković D, Rojnić Putarek N. ACUTE RESPIRATORY DISTRESS SYNDROME IN A FOUR-YEAR-OLD BOY WITH DIABETIC KETOACIDOSIS - CASE REPORT. Acta Clin Croat 2018; 57:588-592. [PMID: 31168194 PMCID: PMC6536282 DOI: 10.20471/acc.2018.57.03.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SUMMARY – Among many disease states as known initiators of acute respiratory distress syndrome (ARDS), diabetic ketoacidosis (DKA) is the rarest one. We present a 4-year-old boy with DKA as the first manifestation of insulin-dependent diabetes mellitus who developed ARDS, required tracheal intubation and mechanical ventilation, and survived without significant sequels. To improve survival of patients with ARDS as a complication of DKA, physicians should be aware of this rare pulmonary complication and its appropriate management.
Collapse
Affiliation(s)
| | - Dorian Tješić Drinković
- 1Zagreb Children's Hospital, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 2Zagreb University Hospital Centre, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 3Zagreb University Hospital Centre, Pediatric Intensive Care Unit, Zagreb, Croatia; 4Zagreb University Hospital Centre, Department of Pediatric Gastroenterology and Nutrition, Zagreb, Croatia; 5Zagreb University Hospital Centre, Department of Pediatric Endocrinology and Diabetes, Zagreb, Croatia
| | - Slobodan Galić
- 1Zagreb Children's Hospital, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 2Zagreb University Hospital Centre, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 3Zagreb University Hospital Centre, Pediatric Intensive Care Unit, Zagreb, Croatia; 4Zagreb University Hospital Centre, Department of Pediatric Gastroenterology and Nutrition, Zagreb, Croatia; 5Zagreb University Hospital Centre, Department of Pediatric Endocrinology and Diabetes, Zagreb, Croatia
| | - Duška Tješić Drinković
- 1Zagreb Children's Hospital, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 2Zagreb University Hospital Centre, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 3Zagreb University Hospital Centre, Pediatric Intensive Care Unit, Zagreb, Croatia; 4Zagreb University Hospital Centre, Department of Pediatric Gastroenterology and Nutrition, Zagreb, Croatia; 5Zagreb University Hospital Centre, Department of Pediatric Endocrinology and Diabetes, Zagreb, Croatia
| | - Nataša Rojnić Putarek
- 1Zagreb Children's Hospital, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 2Zagreb University Hospital Centre, Department of Pulmonology, Allergology, Rheumatology and Clinical Immunology, Zagreb, Croatia; 3Zagreb University Hospital Centre, Pediatric Intensive Care Unit, Zagreb, Croatia; 4Zagreb University Hospital Centre, Department of Pediatric Gastroenterology and Nutrition, Zagreb, Croatia; 5Zagreb University Hospital Centre, Department of Pediatric Endocrinology and Diabetes, Zagreb, Croatia
| |
Collapse
|
12
|
Bi G, Wu L, Huang P, Islam S, Heruth DP, Zhang LQ, Li DY, Sampath V, Huang W, Simon BA, Easley RB, Ye SQ. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown. FASEB J 2018; 32:3583-3596. [PMID: 29452569 PMCID: PMC5998971 DOI: 10.1096/fj.201701059r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Although a deficiency of surfactant protein B (SFTPB) has been associated with lung injury, SFTPB expression has not yet been linked with nicotinamide phosphoribosyltransferase (NAMPT), a potential biomarker of acute lung injury (ALI). The effects of Nampt in the pulmonary epithelial cell on both SFTPB expression and lung inflammation were investigated in a LPS-induced ALI mouse model. Pulmonary epithelial cell-specific knockdown of Nampt gene expression, achieved by the crossing of Nampt gene exon 2 floxed mice with mice expressing epithelial-specific transgene Cre or by the use of epithelial-specific expression of anti-Nampt antibody cDNA, significantly attenuated LPS-induced ALI. Knockdown of Nampt expression was accompanied by lower levels of bronchoalveolar lavage (BAL) neutrophil infiltrates, total protein and TNF-α levels, as well as lower lung injury scores. Notably, Nampt knockdown was also associated with significantly increased BAL SFTPB levels relative to the wild-type control mice. Down-regulation of NAMPT increased the expression of SFTPB and rescued TNF-α-induced inhibition of SFTPB, whereas overexpression of NAMPT inhibited SFTPB expression in both H441 and A549 cells. Inhibition of NAMPT up-regulated SFTPB expression by enhancing histone acetylation to increase its transcription. Additional data indicated that these effects were mainly mediated by NAMPT nonenzymatic function via the JNK pathway. This study shows that pulmonary epithelial cell-specific knockdown of NAMPT expression attenuated ALI, in part, via up-regulation of SFTPB expression. Thus, epithelial cell-specific knockdown of Nampt may be a potential new and viable therapeutic modality to ALI.-Bi, G., Wu, L., Huang, P., Islam, S., Heruth, D. P., Zhang, L. Q., Li, D.-Y., Sampath, V., Huang, W., Simon, B. A., Easley, R. B., Ye, S. Q. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown.
Collapse
Affiliation(s)
- Guangliang Bi
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wu
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Changsha Central Hospital, Changsha, China
| | - Peixin Huang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Shamima Islam
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Li Qin Zhang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Ding-You Li
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Brett A. Simon
- Department of Anesthesiology, Josie Robertson Surgery Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ronald Blaine Easley
- Department of Pediatrics-Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shui Qing Ye
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Biomedical and Health Informatics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Ibrahim J, Al Amri A, Ghatasheh G. Transfusion-Related Acute Lung Injury After Immunoglobulin Infusion for Kawasaki Disease: A Case Report and Literature Review. Glob Pediatr Health 2017; 4:2333794X17746545. [PMID: 29308425 PMCID: PMC5751901 DOI: 10.1177/2333794x17746545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/08/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- Judy Ibrahim
- Tawam Hospital, Al Ain City, United Arab Emirates
| | | | | |
Collapse
|
14
|
Incidence, risk factors, and mortality associated with acute respiratory distress syndrome in combat casualty care. J Trauma Acute Care Surg 2017; 81:S150-S156. [PMID: 27768663 DOI: 10.1097/ta.0000000000001183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The overall incidence and mortality of acute respiratory distress syndrome (ARDS) in civilian trauma settings have decreased over the past four decades; however, the epidemiology and impact of ARDS on modern combat casualty care are unknown. We sought to determine the incidence, risk factors, resource utilization, and mortality associated with ARDS in current combat casualty care. METHODS This was a retrospective review of mechanically ventilated US combat casualties within the Department of Defense Trauma Registry (formerly the Joint Theater Trauma Registry) during Operation Iraqi Freedom/Enduring Freedom (October 2001 to August 2008) for ARDS development, resource utilization, and mortality. RESULTS Of 18,329 US Department of Defense Trauma Registry encounters, 4,679 (25.5%) required mechanical ventilation; ARDS was identified in 156 encounters (3.3%). On multivariate logistic regression, ARDS was independently associated with female sex (odds ratio [OR], 2.62; 95% confidence interval [CI], 1.21-5.71; p = 0.02), higher military-specific Injury Severity Score (Mil ISS) (OR, 4.18; 95% CI, 2.61-6.71; p < 0.001 for Mil ISS ≥25 vs. <15), hypotension (admission systolic blood pressure <90 vs. ≥90 mm Hg; OR, 1.76; 95% CI, 1.07-2.88; p = 0.03), and tachycardia (admission heart rate ≥90 vs. <90 beats per minute; OR, 1.53; 95% CI, 1.06-2.22; p = 0.02). Explosion injury was not associated with increased risk of ARDS. Critical care resource utilization was significantly higher in ARDS patients as was all-cause hospital mortality (ARDS vs. no ARDS, 12.8% vs. 5.9%; p = 0.002). After adjustment for age, sex, injury severity, injury mechanism, Mil ISS, hypotension, tachycardia, and admission Glasgow Coma Scale score, ARDS remained an independent risk factor for death (OR, 1.99; 95% CI, 1.12-3.52; p = 0.02). CONCLUSIONS In this large cohort of modern combat casualties, ARDS risk factors included female sex, higher injury severity, hypotension, and tachycardia, but not explosion injury. Patients with ARDS also required more medical resources and were at greater risk of death compared with patients without ARDS. Thus, ARDS remains a significant complication in current combat casualty care. LEVEL OF EVIDENCE Prognostic/epidemiologic study, level III.
Collapse
|
15
|
Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, Ware LB. Clinical Predictors of Hospital Mortality Differ Between Direct and Indirect ARDS. Chest 2016; 151:755-763. [PMID: 27663180 DOI: 10.1016/j.chest.2016.09.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Direct (pulmonary) and indirect (extrapulmonary) ARDS are distinct syndromes with important pathophysiologic differences. The goal of this study was to determine whether clinical characteristics and predictors of mortality differ between direct or indirect ARDS. METHODS This retrospective observational cohort study included 417 patients with ARDS. Each patient was classified as having direct (pneumonia or aspiration, n = 250) or indirect (nonpulmonary sepsis or pancreatitis, n = 167) ARDS. RESULTS Patients with direct ARDS had higher lung injury scores (3.0 vs 2.8; P < .001), lower Simplified Acute Physiology Score II scores (51 vs 62; P < .001), lower Acute Physiology and Chronic Health Evaluation II scores (27 vs 30; P < .001), and fewer nonpulmonary organ failures (1 vs 2; P < .001) compared with patients with indirect ARDS. Hospital mortality was similar (28% vs 31%). In patients with direct ARDS, age (OR, 1.29 per 10 years; P = .01; test for interaction, P = .03), lung injury scores (OR, 2.29 per point; P = .001; test for interaction, P = .058), and number of nonpulmonary organ failures (OR, 1.67; P = .01) were independent risk factors for increased hospital mortality. Preexisting diabetes mellitus was an independent risk factor for reduced hospital mortality (OR, 0.47; P = .04; test for interaction, P = .02). In indirect ARDS, only the number of organ failures was an independent predictor of mortality (OR, 2.08; P < .001). CONCLUSIONS Despite lower severity of illness and fewer organ failures, patients with direct ARDS had mortality rates similar to patients with indirect ARDS. Factors previously associated with mortality during ARDS were only associated with mortality in direct ARDS. These findings suggest that direct and indirect ARDS have distinct features that may differentially affect risk prediction and clinical outcomes.
Collapse
Affiliation(s)
- Liang Luo
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China; Department of Critical Care Medicine, Wuxi No 2 People's Hospital, Wuxi, People's Republic of China
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
16
|
Choi S, Camp SM, Dan A, Garcia JGN, Dudek SM, Leckband DE. A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing. Am J Physiol Lung Cell Mol Physiol 2015; 309:L983-94. [PMID: 26361873 PMCID: PMC4628987 DOI: 10.1152/ajplung.00062.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
Inflammatory mediators released in acute lung injury (ALI) trigger the disruption of interendothelial junctions, leading to loss of vascular barrier function, protein-rich pulmonary edema, and severe hypoxemia. Genetic signatures that predict patient recovery or disease progression are poorly defined, but recent genetic screening of ALI patients has identified an association between lung inflammatory disease and a single nucleotide polymorphism (SNP) in the gene for the actin-binding and barrier-regulatory protein cortactin. This study investigated the impact of this disease-linked cortactin variant on wound healing processes that may contribute to endothelial barrier restoration. A microfabricated platform was used to quantify wound healing in terms of gap closure speed, lamellipodia dynamics, and cell velocity. Overexpression of wild-type cortactin in endothelial cells (ECs) improved directional cell motility and enhanced lamellipodial protrusion length, resulting in enhanced gap closure rates. By contrast, the cortactin SNP impaired wound closure and cell locomotion, consistent with the observed reduction in lamellipodial protrusion length and persistence. Overexpression of the cortactin SNP in lung ECs mitigated the barrier-enhancing activity of sphingosine 1-phosphate. These findings suggest that this common cortactin variant may functionally contribute to ALI predisposition by impeding endothelial wound healing.
Collapse
Affiliation(s)
- Sangwook Choi
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Arkaprava Dan
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Sciences System, Chicago, Illinois; and
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois; Department of Chemistry, University of Illinois, Urbana, Illinois
| |
Collapse
|
17
|
Luo L, Deng J, Wang DX, He J, Deng W. Regulation of epithelial sodium channel expression by oestradiol and progestogen in alveolar epithelial cells. Respir Physiol Neurobiol 2015; 216:52-62. [PMID: 26051998 DOI: 10.1016/j.resp.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023]
Abstract
Oestrogen (E) and progestogen (P) exert regulatory effects on the epithelial Na(+) channel (ENaC) in the kidneys and the colon. However, the effects of E and P on the ENaC and on alveolar fluid clearance (AFC) remain unclear, and the mechanisms of action of these hormones are unknown. In this study, we showed that E and/or P administration increased AFC by more than 25% and increased the expression of the α and γ subunits of ENaC by approximately 35% in rats subjected to oleic acid-induced acute lung injury (ALI). A similar effect was observed in the dexamethasone-treated group. Furthermore, E and/or P treatment inhibited 11β-hydroxysteroid dehydrogenase (HSD) type 2 (11β-HSD2) activity, increased corticosterone expression and decreased the serum adrenocorticotrophic hormone (ACTH) levels. These effects were similar to those observed following treatment with carbenoxolone (CBX), a nonspecific HSD inhibitor. Further investigation showed that CBX further significantly increased AFC and α-ENaC expression after treatment with a low dose of E and/or P. In vitro, E or P alone inhibited 11β-HSD2 activity in a dose-dependent manner and increased α-ENaC expression by at least 50%, and E combined with P increased α-ENaC expression by more than 80%. Thus, E and P may augment the expression of α-ENaC, enhance AFC, attenuate pulmonary oedema by inhibiting 11β-HSD2 activity, and increase the active glucocorticoid levels in vivo and in vitro.
Collapse
Affiliation(s)
- Ling Luo
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Deng
- First Department of Internal Medicine, Traditional Chinese Medical Hospital of Jiangbei District, Chongqing, China
| | - Dao-xin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
19
|
Brown SM, Grissom CK, Rondina MT, Hoidal JR, Scholand MB, Wolff RK, Morris AH, Paine R. Polymorphisms in key pulmonary inflammatory pathways and the development of acute respiratory distress syndrome. Exp Lung Res 2015; 41:155-62. [PMID: 25513711 PMCID: PMC4406221 DOI: 10.3109/01902148.2014.983281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE/AIM Acute Respiratory Distress Syndrome (ARDS) is an important clinical and public health problem. Why some at-risk individuals develop ARDS and others do not is unclear but may be related to differences in inflammatory and cell signaling systems. The Receptor for Advanced Glycation Endproducts (RAGE) and Granulocyte-Monocyte Stimulating Factor (GM-CSF) pathways have recently been implicated in pulmonary pathophysiology; whether genetic variation within these pathways contributes to ARDS risk or outcome is unknown. MATERIALS AND METHODS We studied 842 patients from three centers in Utah and 14 non-Utah ARDS Network centers. We studied patients at risk for ARDS and patients with ARDS to determine whether Single Nucleotide Polymorphisms (SNPs) in the RAGE and GM-CSF pathways were associated with development of ARDS. We studied 29 SNPs in 5 genes within the two pathways and controlled for age, sepsis as ARDS risk factor, and severity of illness, while targeting a false discovery rate of ≤ 5%. In a secondary analysis we evaluated associations with mortality. RESULTS Of 842 patients, 690 had ARDS, and 152 were at-risk. Sepsis was the risk factor for ARDS in 250 (30%) patients. When controlling for age, APACHE III score, sepsis as risk factor, and multiple comparisons, no SNPs were significantly associated with ARDS. In a secondary analysis, only rs743564 in CSF2 approached significance with regard to mortality (OR 2.17, unadjusted p = 0.005, adjusted p = 0.15). CONCLUSIONS Candidate SNPs within 5 genes in the RAGE and GM-CSF pathways were not significantly associated with development of ARDS in this multi-centric cohort.
Collapse
Affiliation(s)
- Samuel M Brown
- 1Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
To KKW, Zhou J, Song YQ, Hung IFN, Ip WCT, Cheng ZS, Chan ASF, Kao RYT, Wu AKL, Chau S, Luk WK, Ip MSM, Chan KH, Yuen KY. Surfactant protein B gene polymorphism is associated with severe influenza. Chest 2014; 145:1237-1243. [PMID: 24337193 DOI: 10.1378/chest.13-1651] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Surfactant proteins play a key role in alveolar stability. We examined whether single nucleotide polymorphisms (SNPs) related to the surfactant protein genes are associated with severe influenza. METHODS In the first cohort, 12 SNPs related to surfactant protein genes were compared between Chinese patients with severe and mild pandemic 2009 influenza A(H1N1) (A[H1N1]pdm09) infection who were matched for age, sex, and underlying risk conditions. The SNP rs1130866, which was significantly different between the two groups, was further genotyped in a second cohort of patients. Multivariate analysis was performed to control for confounding factors. The genotype frequencies were also compared with those of the general Han Chinese population. RESULTS This study consisted of 380 patients with A(H1N1)pdm09 infection. In the first cohort of 84 patients, the C allele of rs1130866, an SNP in the surfactant protein B gene (SFTPB), was significantly associated with severe disease (OR = 3.37, P = .0048), although the P value was .057 after Bonferroni correction. In the second cohort of 296 patients, the C/C genotype was confirmed in the univariate analysis to be associated with severe disease. Multivariate analysis of the second cohort showed that genotype C/C was an independent risk factor for severe A(H1N1)pdm09 infection (second cohort: OR = 2.087, P = .023). Compared to the general Han Chinese population, the C/C genotype was overrepresented in patients with severe A(H1N1)pdm09 infection (OR = 3.232, P = .00000056). CONCLUSIONS SFTPB polymorphism is associated with severe influenza. The role of SFTPB in influenza warrants further studies.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases; Carol Yu Centre for Infection; Research Centre of Infection and Immunology; Department of Microbiology
| | - Jie Zhou
- Research Centre of Infection and Immunology; Department of Microbiology
| | | | - Ivan F N Hung
- Carol Yu Centre for Infection; Research Centre of Infection and Immunology; Department of Medicine, The University of Hong Kong, Pokfulam
| | | | | | | | - Richard Y T Kao
- State Key Laboratory for Emerging Infectious Diseases; Research Centre of Infection and Immunology; Department of Microbiology
| | - Alan K L Wu
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong Special Administrative Region
| | - Sandy Chau
- Department of Pathology, United Christian Hospital, Hong Kong Special Administrative Region
| | - Wei-Kwang Luk
- Department of Pathology, Tseung Kwan O Hospital, Hong Kong Special Administrative Region, China
| | - Mary S M Ip
- Department of Medicine, The University of Hong Kong, Pokfulam
| | - Kwok-Hung Chan
- Carol Yu Centre for Infection; State Key Laboratory for Emerging Infectious Diseases; Research Centre of Infection and Immunology; Department of Microbiology
| | - Kwok-Yung Yuen
- Department of Microbiology; Research Centre of Infection and Immunology; Carol Yu Centre for Infection; State Key Laboratory for Emerging Infectious Diseases.
| |
Collapse
|
21
|
Iverson E, Celious A, Shehane E, Oerke M, Warren V, Eastman A, Kennedy CR, Freeman BD. Critical illness research involving collection of genomic data: the conundrum posed by low levels of genomic literacy among surrogate decision makers for critically ill patients. J Empir Res Hum Res Ethics 2014; 8:53-7. [PMID: 23933776 DOI: 10.1525/jer.2013.8.3.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Critical illness clinical trials that entail genomic data collection pose unique challenges. In this qualitative study, we found that surrogate decision makers (SDMs) for critically ill individuals, such as those who would be approached for study participation, appeared to have a limited grasp of genomic principles. We argue that low levels of genomic literacy should neither preclude nor be in conflict with the conduct of ethically rigorous clinical trials.
Collapse
Affiliation(s)
- Ellen Iverson
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE To summarize the current literature on racial and gender disparities in critical care and the mechanisms underlying these disparities in the course of acute critical illness. DATA SOURCES MEDLINE search on the published literature addressing racial, ethnic, or gender disparities in acute critical illness, such as sepsis, acute lung injury, pneumonia, venous thromboembolism, and cardiac arrest. STUDY SELECTION Clinical studies that evaluated general critically ill patient populations in the United States as well as specific critical care conditions were reviewed with a focus on studies evaluating factors and contributors to health disparities. DATA EXTRACTION Study findings are presented according to their association with the prevalence, clinical presentation, management, and outcomes in acute critical illness. DATA SYNTHESIS This review presents potential contributors for racial and gender disparities related to genetic susceptibility, comorbidities, preventive health services, socioeconomic factors, cultural differences, and access to care. The data are organized along the course of acute critical illness. CONCLUSIONS The literature to date shows that disparities in critical care are most likely multifactorial involving individual, community, and hospital-level factors at several points in the continuum of acute critical illness. The data presented identify potential targets as interventions to reduce disparities in critical care and future avenues for research.
Collapse
Affiliation(s)
- Graciela J Soto
- 1Division of Critical Care Medicine, Department of Medicine, Jay B. Langner Critical Care Service, Montefiore Medical Center, Bronx, NY. 2Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Grady Memorial Hospital, Atlanta, GA. 3Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | | |
Collapse
|
23
|
Predescu DN, Bardita C, Tandon R, Predescu SA. Intersectin-1s: an important regulator of cellular and molecular pathways in lung injury. Pulm Circ 2013; 3:478-98. [PMID: 24618535 PMCID: PMC4070809 DOI: 10.1086/674439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe syndromes resulting from the diffuse damage of the pulmonary parenchyma. ALI and ARDS are induced by a plethora of local or systemic insults, leading to the activation of multiple pathways responsible for injury, resolution, and repair or scarring of the lungs. Despite the large efforts aimed at exploring the roles of different pathways in humans and animal models and the great strides made in understanding the pathogenesis of ALI/ARDS, the only viable treatment options are still dependent on ventilator and cardiovascular support. Investigation of the pathophysiological mechanisms responsible for initiation and resolution or advancement toward lung scarring in ALI/ARDS animal models led to a better understanding of the disease's complexity and helped in elucidating the links between ALI and systemic multiorgan failure. Although animal models of ALI/ARDS have pointed out a variety of new ideas for study, there are still limited data regarding the initiating factors, the critical steps in the progression of the disease, and the central mechanisms dictating its resolution or progression to lung scarring. Recent studies link deficiency of intersectin-1s (ITSN-1s), a prosurvival protein of lung endothelial cells, to endothelial barrier dysfunction and pulmonary edema as well as to the repair/recovery from ALI. This review discusses the effects of ITSN-1s deficiency on pulmonary endothelium and its significance in the pathology of ALI/ARDS.
Collapse
Affiliation(s)
- Dan N Predescu
- 1 Department of Pharmacology, Rush University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
24
|
Meyer NJ. Future clinical applications of genomics for acute respiratory distress syndrome. THE LANCET RESPIRATORY MEDICINE 2013; 1:793-803. [PMID: 24461759 DOI: 10.1016/s2213-2600(13)70134-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome remains a substantial cause of morbidity and mortality in intensive care units, yet no specific pharmacotherapy has proven useful in reducing the duration of mechanical ventilation or improving survival. One factor that might hamper the development of treatment for acute respiratory distress syndrome is the heterogeneous nature of the population who present with the syndrome. In this Review, the potential of genomic approaches-genetic association, gene expression, metabolomic, proteomic, and systems biology applications-for the identification of molecular endotypes within acute respiratory distress syndrome and potentially for the prediction, diagnosis, prognosis, and treatment of this difficult disorder are discussed.
Collapse
Affiliation(s)
- Nuala J Meyer
- Department of Medicine Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Henao-Martínez AF, Agler AH, LaFlamme D, Schwartz DA, Yang IV. Polymorphisms in the SUFU gene are associated with organ injury protection and sepsis severity in patients with Enterobacteriacea bacteremia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 16:386-91. [PMID: 23538333 PMCID: PMC3669235 DOI: 10.1016/j.meegid.2013.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Organ injury including acute kidney injury (AKI) and acute lung Injury (ALI) are major contributors to mortality and morbidity in the setting of sepsis. Hedgehog pathway has been recognized as an important mediator in repair of organ injury. There are some clinical predictors associated with the development of organ injury in sepsis; however few host genetic risk factors have been identified and candidate genes for organ injury susceptibility and severity are largely unknown. METHODS A prospective cohort study in a tertiary care hospital included 250 adult hospitalized patients with Enterobacteriacea bacteremia. We selected a panel of 69 tagging SNPs for genes in the Hedgehog signaling pathway using the TagSNP functionality of the SNPInfo web server and designed a panel on the GoldenGate Veracode genotyping assay (Illumina). We confirmed Illumina data using Taqman allelic discrimination assays. We assessed SNPs in combination with clinical variables for associations with outcomes and organ injury. RESULTS Significant associations were identified using logistic regression models, controlling for age, race and gender. From the 69 tagging SNPs, 5 SNPs were associated with renal function and 2 with APACHEII score after false discovery rate correction. After multivariate analysis SNPs rs10786691 (p=0.03), rs12414407 (p=0.026), rs10748825 (p=0.01), and rs7078511 (p=0.006), all in the suppressor of fused homolog (SUFU) gene, correlated with renal function. Likewise, SUFU SNPs rs7907760 (p=0.009) and rs10748825 (p=0.029) were associated with APACHEII score. SNPs rs12414407 and rs1078825 are in linkage disequilibrium (LD) with rs2296590, a SNP in the 5'-UTR region that is within a predicted transcription factor bind site for CCAAT-enhancer-binding proteins. In multivariate analyses functional SNP rs2296590 was correlated with renal function (p=0.004) and APACHEII score (p=0.049). CONCLUSIONS Host susceptibility factors play an important role in sepsis development and sepsis related organ injury. Polymorphisms in the SUFU gene (encoding for a negative regulator of the hedgehog signaling pathway) are associated with protection from Enterobacteriacea bacteremia related organ injury and sepsis severity.
Collapse
|
26
|
Yin X, Meng F, Qu W, Fan H, Xie L, Feng Z. Clinical, radiological and genetic analysis of a male infant with neonatal respiratory distress syndrome. Exp Ther Med 2013; 5:1157-1160. [PMID: 23596483 PMCID: PMC3627450 DOI: 10.3892/etm.2013.970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/31/2013] [Indexed: 11/17/2022] Open
Abstract
Surfactant protein B (SP-B) deficiency has become increasingly recognized as a cause of severe prolonged respiratory distress. However, little has been reported with regard to the genetic variability of SP-B in Chinese infants with neonatal respiratory distress syndrome (RDS). One case of a Chinese male infant with neonatal RDS was analyzed for clinical manifestation and genetic variability of SP-B. The clinical manifestations, including grunting, intercostal retractions, nasal flaring, cyanosis and tachypnea were discovered in the physical examination. The initial chest X-ray indicated hyper-inflation, diffuse opacification and air bronchogram of the lungs. Pathological tests of lung tissue revealed RDS and SP-B deficiency. Atelectasis and pneumonedema were observed in the lobes of the lung. Molecular analysis of genomic DNA revealed a mutation of 121del2 in intron 4 of the SP-B gene. In conclusion, the variant in intron 4 of the SP-B gene was associated with neonatal RDS in a Chinese male infant.
Collapse
Affiliation(s)
- Xiaojuan Yin
- Affiliated Bayi Children's Hospital, Beijing Military Region General Hospital, Beijing 100700
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Optimal management of the acute respiratory distress syndrome (ARDS) requires prompt recognition, treatment of the underlying cause and the prevention of secondary injury. Ventilator-associated lung injury (VALI) is one of the several iatrogenic factors that can exacerbate lung injury and ARDS. Reduction of VALI by protective low tidal volume ventilation is one of the only interventions with a proven survival benefit in ARDS. There are, however, several factors inhibiting the widespread use of this technique in patients with established lung injury. Prevention of ARDS and VALI by detecting at-risk patients and implementing protective ventilation early is a feasible strategy. Detection of injurious ventilation itself is possible, and potential biological markers of VALI have been investigated. Finally, facilitation of protective ventilation, including techniques such as extracorporeal support, can mitigate VALI.
Collapse
Affiliation(s)
- David Salman
- Adult Intensive Care Unit, Royal Brompton Hospital, Sydney Street, London SW3 6NP, United Kingdom
| | | | | |
Collapse
|
28
|
Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O'Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, Su L, Bajwa E, Ahasic AM, Clardy PF, Gong MN, Frank AJ, Lanken PN, Thompson BT, Christie JD, Wurfel MM, O'Keefe GE, Christiani DC. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet 2012; 49:671-80. [PMID: 23048207 DOI: 10.1136/jmedgenet-2012-100972] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of genetics in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) from direct or indirect lung injury has not been specifically investigated. The aim of this study was to identify genetic variants contributing to ALI/ARDS from pulmonary or extrapulmonary causes. METHODS We conducted a multistage genetic association study. We first performed a large-scale genotyping (50K ITMAT-Broad_CARe Chip) in 1717 critically ill Caucasian patients with either pulmonary or extrapulmonary injury, to identify single nucleotide polymorphisms (SNPs) associated with the development of ARDS from direct or indirect insults to the lung. Identified SNPs (p≤0.0005) were validated in two separated populations (Stage II), with trauma (Population I; n=765) and pneumonia/pulmonary sepsis (Population II; n=838), as causes for ALI/ARDS. Genetic variants replicating their association with trauma related-ALI in Stage II were validated in a second trauma-associated ALI population (n=224, Stage III). RESULTS In Stage I, non-overlapping SNPs were significantly associated with ARDS from direct/indirect lung injury, respectively. The association between rs1190286 (POPDC3) and reduced risk of ARDS from pulmonary injury was validated in Stage II (p<0.003). SNP rs324420 (FAAH) was consistently associated with increased risk of ARDS from extrapulmonary causes in two independent ALI-trauma populations (p<0.006, Stage II; p<0.05, Stage III). Meta-analysis confirmed these associations. CONCLUSIONS Different genetic variants may influence ARDS susceptibility depending on direct versus indirect insults. Functional SNPs in POPDC3 and FAAH genes may be driving the association with direct and indirect ALI/ARDS, respectively.
Collapse
Affiliation(s)
- Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res 2012; 159:205-17. [PMID: 22424425 PMCID: PMC4537856 DOI: 10.1016/j.trsl.2012.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 01/11/2023]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) result in high permeability pulmonary edema causing hypoxic respiratory failure with high morbidity and mortality. As the population ages, the incidence of ALI is expected to rise. Over the last decade, several studies have identified biomarkers in plasma and bronchoalveolar lavage fluid providing important insights into the mechanisms involved in the pathophysiology of ALI. Several biomarkers have been validated in subjects from the large, multicenter ARDS clinical trials network. Despite these studies, no single or group of biomarkers has made it into routine clinical practice. New high throughput "omics" techniques promise improved understanding of the biologic processes in the pathogenesis in ALI and possibly new biomarkers that predict disease and outcomes. In this article, we review the current knowledge on biomarkers in ALI.
Collapse
Affiliation(s)
- Maneesh Bhargava
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55417, USA
| | | |
Collapse
|
30
|
Leikauf GD, Pope-Varsalona H, Concel VJ, Liu P, Bein K, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Di YPP, Li Q, Hu Z, Vuga LJ, Medvedovic M, Kaminski N, You M, Alexander DC, McDunn JE, Prows DR, Knoell DL, Fabisiak JP. Integrative assessment of chlorine-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2012; 47:234-44. [PMID: 22447970 DOI: 10.1165/rcmb.2012-0026oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genetic basis for the underlying individual susceptibility to chlorine-induced acute lung injury is unknown. To uncover the genetic basis and pathophysiological processes that could provide additional homeostatic capacities during lung injury, 40 inbred murine strains were exposed to chlorine, and haplotype association mapping was performed. The identified single-nucleotide polymorphism (SNP) associations were evaluated through transcriptomic and metabolomic profiling. Using ≥ 10% allelic frequency and ≥ 10% phenotype explained as threshold criteria, promoter SNPs that could eliminate putative transcriptional factor recognition sites in candidate genes were assessed by determining transcript levels through microarray and reverse real-time PCR during chlorine exposure. The mean survival time varied by approximately 5-fold among strains, and SNP associations were identified for 13 candidate genes on chromosomes 1, 4, 5, 9, and 15. Microarrays revealed several differentially enriched pathways, including protein transport (decreased more in the sensitive C57BLKS/J lung) and protein catabolic process (increased more in the resistant C57BL/10J lung). Lung metabolomic profiling revealed 95 of the 280 metabolites measured were altered by chlorine exposure, and included alanine, which decreased more in the C57BLKS/J than in the C57BL/10J strain, and glutamine, which increased more in the C57BL/10J than in the C57BLKS/J strain. Genetic associations from haplotype mapping were strengthened by an integrated assessment using transcriptomic and metabolomic profiling. The leading candidate genes associated with increased susceptibility to acute lung injury in mice included Klf4, Sema7a, Tns1, Aacs, and a gene that encodes an amino acid carrier, Slc38a4.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Christie JD, Wurfel MM, Feng R, O'Keefe GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ, Matthay M, Meyer NJ, Kim C, Li M, Akey J, Barnes KC, Sevransky J, Lanken PN, May AK, Aplenc R, Maloney JP, Hakonarson H, for the Trauma ALI SNP Consortium (TASC) investigators. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS One 2012; 7:e28268. [PMID: 22295056 PMCID: PMC3266233 DOI: 10.1371/journal.pone.0028268] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 11/04/2011] [Indexed: 12/29/2022] Open
Abstract
Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research.
Collapse
Affiliation(s)
- Jason D. Christie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Mark M. Wurfel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Rui Feng
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Grant E. O'Keefe
- Department of Surgery, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Jonathan Bradfield
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health and Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Carolyn S. Calfee
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Mitchell J. Cohen
- Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Michael Matthay
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Cecilia Kim
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kathleen C. Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jonathan Sevransky
- Division of Pulmonary, Allergy, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul N. Lanken
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Addison K. May
- Department of Surgical Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard Aplenc
- Division of Oncology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James P. Maloney
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Hakon Hakonarson
- Division of Human Genetics, Center for Applied Genomics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
32
|
Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. Front Biosci (Landmark Ed) 2012; 17:407-29. [PMID: 22201752 DOI: 10.2741/3935] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary surfactant, a lipoprotein complex, maintains alveolar integrity and plays an important role in lung host defense, and control of inflammation. Altered inflammatory processes and surfactant dysfunction are well described events that occur in patients with acute or chronic lung disease that can develop secondary to a variety of insults. Genetic variants of surfactant proteins, including single nucleotide polymorphisms, haplotypes, and other genetic variations have been associated with acute and chronic lung disease throughout life in several populations and study groups. The hydrophilic surfactant proteins SP-A and SP-D, also known as collectins, in addition to their surfactant-related functions, are important innate immunity molecules as these, among others, exhibit the ability to bind and enhance clearance of a wide range of pathogens and allergens. This review focuses on published association studies of human surfactant proteins A and D genetic polymorphisms with respiratory, and non-respiratory diseases in adults, children, and newborns. The potential role of genetic variations in pulmonary disease or pathogenesis is discussed following an evaluation, and comparison of the available literature.
Collapse
Affiliation(s)
- Patricia Silveyra
- Center for Host Defense, Inflammation, and Lung Disease Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | | |
Collapse
|
33
|
Han S, Martin GS, Maloney JP, Shanholtz C, Barnes KC, Murray S, Sevransky JE. Short women with severe sepsis-related acute lung injury receive lung protective ventilation less frequently: an observational cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R262. [PMID: 22044724 PMCID: PMC3388675 DOI: 10.1186/cc10524] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/22/2011] [Accepted: 11/01/2011] [Indexed: 01/11/2023]
Abstract
Introduction Lung protective ventilation (LPV) has been shown to improve survival and the duration of mechanical ventilation in acute lung injury (ALI) patients. Mortality of ALI may vary by gender, which could result from treatment variability. Whether gender is associated with the use of LPV is not known. Methods A total of 421 severe sepsis-related ALI subjects in the Consortium to Evaluate Lung Edema Genetics from seven teaching hospitals between 2002 and 2008 were included in our study. We evaluated patients' tidal volume, plateau pressure and arterial pH to determine whether patients received LPV during the first two days after developing ALI. The odds ratio of receiving LPV was estimated by a logistic regression model with robust and cluster options. Results Women had similar characteristics as men with the exception of lower height and higher illness severity, as measured by Acute Physiology and Chronic Health Evaluation (APACHE) II score. 225 (53%) of the subjects received LPV during the first two days after ALI onset; women received LPV less frequently than men (46% versus 59%, P < 0.001). However, after adjustment for height and severity of illness (APACHE II), there was no difference in exposure to LPV between men and women (P = 0.262). Conclusions Short people are less likely to receive LPV, which seems to explain the tendency of clinicians to adhere to LPV less strictly in women. Strategies to standardize application of LPV, independent of differences in height and severity of illness, are necessary.
Collapse
Affiliation(s)
- SeungHye Han
- Critical Care Medicine Department, National Institute of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hite RD, Grier BL, Waite BM, Veldhuizen RA, Possmayer F, Yao LJ, Seeds MC. Surfactant protein B inhibits secretory phospholipase A2 hydrolysis of surfactant phospholipids. Am J Physiol Lung Cell Mol Physiol 2011; 302:L257-65. [PMID: 22037357 DOI: 10.1152/ajplung.00054.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).
Collapse
Affiliation(s)
- R Duncan Hite
- Section Head-Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, 1 Medical Ctr. Blvd., Winston-Salem, NC 27157-1054, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
The influence of genetic variation in surfactant protein B on severe lung injury in African American children. Crit Care Med 2011; 39:1138-44. [PMID: 21283003 DOI: 10.1097/ccm.0b013e31820a9416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether genetic variations in the gene coding for surfactant protein B are associated with lung injury in African American children with community-acquired pneumonia. DESIGN A prospective cohort genetic association study of lung injury in children with community-acquired pneumonia. SETTING Two major tertiary care children's hospitals. SUBJECTS African American children with community-acquired pneumonia (n = 395) either evaluated in the emergency department or admitted to the hospital. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Three hundred ninety-five African American children (14 days to 18 yrs of age) with community-acquired pneumonia were enrolled. Thirty-seven patients required mechanical ventilation and 26 of these were diagnosed with acute lung injury or acute respiratory distress syndrome. Genotyping was performed on seven linkage disequilibrium-tag single nucleotide polymorphisms in the surfactant protein B gene. Univariate analysis demonstrated two linkage disequilibrium-tag single nucleotide polymorphisms, rs1130866 (also known as SP-B + 1580 C/T) and rs3024793, were associated with the need for mechanical ventilation in African American children (p = .016 and p = .030, respectively). Multivariable analysis indicated that both of these single nucleotide polymorphisms are independently associated with need for mechanical ventilation (p = .040 and p = .012, respectively) as was rs7316 when its interaction with age was considered (p = .015). Multivariable analysis examining acute lung injury demonstrated a significant association of rs7316 with acute lung injury (p = .031). Haplotype analysis was also performed. Two haplotypes, GTGCGCG and ATATAAG, were associated with need for mechanical ventilation using either univariate (p = .041 and p = .043, respectively) or multivariable analysis (odds ratios of 2.62, p = .048, and 3.12, p = .033, respectively). CONCLUSIONS Genetic variations in the gene coding for surfactant protein B are associated with more severe lung injury as indicated by the association of specific single nucleotide polymorphism genotypes and haplotypes with the need for mechanical ventilation in African American children with community-acquired pneumonia.
Collapse
|
36
|
Abstract
This article reviews the state of the art regarding biomarkers for prediction, diagnosis, and prognosis in acute lung injury. Biomarkers and the goals of biomarker research are defined. Progress along 4 general routes is examined. First, the results of wide-ranging existing protein biomarkers are reported. Second, newer biomarkers awaiting or with strong potential for validation are described. Third, progress in the fields of genomics and proteomics is reported. Finally, given the complexity and number of potential biomarkers, the results of combining clinical predictors with protein and other biomarkers to produce better prognostic and diagnostic indices are examined.
Collapse
Affiliation(s)
- Nicolas Barnett
- Research Fellow, Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Lorraine B. Ware
- Associate Professor of Medicine, Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
37
|
Bastarache JA, Ong T, Matthay MA, Ware LB. Alveolar fluid clearance is faster in women with acute lung injury compared to men. J Crit Care 2011; 26:249-56. [PMID: 20688464 PMCID: PMC2982881 DOI: 10.1016/j.jcrc.2010.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/28/2010] [Accepted: 06/14/2010] [Indexed: 01/11/2023]
Abstract
PURPOSE Studies suggest that there is a sex difference in the development and outcomes of acute lung injury (ALI). Few studies have directly addressed the association of sex and alveolar fluid clearance (AFC), a process that is critical to ALI resolution. MATERIALS AND METHODS To test the hypothesis that female sex is associated with an increased AFC rate, we measured AFC rates in 150 mechanically ventilated patients with acute pulmonary edema and a pulmonary edema fluid-to-plasma protein ratio (EF/PL) diagnostic of low permeability (EF/PL <0.65, n = 69) or high permeability (EF/PL ≥0.65, n = 81) edema. We measured protein concentration in serial samples of undiluted EF collected within 6 hours of intubation and calculated net rate of AFC. In addition, plasma levels of receptor for advanced glycation end products were measured as a surrogate marker for alveolar epithelial injury. RESULTS In patients with ALI, women had higher rates of net AFC at 4 hours compared to men (11.9% per hour vs 4.3% per hour, P = .017) and more women had maximal rates of AFC. There were no differences in circulating levels of receptor for advanced glycation end products between men and women. CONCLUSIONS These findings may have significant implications for future ALI studies and potential therapies.
Collapse
Affiliation(s)
- Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | |
Collapse
|
38
|
Cardinal-Fernández P, Nin N, Lorente JA. [Acute lung injury and acute respiratory distress syndrome: a genomic perspective]. Med Intensiva 2011; 35:361-72. [PMID: 21429625 DOI: 10.1016/j.medin.2011.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/20/2010] [Accepted: 02/02/2011] [Indexed: 11/16/2022]
Abstract
Genomics have allowed important advances in the knowledge of the etiology and pathogenesis of complex disease entities such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Genomic medicine aims to personalize and optimize diagnosis, prognosis and treatment by determining the influence of genetic polymorphisms in specific diseases. The scientific community must cope with the important challenge of securing rapid transfer of knowledge to clinical practice, in order to prevent patients from becoming exposed to unnecessary risks. In the present article we describe the main concepts of genomic medicine pertaining to ALI/ARDS, and its currently recognized clinical applications.
Collapse
Affiliation(s)
- P Cardinal-Fernández
- Unidad de Cuidados Intensivos, CASMU-IAMPP-Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay.
| | | | | |
Collapse
|
39
|
Genetic variation in MYLK and lung injury in children and adults with community-acquired pneumonia. Pediatr Crit Care Med 2010; 11:731-6. [PMID: 20081554 DOI: 10.1097/pcc.0b013e3181ce7497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate whether selected single nucleotide polymorphisms in the myosin light chain kinase gene are associated with more severe lung injury in children and adults with community-acquired pneumonia. Previous studies have demonstrated an association between single nucleotide polymorphisms in the myosin light chain kinase gene and increased severity of acute lung injury in adults. DESIGN Prospective, case-control genetic association study. SETTING Three tertiary children's hospitals and one adult healthcare system. PATIENTS A total of 800 pediatric patients and 393 adult patients. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Genetic variation in the myosin light chain kinase gene was examined. The pediatric cohort was predominantly composed of African American (n = 443) and Caucasian (n = 253) children. A total of 393 patients made up the adult cohort. Within the pediatric cohort, single nucleotide polymorphisms rs16834493, rs820463, and rs9840993 were genotyped in the African American patients, whereas single nucleotide polymorphisms rs960224, rs33264, rs11718105, and rs9289225 were genotyped in the Caucasian patients. One single nucleotide polymorphism (rs820336) was genotyped in both groups. Genotyping in the adult cohort included rs820336, rs860224, rs33264, and rs11718105. Genotyping was performed using the Taqman Assay. Data were analyzed separately for African Americans and Caucasians and for children and adults. No associations were observed between the myosin light chain kinase gene single nucleotide polymorphisms genotyped in children with community-acquired pneumonia and increased severity of lung injury. Similarly, no associations were observed between myosin light chain kinase gene single nucleotide polymorphisms genotyped in adults with community-acquired pneumonia and increased severity of lung injury. CONCLUSIONS No association between the selected single nucleotide polymorphisms in the myosin light chain kinase gene and either the need for positive-pressure ventilation or the development of acute lung injury/acute respiratory distress syndrome was observed in children with community-acquired pneumonia. This suggests that variation in this gene may play less of a role in lung injury in children or adults with community-acquired pneumonia than in adults with sepsis or trauma.
Collapse
|
40
|
Freeman BD, Kennedy CR, Frankel HL, Clarridge B, Bolcic-Jankovic D, Iverson E, Shehane E, Celious A, Zehnbauer BA, Buchman TG. Ethical considerations in the collection of genetic data from critically ill patients: what do published studies reveal about potential directions for empirical ethics research? THE PHARMACOGENOMICS JOURNAL 2010; 10:77-85. [PMID: 19997084 PMCID: PMC2860600 DOI: 10.1038/tpj.2009.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 09/30/2009] [Accepted: 11/04/2009] [Indexed: 01/07/2023]
Abstract
Critical illness trials involving genetic data collection are increasingly commonplace and pose challenges not encountered in less acute settings, related in part to the precipitous, severe and incapacitating nature of the diseases involved. We performed a systematic literature review to understand the nature of such studies conducted to date, and to consider, from an ethical perspective, potential barriers to future investigations. We identified 79 trials enrolling 24 499 subjects. Median (interquartile range) number of participants per study was 263 (116.75-430.75). Of these individuals, 16 269 (66.4%) were Caucasian, 1327 (5.4%) were African American, 1707 (7.0%) were Asian Pacific Islanders and 139 (0.6%) were Latino. For 5020 participants (20.5%), ethnicity was not reported. Forty-eight studies (60.8%) recruited subjects from single centers and all studies examined a relatively small number of genetic markers. Technological advances have rendered it feasible to conduct clinical studies using high-density genome-wide scanning. It will be necessary for future critical illness trials using these approaches to be of greater scope and complexity than those so far reported. Empirical research into issues related to greater ethnic inclusivity, accuracy of substituted judgment and specimen stewardship may be essential for enabling the conduct of such trials.
Collapse
Affiliation(s)
- B D Freeman
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Reddy AJ, Kleeberger SR. Genetic polymorphisms associated with acute lung injury. Pharmacogenomics 2009; 10:1527-39. [PMID: 19761373 DOI: 10.2217/pgs.09.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome are the result of intense inflammation in the lungs leading to respiratory failure. The causes of acute lung injury/acute respiratory distress syndrome are numerous (e.g., pneumonia, sepsis and trauma) but the reasons why certain individuals develop lung injury in response to these stimuli and others do not are not well understood. There is ample evidence in the literature that gene-host and gene-environment interactions may play a large role in the morbidity and mortality associated with this syndrome. In this review, we initially discuss methods for identification of candidate acute lung injury/acute respiratory distress syndrome susceptibility genes using a number of model systems including in vitro cell systems and inbred mice. We then describe examples of polymorphisms in genes that have been associated with the pathogenesis of acute lung injury/acute respiratory distress syndrome in human case-control studies. Systematic bench to bedside approaches to understand the genetic contribution to acute lung injury/acute respiratory distress syndrome have provided important insight to this complex disease and continuation of these investigations could lead to the development of novel prevention or intervention strategies.
Collapse
Affiliation(s)
- Anita J Reddy
- Respiratory Institute, Cleveland Clinic Health System, OH, USA
| | | |
Collapse
|
42
|
Meyer NJ, Huang Y, Singleton PA, Sammani S, Moitra J, Evenoski CL, Husain AN, Mitra S, Moreno-Vinasco L, Jacobson JR, Lussier YA, Garcia JGN. GADD45a is a novel candidate gene in inflammatory lung injury via influences on Akt signaling. FASEB J 2009; 23:1325-37. [PMID: 19124556 PMCID: PMC2669422 DOI: 10.1096/fj.08-119073] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/26/2008] [Indexed: 01/09/2023]
Abstract
We explored the mechanistic involvement of the growth arrest and DNA damage-inducible gene GADD45a in lipopolysaccharide (LPS)- and ventilator-induced inflammatory lung injury (VILI). Multiple biochemical and genomic parameters of inflammatory lung injury indicated that GADD45a(-/-) mice are modestly susceptible to intratracheal LPS-induced lung injury and profoundly susceptible to high tidal volume VILI, with increases in microvascular permeability and bronchoalveolar lavage levels of inflammatory cytokines. Expression profiling of lung tissues from VILI-challenged GADD45a(-/-) mice revealed strong dysregulation in the B-cell receptor signaling pathway compared with wild-type mice and suggested the involvement of PI3 kinase/Akt signaling components. Western blot analyses of lung homogenates confirmed approximately 50% reduction in Akt protein levels in GADD45a(-/-) mice accompanied by marked increases in Akt ubiquitination. Electrical resistance measurements across human lung endothelial cell monolayers with either reduced GADD45a or Akt expression (siRNAs) revealed significant potentiation of LPS-induced human lung endothelial barrier dysfunction, which was attenuated by overexpression of a constitutively active Akt1 transgene. These studies validate GADD45a as a novel candidate gene in inflammatory lung injury and a significant participant in vascular barrier regulation via effects on Akt-mediated endothelial signaling.
Collapse
Affiliation(s)
- Nuala J Meyer
- Department of Medicine, W604, Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., W604 Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bajwa EK, Khan UA, Januzzi JL, Gong MN, Thompson BT, Christiani DC. Plasma C-reactive protein levels are associated with improved outcome in ARDS. Chest 2009; 136:471-480. [PMID: 19411291 DOI: 10.1378/chest.08-2413] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND C-reactive protein (CRP) has been studied as a marker of systemic inflammation and outcome in a number of diseases, but little is known about its characteristics in ARDS. We sought to examine plasma levels of CRP in patients with ARDS and their relationship to outcome and measures of illness severity. METHODS We measured CRP levels in 177 patients within 48 h of disease onset and tested the association of protein level with 60-day mortality, 28-day daily organ dysfunction scores, and number of ventilator-free days. RESULTS We found that CRP levels were significantly lower in nonsurvivors when compared with survivors (p = 0.02). Mortality rate decreased with increasing CRP decile (p = 0.02). An increasing CRP level was associated with a significantly higher probability of survival at 60 days (p = 0.005). This difference persisted after adjustment for age and severity of illness in a multivariable model (p = 0.009). Multivariable models were also used to show that patients in the group with higher CRP levels had significantly lower organ dysfunction scores (p = 0.001) and more ventilator-free days (p = 0.02). CONCLUSIONS Increasing plasma levels of CRP within 48 h of ARDS onset are associated with improved survival, lower organ failure scores, and fewer days of mechanical ventilation. These data appear to be contrary to the established view that CRP is solely a marker of systemic inflammation.
Collapse
Affiliation(s)
- Ednan K Bajwa
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Uzma A Khan
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - James L Januzzi
- Cardiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michelle N Gong
- Pulmonary and Critical Care Division, Mount Sinai School of Medicine, New York, NY
| | - B Taylor Thompson
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David C Christiani
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Environmental Health, Harvard School of Public Health, Boston, MA.
| |
Collapse
|
44
|
Tejera P, Wang Z, Zhai R, Su L, Sheu CC, Taylor DM, Chen F, Gong MN, Thompson BT, Christiani DC. Genetic polymorphisms of peptidase inhibitor 3 (elafin) are associated with acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2009; 41:696-704. [PMID: 19251943 DOI: 10.1165/rcmb.2008-0410oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptidase inhibitor 3 (PI3, elafin) is a protease inhibitor produced locally in the lung, where it plays a central role in controlling excessive activity of neutrophil elastase. Our previous study revealed that PI3 gene expression is down-regulated during the acute stage of acute respiratory distress syndrome (ARDS). We conducted a case-control study to investigate whether genetic variants in PI3 gene are associated with ARDS development. Based on resequencing data from 29 unrelated white subjects, three tagging single-nucleotide polymorphisms were selected and genotyped in a prospective cohort consisting of 449 white patients with ARDS (cases) and 1,031 critically ill patients (at-risk control subjects). We found that the variant allele of rs2664581 (T34P) was significantly associated with increased ARDS risk (odds ratio [OR], 1.35; 95% confidence interval [CI], 1.09-1.67; P = 0.006; false discovery rate adjusted P = 0.018). Moreover, this association was stronger among subjects with extrapulmonary injury. The common haplotype Hap2 (TTC), containing the variant allele of rs2664581, was also identified as a risk haplotype for ARDS (OR, 1.31; 95% CI, 1.05-1.64; P = 0.015). Furthermore, the rs2664581 polymorphism was associated with circulating PI3 levels in multivariate analyses. Patients with ARDS homozygous for the wild-type A allele of rs2664581 showed significant lower PI3 plasma level (P = 0.019) at ARDS onset as compared with those homozygous or heterozygous for the variant C allele. Our data suggest that polymorphisms in PI3 gene are significantly associated with ARDS risk and with circulating PI3 levels.
Collapse
Affiliation(s)
- Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Room I-1407, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Genetic Susceptibility in ALI/ARDS: What have we Learned? Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296:L713-25. [PMID: 19218355 DOI: 10.1152/ajplung.90269.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It has been well established that acute lung injury (ALI), and the more severe presentation of acute respiratory distress syndrome (ARDS), constitute complex traits characterized by a multigenic and multifactorial etiology. Identification and validation of genetic variants contributing to disease susceptibility and severity has been hampered by the profound heterogeneity of the clinical phenotype and the role of environmental factors, which includes treatment, on outcome. The critical nature of ALI and ARDS, compounded by the impact of phenotypic heterogeneity, has rendered the amassing of sufficiently powered studies especially challenging. Nevertheless, progress has been made in the identification of genetic variants in select candidate genes, which has enhanced our understanding of the specific pathways involved in disease manifestation. Identification of novel candidate genes for which genetic association studies have confirmed a role in disease has been greatly aided by the powerful tool of high-throughput expression profiling. This article will review these studies to date, summarizing candidate genes associated with ALI and ARDS, acknowledging those that have been replicated in independent populations, with a special focus on the specific pathways for which candidate genes identified so far can be clustered.
Collapse
Affiliation(s)
- Li Gao
- The Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| | | |
Collapse
|
47
|
Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS One 2009. [PMID: 19197381 DOI: 10.1371/journal.pone.0004380.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We conducted an exploratory study of genome-wide gene expression in whole blood and found that the expression of neutrophil elastase inhibitor (PI3, elafin) was down-regulated during the early phase of ARDS. Further analyses of plasma PI3 levels revealed a rapid decrease during early ARDS development. PI3 and secretory leukocyte proteinase inhibitor (SLPI) are important low-molecular-weight proteinase inhibitors produced locally at neutrophil infiltration site in the lung. In this study, we tested the hypothesis that an imbalance between neutrophil elastase (HNE) and its inhibitors in blood is related to the development of ARDS. METHODOLOGY/PRINCIPAL FINDINGS PI3, SLPI, and HNE were measured in plasma samples collected from 148 ARDS patients and 63 critical ill patients at risk for ARDS (controls). Compared with the controls, the ARDS patients had higher HNE, but lower PI3, at the onset of ARDS, resulting in increased HNE/PI3 ratio (mean = 14.5; 95% CI, 10.9-19.4, P<0.0001), whereas plasma SLPI was not associated with the risk of ARDS development. Although the controls had elevated plasma PI3 and HNE, their HNE/PI3 ratio (mean = 6.5; 95% CI, 4.9-8.8) was not significantly different from the healthy individuals (mean = 3.9; 95% CI, 2.7-5.9). Before the onset (7-days period prior to ARDS diagnosis), we only observed significantly elevated HNE, but the HNE-PI3 balance remained normal. With the progress from prior to the onset of ARDS, the plasma level of PI3 declined, whereas HNE was maintained at a higher level, tilting the balance toward more HNE in the circulation as characterized by an increased HNE/PI3 ratio. In contrast, three days after ICU admission, there was a significant drop of HNE/PI3 ratio in the at-risk controls. CONCLUSIONS/SIGNIFICANCE Plasma profiles of PI3, HNE, and HNE/PI3 may be useful clinical biomarkers in monitoring the development of ARDS.
Collapse
|
48
|
Wang Z, Chen F, Zhai R, Zhang L, Su L, Lin X, Thompson T, Christiani DC. Plasma neutrophil elastase and elafin imbalance is associated with acute respiratory distress syndrome (ARDS) development. PLoS One 2009; 4:e4380. [PMID: 19197381 PMCID: PMC2633615 DOI: 10.1371/journal.pone.0004380] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 12/19/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We conducted an exploratory study of genome-wide gene expression in whole blood and found that the expression of neutrophil elastase inhibitor (PI3, elafin) was down-regulated during the early phase of ARDS. Further analyses of plasma PI3 levels revealed a rapid decrease during early ARDS development. PI3 and secretory leukocyte proteinase inhibitor (SLPI) are important low-molecular-weight proteinase inhibitors produced locally at neutrophil infiltration site in the lung. In this study, we tested the hypothesis that an imbalance between neutrophil elastase (HNE) and its inhibitors in blood is related to the development of ARDS. METHODOLOGY/PRINCIPAL FINDINGS PI3, SLPI, and HNE were measured in plasma samples collected from 148 ARDS patients and 63 critical ill patients at risk for ARDS (controls). Compared with the controls, the ARDS patients had higher HNE, but lower PI3, at the onset of ARDS, resulting in increased HNE/PI3 ratio (mean = 14.5; 95% CI, 10.9-19.4, P<0.0001), whereas plasma SLPI was not associated with the risk of ARDS development. Although the controls had elevated plasma PI3 and HNE, their HNE/PI3 ratio (mean = 6.5; 95% CI, 4.9-8.8) was not significantly different from the healthy individuals (mean = 3.9; 95% CI, 2.7-5.9). Before the onset (7-days period prior to ARDS diagnosis), we only observed significantly elevated HNE, but the HNE-PI3 balance remained normal. With the progress from prior to the onset of ARDS, the plasma level of PI3 declined, whereas HNE was maintained at a higher level, tilting the balance toward more HNE in the circulation as characterized by an increased HNE/PI3 ratio. In contrast, three days after ICU admission, there was a significant drop of HNE/PI3 ratio in the at-risk controls. CONCLUSIONS/SIGNIFICANCE Plasma profiles of PI3, HNE, and HNE/PI3 may be useful clinical biomarkers in monitoring the development of ARDS.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Flores C, Pino-Yanes MDM, Villar J. A quality assessment of genetic association studies supporting susceptibility and outcome in acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R130. [PMID: 18950526 PMCID: PMC2592769 DOI: 10.1186/cc7098] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/29/2008] [Accepted: 10/25/2008] [Indexed: 11/17/2022]
Abstract
Introduction Clinical observations and animal models provide evidence that the development of acute lung injury (ALI), a phenomenon of acute diffuse lung inflammation in critically ill patients, is influenced by genetic factors. Association studies are the main tool for exploring common genetic variations underlying ALI susceptibility and/or outcome. We aimed to assess the quality of positive genetic association studies with ALI susceptibility and/or outcome in adults in order to highlight their consistency and major limitations. Methods We conducted a broad PubMed literature search from 1996 to June 2008 for original articles in English supporting a positive association (P ≤ 0.05) of genetic variants contributing to all-cause ALI susceptibility and/or outcome. Studies were evaluated based on current recommendations using a 10-point quality scoring system derived from 14 criteria, and the gene was considered as the unit of replication. Genes were also categorized according to biological processes using the Gene Ontology. Results Our search identified a total of 29 studies reporting positive findings for 16 genes involved mainly in the response to external stimulus and cell signal transduction. The genes encoding for interleukin-6, mannose-binding lectin, surfactant protein B, and angiotensin-converting enzyme were the most replicated across the studies. On average, the studies had an intermediate quality score (median of 4.62 and interquartile range of 3.33 to 6.15). Conclusions Although the quality of association studies seems to have improved over the years, more and better designed studies, including the replication of previous findings, with larger sample sizes extended to population groups other than those of European descent, are needed for identifying firm genetic modifiers of ALI.
Collapse
Affiliation(s)
- Carlos Flores
- CIBER de Enfermedades Respiratorias (Instituto de Salud Carlos III), Carretera Soller Km. 12, 07110 Mallorca, Spain
| | | | | |
Collapse
|
50
|
Foreman MG, DeMeo DL, Hersh CP, Carey VJ, Fan VS, Reilly JJ, Shapiro SD, Silverman EK. Polymorphic variation in surfactant protein B is associated with COPD exacerbations. Eur Respir J 2008; 32:938-44. [PMID: 18550614 PMCID: PMC2761762 DOI: 10.1183/09031936.00040208] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exacerbations of chronic obstructive pulmonary disease (COPD) reduce quality of life and increase mortality. Genetic variation might explain the substantial variability seen in exacerbation frequency among COPD subjects with similar lung function. Polymorphisms in five candidate genes, previously associated with COPD susceptibility, were analysed in order to determine whether they demonstrated association with COPD exacerbations. A total of 88 single nucleotide polymorphisms (SNPs) in the genes microsomal epoxide hydrolase (EPHX1), transforming growth factor, beta-1 (TGFB1), serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2 (SERPINE2), glutathione S-transferase pi (GSTP1) and surfactant protein B (SFTPB) were genotyped in 389 non-Hispanic white participants in the National Emphysema Treatment Trial. Exacerbations were defined as COPD-related emergency room visits or hospitalisations using the Centers for Medicare and Medicaid Services claims data. One or more exacerbations were experienced by 216 (56%) subjects during the study period. An SFTPB promoter polymorphism, rs3024791, was associated with COPD exacerbations. Logistic regression models, analysing a binary outcome of presence or absence of exacerbations, confirmed the association of rs3024791 with COPD exacerbations. Negative binomial regression models demonstrated association of multiple SFTPB SNPs (rs2118177, rs2304566, rs1130866 and rs3024791) with exacerbation rates. Polymorphisms in EPHX1, GSTP1, TGFB1 and SERPINE2 did not demonstrate association with COPD exacerbations. In conclusion, genetic variation in surfactant protein B is associated with chronic obstructive pulmonary disease susceptibility and exacerbation frequency.
Collapse
Affiliation(s)
- Marilyn G. Foreman
- Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA. USA
| | - Dawn L. DeMeo
- Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA. USA
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital
| | - Craig P. Hersh
- Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA. USA
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital
| | - Vincent J. Carey
- Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA. USA
| | | | - John J. Reilly
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital
| | | | - Edwin K. Silverman
- Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA. USA
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital
| |
Collapse
|