1
|
Zwi-Dantsis L, Mohamed S, Massaro G, Moeendarbary E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025; 17:239. [PMID: 40006994 PMCID: PMC11861813 DOI: 10.3390/v17020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Gene therapy offers promising potential as an efficacious and long-lasting therapeutic option for genetic conditions, by correcting defective mutations using engineered vectors to deliver genetic material to host cells. Among these vectors, adeno-associated viruses (AAVs) stand out for their efficiency, versatility, and safety, making them one of the leading platforms in gene therapy. The enormous potential of AAVs has been demonstrated through their use in over 225 clinical trials and the FDA's approval of six AAV-based gene therapy products, positioning these vectors at the forefront of the field. This review highlights the evolution and current applications of AAVs in gene therapy, focusing on their clinical successes, ongoing developments, and the manufacturing processes required for the rapid commercial growth anticipated in the AAV therapy market. It also discusses the broader implications of these advancements for future therapeutic strategies targeting more complex and multi-systemic conditions and biological processes such as aging. Finally, we explore some of the major challenges currently confronting the field.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Saira Mohamed
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| | - Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, Roberts Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Oh DH. Mechanism of Genome Editing Tools and Their Application on Genetic Inheritance Disorders. Glob Med Genet 2024; 11:319-329. [PMID: 39583120 PMCID: PMC11405120 DOI: 10.1055/s-0044-1790558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
In the fields of medicine and bioscience, gene editing is increasingly recognized as a promising therapeutic approach for treating pathogenic variants in humans and other living organisms. With advancements in technology and knowledge, it is now understood that most genetic defects are caused by single-base pair variants. The ability to substitute genes using genome editing tools enables scientists and doctors to cure genetic diseases and disorders. Starting with CRISPR (clustered regularly interspaced short palindromic repeats)/Cas, the technology has evolved to become more efficient and safer, leading to the development of base and prime editors. Furthermore, various approaches are used to treat genetic disorders such as hemophilia, cystic fibrosis, and Duchenne muscular dystrophy. As previously mentioned, most genetic defects leading to specific diseases are caused by single-base pair variants, which can occur at many locations in corresponding gene, potentially causing the same disease. This means that, even when using the same genome editing tool, results in terms of editing efficiency or treatment effectiveness may differ. Therefore, different approaches may need to be applied to different types of diseases. Prevalently, due to the safety of adeno-associated virus (AAV) vectors in gene therapy, most clinical trials of gene therapy are based on AAV delivery methods. However, despite their safety and nonintegration into the host genome, their limitations, such as confined capacity, dosage-dependent viral toxicity, and immunogenicity, necessitate the development of new approaches to enhance treatment effects. This review provides the structure and function of each CRISPR-based gene editing tool and focuses on introducing new approaches in gene therapy associated with improving treatment efficiency.
Collapse
Affiliation(s)
- Dae Hwan Oh
- Institute of Green Manufacturing Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Ciobanu C, Yanda M, Zeidan A, Izzi J, Guggino WB, Cebotaru L. Amelioration of airway and GI disease in G551D-CF ferrets by AAV1 and AAV6. Gene Ther 2024; 31:499-510. [PMID: 39069560 DOI: 10.1038/s41434-024-00469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Gene therapy for CF has concentrated on targeting the lung. Here we took a different approach by injecting into the cephalic vein and spraying into the trachea of G551D, CF ferrets either AAV1 or 6 containing Δ27-264-CFTR, a truncated version of CFTR. Treatment with the potentiator VX-770 was halted for 7 days before instillation to induce a disease phenotype. Indeed, all ferrets were pancreas-insufficient when they entered the study. Four ferrets (three receiving AAV1 and one AAV6) were necropsied 48 days after vector delivery, and four (three receiving AAV6, one AAV1) were euthanized or died prior to the planned necropsy. AAV1 or AAV6 vector genomes, mRNA expression, and CFTR protein were detected in all tracheal and lung samples and in the liver, pancreas, and ileum of the treated ferrets. Surface and basal airway cells, pancreatic and bile ducts, and ileal crypts and villi were successfully transduced. Obstruction of the airways accompanied by pulmonary hemorrhaging, plugged pancreatic and bile ducts as well as mucous plugs in the ileum were noticed in untreated but absent from transduced ferrets necropsied at 48 days. Transduction of G551D ferrets suggests that a combination of systemic and airway application may be the preferred route of delivery for CF.
Collapse
Affiliation(s)
- Cristian Ciobanu
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Murali Yanda
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Adi Zeidan
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica Izzi
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - William B Guggino
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Liudmila Cebotaru
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Huang Y, Zhang J, Wang X, Jing H, Li H. Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases. Biomolecules 2024; 14:904. [PMID: 39199292 PMCID: PMC11352762 DOI: 10.3390/biom14080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Gene delivery therapy has emerged as a popular approach for the treatment of various diseases. However, it still poses the challenges of accumulation in target sites and reducing off-target effects. Aerosol gene delivery for the treatment of pulmonary diseases has the advantages of high lung accumulation, specific targeting and fewer systemic side effects. However, the key challenge is selecting the appropriate formulation for aerosol gene delivery that can overcome physiological barriers. There are numerous existing gene carriers under study, including viral vectors and non-viral vectors. With the development of biomaterials, more biocompatible substances have applied gene delivery via inhalation. Furthermore, many types of genes can be delivered through aerosol inhalation, such as DNA, mRNA, siRNA and CRISPR/Cas9. Aerosol delivery of different types of genes has proven to be efficient in the treatment of many diseases such as SARS-CoV-2, cystic fibrosis and lung cancer. In this paper, we provide a comprehensive review of the ongoing research on aerosol gene delivery therapy, including the basic respiratory system, different types of gene carriers, different types of carried genes and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| |
Collapse
|
5
|
Liu F. The science and practice of current environmental risk assessment for gene therapy: a review. Cytotherapy 2024; 26:686-699. [PMID: 38713109 DOI: 10.1016/j.jcyt.2024.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Gene therapy is a fast-growing field showing great potential to treat genetic diseases and cancer. With accelerating gene therapy development and approval, their environment risk assessment (ERA) becomes increasingly important. An ERA is an assessment of the risks to human health and the environment upon exposure to a medicinal product as the result of its release during clinical development or after entering the market. Because ERA is an important component of regulatory submission, drug developers must perform a robust assessment to ensure the safety of unintended persons, animal, plants, microorganisms and environment at large. Global regulations on gene therapy ERA continue to evolve. Gene therapy ERAs are carried out according to general principles as provided in regulatory guidelines for application of clinical trials and marketing authorizations. The current review intends to summarize regulations and content requirements on gene therapy ERA in European Union, the USA and Japan. The approved gene therapy products by EMA and US Food and Drug Administration are analyzed for the critical aspects of their ERAs to provide the current status and practice of gene therapy ERAs by drug developers. For this purpose, the main contents of these gene therapy ERAs are summarized. Critical safety factors of gene therapy ERAs are described. With more experience and knowledge to be accumulated, gene therapy ERAs are expected to be less challenging with commonly used viral vectors.
Collapse
Affiliation(s)
- Frank Liu
- Safe Product Services LLC, Pittsfield, Massachusetts, USA.
| |
Collapse
|
6
|
Henderson ML, Zieba JK, Li X, Campbell DB, Williams MR, Vogt DL, Bupp CP, Edgerly YM, Rajasekaran S, Hartog NL, Prokop JW, Krueger JM. Gene Therapy for Genetic Syndromes: Understanding the Current State to Guide Future Care. BIOTECH 2024; 13:1. [PMID: 38247731 PMCID: PMC10801589 DOI: 10.3390/biotech13010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, β-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost-benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.
Collapse
Affiliation(s)
- Marian L. Henderson
- The Department of Biology, Calvin University, Grand Rapids, MI 49546, USA;
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Jacob K. Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Michael R. Williams
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Daniel L. Vogt
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA;
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | - Nicholas L. Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Allergy & Immunology, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA;
| | - Jena M. Krueger
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA; (J.K.Z.); (X.L.); (D.B.C.); (M.R.W.); (D.L.V.); (C.P.B.); (S.R.); (N.L.H.)
- Department of Neurology, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
7
|
Cooney AL, Brommel CM, Traore S, Newby GA, Liu DR, McCray PB, Sinn PL. Reciprocal mutations of lung-tropic AAV capsids lead to improved transduction properties. Front Genome Ed 2023; 5:1271813. [PMID: 38077224 PMCID: PMC10702583 DOI: 10.3389/fgeed.2023.1271813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 12/21/2023] Open
Abstract
Considerable effort has been devoted to developing adeno-associated virus (AAV)-based vectors for gene therapy in cystic fibrosis (CF). As a result of directed evolution and capsid shuffling technology, AAV capsids are available with widespread tropism for airway epithelial cells. For example, AAV2.5T and AAV6.2 are two evolved capsids with improved airway epithelial cell transduction properties over their parental serotypes. However, limited research has been focused on identifying their specific cellular tropism. Restoring cystic fibrosis transmembrane conductance regulator (CFTR) expression in surface columnar epithelial cells is necessary for the correction of the CF airway phenotype. Basal cells are a progenitor population of the conducting airways responsible for replenishing surface epithelial cells (including secretory cells and ionocytes), making correction of this cell population vital for a long-lived gene therapy strategy. In this study, we investigate the tropism of AAV capsids for three cell types in primary cultures of well-differentiated human airway epithelial (HAE) cells and primary human airway basal cells. We observed that AAV2.5T transduced surface epithelial cells better than AAV6.2, while AAV6.2 transduced airway basal cells better than AAV2.5T. We also investigated a recently developed capsid, AAV6.2FF, which has two surface tyrosines converted to phenylalanines. Next, we incorporated reciprocal mutations to create AAV capsids with further improved surface and basal cell transduction characteristics. Lastly, we successfully employed a split-intein approach using AAV to deliver an adenine base editor (ABE) to repair the CFTR R553X mutation. Our results suggest that rational incorporation of AAV capsid mutations improves AAV transduction of the airway surface and progenitor cells and may ultimately lead to improved pulmonary function in people with CF.
Collapse
Affiliation(s)
- Ashley L. Cooney
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Christian M. Brommel
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Soumba Traore
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, United States
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, United States
| | - Paul B. McCray
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| | - Patrick L. Sinn
- University of Iowa, Stead Family Department of Pediatrics, Iowa City, IA, United States
- Pappajohn Biomedical Institute, Iowa City, IA, United States
- Center for Cystic Fibrosis Gene Therapy, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Kwak G, Lee D, Suk JS. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv 2023; 20:1531-1552. [PMID: 37946533 PMCID: PMC10872418 DOI: 10.1080/17425247.2023.2282535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.
Collapse
Affiliation(s)
- Gijung Kwak
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daiheon Lee
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Neurosurgery and Medicine Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Wang G. Genome Editing for Cystic Fibrosis. Cells 2023; 12:1555. [PMID: 37371025 PMCID: PMC10297084 DOI: 10.3390/cells12121555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable. However, these modulator therapies are not curative and do not cover the full spectrum of CFTR mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ repair of the genetic lesions in the genome. Within the past few years, new technologies, such as CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in a new era of genetic therapy. This review provided an update on this rapidly evolving field and the status of adapting the technology for CF therapy.
Collapse
Affiliation(s)
- Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, CSRB 607, 533 Bolivar Street, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Kwak G, Gololobova O, Sharma N, Caine C, Mazur M, Mulka K, West NE, Solomon GM, Cutting GR, Witwer KW, Rowe SM, Paulaitis M, Aslanidi G, Suk JS. Extracellular vesicles enhance pulmonary transduction of stably associated adeno-associated virus following intratracheal administration. J Extracell Vesicles 2023; 12:e12324. [PMID: 37272896 PMCID: PMC10241173 DOI: 10.1002/jev2.12324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 06/06/2023] Open
Abstract
Adeno-associated virus (AAV) vector has shown multiple clinical breakthroughs, but its clinical implementation in inhaled gene therapy remains elusive due to difficulty in transducing lung airway cells. We demonstrate here AAV serotype 6 (AAV6) associated with extracellular vesicles (EVs) and secreted from vector-producing HEK-293 cells during vector preparation (EVAAV6) as a safe and highly efficacious gene delivery platform for inhaled gene therapy applications. Specifically, we discovered that EVAAV6 provided markedly enhanced reporter transgene expression in mucus-covered air-liquid interface (ALI) cultures of primary human bronchial and nasal epithelial cells as well as in mouse lung airways compared to standard preparations of AAV6 alone. Of note, AAV6 has been previously shown to outperform other clinically tested AAV serotypes, including those approved by the FDA for treating non-lung diseases, in transducing ALI cultures of primary human airway cells. We provide compelling experimental evidence that the superior performance of EVAAV6 is attributed to the ability of EV to facilitate mucus penetration and cellular entry/transduction of AAV6. The tight and stable linkage between AAV6 and EVs appears essential to exploit the benefits of EVs given that a physical mixture of individually prepared EVs and AAV6 failed to mediate EV-AAV6 interactions or to enhance gene transfer efficacy.
Collapse
Affiliation(s)
- Gijung Kwak
- Center for Nanomedicine at Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Neeraj Sharma
- Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Colin Caine
- Hormel InstituteUniversity of MinnesotaAustinMinnesotaUSA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research CenterHeersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Kathleen Mulka
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Natalie E. West
- Department of Pulmonary and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - George M. Solomon
- Gregory Fleming James Cystic Fibrosis Research CenterHeersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Garry R. Cutting
- Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research CenterHeersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Michael Paulaitis
- Center for Nanomedicine at Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - George Aslanidi
- Hormel InstituteUniversity of MinnesotaAustinMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Institute for Molecular VirologyUniversity of MinnesotaMinneapolisUSAMinnesota
| | - Jung Soo Suk
- Center for Nanomedicine at Wilmer Eye InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
11
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
12
|
Kokturk N, Khodayari N, Lascano J, Riley EL, Brantly ML. Lung Inflammation in alpha-1-antitrypsin deficient individuals with normal lung function. Respir Res 2023; 24:40. [PMID: 36732772 PMCID: PMC9893669 DOI: 10.1186/s12931-023-02343-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alpha-1-antitrypsin deficient (AATD) individuals are prone to develop early age of onset chronic obstructive pulmonary disease (COPD) more severe than non-genetic COPD. Here, we investigated the characteristics of lower respiratory tract of AATD individuals prior to the onset of clinically significant COPD. METHODS Bronchoalveolar lavage was performed on 22 AATD with normal lung function and 14 healthy individuals. Cell counts and concentrations of proteases, alpha-1-antitrypsin and proinflammatory mediators were determined in the bronchoalveolar lavage fluid from study subjects. In order to determine the airway inflammation, we also analyzed immune cell components of the large airways from bronchial biopsies using immunohistochemistry in both study subjects. Finally, we made comparisons between airway inflammation and lung function rate of decline using four repeated lung function tests over one year in AATD individuals. RESULTS AATD individuals with normal lung function had 3 folds higher neutrophil counts, 2 folds increase in the proteases levels, and 2-4 folds higher levels of IL-8, IL-6, IL-1β, and leukotriene B4 in their epithelial lining fluid compared to controls. Neutrophil elastase levels showed a positive correlation with the levels of IL-8 and neutrophils in AATD epithelial lining fluid. AATD individuals also showed a negative correlation of baseline FEV1 with neutrophil count, neutrophil elastase, and cytokine levels in epithelial lining fluid (p < 0.05). In addition, we observed twofold increase in the number of lymphocytes, macrophages, neutrophils, and mast cells of AATD epithelial lining fluid as compared to controls. CONCLUSION Mild inflammation is present in the lower respiratory tract and airways of AATD individuals despite having normal lung function. A declining trend was also noticed in the lung function of AATD individuals which was correlated with pro-inflammatory phenotype of their lower respiratory tract. This results suggest the presence of proinflammatory phenotype in AATD lungs. Therefore, early anti-inflammatory therapies may be a potential strategy to prevent progression of lung disease in AATD individuals.
Collapse
Affiliation(s)
- Nurdan Kokturk
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA
- Department of Pulmonary and Critical Care, Gazi University School of Medicine, Ankara, Turkey
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA
| | - Jorge Lascano
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA
| | | | - Mark L Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, J. Hillis Miller Health Science Center, University of Florida College of Medicine, P.O. Box 100225, Gainesville, FL, 32610-0225, USA.
| |
Collapse
|
13
|
Guan R, Yuan L, Li J, Wang J, Li Z, Cai Z, Guo H, Fang Y, Lin R, Liu W, Wang L, Zheng Q, Xu J, Zhou Y, Qian J, Ding M, Luo J, Li Y, Yang K, Sun D, Yao H, He J, Lu W. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts. Eur Respir J 2022; 60:13993003.02307-2021. [PMID: 35777761 PMCID: PMC9808813 DOI: 10.1183/13993003.02307-2021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/22/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Accumulation of myofibroblasts is critical to fibrogenesis in idiopathic pulmonary fibrosis (IPF). Senescence and insufficient mitophagy in fibroblasts contribute to their differentiation into myofibroblasts, thereby promoting the development of lung fibrosis. Bone morphogenetic protein 4 (BMP4), a multifunctional growth factor, is essential for the early stage of lung development; however, the role of BMP4 in modulating lung fibrosis remains unknown. METHODS The aim of this study was to evaluate the role of BMP4 in lung fibrosis using BMP4-haplodeleted mice, BMP4-overexpressed mice, primary lung fibroblasts and lung samples from patients with IPF. RESULTS BMP4 expression was downregulated in IPF lungs and fibroblasts compared to control individuals, negatively correlated with fibrotic genes, and BMP4 decreased with transforming growth factor (TGF)-β1 stimulation in lung fibroblasts in a time- and dose-dependent manner. In mice challenged with bleomycin, BMP4 haploinsufficiency perpetuated activation of lung myofibroblasts and caused accelerated lung function decline, severe fibrosis and mortality. BMP4 overexpression using adeno-associated virus 9 vectors showed preventative and therapeutic efficacy against lung fibrosis. In vitro, BMP4 attenuated TGF-β1-induced fibroblast-to-myofibroblast differentiation and extracellular matrix (ECM) production by reducing impaired mitophagy and cellular senescence in lung fibroblasts. Pink1 silencing by short-hairpin RNA transfection abolished the ability of BMP4 to reverse the TGF-β1-induced myofibroblast differentiation and ECM production, indicating dependence on Pink1-mediated mitophagy. Moreover, the inhibitory effect of BMP4 on fibroblast activation and differentiation was accompanied with an activation of Smad1/5/9 signalling and suppression of TGF-β1-mediated Smad2/3 signalling in vivo and in vitro. CONCLUSION Strategies for enhancing BMP4 signalling may represent an effective treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Liang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jingpei Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,These authors contributed equally to this work
| | - Ziying Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaowei Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qian
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Mingjing Ding
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Jieping Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dejun Sun
- Key Laboratory of National Health Commission for the Diagnosis and Treatment of COPD, Inner Mongolia People's Hospital, Hohhot, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China .,Wenju Lu and Jianxing He contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
14
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
15
|
McLachlan G, Alton EWFW, Boyd AC, Clarke NK, Davies JC, Gill DR, Griesenbach U, Hickmott JW, Hyde SC, Miah KM, Molina CJ. Progress in Respiratory Gene Therapy. Hum Gene Ther 2022; 33:893-912. [PMID: 36074947 PMCID: PMC7615302 DOI: 10.1089/hum.2022.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.
Collapse
Affiliation(s)
- Gerry McLachlan
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
| | - Eric W F W Alton
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A Christopher Boyd
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Nora K Clarke
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane C Davies
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Uta Griesenbach
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jack W Hickmott
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen C Hyde
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Kamran M Miah
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Medicine Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Claudia Juarez Molina
- UK Respiratory Gene Therapy Consortium, London, United Kingdom
- Gene Therapy Group, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Lepissier A, Addy C, Hayes K, Noel S, Bui S, Burgel PR, Dupont L, Eickmeier O, Fayon M, Leal T, Lopes C, Downey DG, Sermet-Gaudelus I. Inflammation biomarkers in sputum for clinical trials in cystic fibrosis: current understanding and gaps in knowledge. J Cyst Fibros 2022; 21:691-706. [PMID: 34772643 DOI: 10.1016/j.jcf.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Sputum biomarkers hold promise as a direct measure of inflammation within the cystic fibrosis (CF) lung, but variability in study design and sampling methodology have limited their use. A full evaluation of the reliability, validity and clinical relevance of individual biomarkers is required to optimise their use within CF clinical research. OBJECTIVES A biomarker Special Interest Working Group was established within the European Cystic Fibrosis Society-Clinical Trials Network Standardisation Committee, to perform a review of the evidence regarding sputum biomarkers in CF. METHODS From the 139 included articles, we identified 71 sputum biomarkers to undergo evaluation of their clinimetric properties, responsiveness, discriminant, concurrent and convergent validity. RESULTS Current evidence confirms the potential of sputum biomarkers as outcome measures in clinical trials. Inconsistency in responsiveness, concurrent and convergent validity require further research into these markers and processing standardisation before translation into wider use. Of the 71 biomarkers identified, Neutrophil Elastase (NE), IL-8, TNF-α and IL-1β, demonstrated validity and responsiveness to be currently considered for use in clinical trials. Other biomarkers show future promise, including IL-6, calprotectin, HMGB-1 and YKL-40. CONCLUSION A concerted international effort across the cystic fibrosis community is needed to promote high quality biomarker trial design, establish large population-based biomarker studies, and work together to create standards for collection, storage and analysis of sputum biomarkers.
Collapse
Affiliation(s)
- Agathe Lepissier
- Paediatric Center for Cystic Fibrosis, Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades 149 rue de Sévres, Paris 75743, France; INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France; European Reference Network (ERN Lung)
| | - Charlotte Addy
- Northern Ireland Clinical Research Facility, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL; All Wales Adult Cystic Fibrosis Centre, University Hopsital Llandough, Penlan Road, CF64 2XX
| | - Kate Hayes
- Northern Ireland Clinical Research Facility, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sabrina Noel
- INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France
| | - Stéphanie Bui
- Université de Bordeaux (INSERM U1045), CHU de Bordeaux, (CIC1401), F-33000 Bordeaux, France
| | - Pierre-Régis Burgel
- European Reference Network (ERN Lung); National Reference Cystic Fibrosis Center and Department of Respiratory Medicine, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, 75014, France; Institut Cochin, INSERM U1016 and Université de Paris; Paris 75014, France
| | - Lieven Dupont
- University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Olaf Eickmeier
- Facharzt für Kinder- und Jugendmedizin, Universitätsklinikum Frankfurt a.M., Johann Wolfgang-Goethe-Universität, Allergologie, Pneumologie & Mukoviszidose, Theodor-Stern-Kai 7, 60590 Frankfurt/Main
| | - Michael Fayon
- Université de Bordeaux (INSERM U1045), CHU de Bordeaux, (CIC1401), F-33000 Bordeaux, France
| | - Teresinha Leal
- Louvain Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carlos Lopes
- Departamento do Tórax, Hospital de Santa Maria, Lisbon
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Isabelle Sermet-Gaudelus
- Paediatric Center for Cystic Fibrosis, Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades 149 rue de Sévres, Paris 75743, France; INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France; European Reference Network (ERN Lung); Service de Pneumologie et Allergologie Pédiatriques, Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Necker Enfants Malades 149 rue de Sévres, INSERM U1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris 75743, France.
| |
Collapse
|
17
|
Yanda MK, Tomar V, Cebotaru CV, Guggino WB, Cebotaru L. Short-Term Steroid Treatment of Rhesus Macaque Increases Transduction. Hum Gene Ther 2022; 33:131-147. [PMID: 34806411 PMCID: PMC8885436 DOI: 10.1089/hum.2021.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Repeat dosing poses a major hurdle for the development of an adeno-associated virus (AAV)-based gene therapy for cystic fibrosis, in part because of the potential for development of an immune reaction to the AAV1 capsid proteins. Here, to dampen the immune response to AAV1, we treated Rhesus monkeys with methylprednisolone before and after the instillation of two doses of AAV1Δ27-264-CFTR into their airways at 0 and 30 days, followed by a single dose of AAV1-GFP on day 60. Animals were euthanized on day 90, except for one monkey that was sacrificed at 1 year. No adverse events occurred, indicating that the two AAV1 vectors are safe. rAAV1-CFTR and AAV1-GFP vector genomes and mRNA transcripts were detectable in all lung sections and in the liver and pancreas at day 90 and after 1 year at levels comparable with animals necropsied at 90 days. The numbers of vector genomes for cystic fibrosis transmembrane regulator (CFTR) and green fluorescent protein (GFP) detected here were higher than those found in the monkeys infected without methylprednisolone treatment that we tested previously.1 Also, lung surface and keratin 5-positive basal cells showed higher CFTR and GFP staining than did the cells from the uninfected monkey control. Positive immunostaining, also detected in the liver and pancreas, remained stable for at least a year. All animals seroconverted for anticapsid antibodies by 90 days post-treatment. The neutralizing antibody titer declined in the animal necropsied at 1 year. Conclusion: AAV1 safely and effectively transduces monkey airway and basal cells. Both the presence of vector genomes and transduction from AAV1-CFTR and AAV1-GFP virus seen in the monkeys 4 months to 1 year after the first instillation suggest that repeat dosing with AAV1-based vectors is achievable, particularly after methylprednisolone treatment.
Collapse
Affiliation(s)
- Murali K. Yanda
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vartika Tomar
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cristina Valeria Cebotaru
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William B. Guggino
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Correspondence: Dr. Liudmila Cebotaru, Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Hunterian 415, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Brody AS, Huang R, Zhang B, Long FR, Powers SW. Structural lung disease in preschool children with cystic fibrosis: An 18 month natural history study. J Cyst Fibros 2021; 21:e165-e171. [PMID: 34961706 DOI: 10.1016/j.jcf.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study was performed to describe the natural history of CF lung disease in young children over an 18 month period to assess the use of CT scanning as an outcome measure for intervention trials. METHODS Chest CT scans were obtained at baseline and after 18 months in 42 two- to six-year-old children with CF. CT scans were scored by 2 experienced radiologists for the presence and severity of bronchiectasis, mucous plugging, and air trapping. RESULTS Mean age at baseline 3.5 (1.3) (mean, sd) years. One or more findings of CF lung disease was seen on the first CT in 27 (64%) and at 18 months in 30 (75%). From baseline to 18 months bronchiectasis, mucous plugging, and air trapping increased from 50% to 53%, 14% to 28%, and 48% to 58% respectively. There was marked variability in the rate of progression, with subjects commonly showing improvement in lung disease. Bronchiectasis worsened in 14 (33%) and improved in 13 (31%). Single subjects with F508del/class III and F508del/class V demonstrated greater worsening and improvement respectively than F508del homozygous and class I genotypes. CONCLUSIONS The natural history of CF lung disease over 18 months varies widely between subjects. Factors including genotype may affect natural history as well as the effectiveness of mediators and could be an important confounder if not recognized. These findings suggest that the use of CT scanning as an outcome surrogate for CF lung disease in young children may be more challenging than has been previously recognized.
Collapse
Affiliation(s)
- Alan S Brody
- Department of Radiology, Cincinnati Children's Hospital and Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rui Huang
- Division of Biostatistics and Bioinformatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bin Zhang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Frederick R Long
- Department of Radiology, Nationwide Children's Hospital and the College of Medicine, Ohio State University, Columbus, OH, USA
| | - Scott W Powers
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| |
Collapse
|
19
|
Damerval M, Fagnoni-Legat C, Louvrier A, Fischer S, Limat S, Clairet AL, Nerich V, Madelaine I, Kroemer M. ATMP Environmental Exposure Assessment in European Healthcare Settings: A Systematic Review of the Literature. Front Med (Lausanne) 2021; 8:713047. [PMID: 34926483 PMCID: PMC8671638 DOI: 10.3389/fmed.2021.713047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Since 2007, a new class of biologic products for human use called "advanced therapy medicinal products (ATMP)" have been legally integrated in the European Medical Agency. They consist of recombinant nucleic acid, engineered cells, cells, or tissues. In the United States, ATMP fall under the regulatory framework of biological products and the term "cell and gene therapy product" is used in the legislative and regulatory documents. Potential clinical applications are broad, particularly, in the field of cancer, inherited genetic disease, and regenerative medicine. Indeed, the benefit conferred by CD19 chimeric antigen receptor T cells led to the first engineered cell therapy products to be approved by the Food and Drug Administration (FDA) in 2017. Gene therapy products to treat orphan diseases are also extensively developed with many clinical trials ongoing in the world. Nevertheless, the use of these therapeutic products is complex and requires careful considerations in the terms of regulatory and hospital setting requirements, such as storage, handling, administration, and disposal which justify the implementation of a secured medication circuit. Through this systematic review of the literature, the authors wanted to compile data on the assessment of environmental exposure related to the use of ATMP in healthcare setting to secure their medication circuit. A literature search was conducted on PubMed and Web of Science, and 32 publications dealing with environmental exposure assessment and ATMP were selected. In addition, marketed ATMPs were identified and data regarding the environmental concerns were extracted from product information sections from European Public Assessment Reports (EPAR). The environmental contamination assessments were mainly addressed in the reviews rather than in original articles related to the use of ATMP. Most of the product information sections from EPAR suggested precautions rather than requirements when dealing with environmental consideration following ATMP handling. Nevertheless, these precautions usually remain elusive especially concerning waste disposal and the detection of biological material on the work surfaces, and mainly relate to the genetically modified organisms (GMO) over non-GMO cellular products. Pharmaceutical oversight and adherence to the good preparation practices and good clinical practices are essential to ensure the safe use in term of environmental concern of these new therapeutic products in healthcare setting.
Collapse
Affiliation(s)
- Margaux Damerval
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | | | - Aurélien Louvrier
- Host-Graft Interactions Lab – Tumor - Cell and Tissue engineering (UMR 1098 INSERM/UFC/EFS), University of Franche-Comté, Besançon, France
- Department of Oral and Maxillofacial Surgery, University Hospital of Besançon, Besançon, France
| | - Sarah Fischer
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
- Department of Oral and Maxillofacial Surgery, University Hospital of Besançon, Besançon, France
| | - Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
- Department of Oral and Maxillofacial Surgery, University Hospital of Besançon, Besançon, France
| | | | - Marie Kroemer
- Department of Pharmacy, University Hospital of Besançon, Besançon, France
- Department of Oral and Maxillofacial Surgery, University Hospital of Besançon, Besançon, France
| |
Collapse
|
20
|
Lee JA, Cho A, Huang EN, Xu Y, Quach H, Hu J, Wong AP. Gene therapy for cystic fibrosis: new tools for precision medicine. J Transl Med 2021; 19:452. [PMID: 34717671 PMCID: PMC8556969 DOI: 10.1186/s12967-021-03099-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery of the Cystic fibrosis (CF) gene in 1989 has paved the way for incredible progress in treating the disease such that the mean survival age of individuals living with CF is now ~58 years in Canada. Recent developments in gene targeting tools and new cell and animal models have re-ignited the search for a permanent genetic cure for all CF. In this review, we highlight some of the more recent gene therapy approaches as well as new models that will provide insight into personalized therapies for CF.
Collapse
Affiliation(s)
- Jin-A Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada
| | - Alex Cho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Elena N Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yiming Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Henry Quach
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, M5G0A4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, PGCRL 16-9420, Toronto, ON, M5G0A4, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
21
|
Guggino WB, Cebotaru L. Gene Therapy for Cystic Fibrosis Paved the Way for the Use of Adeno-Associated Virus in Gene Therapy. Hum Gene Ther 2021; 31:538-541. [PMID: 32283956 DOI: 10.1089/hum.2020.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shortly after the cystic fibrosis (CF) gene was identified in 1989, the race began to develop a gene therapy for this condition. Major efforts utilized full-length cystic fibrosis transmembrane conductance regulator packaged into adenovirus, adeno-associated virus (AAV), or liposomes and delivered to the airways. The drive to find a treatment for CF based on gene therapy drove the early stages of gene therapy in general, particularly those involving AAV gene therapy. Since general overviews of CF gene therapy have already been published, this review considers specifically the efforts using AAV and is focused on honoring the contributions of Dr. Barrie Carter.
Collapse
Affiliation(s)
- William B Guggino
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Mercier J, Ruffin M, Corvol H, Guillot L. Gene Therapy: A Possible Alternative to CFTR Modulators? Front Pharmacol 2021; 12:648203. [PMID: 33967785 PMCID: PMC8097140 DOI: 10.3389/fphar.2021.648203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a rare genetic disease that affects several organs, but lung disease is the major cause of morbidity and mortality. The gene responsible for CF, the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene, has been discovered in 1989. Since then, gene therapy i.e., defective gene replacement by a functional one, remained the ultimate goal but unfortunately, it has not yet been achieved. However, patients care and symptomatic treatments considerably increased CF patients’ life expectancy ranging from 5 years old in the 1960s to 40 today. In the last decade, research works on CFTR protein structure and activity led to the development of new drugs which, by readdressing CFTR to the plasma membrane (correctors) or by enhancing its transport activity (potentiators), allow, alone or in combination, an improvement of CF patients’ lung function and quality of life. While expected, it is not yet known whether taking these drugs from an early age and for years will improve the quality of life of CF patients in the long term and further increase their life expectancy. Besides, these molecules are not available (specific variants of CFTR) or accessible (national health policies) for all patients and there is still no curative treatment. Another alternative that could benefit from new technologies, such as gene therapy, is therefore still attractive, although it is not yet offered to patients. Faced with the development of new CFTR correctors and potentiators, the question arises as to whether there is still a place for gene therapy and this is discussed in this perspective.
Collapse
Affiliation(s)
- J Mercier
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France
| | - M Ruffin
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France
| | - H Corvol
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France.,Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France
| | - L Guillot
- Sorbonne Université, Inserm, Centre de Recherche, Saint Antoine, F-75012, Paris, France
| |
Collapse
|
23
|
Allan KM, Farrow N, Donnelley M, Jaffe A, Waters SA. Treatment of Cystic Fibrosis: From Gene- to Cell-Based Therapies. Front Pharmacol 2021; 12:639475. [PMID: 33796025 PMCID: PMC8007963 DOI: 10.3389/fphar.2021.639475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Prognosis of patients with cystic fibrosis (CF) varies extensively despite recent advances in targeted therapies that improve CF transmembrane conductance regulator (CFTR) function. Despite being a multi-organ disease, extensive lung tissue destruction remains the major cause of morbidity and mortality. Progress towards a curative treatment strategy that implements a CFTR gene addition-technology to the patients’ lungs has been slow and not yet developed beyond clinical trials. Improved delivery vectors are needed to overcome the body’s defense system and ensure an efficient and consistent clinical response before gene therapy is suitable for clinical care. Cell-based therapy–which relies on functional modification of allogenic or autologous cells ex vivo, prior to transplantation into the patient–is now a therapeutic reality for various diseases. For CF, pioneering research has demonstrated proof-of-principle for allogenic transplantation of cultured human airway stem cells into mouse airways. However, applying a cell-based therapy to the human airways has distinct challenges. We review CF gene therapies using viral and non-viral delivery strategies and discuss current advances towards autologous cell-based therapies. Progress towards identification, correction, and expansion of a suitable regenerative cell, as well as refinement of pre-cell transplant lung conditioning protocols is discussed.
Collapse
Affiliation(s)
- Katelin M Allan
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia
| | - Nigel Farrow
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- Respiratory and Sleep Medicine, Women's and Children's Health Network, Adelaide, Australia.,Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, Australia.,Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, Australia
| |
Collapse
|
24
|
Tang Y, Yan Z, Lin S, Huntemann ED, Feng Z, Park SY, Sun X, Yuen E, Engelhardt JF. Repeat Dosing of AAV2.5T to Ferret Lungs Elicits an Antibody Response That Diminishes Transduction in an Age-Dependent Manner. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:186-200. [PMID: 33209961 PMCID: PMC7648090 DOI: 10.1016/j.omtm.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/11/2020] [Indexed: 11/12/2022]
Abstract
Readministration of recombinant adeno-associated virus (rAAV) may be necessary to treat cystic fibrosis (CF) lung disease using gene therapy. However, little is known about rAAV-mediated immune responses in the lung. Here, we demonstrate the suitability of the ferret for testing AAV2.5T-mediated CFTR delivery to the lung and characterization of neutralizing-antibody (NAb) responses. AAV2.5T-SP183-hCFTRΔR efficiently transduced both human and ferret airway epithelial cultures and complemented CFTR Cl– currents in CF airway cultures. Delivery of AAV2.5T-hCFTRΔR to neonatal and juvenile ferret lungs produced hCFTR mRNA at 200%–300% greater levels than endogenous fCFTR. Single-dose (AAV2.5T-SP183-gLuc) or repeat dosing (AAV2.5T-SP183-fCFTRΔR followed by AAV2.5T-SP183-gLuc) of AAV2.5T was performed in neonatal and juvenile ferrets. Repeat dosing significantly reduced transgene expression (11-fold) and increased bronchoalveolar lavage fluid (BALF) NAbs only in juvenile, but not neonatal, ferrets, despite near-equivalent plasma NAb responses in both age groups. Notably, both age groups demonstrated a reduction in BALF anti-capsid binding immunoglobulin (Ig) G, IgM, and IgA antibodies after repeat dosing. Unique to juvenile ferrets was a suppression of plasma anti-capsid-binding IgM after the second vector administration. Thus, age-dependent immune system maturation and isotype switching may affect the development of high-affinity lung NAbs after repeat dosing of AAV2.5T and may provide a path to blunt AAV-neutralizing responses in the lung.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shen Lin
- Spirovant Science Inc., Philadelphia, PA 19104, USA
| | - Eric D Huntemann
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Soo-Yeun Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xingshen Sun
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric Yuen
- Spirovant Science Inc., Philadelphia, PA 19104, USA
| | - John F Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Carneiro A, Lee H, Lin L, van Haasteren J, Schaffer DV. Novel Lung Tropic Adeno-Associated Virus Capsids for Therapeutic Gene Delivery. Hum Gene Ther 2020; 31:996-1009. [PMID: 32799685 DOI: 10.1089/hum.2020.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efforts to identify mutations that underlie inherited genetic diseases combined with strides in the development of gene therapy vectors over the last three decades have culminated in the approval of several adeno-associated virus (AAV)-based gene therapies. Genetic diseases that manifest in the lung such as cystic fibrosis (CF) and surfactant deficiencies, however, have so far proven to be elusive targets. Early clinical trials in CF using AAV serotype 2 (AAV2) achieved safety, but not efficacy endpoints; however, importantly, these studies provided critical information on barriers that need to be surmounted to translate AAV lung gene therapy toward clinical success. Bolstered with an improved understanding of AAV biology and more clinically relevant lung models, next-generation molecular biology and bioinformatics approaches have given rise to novel AAV capsid variants that offer improvements in transduction efficiency, immunological profile, and the ability to circumvent physical barriers in the lung such as mucus. This review discusses the principal limiting barriers to clinical success in lung gene therapy and focuses on novel engineered AAV capsid variants that have been developed to overcome those challenges.
Collapse
Affiliation(s)
- Ana Carneiro
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Hyuncheol Lee
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - Li Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Joost van Haasteren
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, California, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.,Innovative Genomics Institute (IGI), University of California, Berkeley, California, USA
| |
Collapse
|
26
|
Vu A, McCray PB. New Directions in Pulmonary Gene Therapy. Hum Gene Ther 2020; 31:921-939. [PMID: 32814451 PMCID: PMC7495918 DOI: 10.1089/hum.2020.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The lung has long been a target for gene therapy, yet efficient delivery and phenotypic disease correction has remained challenging. Although there have been significant advancements in gene therapies of other organs, including the development of several ex vivo therapies, in vivo therapeutics of the lung have been slower to transition to the clinic. Within the past few years, the field has witnessed an explosion in the development of new gene addition and gene editing strategies for the treatment of monogenic disorders. In this review, we will summarize current developments in gene therapy for cystic fibrosis, alpha-1 antitrypsin deficiency, and surfactant protein deficiencies. We will explore the different gene addition and gene editing strategies under investigation and review the challenges of delivery to the lung.
Collapse
Affiliation(s)
- Amber Vu
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
27
|
Da Silva Sanchez A, Paunovska K, Cristian A, Dahlman JE. Treating Cystic Fibrosis with mRNA and CRISPR. Hum Gene Ther 2020; 31:940-955. [PMID: 32799680 PMCID: PMC7495921 DOI: 10.1089/hum.2020.137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Less than 20% of the protein coding genome is thought to be targetable using small molecules. mRNA therapies are not limited in the same way since in theory, they can silence or edit any gene by encoding CRISPR nucleases, or alternatively, produce any missing protein. Yet not all mRNA therapies are equally likely to succeed. Over the past several years, an increasing number of clinical trials with siRNA- and antisense oligonucleotide-based drugs have revealed three key concepts that will likely extend to mRNA therapies delivered by nonviral systems. First, scientists have come to understand that some genes make better targets for RNA therapies than others. Second, scientists have learned that the type and position of chemical modifications made to an RNA drug can alter its therapeutic window, toxicity, and bioavailability. Third, scientists have found that safe and targeted drug delivery vehicles are required to ferry mRNA therapies into diseased cells. In this study, we apply these learnings to cystic fibrosis (CF). We also describe lessons learned from a subset of CF gene therapies that have already been tested in patients. Finally, we highlight the scientific advances that are still required for nonviral mRNA- or CRISPR-based drugs to treat CF successfully in patients.
Collapse
Affiliation(s)
- Alejandro Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ana Cristian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James E. Dahlman
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Bañuls L, Pellicer D, Castillo S, Navarro-García MM, Magallón M, González C, Dasí F. Gene Therapy in Rare Respiratory Diseases: What Have We Learned So Far? J Clin Med 2020; 9:E2577. [PMID: 32784514 PMCID: PMC7463867 DOI: 10.3390/jcm9082577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions-cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)-alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.
Collapse
Affiliation(s)
- Lucía Bañuls
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Daniel Pellicer
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Silvia Castillo
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Paediatrics Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - María Mercedes Navarro-García
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - María Magallón
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| | - Cruz González
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
- Pneumology Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Francisco Dasí
- Research group on Rare Respiratory Diseases (ERR), Department of Physiology, School of Medicine, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (L.B.); (D.P.); (M.M.)
- Research group on Rare Respiratory Diseases (ERR), Instituto de Investigación Sanitaria INCLIVA, Fundación Investigación Hospital Clínico Valencia, Avda. Menéndez y Pelayo, 4, 46010 Valencia, Spain; (S.C.); (M.M.N.-G.); (C.G.)
| |
Collapse
|
29
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019; 7:406. [PMID: 31921811 PMCID: PMC6927921 DOI: 10.3389/fbioe.2019.00406] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.
Collapse
Affiliation(s)
- Cecilia Velino
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Vitali
- Institute for the Chemistry of Molecular Recognition (ICRM), National Research Council (CNR), c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB) - UOS Milan, National Research Council (CNR), Milan, Italy
| | - Francesca Bugli
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
31
|
Cooney AL, Thornell IM, Singh BK, Shah VS, Stoltz DA, McCray PB, Zabner J, Sinn PL. A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs. Am J Respir Cell Mol Biol 2019; 61:747-754. [PMID: 31184507 PMCID: PMC6890402 DOI: 10.1165/rcmb.2019-0006oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis is an autosomal-recessive disease that is caused by a mutant CFTR (cystic fibrosis transmembrane conductance regulator) gene and is characterized by chronic bacterial lung infections and inflammation. Complementation with functional CFTR normalizes anion transport across the airway surface. Adeno-associated virus (AAV) is a useful vector for gene therapy because of its low immunogenicity and ability to persist for months to years. However, because its episomal expression may decrease after cell division, readministration of the AAV vector may be required. To overcome this, we designed an integrating AAV-based CFTR-expressing vector, termed piggyBac (PB)/AAV, carrying CFTR flanked by the terminal repeats of the piggyBac transposon. With codelivery of the piggyBac transposase, PB/AAV can integrate into the host genome. Because of the packaging constraints of AAV, careful consideration was required to ensure that the vector would package and express its CFTR cDNA cargo. In this short-term study, PB/AAV-CFTR was aerosolized to the airways of CF pigs in the absence of the transposase. Two weeks later, transepithelial Cl- current was restored in freshly excised tracheal and bronchial tissue. Additionally, we observed an increase in tracheal airway surface liquid pH and bacterial killing in comparison with untreated CF pigs. Airway surface liquid from primary airway cells cultured from treated CF pigs exhibited increased pH correlating with decreased viscosity. Together, these results show that complementing CFTR in CF pigs with PB/AAV rescues the anion transport defect in a large-animal CF model. Delivery of this integrating viral vector system to airway progenitor cells could lead to persistent, life-long expression in vivo.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Ian M. Thornell
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Viral S. Shah
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - David A. Stoltz
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Paul B. McCray
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Joseph Zabner
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| |
Collapse
|
32
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
33
|
Hamilton BA, Li X, Pezzulo AA, Abou Alaiwa MH, Zabner J. Polarized AAVR expression determines infectivity by AAV gene therapy vectors. Gene Ther 2019; 26:240-249. [PMID: 30962536 PMCID: PMC6588428 DOI: 10.1038/s41434-019-0078-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) has been investigated to transfer the cystic fibrosis transmembrane conductance regulator (CFTR) to airways. Inhaled AAV2-CFTR in people with cystic fibrosis (CF) is safe, but inefficient. In vitro, AAV2 transduction of human airway epithelia on the apical (luminal) side is inefficient, but efficient basolaterally. We previously selected AAV2.5T, a novel capsid that apically transduces CF human airway epithelia and efficiently restores CFTR function. We hypothesize the AAV receptor (AAVR) is basolaterally localized, and that AAV2.5T utilizes an alternative apical receptor. We found AAVR in human airway epithelia by western blot and RNA-Seq analyses. Using immunocytochemistry we did not find endogenous AAVR at membranes but overexpression localized AAVR to the basolateral membrane, where it preferentially increased transduction. Anti-AAVR antibodies blocked transduction by AAV2 from the basolateral side but not AAV2.5T from the apical side, suggesting a unique apical receptor. Finally, we found infection by AAV2 but not AAV2.5T was blocked by CRISPR knockout of AAVR in cell lines. Our data suggest the absence of apical AAVR is rate limiting for AAV2, and efficient transduction by AAV2.5T is accomplished using an AAVR independent pathway. Our findings inform the development of gene therapy for CF, and AAV vectors in general.
Collapse
Affiliation(s)
- Bradley A Hamilton
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
- Molecular Medicine Program, The University of Iowa, Iowa City, IA, USA
| | - Xiaopeng Li
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA.
- Molecular Medicine Program, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Bergbower EAS, Sabirzhanova I, Boinot C, Guggino WB, Cebotaru L. Restoration of F508-del Function by Transcomplementation: The Partners Meet in the Endoplasmic Reticulum. Cell Physiol Biochem 2019; 52:1267-1279. [PMID: 31026390 DOI: 10.33594/000000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/23/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND/AIMS Because of the small size of adeno-associated virus, AAV, the cystic fibrosis conductance regulator, CFTR, cDNA is too large to fit within AAV and must be truncated. We report here on two truncated versions of CFTR, which, when inserted into AAV1 and used to infect airway cells, rescue F508-del CFTR via transcomplementation. The purpose of this study is to shed light on where in the cell transcomplementation occurs and how it results in close association between the endogenous F508-del and truncated CFTR. METHODS We treated CF airway cells (CFBE41o-) with AAV2/1 (AAV2 inverted terminal repeats/AAV1 capsid) containing truncated forms of CFTR, ∆264 and ∆27-264 CFTR, who can restore the function of F508-del by transcomplementation. We addressed the aims of the study using a combination of confocal microscopy and short circuit currents measurements. For the latter, CF bronchial epithelial cells (CFBE) were grown on permeable supports. RESULTS We show that both F508del and the truncation mutants colocalize in the ER and that both the rescued F508-del and the transcomplementing mutants reach the plasma membrane together. There was significant fluorescence resonance energy transfer (FRET) between F508-del and the transcomplementing mutants within the endoplasmic reticulum (ER), suggesting that transcomplementation occurs through a bimolecular interaction. We found that transcomplementation could increase the Isc in CFBE41o- cells stably expressing additional wt-CFTR or F508-del and in parental CFBE41o- cells expressing endogenous levels of F508-del. CONCLUSION We conclude that the functional rescue of F508-del by transcomplementation occurs via a bimolecular interaction that most likely begins in the ER and continues at the plasma membrane. These results come at an opportune time for developing a gene therapy for CF and offer new treatment options for a wide range of CF patients.
Collapse
Affiliation(s)
| | - Inna Sabirzhanova
- Departments of Medicine and Physiology, Johns Hopkins University, Baltimore, USA
| | - Clément Boinot
- Departments of Medicine and Physiology, Johns Hopkins University, Baltimore, USA
| | - William B Guggino
- Departments of Medicine and Physiology, Johns Hopkins University, Baltimore, USA
| | - Liudmila Cebotaru
- Departments of Medicine and Physiology, Johns Hopkins University, Baltimore, USA,
| |
Collapse
|
35
|
Yan Z, Zou W, Feng Z, Shen W, Park SY, Deng X, Qiu J, Engelhardt JF. Establishment of a High-Yield Recombinant Adeno-Associated Virus/Human Bocavirus Vector Production System Independent of Bocavirus Nonstructural Proteins. Hum Gene Ther 2019; 30:556-570. [PMID: 30398383 DOI: 10.1089/hum.2018.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genome of recombinant adeno-associated virus 2 (rAAV2) remains a promising candidate for gene therapy for cystic fibrosis (CF) lung disease, but due to limitations in the packaging capacity and the tropism of this virus with respect to the airways, strategies have evolved for packaging an rAAV2 genome (up to 5.8 kb) into the capsid of human bocavirus 1 (HBoV1) to produce a chimeric rAAV2/HBoV1 vector. Although a replication-incompetent HBoV1 genome has been established as a trans helper for capsid complementation, this system remains suboptimal with respect to virion yield. Here, a streamlined production system is described based on knowledge of the involvement of HBoV1 nonstructural (NS) proteins NS1, NS2, NS3, NS4, and NP1 in the process of virion production. The analyses reveal that NS1 and NS2 negatively impact virion production, NP1 is required to prevent premature termination of transcription of the cap mRNA from the native genome, and silent mutations within the polyadenylation sites of the cap coding sequence can eliminate this requirement for NP1. It is further shown that preventing the expression of all NS proteins significantly increases virion yield. Whereas the expression of capsid proteins VP1, VP2, and VP3 from a codon-optimized cap mRNA was highly efficient, optimal virion assembly, and thus potency, required enhanced VP1 expression, entailing a separate VP1 expression cassette. The final NS protein-free production system uses three-plasmid co-transfection of HEK293 cells, with one trans helper plasmid encoding VP1 and the AAV2 Rep proteins, and another encoding VP2-3 and components from adenovirus. This system yielded >16-fold more virions than the prototypic system, without reducing transduction potency. This increase in virion production is expected to facilitate greatly both research on the biology of rAAV2/HBoV1 and preclinical studies testing the effectiveness of this vector for gene therapy of CF lung disease in large animal models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Weiran Shen
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Soo Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa, Iowa City, Iowa
| |
Collapse
|
36
|
TALEN-Mediated Gene Targeting for Cystic Fibrosis-Gene Therapy. Genes (Basel) 2019; 10:genes10010039. [PMID: 30641980 PMCID: PMC6356284 DOI: 10.3390/genes10010039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited monogenic disorder, amenable to gene-based therapies. Because CF lung disease is currently the major cause of mortality and morbidity, and the lung airway is readily accessible to gene delivery, the major CF gene therapy effort at present is directed to the lung. Although airway epithelial cells are renewed slowly, permanent gene correction through gene editing or targeting in airway stem cells is needed to perpetuate the therapeutic effect. Transcription activator-like effector nuclease (TALEN) has been utilized widely for a variety of gene editing applications. The stringent requirement for nuclease binding target sites allows for gene editing with precision. In this study, we engineered helper-dependent adenoviral (HD-Ad) vectors to deliver a pair of TALENs together with donor DNA targeting the human AAVS1 locus. With homology arms of 4 kb in length, we demonstrated precise insertion of either a LacZ reporter gene or a human cystic fibrosis transmembrane conductance regulator (CFTR) minigene (cDNA) into the target site. Using the LacZ reporter, we determined the efficiency of gene integration to be about 5%. In the CFTR vector transduced cells, we were able to detect CFTR mRNA expression using qPCR and function correction using fluorometric image plate reader (FLIPR) and iodide efflux assays. Taken together, these findings suggest a new direction for future in vitro and in vivo studies in CF gene editing.
Collapse
|
37
|
Zhang XP, Zhang WT, Qiu Y, Ju MJ, Tu GW, Luo Z. Understanding Gene Therapy in Acute Respiratory Distress Syndrome. Curr Gene Ther 2019; 19:93-99. [PMID: 31267871 DOI: 10.2174/1566523219666190702154817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) and its complications remain lifethreatening conditions for critically ill patients. The present therapeutic strategies such as prone positioning ventilation strategies, nitric oxide inhalation, restrictive intravenous fluid management, and extracorporeal membrane oxygenation (ECMO) do not contribute much to improving the mortality of ARDS. The advanced understanding of the pathophysiology of acute respiratory distress syndrome suggests that gene-based therapy may be an innovative method for this disease. Many scientists have made beneficial attempts to regulate the immune response genes of ARDS, maintain the normal functions of alveolar epithelial cells and endothelial cells, and inhibit the fibrosis and proliferation of ARDS. Limitations to effective pulmonary gene therapy still exist, including the security of viral vectors and the pulmonary defense mechanisms against inhaled particles. Here, we summarize and review the mechanism of gene therapy for acute respiratory distress syndrome and its application.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wei-Tao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, No. 179 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jinghu Road, Huli District, Xiamen 361015, China
| |
Collapse
|
38
|
Figueiredo C, Carvalho Oliveira M, Chen-Wacker C, Jansson K, Höffler K, Yuzefovych Y, Pogozhykh O, Jin Z, Kühnel M, Jonigk D, Wiegmann B, Sommer W, Haverich A, Warnecke G, Blasczyk R. Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic Ex Vivo Lung Perfusion. Hum Gene Ther 2018; 30:485-496. [PMID: 30261752 DOI: 10.1089/hum.2018.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disparities at the major histocompatibility complex (MHC) antigens and associated minor antigens trigger harmful immune responses, leading to graft rejection after transplantation. We showed that MHC-silenced cells and tissues are efficiently protected against rejection. In complex vascularized organs, the endothelium is the major interface between donor and recipient. This study therefore aimed to reduce the immunogenicity of the lung by silencing MHC expression on the endothelium. In porcine lungs, short-hairpin RNAs targeting beta-2-microglobulin and class II-transactivator transcripts were delivered by lentiviral vectors during normothermic ex vivo perfusion to silence swine leukocyte antigen (SLA) I and II expression permanently. The results demonstrated the feasibility of genetically engineering all lung regions, achieving a targeted silencing effect for SLA I and II of 67% and 52%, respectively, without affecting cell viability or tissue integrity. This decrease in immunogenicity carries the potential to generate immunologically invisible organs to counteract the burden of rejection and immunosuppression.
Collapse
Affiliation(s)
- Constanca Figueiredo
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| | - Marco Carvalho Oliveira
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| | - Chen Chen-Wacker
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Katharina Jansson
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Klaus Höffler
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Yuliia Yuzefovych
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Olena Pogozhykh
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Zhu Jin
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany
| | - Mark Kühnel
- 5 German Center for Lung Research , BREATH site, Hanover, Germany .,6 Institute for Pathology , Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- 5 German Center for Lung Research , BREATH site, Hanover, Germany .,6 Institute for Pathology , Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Wiebke Sommer
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Axel Haverich
- 2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany.,4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Gregor Warnecke
- 4 Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany.,5 German Center for Lung Research , BREATH site, Hanover, Germany
| | - Rainer Blasczyk
- 1 Institute of Transfusion Medicine , Hannover Medical School, Hannover, Germany.,2 Excellence Cluster From Regenerative Biology to Reconstructive Therapy-REBIRTH , Hanover, Germany.,3 Transregional Collaborative Research Centre 127 , Hanover, Germany
| |
Collapse
|
39
|
Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9:genes9110538. [PMID: 30405068 PMCID: PMC6266271 DOI: 10.3390/genes9110538] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
40
|
Lopes-Pacheco M, Kitoko JZ, Morales MM, Petrs-Silva H, Rocco PRM. Self-complementary and tyrosine-mutant rAAV vectors enhance transduction in cystic fibrosis bronchial epithelial cells. Exp Cell Res 2018; 372:99-107. [PMID: 30244179 DOI: 10.1016/j.yexcr.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vector platforms have shown considerable therapeutic success in gene therapy for inherited disorders. In cystic fibrosis (CF), administration of first-generation rAAV2 was safe, but clinical benefits were not clearly demonstrated. Therefore, next-generation vectors that overcome rate-limiting steps in rAAV transduction are needed to obtain successful gene therapy for this devastating disease. In this study, we evaluated the effects of single-strand or self-complementary (sc) rAAV vectors containing single or multiple tyrosine-to-phenylalanine (Y-F) mutations in capsid surface-exposed residues on serotypes 2, 8 or 9. For this purpose, CF bronchial epithelial (CFBE) cells were transduced with rAAV vectors, and the transgene expression of enhanced green fluorescence protein (eGFP) was analyzed at different time points. The effects of vectors on the cell viability, host cell cycle and in association with co-adjuvant drugs that modulate intracellular vector trafficking were also investigated. Six rAAV vectors demonstrated greater percentage of eGFP+ cells compared to their counterparts at days 4, 7 and 10 post-transduction: rAAV2 Y(272,444,500,730)F, with 1.95-, 3.5- and 3.06-fold increases; rAAV2 Y(252,272,444,500,704,730)F, with 1.65-, 2.12-, and 2-fold increases; scrAAV2 WT, with 1.69-, 2.68-, and 2.32-fold increases; scrAAV8 Y773F, with 57-, 6.06-, and 7-fold increases; scrAAV9 WT, with 7.47-, 4.64-, and 3.66-fold increases; and scrAAV9 Y446F, with 8.39-, 4.62-, and 4.4-fold increases. At days 15, 20, and 30 post-transduction, these vectors still demonstrated higher transgene expression than transfected cells. Although the percentage of eGFP+ cells reduced during the time-course analysis, the delta mean fluorescence intensity increased. These vectors also led to increased percentage of cells in G1-phase without eliciting any cytotoxicity. Prior administration of bortezomib or genistein did not increase eGFP expression in cells transduced with either rAAV2 Y(272,444,500,730)F or rAAV2 Y(252,272,444,500,704,730)F. In conclusion, self-complementary and tyrosine capsid mutations on rAAV serotypes 2, 8, and 9 led to more efficient transduction than their counterparts in CFBE cells by overcoming the intracellular trafficking and second-strand DNA synthesis limitations.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Jamil Z Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
41
|
Ezra-Elia R, Obolensky A, Ejzenberg A, Ross M, Mintz D, Banin E, Ofri R. Can an in vivo imaging system be used to determine localization and biodistribution of AAV5-mediated gene expression following subretinal and intravitreal delivery in mice? Exp Eye Res 2018; 176:227-234. [PMID: 30171858 DOI: 10.1016/j.exer.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Recombinant adeno associated viruses (AAV) are the most commonly used vectors in animal model studies of gene therapy for retinal diseases. The ability of a vector to localize and remain in the target tissue, and in this manner to avoid off-target effects beyond the site of delivery, is critical to the efficacy and safety of the treatment. The in vivo imaging system (IVIS) is a non-invasive imaging tool used for detection and quantification of bioluminescence activity in rodents. Our aim was to investigate whether IVIS can detect localization and biodistribution of AAV5 vector in mice following subretinal (SR) and intravitreal (IVT) injections. AAV5 carrying firefly luciferase DNA under control of the ubiquitous cytomegalovirus (CMV) promoter was injected unilaterally IVT or SR (in the central or peripheral retina) of forty-one mice. Luciferase activity was tracked for up to 60 weeks in the longest surviving animals, using repeated (up to 12 times) IVIS bioluminescence imaging. Luciferase presence was also confirmed immunohistochemically (IHC) and by PCR in representative animals. In the SR group, IVIS readings demonstrated luciferase activity in all (32/32) eyes, and luciferase presence was confirmed by IHC (4/4 eyes) and PCR (12/12 eyes). In the IVT group, IVIS readings demonstrated luciferase activity in 7/9 eyes, and luciferase presence was confirmed by PCR in 5/5 eyes and by IHC (2/2 eyes). In two SR-injected animals (one each from the central and peripheral injection sites), PCR detected luciferase presence in the ipsilateral optic nerves, a finding that was not detected by IVIS or IHC. Our results show that when evaluating SR delivery, IVIS has a sensitivity and specificity of 100% compared with the gold standard PCR. When evaluating IVT delivery, IVIS has a sensitivity of 78% and specificity of 100%. These finding confirm the ability of IVIS to detect in-vivo localized expression of AAV following SR delivery in the retina up to 60 weeks post-treatment, using repeated imaging for longitudinal evaluation, without fading of the biological signal, thereby replacing the need for post mortem processing in order to confirm vector expression. However, IVIS is probably not sensitive enough, compared with genome detection, to demonstrate biodistribution to the optic nerve, as it could not detect luciferase activity in ipsilateral optic nerves following SR delivery in mice.
Collapse
Affiliation(s)
- Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Ejzenberg
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maya Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dvir Mintz
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations (CRMD), Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
42
|
McElvaney OJ, Gunaratnam C, Reeves EP, McElvaney NG. A specialized method of sputum collection and processing for therapeutic interventions in cystic fibrosis. J Cyst Fibros 2018; 18:203-211. [PMID: 29960875 DOI: 10.1016/j.jcf.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by aggressive neutrophil-dominated inflammation mediated in large part by neutrophil elastase (NE), an omnivorous protease released by activated or disintegrating neutrophils and a key therapeutic target. To date, several short-term studies have shown that anti-NE compounds can inhibit NE and have anti-inflammatory effects. However, progression to large-scale or multicenter clinical trials has been hampered by the fact that the current gold standard methodology of evaluating airway NE inhibition, bronchoalveolar lavage (BAL), is invasive, difficult to standardize across sites and excludes those with severe lung disease. Attempts to utilize sputum that is either spontaneously expectorated (SS) or induced (IS) have been hindered by poor reproducibility, often due to the various processing methods employed. In this study, we evaluate TEmperature-controlled Two-step Rapid Isolation of Sputum (TETRIS), a specialized method for the acquisition and processing of SS and IS. Using TETRIS, we show for the first time that NE activity and cytokine levels are comparable in BAL, SS and IS samples taken from the same people with CF (PWCF) on the same day once this protocol is used. We correlate biomarkers in TETRIS-processed IS and clinical outcome measures including FEV1, and show stability and reproducible inhibition of NE over time in IS processed by TETRIS. The data offer a tremendous opportunity to evaluate prognosis and therapeutic interventions in CF and to study the full spectrum of people with PWCF, many of whom have been excluded from previous studies due to being unfit for BAL or unable to expectorate sputum.
Collapse
Affiliation(s)
- O J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - C Gunaratnam
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - E P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - N G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
43
|
Vandamme C, Adjali O, Mingozzi F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum Gene Ther 2018; 28:1061-1074. [PMID: 28835127 PMCID: PMC5649404 DOI: 10.1089/hum.2017.150] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.
Collapse
Affiliation(s)
- Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Oumeya Adjali
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Federico Mingozzi
- Genethon and IMSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| |
Collapse
|
44
|
Abstract
BACKGROUND Crigler-Najjar syndrome type I (CNI) arises from biallelic variants of UGT1A1 that abrogate uridine diphosphate glucuronosyltransferase (UGT1A1) activity resulting in unconjugated hyperbilirubinemia. Historically, liver parenchyma in CNI was considered structurally and histologically normal. Recent review of CNI liver explants revealed fibrosis. Our aim was to investigate the association between hepatic histology and disease phenotype in CNI. METHODS We extracted data from the medical record at the time of liver transplant from 22 patients with CNI at the Children's Hospital of Pittsburgh, and reviewed explant histology. Continuous data were normally distributed, are presented as mean (±1 SD), and analyzed using two-tailed Student t-test. Categorical data were analyzed using the Chi-square test. RESULTS Both alanine transaminase (ALT; mean 87.4 IU/L) and aspartate transaminase (AST; mean 54.6 IU/L) were elevated. Nine (41%) of 22 explants had significant fibrosis. Pericentral (n = 5), periportal (n = 2), and mixed (n = 2) patterns of fibrosis occurred. A significant difference in mean age of subjects with fibrotic versus non-fibrotic livers (16.1 years vs 10.5 years; P = 0.02) was seen. There were no indices of synthetic liver dysfunction or portal hypertension. Neither a history of gallstone disease nor excess weight appeared to contribute to the development of fibrosis. CONCLUSIONS For the first time, we report a 41% prevalence of clinically silent, yet histologically significant fibrosis among subjects with Crigler-Najjar type 1. Risk for fibrosis appears to accrue with time, indicating that earlier intervention may be prudent whenever considering alternative treatments such as hepatocyte transplant, auxiliary liver transplant, or viral gene therapy.
Collapse
|
45
|
Carlon MS, Vidović D, Birket S. Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenat Diagn 2017; 37:1181-1190. [DOI: 10.1002/pd.5164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
| | - Dragana Vidović
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
- Current affiliation: Cellular Protein Chemistry, Faculty of Science; Utrecht University; The Netherlands
| | - Susan Birket
- Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
46
|
Enhancement of lung gene delivery after aerosol: a new strategy using non-viral complexes with antibacterial properties. Biosci Rep 2017; 37:BSR20160618. [PMID: 29046368 PMCID: PMC5691145 DOI: 10.1042/bsr20160618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obstructive pulmonary diseases, such as cystic fibrosis (CF), leads to the development of chronic infections in the respiratory tract. Thus, the symptomatic management of the disease requires, in particular, repetitive antibiotherapy. Besides these antibacterial treatments, certain pathologies, such as CF or chronic obstructive pulmonary disease (COPD), require the intake of many drugs. This simultaneous absorption may lead to undesirable drug interactions. For example, Orkambi® (lumacaftor/Ivacaftor, Vertex), a pharmacological drug employed to treat F508del patients, cannot be used with antibiotics such as rifampicin or rifabutin (rifamycin family) which are necessary to treat Mycobacteriaceae. As far as gene therapy is concerned, bacteria and/or biofilm in the airways present an additional barrier for gene transfer. Thus, aerosol administration of nanoparticles have to overcome many obstacles before allowing cellular penetration of therapeutic compounds. This review focusses on the development of aerosol formulations adapted to the respiratory tract and its multiple barriers. Then, formulations that are currently used in clinical applications are summarized depending on the active molecule delivered. Finally, we focus on new therapeutic approaches to reduce possible drug interactions by transferring the antibacterial activity to the nanocarrier while ensuring the transfection efficiency.
Collapse
|
47
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
48
|
Repeated AAV-mediated gene transfer by serotype switching enables long-lasting therapeutic levels of hUgt1a1 enzyme in a mouse model of Crigler-Najjar Syndrome Type I. Gene Ther 2017; 24:649-660. [PMID: 28805798 DOI: 10.1038/gt.2017.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Adeno-associated virus (AAV) -mediated gene therapy is a promising strategy to treat liver-based monogenic diseases. However, two major obstacles limit its success: first, vector dilution in actively dividing cells, such as hepatocytes in neonates/children, due to the non-integrating nature of the vector; second, development of an immune response against the transgene and/or viral vector. Crigler-Najjar Syndrome Type I is a rare monogenic disease with neonatal onset, caused by mutations in the liver-specific UGT1 gene, with toxic accumulation of unconjugated bilirubin in plasma, tissues and brain. To establish an effective and long lasting cure, we applied AAV-mediated liver gene therapy to a relevant mouse model of the disease. Repeated gene transfer to adults by AAV-serotype switching, upon neonatal administration, resulted in lifelong correction of total bilirubin (TB) levels in both genders. In contrast, vector loss over time was observed after a single neonatal administration. Adult administration resulted in lifelong TB levels correction in male, but not female Ugt1-/- mice. Our findings demonstrate that neonatal AAV-mediated gene transfer to the liver supports a second transfer of the therapeutic vector, by preventing the induction of an immune response and supporting the possibility to improve AAV-therapeutic efficacy by repeated administration.
Collapse
|
49
|
Guggino WB, Benson J, Seagrave J, Yan Z, Engelhardt J, Gao G, Conlon TJ, Cebotaru L. A Preclinical Study in Rhesus Macaques for Cystic Fibrosis to Assess Gene Transfer and Transduction by AAV1 and AAV5 with a Dual-Luciferase Reporter System. HUM GENE THER CL DEV 2017; 28:145-156. [PMID: 28726496 DOI: 10.1089/humc.2017.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease that is potentially treatable by gene therapy. Since the identification of the gene encoding CF transmembrane conductance regulator, a number of preclinical and clinical trials have been conducted using the first generation of adeno-associated virus, AAV2. All these studies showed that AAV gene therapy for CF is safe, but clinical benefit was not clearly demonstrated. Thus, a new generation of AAV vectors based on other serotypes is needed to move the field forward. This study tested two AAV serotypes (AAV1 and AAV5) using a dual-luciferase reporter system with firefly and Renilla luciferase genes packaged into AAV1 or AAV5, respectively. Two male and two female Rhesus macaques were each instilled in their lungs with both serotypes using a Penn-Century microsprayer. Both AAV1 and AAV5 vector genomes were detected in all the lung samples when measured at the time of necropsy, 45 days after instillation. However, the vector genome number for AAV1 was at least 10-fold higher than for AAV5. Likewise, luciferase activity was also detected in the same samples at 45 days. AAV1-derived activity was not statistically greater than that derived from AAV5. These data suggest that gene transfer is greater for AAV1 than for AAV5 in macaque lungs. Serum neutralizing antibodies were increased dramatically against both serotypes but were less abundant with AAV1 than with AAV5. No adverse events were noted, again indicating that AAV gene therapy is safe. These results suggest that with more lung-tropic serotypes such as AAV1, new clinical studies of gene therapy using AAV are warranted.
Collapse
Affiliation(s)
- William B Guggino
- 1 Department of Physiology, Johns Hopkins University , Baltimore, Maryland
| | - Janet Benson
- 2 Lovelace Respiratory Research Institute , Albuquerque, New Mexico
| | | | - Ziying Yan
- 3 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - John Engelhardt
- 3 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Guangping Gao
- 4 Department of Microbiology & Physiological Systems, University of Massachusetts , Worcester, Massachusetts
| | - Thomas J Conlon
- 5 Department of Pediatrics, University of Florida , Gainesville, Florida
| | - Liudmila Cebotaru
- 6 Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
50
|
Guggino WB, Cebotaru L. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 2017; 17:1265-1273. [PMID: 28657358 DOI: 10.1080/14712598.2017.1347630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Since the cystic fibrosis (CF) gene was discovered in 1989, researchers have worked to develop a gene therapy. One of the most promising and enduring vectors is the AAV, which has been shown to be safe. In particular, several clinical trials have been conducted with AAV serotype 2. All of them detected viral genomes, but identification of mRNA transduction was not consistent; clinical outcomes in Phase II studies were also inconsistent. The lack of a positive outcome has been attributed to a less-than-efficient viral infection by AAV2, a weak transgene promoter and the host immune response to the vector. Areas covered: Herein, the authors focus on AAV gene therapy for CF, evaluating past experience with this approach and identifying ways forward, based on the progress that has already been made in identifying and overcoming the limitations of AAV gene therapy. Expert opinion: Such progress makes it clear that this is an opportune time to push forward toward the development of a gene therapy for CF. Drugs to treat the basic defect in CF represent a remarkable advance but cannot treat a significant cohort of patients with rare mutations. Thus, there is a critical need to develop a gene therapy for those individuals.
Collapse
Affiliation(s)
- William B Guggino
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| | - Liudmila Cebotaru
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|