1
|
Chakraborty C, Bhattacharya M, Das A, Saha A. Regulation of miRNA in Cytokine Storm (CS) of COVID-19 and Other Viral Infection: An Exhaustive Review. Rev Med Virol 2025; 35:e70026. [PMID: 40032584 DOI: 10.1002/rmv.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
In the initial stage of the COVID-19 pandemic, high case fatality was noted. The case fatality during this was associated with the cytokine storm (CS) or cytokine storm syndrome (CSS). Sometimes, virus infections are due to the excessive secretion of pro-inflammatory cytokines, leading to cytokine storms, which might be directed to ARDS, multi-organ failure, and death. However, it was noted that several miRNAs are involved in regulating cytokines during SARS-CoV-2 and other viruses such as IFNs, ILs, GM-CSF, TNF, etc. The article spotlighted several miRNAs involved in regulating cytokines associated with the cytokine storm caused by SARS-CoV-2 and other viruses (influenza virus, MERS-CoV, SARS-CoV, dengue virus). Targeting those miRNAs might help in the discovery of novel therapeutics, considering CS or CSS associated with different virus infections.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Abinit Saha
- Deparment of Zoology, J.K. College, Purulia, India
| |
Collapse
|
2
|
Leonard J, Sinha P. Precision Medicine in Acute Respiratory Distress Syndrome: Progress, Challenges, and the Road ahead. Clin Chest Med 2024; 45:835-848. [PMID: 39443001 PMCID: PMC11507056 DOI: 10.1016/j.ccm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Several novel high-dimensional biologic measurements are increasingly being applied to biomedical sciences. Acute respiratory distress syndrome (ARDS) is a theoretically fertile ground for such approaches. Not only are these biologic and analytic tools available to better understand ARDS but also arguably, simpler approaches such as respiratory physiology has been vastly underutilized as a means of delivering precision-based care in the field. Here we review the progress made in ARDS toward discovering biologically homogeneous phenotypes, treatment responsive subgroups, the challenges to implement these discoveries at the bedside, and the road ahead that will enable precision medicine in ARDS.
Collapse
Affiliation(s)
- Jennifer Leonard
- Department of Trauma and Acute Care Surgery, Washington University, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA; Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| |
Collapse
|
3
|
Blaess M, Csuk R, Schätzl T, Deigner HP. Elongation of Very Long-Chain Fatty Acids (ELOVL) in Atopic Dermatitis and the Cutaneous Adverse Effect AGEP of Drugs. Int J Mol Sci 2024; 25:9344. [PMID: 39273293 PMCID: PMC11395647 DOI: 10.3390/ijms25179344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease, in particular among infants, and is characterized, among other things, by a modification in fatty acid and ceramide composition of the skin's stratum corneum. Palmitic acid and stearic acid, along with C16-ceramide and 2-hydroxy C16-ceramide, occur strikingly in AD. They coincide with a simultaneous decrease in very long-chain ceramides and ultra-long-chain ceramides, which form the outermost lipid barrier. Ceramides originate from cellular sphingolipid/ceramide metabolism, comprising a well-orchestrated network of enzymes involving various ELOVLs and CerSs in the de novo ceramide synthesis and neutral and acid CERase in degradation. Contrasting changes in long-chain ceramides and very long-chain ceramides in AD can be more clearly explained by the compartmentalization of ceramide synthesis. According to our hypothesis, the origin of increased C16-ceramide and 2-hydroxy C16-ceramide is located in the lysosome. Conversely, the decreased ultra-long-chain and very long-chain ceramides are the result of impaired ELOVL fatty acid elongation. The suggested model's key elements include the lysosomal aCERase, which has pH-dependent long-chain C16-ceramide synthase activity (revaCERase); the NADPH-activated step-in enzyme ELOVL6 for fatty acid elongation; and the coincidence of impaired ELOVL fatty acid elongation and an elevated lysosomal pH, which is considered to be the trigger for the altered ceramide biosynthesis in the lysosome. To maintain the ELOVL6 fatty acid elongation and the supply of NADPH and ATP to the cell, the polyunsaturated PPARG activator linoleic acid is considered to be one of the most suitable compounds. In the event that the increase in lysosomal pH is triggered by lysosomotropic compounds, compounds that disrupt the transmembrane proton gradient or force the breakdown of lysosomal proton pumps, non-HLA-classified AGEP may result.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, D-06120 Halle (Saale), Germany
| | - Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| |
Collapse
|
4
|
Pirracchio R, Venkatesh B, Legrand M. Low-Dose Corticosteroids for Critically Ill Adults With Severe Pulmonary Infections: A Review. JAMA 2024; 332:318-328. [PMID: 38865154 DOI: 10.1001/jama.2024.6096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Importance Severe pulmonary infections, including COVID-19, community-acquired pneumonia, influenza, and Pneumocystis pneumonia, are a leading cause of death among adults worldwide. Pulmonary infections in critically ill patients may cause septic shock, acute respiratory distress syndrome, or both, which are associated with mortality rates ranging between 30% and 50%. Observations Corticosteroids mitigate the immune response to infection and improve outcomes for patients with several types of severe pulmonary infections. Low-dose corticosteroids, defined as less than or equal to 400 mg hydrocortisone equivalent daily, can reduce mortality of patients with severe COVID-19, community-acquired pneumonia, and Pneumocystis pneumonia. A randomized clinical trial of 6425 patients hospitalized with COVID-19 who required supplemental oxygen or noninvasive or invasive mechanical ventilation reported that dexamethasone 6 mg daily for 10 days decreased 28-day mortality (23% vs 26%). A meta-analysis that included 7 randomized clinical trials of 1689 patients treated in the intensive care unit for severe bacterial community-acquired pneumonia reported that hydrocortisone equivalent less than or equal to 400 mg daily for 8 days or fewer was associated with lower 30-day mortality compared with placebo (10% vs 16%). In a meta-analysis of 6 randomized clinical trials, low-dose corticosteroids were associated with lower mortality rates compared with placebo for patients with HIV and moderate to severe Pneumocystis pneumonia (13% vs 25%). In a predefined subgroup analysis of a trial of low-dose steroid treatment for septic shock, patients with community-acquired pneumonia randomized to 7 days of intravenous hydrocortisone 50 mg every 6 hours and fludrocortisone 50 μg daily had decreased mortality compared with the placebo group (39% vs 51%). For patients with acute respiratory distress syndrome caused by various conditions, low-dose corticosteroids were associated with decreased in-hospital mortality (34% vs 45%) according to a meta-analysis of 8 studies that included 1091 patients. Adverse effects of low-dose corticosteroids may include hyperglycemia, gastrointestinal bleeding, neuropsychiatric disorders, muscle weakness, hypernatremia, and secondary infections. Conclusions and Relevance Treatment with low-dose corticosteroids is associated with decreased mortality for patients with severe COVID-19 infection, severe community-acquired bacterial pneumonia, and moderate to severe Pneumocystis pneumonia (for patients with HIV). Low-dose corticosteroids may also benefit critically ill patients with respiratory infections who have septic shock, acute respiratory distress syndrome, or both.
Collapse
Affiliation(s)
- Romain Pirracchio
- Department of Anesthesia and Perioperative Medicine, University of California San Francisco
- Associate Editor, JAMA
| | - Balasubramanian Venkatesh
- The George Institute for Global Health, University of New South Wales Sydney, Australia
- Gold Coast University Hospital, Southport, Queensland, Australia
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Medicine, University of California San Francisco
| |
Collapse
|
5
|
Riyaz Tramboo S, Elkhalifa AM, Quibtiya S, Ali SI, Nazir Shah N, Taifa S, Rakhshan R, Hussain Shah I, Ahmad Mir M, Malik M, Ramzan Z, Bashir N, Ahad S, Khursheed I, Bazie EA, Mohamed Ahmed E, Elderdery AY, Alenazy FO, Alanazi A, Alzahrani B, Alruwaili M, Manni E, E. Hussein S, Abdalhabib EK, Nabi SU. The critical impacts of cytokine storms in respiratory disorders. Heliyon 2024; 10:e29769. [PMID: 38694122 PMCID: PMC11058722 DOI: 10.1016/j.heliyon.2024.e29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Cytokine storm (CS) refers to the spontaneous dysregulated and hyper-activated inflammatory reaction occurring in various clinical conditions, ranging from microbial infection to end-stage organ failure. Recently the novel coronavirus involved in COVID-19 (Coronavirus disease-19) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has been associated with the pathological phenomenon of CS in critically ill patients. Furthermore, critically ill patients suffering from CS are likely to have a grave prognosis and a higher case fatality rate. Pathologically CS is manifested as hyper-immune activation and is clinically manifested as multiple organ failure. An in-depth understanding of the etiology of CS will enable the discovery of not just disease risk factors of CS but also therapeutic approaches to modulate the immune response and improve outcomes in patients with respiratory diseases having CS in the pathogenic pathway. Owing to the grave consequences of CS in various diseases, this phenomenon has attracted the attention of researchers and clinicians throughout the globe. So in the present manuscript, we have attempted to discuss CS and its ramifications in COVID-19 and other respiratory diseases, as well as prospective treatment approaches and biomarkers of the cytokine storm. Furthermore, we have attempted to provide in-depth insight into CS from both a prophylactic and therapeutic point of view. In addition, we have included recent findings of CS in respiratory diseases reported from different parts of the world, which are based on expert opinion, clinical case-control research, experimental research, and a case-controlled cohort approach.
Collapse
Affiliation(s)
- Shahana Riyaz Tramboo
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ahmed M.E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Syed Quibtiya
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Medical College, Srinagar, 190011, Jammu & Kashmir, India
| | - Sofi Imtiyaz Ali
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Naveed Nazir Shah
- Department of Chest Medicine, Govt. Medical College, Srinagar, 191202, Jammu & Kashmir, India
| | - Syed Taifa
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Rabia Rakhshan
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | - Iqra Hussain Shah
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Muzafar Ahmad Mir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Masood Malik
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Zahid Ramzan
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Nusrat Bashir
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Shubeena Ahad
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| | - Ibraq Khursheed
- Department of Zoology, Central University of Kashmir, 191201, Nunar, Ganderbal, Jammu & Kashmir, India
| | - Elsharif A. Bazie
- Pediatric Department, Faculty of Medicine, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Elsadig Mohamed Ahmed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
- Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, 1158, Sudan
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Fawaz O. Alenazy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Sanaa E. Hussein
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Ezeldine K. Abdalhabib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al-Qurayyat, Saudi Arabia
| | - Showkat Ul Nabi
- Preclinical Research Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-Kashmir), Srinagar, J&K, 190006, India
| |
Collapse
|
6
|
González-Castro A, Fernandez A, Cuenca-Fito E, Peñasco Y, Ceña J, Rodríguez Borregán JC. Association between different corticosteroid regimens used in severe SARS-CoV-2 infection and short-term mortality: retrospective cohort study. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:379-386. [PMID: 38395302 DOI: 10.1016/j.redare.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 02/25/2024]
Abstract
INTRODUCTION During the SARS-CoV-2 pandemic, several corticosteroid regimens have been used in the treatment of the disease, with disparate results according to drug and regimen used. For this reason, we wanted to analyze differences in early mortality derived from the use of different regimens of dexamethasone and methylprednisolone in SARS-CoV-2 infection in critically ill patients requiring admission to an ICU. METHOD Observational, analytical and retrospective study, in an intensive care unit of a third-level university hospital, (March 2020 and June 2021). Adult patients (>18 years old) who were admitted consecutively for proven SARS-CoV-2 infection were included. The association with mortality in ICU at 28 days, different corticosteroid regimens used, was analyzed using a Cox proportional risk regression model. RESULTS Data from a cohort of 539 patients were studied. Patient age (RR: 1.06; 95% CI: 1.02-1.10; P=<0.01) showed a significant association with 28-day mortality in the ICU. In the comparison of the different corticosteroid regimens analyzed, taking as a reference those patients who did not receive corticosteroid treatment, the dose of dexamethasone of 6mg/day showed a clear trend towards statistical significance as a protector of mortality at 28 days in the ICU (RR: 0.40, 95% CI: 0.15-1.02, p=0.05). The dose of dexamethasone of 6mg/day and low doses of methylprednisolone show a similar association with survival at 28 days (OR: 1.19; 95% CI: 0.63-2.26). CONCLUSIONS The use of corticosteroids has been associated with better mortality outcomes in severe cases of SARS-CoV-2 infection. However, the therapeutic benefits of corticosteroids are not limited to dexamethasone alone.
Collapse
Affiliation(s)
- A González-Castro
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain.
| | - A Fernandez
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - E Cuenca-Fito
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Y Peñasco
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - J Ceña
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - J C Rodríguez Borregán
- Servicio de Medicina Intensiva, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| |
Collapse
|
7
|
Chaudhary R, Meher A, Krishnamoorthy P, Kumar H. Interplay of host and viral factors in inflammatory pathway mediated cytokine storm during RNA virus infection. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100062. [PMID: 37273890 PMCID: PMC10238879 DOI: 10.1016/j.crimmu.2023.100062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
RNA viruses always have been a serious concern for human health by causing several outbreaks, often pandemics. The excessive mortality and deaths associated with the outbreaks caused by these viruses were due to the excessive induction of pro-inflammatory cytokines leading to cytokine storm. Cytokines are important for cell-to-cell communication to maintain cell homeostasis. Disturbances of this homeostasis can lead to intricate chain reactions resulting in a massive release of cytokines. This could lead to a severe self-reinforcement of several feedback processes, which could eventually cause systemic harm, multiple organ failure, or death. Multiple inflammation-associated pathways were involved in the cytokine production and its regulation. Different RNA viruses induce these pathways through the interplay with their viral factors and host proteins and miRNAs regulating these pathways. This review will discuss the interplay of host proteins and miRNAs that can play an important role in the regulation of cytokine storm and the possible therapeutic potential of these molecules for the treatment and the challenges associated with the clinical translation.
Collapse
Affiliation(s)
- Riya Chaudhary
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Aparna Meher
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan
| |
Collapse
|
8
|
Ying-Hao P, Rui-Han L, Hai-Dong Z, Qiu-Hua C, Yuan-Yuan G, Yu-Shan Y, Hai-Qi Z, Hua J. Different effects of vaccine on VST in critical and non-critical COVID-19 patients: A retrospective study of 363 cases. Heliyon 2023; 9:e16017. [PMID: 37153418 PMCID: PMC10151027 DOI: 10.1016/j.heliyon.2023.e16017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023] Open
Abstract
Aim To explore the risk factors of prolonged viral shedding time (VST) in critical/non-critical COVID-19 patients during hospitalization. Methods In this retrospective study, we enrolled 363 patients with SARS-CoV-2 infection admitted in a designated hospital during the COVID-19 outbreak in Nanjing Lukou International Airport. Patients were divided into critical (n = 54) and non-critical (n = 309) groups. We analyzed the relationship between the VST and demographics, clinical characteristics, medications, and vaccination histories, respectively. Results The median duration of VST was 24 d (IQR, 20-29) of all patients. The VST of critical cases was longer than non-critical cases (27 d, IQR, 22.0-30.0 vs. 23 d, IQR 20-28, P < 0.05). Cox proportional hazards model showed that ALT (HR = 1.610, 95%CI 1.186-2.184, P = 0.002) and EO% (HR = 1.276, 95%CI 1.042-1.563, P = 0.018) were independent factors of prolonged VST in total cases; HGB (HR = 0.343, 95%CI 0.162-0.728, P = 0.005) and ALP (HR = 0.358, 95%CI 0.133-0.968, P = 0.043) were independent factors of prolonged VST in critical cases, while EO% (HR = 1.251, 95%CI 1.015-1.541, P = 0.036) was the independent factor of prolonged VST in non-critical cases. Vaccinated critical cases showed higher levels of SARS-CoV-2-IgG (1.725 S/CO, IQR 0.3975-28.7925 vs 0.07 S/CO, IQR 0.05-0.16, P < 0.001) and longer VSTs (32.5 d, IQR 20.0-35.25 vs 23 d, IQR 18.0-30.0, P = 0.011) compared with unvaccinated critical patients. Fully vaccinated non-critical cases, however, presented higher levels of SARS-CoV-2-IgG (8.09 S/CO, IQR 1.6975-55.7825 vs 0.13 S/CO IQR 0.06-0.41, P < 0.001) and shorter VSTs (21 d, IQR 19.0-28.0 vs 24 d, IQR 21.0-28.5, P = 0.013) compared with unvaccinated non-critical patients. Conclusions Our results suggested that risk factors of prolonged VST were different between critical and non-critical COVID-19 patients. Increased level of SARS-CoV-2-IgG and vaccination did not shorten the VST and hospital stay in critical COVID-19 patients.
Collapse
Affiliation(s)
- Pei Ying-Hao
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Li Rui-Han
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Zhang Hai-Dong
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Chen Qiu-Hua
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Gu Yuan-Yuan
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Yang Yu-Shan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Zhou Hai-Qi
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Jiang Hua
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province, China
| |
Collapse
|
9
|
Raghav PK, Mann Z, Ahluwalia SK, Rajalingam R. Potential treatments of COVID-19: Drug repurposing and therapeutic interventions. J Pharmacol Sci 2023; 152:1-21. [PMID: 37059487 PMCID: PMC9930377 DOI: 10.1016/j.jphs.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | | | - Simran Kaur Ahluwalia
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Zhu Y, Chen D, Zhu Y, Ge X, Li Z, Miao H. Clinical observation of glucocorticoid therapy for critically ill patients with COVID-19 pneumonia. J Int Med Res 2023; 51:3000605221149292. [PMID: 36843426 PMCID: PMC9972059 DOI: 10.1177/03000605221149292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
OBJECTIVE We aimed to investigate the clinical effects of intravenous glucocorticoid (GC) therapy for severe COVID-19 pneumonia. METHODS Seventy-two patients hospitalized with severe COVID-19 pneumonia who were discharged or died between 5 January 2020 and 3 March 2020 at Huangshi Infectious Disease Hospital were included. Patients were divided into a treatment group (GC group) and non-treatment group (non-GC group) according to whether they had received GCs within 7 days of hospital admission. RESULTS There was no significant difference between groups for Acute Physiology and Chronic Health Evaluation (APACHE) II score and 28-day survival rate. The rate of invasive mechanical ventilation was higher in the GC group than in the non-GC group. On day 7 after admission, the GC group had shorter fever duration and higher white blood cell count than the non-GC group. In subgroup analysis by age and severity, there was no significant difference in 28-day survival rate and other indicators. Compared with those in the non-GC group, patients in the GC group more frequently required admission to the intensive care unit. CONCLUSION In the present study, we found no significant improvement in patients with severe COVID-19 pneumonia treated with GCs within 7 days of admission.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Dongmei Chen
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM
(Infectious Disease Hospital), 12 Guangchang Road, Huangshi, China
| | - Xuhua Ge
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Zhuo Li
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China
| | - Hongjun Miao
- Department of Emergency/Critical Care Medicine, Children's
Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, China,Hongjun Miao, Children's Hospital of
Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, China.
| |
Collapse
|
11
|
Gong X, Khan A, Wani MY, Ahmad A, Duse A. COVID-19: A state of art on immunological responses, mutations, and treatment modalities in riposte. J Infect Public Health 2023; 16:233-249. [PMID: 36603376 PMCID: PMC9798670 DOI: 10.1016/j.jiph.2022.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last few years, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) unleashed a global public health catastrophe that had a substantial influence on human physical and mental health, the global economy, and socio-political dynamics. SARS-CoV-2 is a respiratory pathogen and the cause of ongoing COVID-19 pandemic, which testified how unprepared humans are for pandemics. Scientists and policymakers continue to face challenges in developing ideal therapeutic agents and vaccines, while at the same time deciphering the pathology and immunology of SARS-CoV-2. Challenges in the early part of the pandemic included the rapid development of diagnostic assays, vaccines, and therapeutic agents. The ongoing transmission of COVID-19 is coupled with the emergence of viral variants that differ in their transmission efficiency, virulence, and vaccine susceptibility, thus complicating the spread of the pandemic. Our understanding of how the human immune system responds to these viruses as well as the patient groups (such as the elderly and immunocompromised individuals) who are often more susceptible to serious illness have both been aided by this epidemic. COVID-19 causes different symptoms to occur at different stages of infection, making it difficult to determine distinct treatment regimens employed for the various clinical phases of the disease. Unsurprisingly, determining the efficacy of currently available medications and developing novel therapeutic strategies have been a process of trial and error. The global scientific community collaborated to research and develop vaccines at a neck-breaking speed. This review summarises the overall picture of the COVID-19 pandemic, different mutations in SARS-CoV-2, immune response, and the treatment modalities against SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaolong Gong
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amber Khan
- Department of Clinical Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Kingdom of Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa,Corresponding author at: Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adriano Duse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Division of Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
12
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
13
|
中国微循环学会骨微循环专业委员会. [Expert consensus on clinical diagnosis and treatment technique of osteonecrosis of the femoral head (2022 version)]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1319-1326. [PMID: 36382447 PMCID: PMC9681579 DOI: 10.7507/1002-1892.202207134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/19/2022] [Indexed: 01/25/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a common and refractory disease in the clinic. Although the exact pathophysiological mechanism is not fully understood, it is believed to be closely related to the interruption of intra-bone circulation and eventual bone tissue death. The prevention and treatment of ONFH is always a great challenge for orthopedists. The diagnostic level of ONFH has been continuously improved with the development of imaging techniques such as MRI and the in-depth understanding of the disease in recent years.There are many treatment methods for ONFH, which are generally considered individually and comprehensively according to factors such as the patient's age, osteonecrosis stage, classification, and compliance with joint-sparing treatment. There is currently no unified standard. ONFH staging and classification play an important reference value for doctors to choose treatment options. In recent years, based on the characteristics of ONFH in Chinese people, the academic community has proposed Chinese staging and China-Japan Friendship Hospital (CJFH) classification. The consensus also introduces them together with the international Association Research Circulation Osseous (ARCO) staging to provide guidance for individualized treatment of ONFH. In order to further standardize the diagnosis of ONFH and expand the treatment of ONFH, the Association Related to Circulation Osseous, Chinese Microcirculation Society (CSM-ARCO) organized domestic experts in the field of ONFH to jointly formulate the expert consensus, in order to provide reference for the standardized diagnosis of ONFH and the selection of individualized diagnosis and treatment techniques.
Collapse
|
14
|
Garbern SC, Relan P, O’Reilly GM, Bills CB, Schultz M, Trehan I, Kivlehan SM, Becker TK. A systematic review of acute and emergency care interventions for adolescents and adults with severe acute respiratory infections including COVID-19 in low- and middle-income countries. J Glob Health 2022; 12:05039. [DOI: 10.7189/jogh.12.05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stephanie Chow Garbern
- Department of Emergency Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Pryanka Relan
- Department of Emergency Medicine, Emory Healthcare Network, Atlanta, Georgia, USA
| | - Gerard M O’Reilly
- Emergency and Trauma Centre, The Alfred, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Corey B Bills
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Megan Schultz
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Indi Trehan
- Departments of Pediatrics, Global Health, and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Sean M Kivlehan
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Humanitarian Initiative, Cambridge, Massachusetts, USA
| | - Torben K Becker
- Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Nazerian Y, Ghasemi M, Yassaghi Y, Nazerian A, Mahmoud Hashemi S. Role of SARS-CoV-2-induced Cytokine Storm in Multi-Organ Failure: Molecular Pathways and Potential Therapeutic Options. Int Immunopharmacol 2022; 113:109428. [PMID: 36379152 PMCID: PMC9637536 DOI: 10.1016/j.intimp.2022.109428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global public health emergency and has led to devastating results. Mounting evidence proposes that the disease causes severe pulmonary involvement and influences different organs, leading to a critical situation named multi-organ failure. It is yet to be fully clarified how the disease becomes so deadly in some patients. However, it is proven that a condition called “cytokine storm” is involved in the deterioration of COVID-19. Although beneficial, sustained production of cytokines and overabundance of inflammatory mediators causing cytokine storm can lead to collateral vital organ damages. Furthermore, cytokine storm can cause post-COVID-19 syndrome (PCS), an important cause of morbidity after the acute phase of COVID-19. Herein, we aim to explain the possible pathophysiology mechanisms involved in COVID-19-related cytokine storm and its association with multi-organ failure and PCS. We also discuss the latest advances in finding the potential therapeutic targets to control cytokine storm wishing to answer unmet clinical demands for treatment of COVID-19.
Collapse
Affiliation(s)
- Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Medical nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author at: Medical nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran / Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zheng W, Zeng Z, Lin S, Hou P. Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell Biosci 2022; 12:165. [PMID: 36182930 PMCID: PMC9526459 DOI: 10.1186/s13578-022-00899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Since an outbreak started in China in 2019, coronavirus disease 2019 (COVID-19) has rapidly become a worldwide epidemic with high contagiousness and caused mass mortalities of infected cases around the world. Currently, available treatments for COVID-19, including supportive care, respiratory support and antiviral therapy, have shown limited efficacy. Thus, more effective therapeutic modalities are highly warranted. Drug repurposing, as an efficient strategy to explore a potential broader scope of the application of approved drugs beyond their original indications, accelerates the process of discovering safe and effective agents for a given disease. Since the outbreak of COVID-19 pandemic, drug repurposing strategy has been widely used to discover potential antiviral agents, and some of these drugs have advanced into clinical trials. Antitumor drugs compromise a vast variety of compounds and exhibit extensive mechanism of action, showing promising properties in drug repurposing. In this review, we revisit the potential value of antitumor drugs in the treatment of COVID-19 and systematically discuss their possible underlying mechanisms of the antiviral actions.
Collapse
Affiliation(s)
- Wenfang Zheng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Zekun Zeng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Shumei Lin
- grid.452438.c0000 0004 1760 8119Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
17
|
Sadeghi S, Arezoomandi N, Ardestani MM, Ardestani ME, Ghiasi F, Farajzadegan Z. Efficacy and Safety Comparison of Two Different Doses of Dexamethasone in Hospitalized Patients with COVID-19: A Randomized Clinical Trial. J Res Pharm Pract 2022; 11:136-143. [PMID: 37969616 PMCID: PMC10642588 DOI: 10.4103/jrpp.jrpp_42_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2023] Open
Abstract
Objective The current study aims to investigate high- versus low-dose dexamethasone administration to control the disease with minor complications. Methods The current multicentric randomized clinical trial was conducted on 119 patients with COVID-19 pneumonia and assigned into two groups of low-dose (8 mg daily intravenous dose for at least 7 days or until discharge) (n = 61) versus high-dose dexamethasone (24 mg for 3 days followed by daily 8 mg for the at least 4 days later or until discharge) (n = 58) during 2020-2021. Oxygen saturation, dyspnea severity based on the Borg scale, and laboratory indices were assessed at 3, 5, and 7 days of corticosteroid therapy. Patients were compared regarding the length of hospitalization, intensive care unit (ICU) admission requirement, and noninvasive or invasive ventilation. The other investigations included corticosteroid-related adverse effects and mortality rates within a month after the medications. Findings Oxygen saturation, Borg scale, and C-reactive protein levels were significantly altered by the time in both the groups (P < 0.05). In contrast, the trend of improvements in Borg scale (P = 0.007) and lactate dehydrogenase levels (P = 0.034) were superior in high-dose treated cases. Drug-related adverse (P = 0.809), mortality rate (P = 0.612), hospitalization duration (P = 0.312), ICU admission requirement (P = 0.483), and noninvasive (P = 0.396) and invasive ventilation (P = 0.420) did not differ between the groups. Conclusion According to this study, low- versus high-dose dexamethasone therapy did not affect the outcomes, so low-dose dexamethasone is recommended for COVID-19 pneumonia to achieve optimal results and prevent potential adverse events.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Department of Internal Medicine, Acquired Immunodeficiency Research Center, Isfahan University of Medical, Isfahan, Iran
| | - Nima Arezoomandi
- Department of Internal Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | | | | | - Farzin Ghiasi
- Department of Internal Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Ziba Farajzadegan
- Department of Community and Family Medicine, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Subramanian V, Fuloria S, Fuloria NK, Sekar M, Dailah HG, Alsubayiel AM, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. A motley of possible therapies of the COVID-19: reminiscing the origin of the pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67685-67703. [PMID: 35933528 PMCID: PMC9362373 DOI: 10.1007/s11356-022-22345-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/28/2022] [Indexed: 05/20/2023]
Abstract
The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global population. The WHO coined the term nCOVID-19 for the disease on 11th February, 2020 and the International Committee of Taxonomy of Viruses named it SARS-CoV-2, on account of its similarity with SARS-CoV-1 of 2003. The infection is associated with fever, cough, pneumonia, lung damage, and ARDS along with clinical implications of lung opacities. Brief understanding of the entry target of virus, i.e., ACE2 receptors has enabled numerous treatment options as discussed in this review. The manuscript provides a holistic picture of treatment options in COVID-19, such as non-specific anti-viral drugs, immunosuppressive agents, anti-inflammatory candidates, anti-HCV, nucleotide inhibitors, antibodies and anti-parasitic, RNA-dependent RNA polymerase inhibitors, anti-retroviral, vitamins and hormones, JAK inhibitors, and blood plasma therapy. The text targets to enlist the investigations conducted on all the above categories of drugs, with respect to the COVID-19 pandemic, to accelerate their significance in hindering the disease progression. The data collected primarily targets recently published articles and most recent records of clinical trials, focusing on the last 10-year database. The current review provides a comprehensive view on the critical need of finding a suitable treatment for the currently prevalent COVID-19 disease, and an opportunity for the researchers to investigate the varying possibilities to find and optimized treatment approach to mitigate and ameliorate the chaos created by the pandemic worldwide.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Neelam Sharma
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy & Center of Excellence for Biomaterials Engineering, AIMST University, Bedong, Kedah, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Center of Excellence for Biomaterials Engineering, AIMST University, Bedong, Kedah, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine, Perak, Ipoh, Malaysia
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
19
|
Amaral RG, Santana RRR, Barbosa BO, Araújo YB, Lauton Santos S, Andrade LN. The The use of corticosteroid therapy for COVID-19 patients: an evidence-based overview. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i3.1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the World Health Organization declared COVID-19 as a pandemic, huge efforts to promote better treatment for the patients raised from the scientific community. One of the most effective treatment is the administration of corticosteroid in specific stages of the disease, once that severe COVID-19 pathophysiology evolves an exuberant inflammatory response, resulting in uncontrolled pulmonary inflammation and multisystem damage. However, it is still discussed whether some drugs, such as dexamethasone, are more effective than others, such as hydrocortisone and methylprednisolone. Therefore, we constructed here a comprehensive overview, based on clinical studies with detailed methodological procedures, regarding the role of corticosteroids in COVID-19 treatment. We aimed to address how the current evidence support their use in this scenario.
Collapse
|
20
|
Yang CW, Chen RD, Zhu QR, Han SJ, Kuang MJ. Efficacy of umbilical cord mesenchymal stromal cells for COVID-19: A systematic review and meta-analysis. Front Immunol 2022; 13:923286. [PMID: 36105796 PMCID: PMC9467457 DOI: 10.3389/fimmu.2022.923286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives A major challenge for COVID-19 therapy is dysregulated immune response associated with the disease. Umbilical cord mesenchymal stromal cells (UC-MSCs) may be a promising candidate for COVID-19 treatment owing to their immunomodulatory and anti-inflammatory functions. Therefore, this study aimed to evaluate the effectiveness of UC-MSCs inpatients with COVID-19. Method Medline, Embase, PubMed, Cochrane Library, and Web of Science databases were searched to collect clinical trials concerning UC-MSCs for the treatment of COVID-19. After literature screening, quality assessment, and data extraction, a systematic review and meta-analysis of the included study were performed. Results This systematic review and meta-analysis were prospectively registered on PROSPERO, and the registration number is CRD42022304061. After screening, 10 studies involving 293 patients with COVID-19 were eventually included. Our meta-analysis results showed that UC-MSCs can reduce mortality (relative risk [RR] =0.60, 95% confidence interval [CI]: [0.38, 0.95], P=0.03) in COVID-19 patients. No significant correlation was observed between adverse events and UC-MSC treatment (RR=0.85, 95% CI: [0.65, 1.10], P=0.22; RR=1.00, 95%CI: [0.64, 1.58], P=1.00). In addition, treatment with UC-MSCs was found to suppress inflammation and improve pulmonary symptoms. Conclusions UC-MSCs hold promise as a safe and effective treatment for COVID-19. Systematic Review Registartion PROSPERO, identifier CRD42022304061.
Collapse
Affiliation(s)
- Cong-wen Yang
- Department of Neurosurgery, Weifang Medical University, Weifang, China
| | - Ru-dong Chen
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qing-run Zhu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shi-jie Han
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming-jie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
21
|
Tang J. COVID-19 Pandemic and Osteoporosis in Elderly Patients. Aging Dis 2022; 13:960-969. [PMID: 35855327 PMCID: PMC9286914 DOI: 10.14336/ad.2021.1201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by an infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly becoming a worldwide epidemic and poses a significant threat to human life and health. SARS-CoV-2 can cause damage to organs throughout the body through ACE2 receptors. It may have direct and indirect effects on osteoclasts, and osteoblasts and lead to osteoporosis. Vitamin D (VitD) is a key hormone for bone health and has immunomodulatory actions of relevance in the context of the COVID-19 pandemic. Vitamin D deficiency has a significant positive association with both infection and the mortality rate of COVID-19. Elderly patients infected by COVID-19 were more likely to develop acute respiratory distress syndrome (ARDS), which was primarily caused by an inflammation storm. The production of proinflammatory cytokines increases with COVID-19 infection and immobilization may result in bone loss and bone resorption in seriously ill patients, especially aging patients. It is well known that glucocorticoids are beneficial in the treatment of acute respiratory distress syndrome (ARDS) because they reduce inflammation and improve the functioning of the lung and extrapulmonary organs. Glucocorticoid therapy is widely used to treat patients with COVID-19 in most parts of the world. During COVID-19 clinical treatment, glucocorticoids may accelerate bone loss in elderly people, making them more susceptible to the development of osteoporosis. Therefore, it is worthwhile to draw the attention of clinicians and researchers to the linkages and interactions between COVID-19, glucocorticoids, and osteoporosis (especially in elderly patients).
Collapse
Affiliation(s)
- Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Xiong L, Zhang P, Wang C, Lei S, Chen W, Lv X, Zheng X. Effects of corticosteroids treatment in patients with Severe Fever with Thrombocytopenia Syndrome:A single-center retrospective cohort study. Int J Infect Dis 2022; 122:1026-1033. [PMID: 35803466 DOI: 10.1016/j.ijid.2022.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To evaluate the effect and safety of corticosteroids(CS) treatment in patients with severe fever with thrombocytopenia syndrome(SFTS). METHODS Patients with and without CS were retrospectively compared by COX regression and 1:1 propensity score matching analysis to evaluate the effects of CS on mortality and secondary infections in patients with SFTS. RESULTS A total of 467 SFTS patients were enrolled in the cohort study, there were 52 fatal cases and 415 nonfatal cases,the overall fatality rate was 11.1%. The mortality were observed in 36/144 (25%) and 16/323 (5%) patients in the CS-treated and non-CS-treated groups,respectively (P<0.001).Multivariate cox regression analysis showed that the difference was not statistically significant for CS treatment in the fatality (P>0.05, aHR 1.003, 95%CI 0.49-2.06).Difference in survival time between CS-treated and non-CS-treated groups after propensity score matching had no statistically significant (Log-Rank test P=0.390),whereas there was a significant difference in secondary infections between the CS-treated and non-CS-treated groups (P=0.007). CONCLUSIONS Although the CS treatment had no influence on fatality in patients with SFTS, it increased the risk of secondary infections.Administration of CS in patients with SFTS should be carefully considered and take into account the balance between therapeutic efficacy and adverse effects.
Collapse
Affiliation(s)
- Leiqun Xiong
- Department of Transfusion, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Pingping Zhang
- Department of Transfusion, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Cuibi Wang
- Department of Transfusion, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Shen Lei
- Department of Transfusion, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Weiyuan Chen
- Department of Transfusion, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xiaoying Lv
- Department of Transfusion, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China.
| | - Xin Zheng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
23
|
Abadijoo H, Khayamian MA, Faramarzpour M, Ghaderinia M, Simaee H, Shalileh S, Yazdanparast SM, Ghabraie B, Makarem J, Sarrami-Forooshani R, Abdolahad M. Healing Field: Using Alternating Electric Fields to Prevent Cytokine Storm by Suppressing Clonal Expansion of the Activated Lymphocytes in the Blood Sample of the COVID-19 Patients. Front Bioeng Biotechnol 2022; 10:850571. [PMID: 35721862 PMCID: PMC9201910 DOI: 10.3389/fbioe.2022.850571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
In the case of the COVID-19 early diagnosis, numerous tech innovations have been introduced, and many are currently employed worldwide. But, all of the medical procedures for the treatment of this disease, up to now, are just limited to chemical drugs. All of the scientists believe that the major challenge toward the mortality of the COVID-19 patients is the out-of-control immune system activation and the subsequent cytokine production. During this process, the adaptive immune system is highly activated, and many of the lymphocytes start to clonally expand; hence many cytokines are also released. So, any attempt to harness this cytokine storm and calm down the immune outrage is appreciated. While the battleground for the immune hyperactivation is the lung ambient of the infected patients, the only medical treatment for suppressing the hypercytokinemia is based on the immunosuppressor drugs that systemically dampen the immunity with many unavoidable side effects. Here, we applied the alternating electric field to suppress the expansion of the highly activated lymphocytes, and by reducing the number of the renewed cells, the produced cytokines were also decreased. Applying this method to the blood of the COVID-19 patients in vitro showed ∼33% reduction in the average concentration of the three main cytokines after 4 days of stimulation. This method could carefully be utilized to locally suppress the hyperactivated immune cells in the lung of the COVID-19 patients without any need for systemic suppression of the immune system by the chemical drugs.
Collapse
Affiliation(s)
- Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Ali Khayamian, , ; Mohammad Abdolahad, ,
| | - Mahsa Faramarzpour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Ghaderinia
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Simaee
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Shalileh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Yazdanparast
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Ghabraie
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Makarem
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami-Forooshani
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Ali Khayamian, , ; Mohammad Abdolahad, ,
| |
Collapse
|
24
|
Ho WS, Zhang R, Tan YL, Chai CLL. COVID-19 and the promise of small molecule therapeutics: Are there lessons to be learnt? Pharmacol Res 2022; 179:106201. [PMID: 35367622 PMCID: PMC8970615 DOI: 10.1016/j.phrs.2022.106201] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic had grounded the world to a standstill. As the disease continues to rage two years on, it is apparent that effective therapeutics are critical for a successful endemic living with COVID-19. A dearth in suitable antivirals has prompted researchers and healthcare professionals to investigate existing and developmental drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some of these drugs initially appeared to be promising for the treatment of COVID-19, they were ultimately found to be ineffective. In this review, we provide a retrospective analysis on the merits and limitations of some of these drugs that were tested against SARS-CoV-2 as well as those used for adjuvant therapy. While many of these drugs are no longer part of our arsenal for the treatment of COVID-19, important lessons can be learnt. The recent inclusion of molnupiravir and Paxlovid™ as treatment options for COVID-19 represent our best hope to date for endemic living with COVID-19. Our viewpoints on these two drugs and their prospects as current and future antiviral agents will also be provided.
Collapse
Affiliation(s)
- Wei Shen Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Ruirui Zhang
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yeong Lan Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
25
|
Yoo W, Lee W, Kim HN, Jeong J, Park HH, Ahn JH, Jung D, Lee J, Kim JS, Lee SW, Cho WS, Kim S. Nanodiamond as a Cytokine Sponge in Infectious Diseases. Front Bioeng Biotechnol 2022; 10:862495. [PMID: 35445003 PMCID: PMC9014093 DOI: 10.3389/fbioe.2022.862495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokine release syndrome (CRS) is a systemic inflammatory response resulting in overexpression of cytokines in serum and tissues, which leads to multiple-organ failure. Due to rapid aggravation of symptoms, timely intervention is paramount; however, current therapies are limited in their capacity to address CRS. Here, we find that the intravenous injection of highly purified detonation-synthesized nanodiamonds (DND) can act as a therapeutic agent for treating CRS by adsorbing inflammatory cytokines. Highly purified DNDs successfully inactivated various key cytokines in plasma from CRS patients with pneumonia, septic shock, and coronavirus disease 2019 pandemic (COVID-19). The intravenous injection of the DND samples in a mouse sepsis model by cecal ligation and puncture significantly improved survival rates and prevented tissue damage by reducing the circulating inflammatory cytokines. The results of this study suggest that the clinical application of highly purified DND can provide survival benefits for CRS patients by adsorbing inflammatory cytokines.
Collapse
Affiliation(s)
- Wonbeak Yoo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Jiyoung Jeong
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, South Korea
| | - June Hong Ahn
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, South Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Ji-su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Seung Whan Lee
- Institute of Plasma Technology Research, Korea Institute of Fusion Energy, Gunsan-si, South Korea
- *Correspondence: Seung Whan Lee, ; Wan-Seob Cho, ; Seokho Kim,
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
- *Correspondence: Seung Whan Lee, ; Wan-Seob Cho, ; Seokho Kim,
| | - Seokho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
- *Correspondence: Seung Whan Lee, ; Wan-Seob Cho, ; Seokho Kim,
| |
Collapse
|
26
|
Osteoarthritis, Corticosteroids and Role of CYP Genes in COVID-19 Patients: A Mini Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives of this review is to evaluate the role of cytochrome P450 gene polymorphisms in COVID-19 infected patients with pre-existing OA on corticosteroids. The purpose of this review is to analyze whether polymorphisms of Cytochrome p450 isoforms (CYP2C9 and CYP3A4) affect the dosage of steroids in OA patients in COVID-19 infected patients. This review may provide more therapeutic options; suggest a few guidelines which may be useful in managing COVID-19 patients with pre-existing osteoarthritis. The important role of corticosteroids in treating patients infected with COVID-19 with preexisting osteoarthritis, its influence on incidence of mortality or morbidity may be highlighted. The influence of CYP enzymes and their polymorphisms suggest safety of treatments as well as the possible need for the dosage adjustment or their discontinuation.
Collapse
|
27
|
Toroghi N, Abbasian L, Nourian A, Davoudi-Monfared E, Khalili H, Hasannezhad M, Ghiasvand F, Jafari S, Emadi-Kouchak H, Yekaninejad MS. Comparing efficacy and safety of different doses of dexamethasone in the treatment of COVID-19: a three-arm randomized clinical trial. Pharmacol Rep 2022; 74:229-240. [PMID: 34837648 PMCID: PMC8627167 DOI: 10.1007/s43440-021-00341-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Corticosteroids are commonly used in the treatment of hospitalized patients with COVID-19. The goals of the present study were to compare the efficacy and safety of different doses of dexamethasone in the treatment of patients with a diagnosis of moderate to severe COVID-19. METHODS Hospitalized patients with a diagnosis of moderate to severe COVID-19 were assigned to intravenous low-dose (8 mg once daily), intermediate-dose (8 mg twice daily) or high-dose (8 mg thrice daily) dexamethasone for up to 10 days or until hospital discharge. Clinical response, 60-day survival and adverse effects were the main outcomes of the study. RESULTS In the competing risk survival analysis, patients in the low-dose group had a higher clinical response than the high-dose group when considering death as a competing risk (HR = 2.03, 95% CI: 1.23-3.33, p = 0.03). Also, the survival was significantly longer in the low-dose group than the high-dose group (HR = 0.36, 95% CI = 0.15-0.83, p = 0.02). Leukocytosis and hyperglycemia were the most common side effects of dexamethasone. Although the incidence was not significantly different between the groups, some adverse effects were numerically higher in the intermediate-dose and high-dose groups than in the low-dose group. CONCLUSIONS Higher doses of dexamethasone not only failed to improve efficacy but also resulted in an increase in the number of adverse events and worsen survival in hospitalized patients with moderate to severe COVID-19 compared to the low-dose dexamethasone. (IRCT20100228003449N31).
Collapse
Affiliation(s)
- Negar Toroghi
- Department of Clinical Pharmacy, International Campus, School of Pharmacy, Tehran University of Medical Sciences, P.O.Box: 14155/6451, 1417614411 Tehran, Iran
| | - Ladan Abbasian
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahid Nourian
- Department of Clinical Pharmacy, International Campus, School of Pharmacy, Tehran University of Medical Sciences, P.O.Box: 14155/6451, 1417614411 Tehran, Iran
| | - Effat Davoudi-Monfared
- Department of Clinical Pharmacy, International Campus, School of Pharmacy, Tehran University of Medical Sciences, P.O.Box: 14155/6451, 1417614411 Tehran, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, International Campus, School of Pharmacy, Tehran University of Medical Sciences, P.O.Box: 14155/6451, 1417614411 Tehran, Iran
| | - Malihe Hasannezhad
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Ghiasvand
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Jafari
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Emadi-Kouchak
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Alipanah N, Calfee CS. Phenotyping in acute respiratory distress syndrome: state of the art and clinical implications. Curr Opin Crit Care 2022; 28:1-8. [PMID: 34670998 PMCID: PMC8782441 DOI: 10.1097/mcc.0000000000000903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Decades of research in acute respiratory distress syndrome (ARDS) have led to few interventions that impact clinical outcomes. The pandemic of patients with ARDS due to the novel SARS-CoV-2 infection has stressed the need for more effective therapies in ARDS. Phenotyping may enable successful trials and precision therapeutics in this patient population. RECENT FINDINGS Clinical phenotypes that group patients by shared cause, time-course or radiographic presentation are of prognostic value, but their use is limited by misclassification. Physiological phenotypes, including the P/F ratio, ventilatory ratio and dead space fraction, predict poor outcomes but can rapidly change, making them unstable over time. Biologic phenotypes have prognostic value with composite clinical and biomarker sub-phenotypes additionally impacting treatment response but are yet to be prospectively validated. SUMMARY Although much progress has been made in ARDS phenotyping, implementation of precision medicine practices will depend on conducting phenotype-aware trials using rapid point of care assays or machine learning algorithms. Omics studies will enhance our understanding of biologic determinants of clinical outcomes in ARDS sub-phenotypes. Whether biologic ARDS sub-phenotypes are specific to this syndrome or rather more broadly identify endotypes of critical illness remains to be determined.
Collapse
Affiliation(s)
- Narges Alipanah
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco
- Department of Anesthesia, University of California San Francisco
| |
Collapse
|
29
|
Kory P, Meduri GU, Iglesias J, Varon J, Cadegiani FA, Marik PE. "MATH+" Multi-Modal Hospital Treatment Protocol for COVID-19 Infection: Clinical and Scientific Rationale. J Clin Med Res 2022; 14:53-79. [PMID: 35317360 PMCID: PMC8912998 DOI: 10.14740/jocmr4658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
In December 2019, coronavirus disease 2019 (COVID-19), a severe respiratory illness caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The greatest impact that COVID-19 had was on intensive care units (ICUs), given that approximately 20% of hospitalized cases developed acute respiratory failure (ARF) requiring ICU admission. Based on the assumption that COVID-19 represented a viral pneumonia and no anti-coronaviral therapy existed, nearly all national and international health care societies recommended "supportive care only" avoiding other therapies outside of randomized controlled trials, with a specific prohibition against the use of corticosteroids in treatment. However, early studies of COVID-19-associated ARF reported inexplicably high mortality rates, with frequent prolonged durations of mechanical ventilation (MV), even from centers expert in such supportive care strategies. These reports led the authors to form a clinical expert panel called the Front-Line COVID-19 Critical Care Alliance (www.flccc.net). The panel collaboratively reviewed the emerging clinical, radiographic, and pathological reports of COVID-19 while initiating multiple discussions among a wide clinical network of front-line clinical ICU experts from initial outbreak areas in China, Italy, and New York. Based on the shared early impressions of "what was working and what wasn't working", the increasing medical journal publications and the rapidly accumulating personal clinical experiences with COVID-19 patients, a treatment protocol was created for the hospitalized patients based on the core therapies of methylprednisolone, ascorbic acid, thiamine, heparin and non-antiviral co-interventions (MATH+). This manuscript reviews the scientific and clinical rationale behind MATH+ based on published in-vitro, pre-clinical, and clinical data in support of each medicine, with a special emphasis of studies supporting their use in the treatment of patients with viral syndromes and COVID-19 specifically.
Collapse
Affiliation(s)
- Pierre Kory
- Front Line Critical Care Consortium (FLCCC.org), Washington DC, USA
| | | | - Jose Iglesias
- Jersey Shore University Medical Center, Hackensack School of Medicine at Seton Hall, NJ, USA
| | - Joseph Varon
- University of Texas Health Science Center, Houston, TX, USA
| | | | - Paul E. Marik
- Front Line Critical Care Consortium (FLCCC.org), Washington DC, USA
| |
Collapse
|
30
|
Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 2022; 127:214-232. [PMID: 33641685 PMCID: PMC8047403 DOI: 10.1017/s0007114521000738] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haematopoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system malfunction has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesion molecules and tight junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency both weakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous problems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even prevent infection, and the transition from mild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis with COVID-19 and registered studies in progress are listed.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| |
Collapse
|
31
|
Lin L, Xue D, Chen JH, Wei QY, Huang ZH. Methylprednisolone accelerate chest computed tomography absorption in COVID-19: A three-centered retrospective case control study from China. World J Clin Cases 2022; 10:426-436. [PMID: 35097067 PMCID: PMC8771405 DOI: 10.12998/wjcc.v10.i2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Based on the results of some large randomized controlled trials (RCTs) confirmed the efficacy of corticosteroids in coronavirus disease 2019 (COVID-19), corticosteroids have been included in World Health Organization guidelines, but remain controversial. AIM To investigate the efficacy and safety of low-to-moderate dose (30 to 40 mg/d) short-term methylprednisolone for COVID-19 patients. METHODS The clinical data of 70 patients diagnosed with COVID-19 who received antiviral therapy with Arbidol for 7-10 d before admission but had no obvious absorption on chest computed tomography (CT) imaging were retrospectively analyzed. Arbidol (as the control group) and methylprednisolone (as the corticosteroid group) were given respectively after admission. After treatment, chest CT was reexamined to evaluate the absorption of pulmonary lesions. Additionally, we evaluated and compared the lymphocyte count, erythrocyte sedimentation rate (ESR), interleukin-6(IL-6), serum ferritin, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), hypersensitive C-reactive protein (hs-CRP) and D-dimer levels, and also analyzed the incidence of toxic and side effects. RESULTS All patients in the corticosteroid group had varying degrees of CT absorption, which was significantly better than that in the control group (CT obvious absorption rate: 89.47% vs 12.5%, P < 0.05). The average daily dose and course of methylprednisolone in the patients with significant improvement on chest CT was (38.55 ± 13.17) mg and (6.44 ± 1.86) d respectively. During the treatment, the lymphocyte count, ESR, IL-6, serum ferritin, LDH, CK-MB, hs-CRP and D-dimer levels all improved gradually, indicating that both Arbidol and methylprednisolone therapy were contributed to improving the condition of COVID-19 patients. The corticosteroid regimen did not prolong the clearance time of severe acute respiratory syndrome coronavirus 2. There were no severe adverse reactions such as gastrointestinal bleeding, secondary severe infection, hypertension, diabetic ketoacidosis, mental disorders or electrolyte disorders during the whole corticosteroid treatment process. CONCLUSION Low-to-moderate dose short-term methylprednisolone can accelerate the chest CT imaging absorption of COVID-19 so as to improve symptoms and alleviate the condition in a short term, reduce the hospital stay, meanwhile avoid severe COVID-19 phases. The protocol has been proven to be effective and safe in clinical use.
Collapse
Affiliation(s)
- Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Dan Xue
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Jin-Hua Chen
- Department of Medical Administration, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Qiong-Ying Wei
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Zheng-Hui Huang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
32
|
[Aseptic osteonecrosis of the medial femoral condyle in a patient with acute SARS-CoV-2 infection]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2022; 125:664-666. [PMID: 34586423 PMCID: PMC8479260 DOI: 10.1007/s00113-021-01082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
|
33
|
Peng Z, Su L, Yang C, Zhang J, Dou R, Sun Z, Yang J, He L, Jiang N, Huang R, Yuan F, Xiao G, Gan Q, Lu Q. Corticosteroids Utilization in the Management of Critically Ill Coronavirus Disease-2019 Pneumonia. JOURNAL OF TRANSLATIONAL CRITICAL CARE MEDICINE 2022. [PMCID: PMC9070587 DOI: 10.4103/jtccm.jtccm-d-21-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Dexamethasone. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217718 DOI: 10.1016/b978-0-323-85156-5.00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The corticosteroid drug “dexamethasone” has been in use since 1960s for reducing inflammation in a variety of conditions such as certain cancers and other inflammatory disorders. It is an affordable agent and currently off-patent in most countries and listed in multiple formulations since 1977 in the World Health Organization model list of essential medicines. The cytokines production and damaging effect has been limited through the use of dexamethasone and this will also block B cells from antibodies production and inhibit the T cell's protective function potential leading to elevated viral load in the plasma that persists for longer time after a patient survives SARS. In addition, dexamethasone would chunk the macrophages from clearing the resultant nosocomial infections. Thus, dexamethasone may be valuable for the immediate relief in severe cases of COVID-19, but could be dangerous on the long run as the body will be barred from producing protective antibodies in addition to the persistence of the virus.
Collapse
|
35
|
Mairpady Shambat S, Gómez-Mejia A, Schweizer TA, Huemer M, Chang CC, Acevedo C, Bergada-Pijuan J, Vulin C, Hofmaenner DA, Scheier TC, Hertegonne S, Parietti E, Miroshnikova N, Wendel Garcia PD, Hilty MP, Buehler PK, Schuepbach RA, Brugger SD, Zinkernagel AS. Hyperinflammatory environment drives dysfunctional myeloid cell effector response to bacterial challenge in COVID-19. PLoS Pathog 2022; 18:e1010176. [PMID: 35007290 PMCID: PMC8782468 DOI: 10.1371/journal.ppat.1010176] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/21/2022] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.
Collapse
Affiliation(s)
- Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Claudio Acevedo
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Judith Bergada-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel A. Hofmaenner
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C. Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sanne Hertegonne
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Parietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Nataliya Miroshnikova
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro D. Wendel Garcia
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias P. Hilty
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Karl Buehler
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Cederstrom V, Erickson H, Leatherman J. Acute Hypoxemic Respiratory Failure with High Clinical Suspicion of COVID-19 Despite Negative PCR: a Case for Empiric Corticosteroids and Role of Serum Antibody in Diagnosis. J Gen Intern Med 2022; 37:232-235. [PMID: 34704203 PMCID: PMC8547287 DOI: 10.1007/s11606-021-07177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Vannesa Cederstrom
- Internal Medicine, Department of Medicine, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Heidi Erickson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hennepin County Medical Center, Minneapolis, MN, USA
- University of Minnesota, Minneapolis, MN, USA
| | - James Leatherman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hennepin County Medical Center, Minneapolis, MN, USA.
- University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
37
|
Rahman MM, Ahmed M, Islam MT, Khan MR, Sultana S, Maeesa SK, Hasan S, Hossain MA, Ferdous KS, Mathew B, Rauf A, Uddin MS. Nanotechnology-based Approaches and Investigational Therapeutics against COVID-19. Curr Pharm Des 2022; 28:948-968. [PMID: 34218774 DOI: 10.2174/1381612827666210701150315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the current global pandemic, which first emerged in December 2019. This coronavirus has affected 217 countries worldwide, most of which have enacted non-remedial preventive measures, such as nationwide lockdowns, work from home, travel bans, and social isolation. Pharmacists, doctors, nurses, technologists, and other healthcare professionals have played pivotal roles during this pandemic. Unfortunately, confirmed drugs have not been identified for the treatment of patients with coronavirus disease 2019 (COVID-19) caused by SARSCoV2; however, favipiravir and remdesivir have been reported as promising antiviral drugs. Some vaccines have already been developed, and vaccination is ongoing globally. Various nanotechnologies are currently being developed in many countries for preventing SARS-CoV-2 spread and treating COVID-19 infections. In this article, we present an overview of the COVID-19 pandemic situation and discuss nanotechnology-based approaches and investigational therapeutics for COVID-19.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sakib Hasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Kazi Sayma Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| |
Collapse
|
38
|
Cui Y, Sun Y, Sun J, Liang H, Ding X, Sun X, Wang D, Sun T. Efficacy and Safety of Corticosteroid Use in Coronavirus Disease 2019 (COVID-19): A Systematic Review and Meta-Analysis. Infect Dis Ther 2021; 10:2447-2463. [PMID: 34389970 PMCID: PMC8363240 DOI: 10.1007/s40121-021-00518-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION We conducted a comprehensive literature review to synthesize evidence for the relationship between corticosteroid use and mortality in patients with COVID-19. METHODS The PUBMED, EMBASE, and Cochrane Library were searched from inception to March 13, 2021. We searched and analyzed randomized controlled trials (RCTs) and observational studies (OSs) that examined corticosteroid use in patients with COVID-19. The primary outcome was in-hospital mortality, while the secondary outcome was the need for mechanical ventilation (MV) and serious adverse events. RESULTS A total of 11 RCTs and 44 OSs involving 7893 and 41,164 patients with COVID-19 were included in the study. Corticosteroid use was associated with lower COVID-19 mortality in RCTs, but was not statistically significant (OR 0.91, 95% CI 0.77-1.07; I2 = 63.4%). The subgroup analysis of pulse dose corticosteroid showed survival benefit statistically (OR 0.29, 95% CI 0.15-0.56). Moreover, the corticosteroid use may reduce the need for MV (OR 0.67, 95% CI 0.51-0.90; I2 = 7.5%) with no significant increase in serious adverse reactions (OR 0.84, 95% CI 0.30-2.37; I2 = 33.3%). In addition, the included OSs showed that the pulse dose (OR 0.66, 95% CI 0.45-0.95; I2 = 30.8%) might lower the mortality in patients with COVID-19. The pulse dose of methylprednisolone (OR 0.60, 95% CI 0.45-0.80; I2 = 0%) had a beneficial effect on survival. It was especially significant when the duration of pulse methylprednisolone use was less than 7 days (OR 0.59, 95% CI 0.43-0.80; I2 = 0%). CONCLUSIONS This meta-analysis indicated that corticosteroid use might cause a slight reduction in COVID-19 mortality. However, it could significantly reduce the MV requirement in patients with COVID-19 and restrict serious adverse events. Additionally, the pulse dose of methylprednisolone for less than 7 days may be a good treatment choice for patients with COVID-19.
Collapse
Affiliation(s)
- Yuqing Cui
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yali Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junyi Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huoyan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianfei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyi Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dong Wang
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Malek RJ, Bill CA, Vines CM. Clinical drug therapies and biologicals currently used or in clinical trial to treat COVID-19. Biomed Pharmacother 2021; 144:112276. [PMID: 34624681 PMCID: PMC8486678 DOI: 10.1016/j.biopha.2021.112276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
The potential emergence of SARS-CoV-2 variants capable of escaping vaccine-generated immune responses poses a looming threat to vaccination efforts and will likely prolong the duration of the COVID-19 pandemic. Additionally, the prevalence of beta coronaviruses circulating in animals and the precedent they have set in jumping into human populations indicates that they pose a continuous threat for future pandemics. Currently, only one therapeutic is approved by the U.S. Food and Drug Administration (FDA) for use in treating COVID-19, remdesivir, although other therapies are authorized for emergency use due to this pandemic being a public health emergency. In this review, twenty-four different treatments are discussed regarding their use against COVID-19 and any potential future coronavirus-associated illnesses. Their traditional use, mechanism of action against COVID-19, and efficacy in clinical trials are assessed. Six treatments evaluated are shown to significantly decrease mortality in clinical trials, and ten treatments have shown some form of clinical efficacy.
Collapse
Affiliation(s)
- Rory J. Malek
- University of Texas at Austin, Austin TX 78705, United States
| | - Colin A. Bill
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso TX 79968, United States
| | - Charlotte M. Vines
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso TX 79968, United States,Corresponding author
| |
Collapse
|
40
|
Crothers K, DeFaccio R, Tate J, Alba PR, Goetz MB, Jones B, King JT, Marconi V, Ohl ME, Rentsch CT, Rodriguez-Barradas MC, Shahrir S, Justice AC, Akgün KM. Dexamethasone in hospitalised coronavirus-19 patients not on intensive respiratory support. Eur Respir J 2021; 60:13993003.02532-2021. [PMID: 34824060 PMCID: PMC8841623 DOI: 10.1183/13993003.02532-2021] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Background Dexamethasone decreases mortality in coronavirus disease 2019 (COVID-19) patients on intensive respiratory support (IRS) but is of uncertain benefit if less severely ill. We determined whether early (within 48 h) dexamethasone was associated with mortality in patients hospitalised with COVID-19 not on IRS. Methods We included patients admitted to US Veterans Affairs hospitals between 7 June 2020 and 31 May 2021 within 14 days after a positive test for severe acute respiratory syndrome coronavirus 2. Exclusions included recent prior corticosteroids and IRS within 48 h. We used inverse probability of treatment weighting (IPTW) to balance exposed and unexposed groups, and Cox proportional hazards models to determine 90-day all-cause mortality. Results Of 19 973 total patients (95% men, median age 71 years, 27% black), 15 404 (77%) were without IRS within 48 h. Of these, 3514 out of 9450 (34%) patients on no oxygen received dexamethasone and 1042 (11%) died; 4472 out of 5954 (75%) patients on low-flow nasal cannula (NC) only received dexamethasone and 857 (14%) died. In IPTW stratified models, patients on no oxygen who received dexamethasone experienced 76% increased risk for 90-day mortality (hazard ratio (HR) 1.76, 95% CI 1.47–2.12); there was no association with mortality among patients on NC only (HR 1.08, 95% CI 0.86–1.36). Conclusions In patients hospitalised with COVID-19, early initiation of dexamethasone was common and was associated with no mortality benefit among those on no oxygen or NC only in the first 48 h; instead, we found evidence of potential harm. These real-world findings do not support the use of early dexamethasone in hospitalised COVID-19 patients without IRS. Although commonly used, dexamethasone within 48 h of admission was associated with increased 90-day mortality in patients hospitalised with COVID-19 not on oxygen and with no mortality benefit in patients on low-flow nasal cannulahttps://bit.ly/3l2aqjb
Collapse
Affiliation(s)
- Kristina Crothers
- Veterans Affairs (VA) Puget Sound Health Care System, Seattle, WA, USA .,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rian DeFaccio
- Veterans Affairs (VA) Puget Sound Health Care System, Seattle, WA, USA
| | - Janet Tate
- VA Connecticut Health Care System and Yale University School of Medicine, New Haven, CT, USA
| | - Patrick R Alba
- VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Matthew Bidwell Goetz
- VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Barbara Jones
- VA Salt Lake City Health Care System and University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joseph T King
- VA Connecticut Health Care System and Yale University School of Medicine, New Haven, CT, USA
| | - Vincent Marconi
- Atlanta VA Medical Center, and Emory University, Atlanta, GA, USA
| | - Michael E Ohl
- Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Christopher T Rentsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London , UK
| | | | - Shahida Shahrir
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amy C Justice
- VA Connecticut Health Care System and Yale University School of Medicine, New Haven, CT, USA.,Yale School of Public Health, New Haven, CT, USA
| | - Kathleen M Akgün
- VA Connecticut Health Care System and Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
41
|
Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA, Aderogba MA, Sharp HL, Nash RJ. Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human PBMCs through inhibition of NF-κB activation. Phytother Res 2021; 35:6963-6973. [PMID: 34697842 PMCID: PMC8661957 DOI: 10.1002/ptr.7315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 μg/ml) and garcinoic acid (1.25, 2.5, and 5 μM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1β, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Victoria U Iwuanyanwu
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Izabela Lepiarz-Raba
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Alaa A Al-Hindawi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Mutalib A Aderogba
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | |
Collapse
|
42
|
Rao GK, Gowthami B, Naveen NR, Samudrala PK. An updated review on potential therapeutic drug candidates, vaccines and an insight on patents filed for COVID-19. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100063. [PMID: 34870158 PMCID: PMC8498785 DOI: 10.1016/j.crphar.2021.100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of COVID-19 was recognized in December 2019 in China and as of October5th, the pandemic was swept through 216 countries and infected around 34,824,108 individuals, thus posing an unprecedented threat to world's health and economy. Several researchers reported that, a significant mutation in membrane proteins and receptor binding sites of preceding severe acute respiratory syndrome coronavirus (SARS-CoV) to turned as novel SARS-CoV-2 virus and disease was named as COVID-19 (Coronavirus disease 2019). Unfortunately, there is no specific treatment available for COVID-19 patients. The lessons learned from the past management of SARS-CoV and other pandemics, have provided some insights to treat COVID-19. Currently, therapies like anti-viral treatment, immunomodulatory agents, plasma transfusion and supportive intervention etc., are using to treat the COVID-19. Few of these were proven to provide significant therapeutic benefits in treating the COVID-19, however no drug is approved by the regulatory agencies. As the fatality rate is high in patients with comorbid conditions, we have also enlightened the current in-line treatment therapies and specific treatment strategies in comorbid conditions to combat the emergence of COVID-19. In addition, pharmaceutical, biological companies and research institutions across the globe have begun to develop thesafe and effective vaccine for COVID-19. Globally around 170 teams of researchers are racing to develop the COVID-19 vaccine and here we have discussed about their current status of development. Furthermore, recent patents filed in association with COVID-19 was elaborated. This can help many individuals, researchers or health workers, in applying these principles for diagnosis/prevention/management/treatment of the current pandemic.
Collapse
Affiliation(s)
- G.S.N. Koteswara Rao
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522502, India
| | - Buduru Gowthami
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Andhra Pradesh 516126, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram, 534202, Andhra Pradesh, India
| |
Collapse
|
43
|
He XL, Zhou YY, Fu W, Xue YE, Liang MY, Yang BH, Ma WL, Zhou Q, Chen L, Zhang JC, Wang XR. Prolonged SARS-CoV-2 Viral Shedding in Patients with COVID-19 was Associated with Delayed Initiation of Arbidol Treatment and Consulting Doctor Later: A Retrospective Cohort Study. Curr Med Sci 2021; 41:1096-1104. [PMID: 34515914 PMCID: PMC8436017 DOI: 10.1007/s11596-021-2434-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Objective To study data about SARS-CoV-2 virus shedding and clarify the risk factors for prolonged virus shedding. Methods Data were retrospectively collected from adults hospitalized with laboratory-confirmed coronavirus disease-19 (COVID-19) in Wuhan Union Hospital. We compared clinical features among patients with prolonged (a positive SARS-CoV-2 RNA on day 23 after illness onset) and short virus shedding and evaluated risk factors associated with prolonged virus shedding by multivariate regression analysis. Results Among 238 patients, the median age was 55.5 years, 57.1% were female, 92.9% (221/238) were administered with arbidol, 58.4% (139/238) were given arbidol in combination with interferon. The median duration of SARS-CoV-2 virus shedding was 23 days (IQR, 17.8–30 days) with a longest one of 51 days. The patients with prolonged virus shedding had higher value of D-dimer (P=0.002), IL-6 (P<0.001), CRP (P=0.005) and more lobes lung lesion (P=0.014) on admission, as well as older age (P=0.017) and more patients with hypertension (P=0.044) than in those the virus shedding less than 23 days. Multivariate regression analysis revealed that prolonged viral shedding was significantly associated with initiation arbidol >8 days after symptom onset [OR: 2.447, 95% CI (1.351–4.431)], ≥3 days from onset of symptoms to first medical visitation [OR: 1.880, 95% CI (1.035–3.416)], illness onset before Jan. 31, 2020 [OR: 3.289, 95% CI (1.474–7.337)]. Arbidol in combination with interferon was also significantly associated with shorter virus shedding [OR: 0.363, 95% CI (0.191–0.690)]. Conclusion Duration of SARS-CoV-2 virus shedding was long. Early initiation of arbidol and arbidol in combination with interferon as well as consulting doctor timely after illness onset were helpful for SARS-CoV-2 clearance. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s11596-021-2434-y and is accessible for authorized users.
Collapse
Affiliation(s)
- Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Ya Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Fu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-E Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng-Yuan Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo-Han Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian-Chu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiao-Rong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
44
|
Chen Z, Liu A, Cheng Y, Wang X, Xu X, Huang J, Ma Y, Gao M, Huang C. Hydroxychloroquine/chloroquine in patients with COVID-19 in Wuhan, China: a retrospective cohort study. BMC Infect Dis 2021; 21:805. [PMID: 34384388 PMCID: PMC8358550 DOI: 10.1186/s12879-021-06477-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Background Since the COVID-19 pandemic, several therapeutic agents have been used in COVID-19 management. However, the results were controversial. Here, we aimed to evaluate the efficacy and safety of hydroxychloroquine (HCQ)/chloroquine (CQ) in COVID-19. Methods We retrospectively reviewed the medical charts of patients with COVID-19 admitted to an inpatient ward in Wuhan from 2020/Feb/08 to 2020/Mar/05. Patients with HCQ/CQ and age, gender, disease severity matched ones without HCQ/CQ were selected at a 1:2 ratio. The clinical, laboratory and imaging findings were compared between these two groups. The multivariate linear regression analysis was performed to identify the factors that might influence patients’ virus shedding periods (VSPs). Results A total of 14 patients with HCQ/CQ and 21 matched ones were analyzed. The HCQ/CQ treatment lasted for an average of 10.36 ± 3.12 days. The mean VSPs were longer in the HCQ/CQ treatment group (26.57 ± 10.35 days vs. 19.10 ± 7.80 days, P = 0.020). There were 3 patients deceased during inpatient period, two patients were with HCQ/CQ treatment (P = 0.551). In the multivariate linear regression analysis, disease durations at admission (t = 3.643, P = 0.001) and HCQ/CQ treatment (t = 2.637, P = 0.013) were independent parameters for patients’ VSPs. One patient with CQ had recurrent first-degree atrioventricular block (AVB) and obvious QTc elongation, another one complained about dizziness and blurred vision which disappeared after CQ discontinuation. One patient with HCQ had transient AVB. Conclusions In summary, we identify that the HCQ/CQ administration is not related to less mortality cases at later phase of COVID-19. More studies are needed to explore whether HCQ/CQ treatment would lead to SARS-Cov-2 RNA clearance delay or not. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06477-x.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Aihua Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yongjing Cheng
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China.
| | - Xutao Wang
- Department of Emergency, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xiaomao Xu
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jia Huang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yuqing Ma
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ming Gao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Cibo Huang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
45
|
Shang L, Lye DC, Cao B. Contemporary narrative review of treatment options for COVID-19. Respirology 2021; 26:745-767. [PMID: 34240518 PMCID: PMC8446994 DOI: 10.1111/resp.14106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is ongoing and many drugs have been studied in clinical trials. From a pathophysiological perspective, anti-viral drugs may be more effective in the early stage while immunomodulators may be more effective in severe patients in later stages of infection. While drugs such as lopinavir-ritonavir, hydroxychloroquine and azithromycin have proved to be ineffective in randomized controlled trials, corticosteroids, neutralizing monoclonal antibodies, remdesivir, tocilizumab and baricitinib have been reported to benefit certain groups of patients with COVID-19. In this review, we will present the key clinical evidence and progress in promising COVID-19 therapeutics, as well as summarize the experience and lessons learned from the development of the current therapeutics.
Collapse
Affiliation(s)
- Lianhan Shang
- Beijing University of Chinese MedicineBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - David Chien Lye
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore
- National Centre for Infectious DiseasesSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Bin Cao
- Beijing University of Chinese MedicineBeijingChina
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
- Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Tsinghua University‐Peking University Joint Center for Life SciencesBeijingChina
- Department of Respiratory MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
46
|
Comparison of Associations Between Glucocorticoids Treatment and Mortality in COVID-19 Patients and SARS Patients: A Systematic Review and Meta-Analysis. Shock 2021; 56:215-228. [PMID: 33555845 DOI: 10.1097/shk.0000000000001738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The response to glucocorticoids treatment may be different between coronavirus disease 2019 (Covid-19) and severe acute respiratory syndrome (SARS). METHODS In this systematic review and meta-analysis, we searched studies on Medline, Embase, EBSCO, ScienceDirect, Web of Science, Cochrane Library, ClinicalTrials.gov, International Clinical Trials Registry Platform from 2002 to October 7, 2020. We used fixed-effects and random-effects models to compute the risk ratio of death in the group receiving glucocorticoids treatment and the control group for COVID-19 and SARS, respectively. RESULTS Ten trials and 71 observational studies, with a total of 45,935 patients, were identified. Glucocorticoids treatment was associated with decreased all-cause mortality both in COVID-19 (risk ratio, 0.88; 95% confidence interval, 0.82-0.94; I2 = 26%) and SARS (0.48; 0.29-0.79; 10%), based on high-quality evidence, as well as decreased all-cause mortality-including composite outcome of COVID-19 (0.89; 0.82-0.98; 0%). In subgroup analyses, all-cause mortality was significantly lower among COVID-19 patients being accompanied by severe ARDS but not mild ARDS, taking low-dose or pulse glucocorticoids, being critically severe but not only severe, being of critical severity and old but not young, being of critical severity and men but not women, non-early taking glucocorticoids, taking dexamethasone or methylprednisolone, and with the increased inflammatory state; but for SARS, lower mortality was observed among those who were taking medium-high dose glucocorticoids, being severe or critically severe, early taking glucocorticoids, and taking methylprednisolone or prednisolone. CONCLUSIONS Glucocorticoids treatment reduced mortality in COVID-19 and SARS patients of critical severity; however, different curative effects existed between the two diseases among subpopulations, mainly regarding sex- and age-specific effects, optimal doses, and use timing of glucocorticoids.
Collapse
|
47
|
Lu L, Huang J, Deng X, Sun X, Dong J. Application of glucocorticoids in patients with novel coronavirus infection: From bench to bedside. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s257590002030009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids (GCs) have potential anti-inflammatory and immunosuppressive effects. There is plenty of controversy about the application of glucocorticoids in the treatment of coronavirus disease 2019 (COVID-19). This paper briefly summarizes the mechanism of glucocorticoids and their receptors and clinical applications in COVID-19. Through reviewing the current literature, our aim is to have a deeper understanding of the mechanism of GCs and their clinical applications, so as to find possible ways to enhance their efficacy and reduce drug resistance or side effects.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xiaohong Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, P. R. China
- Qingpu Chinese Medicine Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, P. R. China
| |
Collapse
|
48
|
Cao C, He L, Ma J, Chen M, Li Y, Jiang Q, Wu S, Yu L, Huang W, Qian G, Zhu C, Chu J, Chen X. Clinical features and predictors for patients with severe SARS-CoV-2 pneumonia at the start of the pandemic: a retrospective multicenter cohort study. BMC Infect Dis 2021; 21:666. [PMID: 34238240 PMCID: PMC8266160 DOI: 10.1186/s12879-021-06335-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Background This study was performed to investigate clinical features of patients with severe SARS-CoV-2 pneumonia and identify risk factors for converting to severe cases in those who had mild to moderate diseases at the start of the pandemic in China. Methods In this retrospective, multicenter cohort study, patients with mild to moderate SARS-CoV-2 pneumonia were included. Demographic data, symptoms, laboratory values, and clinical outcomes were collected. Data were compared between non-severe and severe patients. Results 58 patients were included in the final analysis. Compared with non-severe cases, severe patients with SARS-CoV-2 pneumonia had a longer: time to clinical recovery (12·9 ± 4·4 vs 8·3 ± 4·7; P = 0·0011), duration of viral shedding (15·7 ± 6·7 vs 11·8 ± 5·0; P = 0·0183), and hospital stay (20·7 ± 1·2 vs 14·4 ± 4·3; P = 0·0211). Multivariate logistic regression indicated that lymphocyte count was significantly associated with the rate of converting to severe cases (odds ratio 1·28, 95%CI 1·06–1·54, per 0·1 × 109/L reduced; P = 0·007), while using of low-to-moderate doses of systematic corticosteroids was associated with reduced likelihood of converting to a severe case (odds ratio 0·14, 95%CI 0·02–0·80; P = 0·0275). Conclusions The low peripheral blood lymphocyte count was an independent risk factor for SARS-CoV-2 pneumonia patients converting to severe cases. However, this study was carried out right after the start of the pandemic with small sample size. Further prospective studies are warranted to confirm these findings. Trial registration Chinese Clinical Trial Registry, ChiCTR2000029839. Registered 15 February 2020 - Retrospectively registered.
Collapse
Affiliation(s)
- Chao Cao
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Li He
- Department of Respiratory and Critical Medicine, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Jingping Ma
- Department of Respiratory and Critical Medicine, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Meiping Chen
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Yiting Li
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Qingwen Jiang
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Shiyu Wu
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Lili Yu
- Department of Respiratory and Critical Medicine, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Weina Huang
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Guoqing Qian
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Chuanbing Zhu
- Department of Respiratory and Critical Medicine, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Jinguo Chu
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, 59 Liuting Road, Ningbo, Zhejiang, China.
| |
Collapse
|
49
|
Wei L, Shang Y, Liu X, Li X, Chen G, Liang S, Zou Z, Ding T, Hong Z, Wu M, Xia J. Antibody Responses and the Effects of Clinical Drugs in COVID-19 Patients. Front Immunol 2021; 12:580989. [PMID: 34177879 PMCID: PMC8220093 DOI: 10.3389/fimmu.2021.580989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) emerged around December 2019 and have become a global epidemic disease currently. Specific antibodies against SAS-COV-2 could be detected in COVID-19 patients' serum or plasma, but the clinical values of these antibodies as well as the effects of clinical drugs on humoral responses have not been fully demonstrated. In this study, 112 plasma samples were collected from 36 patients diagnosed with laboratory-confirmed COVID-19 in the Fifth Affiliated Hospital of Sun Yat-sen University. The IgG and IgM antibodies against receptor binding domain (RBD) and spike protein subunit 1 (S1) of SAS-COV-2 were detected by ELISA. We found that COVID-19 patients generated specific antibodies against SARS-CoV-2 after infection, and the levels of anti-RBD IgG within 2 to 3 weeks from onset were negatively associated with the time of positive-to-negative conversion of SARS-CoV-2 nucleic acid. Patients with severe symptoms had higher levels of anti-RBD IgG in 2 to 3 weeks from onset. The use of chloroquine did not significantly influence the patients' antibody titer but reduced C-reaction protein (CRP) level. Using anti-viral drugs (lopinavir/ritonavir or arbidol) reduced antibody titer and peripheral lymphocyte count. While glucocorticoid therapy developed lower levels of peripheral lymphocyte count and higher levels of CRP, lactate dehydrogenase (LDH), α-Hydroxybutyrate dehydrogenase(α-HBDH), total bilirubin (TBIL), direct bilirubin (DBIL). From these results, we suggested that the anti-RBD IgG may provide an early protection of host humoral responses against SAS-COV-2 infection within 2 to 3 weeks from onset, and clinical treatment with different drugs displayed distinct roles in humoral and inflammatory responses.
Collapse
Affiliation(s)
- Liwen Wei
- Program of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuqi Shang
- Program of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xi Liu
- Program of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Gongqi Chen
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Siping Liang
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Zou
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongsi Hong
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Minhao Wu
- Program of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Biosafety Laboratory, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Xia
- Program of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
50
|
Sun W, Liao JP, Yu KY, Qiu JX, Que CL, Wang GF, Ma J. A severe case of human coronavirus 229E pneumonia in an elderly man with diabetes mellitus: a case report. BMC Infect Dis 2021; 21:524. [PMID: 34088268 PMCID: PMC8176273 DOI: 10.1186/s12879-021-06188-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background With pandemic of coronavirus disease 2019 (COVID-19), human coronaviruses (HCoVs) have recently attached worldwide attention as essential pathogens in respiratory infection. HCoV-229E has been described as a rare cause of lower respiratory infection in immunocompetent adults. Case presentation We reported a 72-year-old man infected by HCoV-229E with rapid progression to acute respiratory distress syndrome, in conjunction with new onset atrial fibrillation, intensive care unit acquired weakness, and recurrent hospital acquired pneumonia. Clinical and radiological data were continuously collected. The absolute number of peripheral T cells and the level of complement components diminished initially and recovered after 2 months. The patient was successfully treated under intensive support care and discharged from the hospital after 3 months and followed. Conclusion HCoV-229E might an essential causative agent of pulmonary inflammation and extensive lung damage. Supportive treatment was essential to HCoVs infection on account of a long duration of immunological recovery in critical HCoV-229E infection.
Collapse
Affiliation(s)
- Wen Sun
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Ji-Ping Liao
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China.
| | - Kun-Yao Yu
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Jian-Xing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Chen-Li Que
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Guang-Fa Wang
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Jing Ma
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|