1
|
Hou J, Hess JL, Zhang C, van Rooij JGJ, Hearn GC, Fan CC, Faraone SV, Fennema-Notestine C, Lin SJ, Escott-Price V, Seshadri S, Holmans P, Tsuang MT, Kremen WS, Gaiteri C, Glatt SJ. Meta-Analysis of Transcriptomic Studies of Blood and Six Brain Regions Identifies a Consensus of 15 Cross-Tissue Mechanisms in Alzheimer's Disease and Suggests an Origin of Cross-Study Heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33019. [PMID: 39679839 PMCID: PMC12048288 DOI: 10.1002/ajmg.b.33019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The comprehensive genome-wide nature of transcriptome studies in Alzheimer's disease (AD) should provide a reliable description of disease molecular states. However, the genes and molecular systems nominated by transcriptomic studies do not always overlap. Even when results do align, it is not clear if those observations represent true consensus across many studies. A couple of sources of variation have been proposed to explain this variability, including tissue-of-origin and cohort type, but its basis remains uncertain. To address this variability and extract reliable results, we utilized all publicly available blood or brain transcriptomic datasets of AD, comprised of 24 brain studies with 4007 samples from six different brain regions, and eight blood studies with 1566 samples. We identified a consensus of AD-associated genes across brain regions and AD-associated gene-sets across blood and brain, generalizable machine learning and linear scoring classifiers, and significant contributors to biological diversity in AD datasets. While AD-associated genes did not significantly overlap between blood and brain, our findings highlighted 15 dysregulated processes shared across blood and brain in AD. The top five most significantly dysregulated processes were DNA replication, metabolism of proteins, protein localization, cell cycle, and programmed cell death. Conversely, addressing the discord across studies, we found that large-scale gene co-regulation patterns can account for a significant fraction of variability in AD datasets. Overall, this study ranked and characterized a compilation of genes and molecular systems consistently identified across a large assembly of AD transcriptome studies in blood and brain, providing potential candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiahui Hou
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gentry C Hearn
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, California, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Shu-Ju Lin
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Valentina Escott-Price
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sudha Seshadri
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Chris Gaiteri
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Korkmaz F, Sims S, Sen F, Sultana F, Laurencin V, Cullen L, Pallapati A, Liu A, Chen R, Rojekar S, Pevnev G, Cheliadinova U, Vasilyeva D, Burganova G, Macdonald A, Saxena M, Goosens K, Rosen CJ, Barak O, Lizneva D, Gumerova A, Ye K, Ryu V, Yuen T, Frolinger T, Zaidi M. Gene-dose-dependent reduction of Fshr expression improves spatial memory deficits in Alzheimer's mice. Mol Psychiatry 2025; 30:2119-2126. [PMID: 39548323 PMCID: PMC12097745 DOI: 10.1038/s41380-024-02824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of Alzheimer's disease (AD). We have shown recently that FSH directly activates the hippocampal FSH receptors (FSHRs) to drive AD-like pathology and memory loss in mice. To unequivocally establish a role for FSH in memory loss, we depleted the Fshr on a 3xTg background and utilized Morris Water Maze to study deficits in spatial memory. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age. The loss of memory acquisition and retrieval were both rescued in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice-documenting clear gene-dose-dependent prevention of spatial memory loss. Furthermore, at 5 and 8 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the learning and/or retrieval phases, further suggesting that Fshr deletion prevents age-related progression of memory deficits. This prevention was not seen when mice were ovariectomized, except in the 8-month-old 3xTg;Fshr-/- mice. There was also a gene-dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels <8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial memory deficits in mice and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of memory loss in post-menopausal women.
Collapse
Affiliation(s)
- Funda Korkmaz
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Sims
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fazilet Sen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhath Sultana
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Laurencin
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cullen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anusha Pallapati
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avi Liu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Chen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satish Rojekar
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgii Pevnev
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Uliana Cheliadinova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darya Vasilyeva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guzel Burganova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne Macdonald
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansi Saxena
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ki Goosens
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Orly Barak
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Vitaly Ryu
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tal Frolinger
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mone Zaidi
- Mount Sinai Center for Translational Medicine and Pharmacology, Department of Pharmacological Sciences, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Castillo EDM, Quiróz U, Milflores L, Reyes R, Flores G. Lesion of the ventral or dorsal hippocampus in the rat delays puberty, follicular growth and secretion of sex steroid hormones. Front Endocrinol (Lausanne) 2025; 16:1530692. [PMID: 40309443 PMCID: PMC12040663 DOI: 10.3389/fendo.2025.1530692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The hypothalamus-pituitary-gonad axis is controlled by gonadotropins and by a direct neural pathway to the gonads. New evidence suggests the existence of neural connection from the hippocampus to the hypothalamus that can regulate its function. It could be a new control on the well-regulated hormonal and neural connection to the gonads and hence in reproduction. The objective of this study was to analyze the effects of independent lesion of the dorsal or ventral hippocampus in the female rat on the onset of puberty, follicular growth and serum concentration of sex steroid and gonadotropins. Methods Prepubertal female rats of the CII-ZV strain, 21 days old, were used. Ventral (VH-L) or dorsal (DH-L) hippocampus lesions by the administration of ibotenic acid were performed using stereotaxic surgery. Controls were sham-operated (VH-Sham and DH- Sham), a fifth group was used as absolute control. At 30 days of age all groups underwent novel object recognition tests (NORT). Results Data from memory using NORT showed a decrease both in short- and long-term memory in the animals in the VH- L and DH-L groups compared to their respective sham-operated controls and the absolute control group. Similarly, injured rats presented delayed vaginal opening and in first vaginal estrus, a decrease in the number of healthy ovarian follicles and an increase in follicular atresia. The ventral or dorsal hippocampus lesions also caused a significant decrease in the secretion of estradiol and progesterone, an increased plasma testosterone. Only DH-L group showed a significant decrease in serum FSH concentrations compared to their respective control groups. Discussion These results show for the first time that the hippocampus participates in a stimulatory manner, that could overcome the gonadotropic control by acting by a neural connection to the gonads giving a novel integrative mechanism between learning processes with neuroendocrine mechanism regulating the ovary function.
Collapse
Affiliation(s)
- Estrella del Mar Castillo
- Laboratorio de Histofisiología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ubaldo Quiróz
- Laboratorio de Histofisiología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Laboratorio de Biología Oral, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Lorena Milflores
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Rosalina Reyes
- Laboratorio de Biología de la Reproducción, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
4
|
Ozsahin I, Wang X, Zhou L, Xi K, Hojjati SH, Tanzi E, Maloney T, Fung EK, Dyke JP, Chen K, Pahlajani S, McIntire LB, Costa AP, Dartora WJ, Razlighi QR, Glodzik L, Li Y, Chiang GC, Rusinek H, de Leon MJ, Butler TA. Divergent neurodegeneration associations with choroid plexus volume and degree of calcification in cognitively normal APOE ε4 carriers and non-carriers. Sci Rep 2025; 15:12818. [PMID: 40229453 PMCID: PMC11997051 DOI: 10.1038/s41598-025-97409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Choroid plexus (CP), best known for producing CSF, also regulate inflammation and clear metabolic waste to maintain brain homeostasis. CP dysfunction is implicated in Alzheimer's Disease (AD), with MRI studies showing CP enlargement in AD. The basis for CP enlargement is unknown. We hypothesized that calcium deposition within CP, which increases with aging and in certain neurodegenerative conditions, might underlie pathologic CP enlargement and be linked to neurodegeneration. In 166 cognitively normal participants, we used multimodal imaging to examine CP structure (MRI-measured overall volume, CT-measured calcium volume), PET-measured Aβ, age, and APOE genotype as predictors of neurodegeneration, indexed as hippocampal volume. CP enlargement was associated with reduced hippocampal volume, particularly in APOE4 carriers. CP calcium was not independently associated with hippocampal volume. However, a significant interaction revealed APOE4 genotype-specific associations between CP calcium and neurodegeneration, with APOE4 carriers showing greater hippocampal volumes in association with greater CP calcium-opposite to our hypothesis. Results suggest that a factor other than calcium drives pathologic CP enlargement associated with neurodegeneration, with this factor especially important in APOE4 carriers. Candidate factors include lipids and inflammatory cells, which are known to accumulate in CP and be regulated by APOE. Our findings highlight CP as a critical locus for studying AD pathogenesis and the mechanisms by which APOE4 promotes AD.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
- Operational Research Center in Healthcare, Near East University, Near East Boulevard, Nicosia/TRNC, 99138, Mersin 10, Turkey.
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Kewei Chen
- Banner Alzheimer Institute, Arizona State University, 901 E Willetta St, Phoenix, AZ, 85006, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ana Paula Costa
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William Jones Dartora
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, 660 1st Avenue, New York, NY, 10016, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Elango K, Kekäläinen J. Putting Nose into Reproduction: Influence of Nasal and Reproductive Odourant Signaling on Male Reproduction. Mol Reprod Dev 2025; 92:e70010. [PMID: 39834068 DOI: 10.1002/mrd.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Odourant receptors (ORs) are not restricted only to the nose, but also occur in many other organs and tissues, including the reproductive system. In fact, ORs are the most heavily expressed in testis than in any other extra-nasal tissue. Accumulating evidence suggests that olfactory and reproductive systems are both structurally and functionally linked and that these interconnections can influence various aspects of reproduction. In this article, we first review our current understanding of these interconnections and then collate accumulated evidence on the presence of ORs in the male reproductive system and sperm cells. We then investigate the potential role of female reproductive tract odourants in sperm chemotaxis and selection. Finally, since the existing evidence especially for sperm odor sensing capability and its physiological function are controversial, we also review potential reasons for the controversy and propose some ways to resolve the debate. Collectively, we conclude that reproductive odourant signaling may play an important, although currently largely unclear role in many key processes directly related to male fertility. However, since we lack holistic understanding of the functional significance of ORs and odor sensing pathways of the male reproductive system, more empirical research is warranted.
Collapse
Affiliation(s)
- Kamaraj Elango
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
6
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
7
|
Koh EH, Ewing SK, Sigurdsson S, Gudnason V, Hue TF, Vittinghoff E, Ohlsson C, Tivesten Å, Grahnemo L, Yuen T, Zaidi M, Rosen CJ, Schwartz AV, Schafer AL. Higher FSH Level Is Associated With Increased Risk Of Incident Hip Fracture In Older Adults, Independent Of Sex Hormones. J Clin Endocrinol Metab 2024:dgae690. [PMID: 39394788 DOI: 10.1210/clinem/dgae690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
CONTEXT Higher levels of FSH are associated with bone loss among women during the perimenopausal transition and among older men, independent of estradiol and testosterone levels, but whether higher FSH is an independent fracture risk factor is unknown. OBJECTIVE Determine whether baseline FSH level predicts subsequent hip fracture in older adults. SETTING, DESIGN, PARTICIPANTS Using a case-cohort design, we randomly sampled 295 participants stratified by sex from the Age, Gene/Environment Susceptibility (AGES)-Reykjavik cohort, including 25 participants with incident hip fracture within 10 years after baseline. We sampled an additional 230 sex-stratified participants with incident hip fracture. Serum FSH and sex hormone levels were measured at baseline. Robust weighted Cox proportional hazards models were used to determine the relationship between FSH and hip fracture risk. MAIN OUTCOME Incident hip fracture. RESULTS As no interaction was identified between FSH and sex for the relationship with fracture, men and women were pooled for analysis. Higher levels of FSH were associated with a significantly increased risk of incident hip fracture in models adjusted for age and sex [hazard ratio (HR) 1.24 (95% CI 1.04-1.48, p=0.02)] and after further adjustment for estradiol, testosterone, and sex hormone binding globulin levels [HR 1.20 (95% CI 1.01-1.44, p=0.04) per sex-specific SD increase in FSH level]. CONCLUSIONS Higher FSH is associated with increased risk of subsequent hip fracture. Our findings support a growing body of evidence for direct pleiotropic effects of FSH on bone, and for a role for FSH in aging and disability independent of sex hormone levels.
Collapse
Affiliation(s)
- Eileen H Koh
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan K Ewing
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Vilmundur Gudnason
- Icelandic Heart Association Research Institute, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology and Mount Sinai Bone Program, and Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology and Mount Sinai Bone Program, and Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Anne L Schafer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Endocrine Unit, San Francisco VA Health Care System, San Francisco, CA, USA
| |
Collapse
|
8
|
Zhang H, Huang D, Chen E, Cao D, Xu T, Dizdar B, Li G, Chen Y, Payne P, Province M, Li F. mosGraphGPT: a foundation model for multi-omic signaling graphs using generative AI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606222. [PMID: 39149314 PMCID: PMC11326168 DOI: 10.1101/2024.08.01.606222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Generative pretrained models represent a significant advancement in natural language processing and computer vision, which can generate coherent and contextually relevant content based on the pre-training on large general datasets and fine-tune for specific tasks. Building foundation models using large scale omic data is promising to decode and understand the complex signaling language patterns within cells. Different from existing foundation models of omic data, we build a foundation model, mosGraphGPT, for multi-omic signaling (mos) graphs, in which the multi-omic data was integrated and interpreted using a multi-level signaling graph. The model was pretrained using multi-omic data of cancers in The Cancer Genome Atlas (TCGA), and fine-turned for multi-omic data of Alzheimer's Disease (AD). The experimental evaluation results showed that the model can not only improve the disease classification accuracy, but also is interpretable by uncovering disease targets and signaling interactions. And the model code are uploaded via GitHub with link: https://github.com/mosGraph/mosGraphGPT.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Di Huang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Ben Dizdar
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Computer Science and Engineering
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
| | | | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Sobczuk J, Paczkowska K, Andrusiów S, Bolanowski M, Daroszewski J. Are Women with Polycystic Ovary Syndrome at Increased Risk of Alzheimer Disease? Lessons from Insulin Resistance, Tryptophan and Gonadotropin Disturbances and Their Link with Amyloid-Beta Aggregation. Biomolecules 2024; 14:918. [PMID: 39199306 PMCID: PMC11352735 DOI: 10.3390/biom14080918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer disease, the leading cause of dementia, and polycystic ovary syndrome, one of the most prevalent female endocrine disorders, appear to be unrelated conditions. However, studies show that both disease entities have common risk factors, and the amount of certain protein marker of neurodegeneration is increased in PCOS. Reports on the pathomechanism of both diseases point to the possibility of common denominators linking them. Dysregulation of the kynurenine pathway, insulin resistance, and impairment of the hypothalamic-pituitary-gonadal axis, which are correlated with amyloid-beta aggregation are these common areas. This article discusses the relationship between Alzheimer disease and polycystic ovary syndrome, with a particular focus on the role of disorders of tryptophan metabolism in both conditions. Based on a review of the available literature, we concluded that systemic changes occurring in PCOS influence the increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Joachim Sobczuk
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
| | | | - Szymon Andrusiów
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, University Clinical Hospital, 50-367 Wroclaw, Poland
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Frolinger T, Korkmaz F, Sims S, Sen F, Sultana F, Laurencin V, Cullen L, Pallapati AR, Liu A, Rojekar S, Pevnev G, Cheliadinova U, Vasilyeva D, Burganova G, Macdonald A, Saxena M, Goosens K, Rosen C, Barak O, Lizneva D, Gumerova A, Ye K, Ryu V, Yuen T, Zaidi M. Gene-Dose-Dependent Reduction Fshr Expression Improves Spatial Memory Deficits in Alzheimer's Mice. RESEARCH SQUARE 2024:rs.3.rs-3964789. [PMID: 38463956 PMCID: PMC10925392 DOI: 10.21203/rs.3.rs-3964789/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is a major progressive neurodegenerative disorder of the aging population. High post-menopausal levels of the pituitary gonadotropin follicle-stimulating hormone (FSH) are strongly associated with the onset of AD, and we have shown recently that FSH directly activates the hippocampal Fshr to drive AD-like pathology and memory loss in mice. To establish a role for FSH in memory loss, we used female 3xTg;Fshr+/+, 3xTg;Fshr+/- and 3xTg;Fshr-/- mice that were either left unoperated or underwent sham surgery or ovariectomy at 8 weeks of age. Unoperated and sham-operated 3xTg;Fshr-/- mice were implanted with 17β-estradiol pellets to normalize estradiol levels. Morris Water Maze and Novel Object Recognition behavioral tests were performed to study deficits in spatial and recognition memory, respectively, and to examine the effects of Fshr depletion. 3xTg;Fshr+/+ mice displayed impaired spatial memory at 5 months of age; both the acquisition and retrieval of the memory were ameliorated in 3xTg;Fshr-/- mice and, to a lesser extent, in 3xTg;Fshr+/- mice- -thus documenting a clear gene-dose-dependent prevention of hippocampal-dependent spatial memory impairment. At 5 and 10 months, sham-operated 3xTg;Fshr-/- mice showed better memory performance during the acquasition and/or retrieval phases, suggesting that Fshr deletion prevented the progression of spatial memory deficits with age. However, this prevention was not seen when mice were ovariectomized, except in the 10-month-old 3xTg;Fshr-/- mice. In the Novel Object Recognition test performed at 10 months, all groups of mice, except ovariectomized 3xTg;Fshr-/- mice showed a loss of recognition memory. Consistent with the neurobehavioral data, there was a gene-dose-dependent reduction mainly in the amyloid β40 isoform in whole brain extracts. Finally, serum FSH levels < 8 ng/mL in 16-month-old APP/PS1 mice were associated with better retrieval of spatial memory. Collectively, the data provide compelling genetic evidence for a protective effect of inhibiting FSH signaling on the progression of spatial and recognition memory deficits in mice, and lay a firm foundation for the use of an FSH-blocking agent for the early prevention of cognitive decline in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Avi Liu
- Icahn School of Medicine at Mount Sinai
| | | | | | | | | | | | | | | | | | | | | | | | | | - Keqiang Ye
- Shenzhen Institute of Advanced Technology
| | | | | | | |
Collapse
|
11
|
Rather HA, Almousa S, Kumar A, Sharma M, Pennington I, Kim S, Su Y, He Y, Ghara AR, Sai KKS, Navone NM, Vander Griend DJ, Deep G. The β-Secretase 1 Enzyme as a Novel Therapeutic Target for Prostate Cancer. Cancers (Basel) 2023; 16:10. [PMID: 38201438 PMCID: PMC10778021 DOI: 10.3390/cancers16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Recent studies have demonstrated the association of APP and Aβ with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1's usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aβ1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa.
Collapse
Affiliation(s)
- Hilal A. Rather
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Isabel Pennington
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Yixin Su
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Yangen He
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Abdollah R. Ghara
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (H.A.R.); (S.A.); (A.K.); (M.S.); (I.P.); (S.K.); (Y.S.); (Y.H.); (A.R.G.)
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
12
|
Saleh FL, Taylor HS. Clinical applications of gonadotropin-releasing hormone analogues: a broad impact on reproductive medicine. F S Rep 2023; 4:83-87. [PMID: 37223759 PMCID: PMC10201293 DOI: 10.1016/j.xfre.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is central to the control of the entire hypothalamic-pituitary-gonadal axis. Manipulation of GnRH, in turn, regulates pituitary response and ovarian hormone production. Gonadotropin-releasing hormone analogues have revolutionized assisted reproductive technology and gynecologic practice. The recent advent of oral GnRH antagonists with an inherent rapid onset of action continues to transform the treatment options available for several common gynecologic conditions, including endometriosis and fibroids. Herein, we review neuroendocrine GnRH activity and discuss modulation of the reproductive axis by GnRH analogues for diverse clinical applications.
Collapse
Affiliation(s)
- Farrah L. Saleh
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S. Taylor
- Section of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Yang C, Liao C, Zhao J, Guan Q, Wang G, Han Q. Dysregulation of tryptophan metabolism and distortion of cell signaling after oral exposure to ethanol and Kynurenic acid. Gene 2023; 852:147061. [PMID: 36423775 DOI: 10.1016/j.gene.2022.147061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Kynurenic acid (KYNA), an unavoidable tryptophan metabolite during fermentation is naturally blended with alcohol in all alcoholic beverages. Thus, alcohol drinking inevitably results in co-intake of KYNA. Effects of alcohol or KYNA on human health have been widely studied. However, the combined effects of both remain unknown. Here we report that alcohol and KYNA have a synergistic impact of on global gene expression, especially the gene sets related to tryptophan metabolism and cell signaling. Adult mice were exposed to alcohol (ethanol) and/or KYNA daily for a week. Transcriptomes of the brain, kidney and liver were profiled via bulk RNA sequencing. Results indicate that while KYNA alone largely promotes, and alcohol alone mostly inhibits gene expression, alcohol and KYNA co-administration has a stronger inhibition of global gene expression. Tryptophan metabolism is severely skewed towards kynurenine pathway by decreasing tryptophan hydroxylase 2 and increasing tryptophan dioxygenase. Quantification of tryptophan metabolic enzymes corroborates the transcriptional changes of these enzymes. Furthermore, the co-administration greatly enhances the GnRH signaling pathway. This research provides critical data to better understand the effects of alcohol and KYNA in mix on human health.
Collapse
Affiliation(s)
- Cihan Yang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, Hainan 570228, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
14
|
Abstract
A hormone enhances cognition in mouse models of Alzheimer's disease and Down syndrome.
Collapse
Affiliation(s)
- Hanne M Hoffmann
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
15
|
Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. Toxocara canis- and Toxocara cati-Induced Neurotoxocarosis Is Associated with Comprehensive Brain Transcriptomic Alterations. Microorganisms 2022; 10:microorganisms10010177. [PMID: 35056627 PMCID: PMC8779660 DOI: 10.3390/microorganisms10010177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Toxocara canis and Toxocara cati are globally occurring zoonotic roundworms of dogs and cats. Migration and persistence of Toxocara larvae in the central nervous system of paratenic hosts including humans may cause clinical signs of neurotoxocarosis (NT). As pathomechanisms of NT and host responses against Toxocara larvae are mostly unknown, whole-genome microarray transcription analysis was performed in cerebra and cerebella of experimentally infected C57Bl/6J mice as paratenic host model at days 14, 28, 70, 98, and 120 post-infection. Neuroinvasion of T. cati evoked 220 cerebral and 215 cerebellar differentially transcribed genes (DTGs), but no particular PANTHER (Protein ANalysis THrough Evolutionary Relationships) pathway was affected. In T. canis-infected mice, 1039 cerebral and 2073 cerebellar DTGs were identified. Statistically significant dysregulations occurred in various pathways, including cholesterol biosynthesis, apoptosis signaling, and the Slit/Robo mediated axon guidance as well as different pathways associated with the immune and defense response. Observed dysregulations of the cholesterol biosynthesis, as well as the Alzheimer disease-amyloid secretase pathway in conjunction with previous histopathological neurodegenerative findings, may promote the discussion of T. canis as a causative agent for dementia and/or Alzheimer’s disease. Furthermore, results contribute to a deeper understanding of the largely unknown pathogenesis and host-parasite interactions during NT, and may provide the basis for prospective investigations evaluating pathogenic mechanisms or designing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Elisabeth Janecek-Erfurth
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Dimitri L. Lindenwald
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (E.W.); (K.S.)
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hanover, Germany
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (P.W.); (E.J.-E.); (D.L.L.)
- Correspondence: ; Tel.: +49-511-953-8711
| |
Collapse
|
16
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
17
|
Bekker RBW, Fjellaksel R, Hjornevik T, Nuruddin S, Rafique W, Hansen JH, Sundset R, Haraldsen IH, Riss PJ. Discovery of a Lead Brain-Penetrating Gonadotropin-Releasing Hormone Receptor Antagonist with Saturable Binding in Brain. ChemMedChem 2020; 15:1624-1628. [PMID: 32677155 PMCID: PMC7540054 DOI: 10.1002/cmdc.202000256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2020] [Indexed: 11/30/2022]
Abstract
We report the synthesis, radiosynthesis and biological characterisation of two gonadotropin-releasing hormone receptor (GnRH-R) antagonists with nanomolar binding affinity. A small library of GnRH-R antagonists was synthesised in 20-67 % overall yield with the aim of identifying a high-affinity antagonist capable of crossing the blood-brain barrier. Binding affinity to rat GnRH-R was determined by autoradiography in competitive-binding studies against [125 I]buserelin, and inhibition constants were calculated by using the Cheng-Prusoff equation. The radioligands were obtained in 46-79 % radiochemical yield and >95 % purity and with a molar activity of 19-38 MBq/nmol by direct nucleophilic radiofluorination. Positron emission tomography imaging in rat under baseline conditions in comparison to pretreatment with a receptor-saturating dose of GnRH antagonist revealed saturable uptake (0.1 %ID/mL) into the brain.
Collapse
Affiliation(s)
| | - Richard Fjellaksel
- Department of Clinical MedicineUiT The Arctic University of NorwayHansine Hansens veg 189019TromsøNorway
- PET Imaging CenterUniversity Hospital of North NorwaySykehusvegen 389019TromsøNorway
- Department of ChemistryUiT – The Arctic University of NorwayHansine Hansens veg 189019TromsøNorway
| | - Trine Hjornevik
- Department of Diagnostic PhysicsOslo University HospitalSognsvannsveien 200372OsloNorway
| | - Syed Nuruddin
- Norwegian Medical Cyclotron AS, RikshospitaletSognsvannsveien 20OsloNorway
| | - Waqas Rafique
- Department of ChemistryUniversity of OsloSem Sælands vei, 260371OsloNorway
| | - Jørn H. Hansen
- Department of ChemistryUiT – The Arctic University of NorwayHansine Hansens veg 189019TromsøNorway
| | - Rune Sundset
- Department of Clinical MedicineUiT The Arctic University of NorwayHansine Hansens veg 189019TromsøNorway
- PET Imaging CenterUniversity Hospital of North NorwaySykehusvegen 389019TromsøNorway
| | - Ira H. Haraldsen
- Clinical NeurosciencesOslo University Hospital-UllevalKirkeveien 166, post code?OsloNorway
| | - Patrick J. Riss
- Department of ChemistryUniversity of OsloSem Sælands vei, 260371OsloNorway
- Norwegian Medical Cyclotron AS, RikshospitaletSognsvannsveien 20OsloNorway
- Clinical NeurosciencesOslo University Hospital-UllevalKirkeveien 166, post code?OsloNorway
| |
Collapse
|
18
|
Wang J, Lei X, Xie Z, Zhang X, Cheng X, Zhou W, Zhang Y. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging (Albany NY) 2020; 11:3463-3486. [PMID: 31160541 PMCID: PMC6594795 DOI: 10.18632/aging.101990] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mounting evidence points to alterations in the gut microbiota-neuroendocrine immunomodulation (NIM) network that might drive Alzheimer’s Disease (AD) pathology. In previous studies, we found that Liuwei Dihuang decoction (LW) had beneficial effects on the cognitive impairments and gastrointestinal microbiota dysbiosis in an AD mouse model. In particular, CA-30 is an oligosaccharide fraction derived from LW. We sought to determine the effects of CA-30 on the composition and function of the intestinal microbiome in the senescence-accelerated mouse prone 8 (SAMP8) mouse strain, an AD mouse model. Treatment with CA-30 delayed aging processes, ameliorated cognition in SAMP8 mice. Moreover, CA-30 ameliorated abnormal NIM network in SAMP8 mice. In addition, we found that CA-30 mainly altered the abundance of four genera and 10 newborn genera. Advantageous changes in carbohydrate-active enzymes of SAMP8 mice following CA-30 treatment, especially GH85, were also noted. We further found that seven genera were significantly correlated with the NIM network and cognitive performance. CA-30 influenced the relative abundance of these intestinal microbiomes in SAMP8 mice and restored them to SAMR1 mouse levels. CA-30 ameliorated the intestinal microbiome, rebalanced the NIM network, improved the AD-like cognitive impairments in SAMP8 mice, and can thus be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Jianhui Wang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xi Lei
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zongjie Xie
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Cheng
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Wenxia Zhou
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yongxiang Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
19
|
Hayashi K, Gonzales TK, Kapoor A, Ziegler TE, Meethal SV, Atwood CS. Development of Classification Models for the Prediction of Alzheimer's Disease Utilizing Circulating Sex Hormone Ratios. J Alzheimers Dis 2020; 76:1029-1046. [PMID: 32623397 DOI: 10.3233/jad-200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND While sex hormones are essential for normal cognitive health, those individuals with greater endocrine dyscrasia around menopause and with andropause are more likely to develop cognitive loss and Alzheimer's disease (AD). OBJECTIVE To assess whether circulating sex hormones may provide an etiologically significant, surrogate biomarker, for cognitive decline. METHODS Plasma (n = 152) and serum (n = 107) samples from age- and gender-matched AD and control subjects from the Wisconsin Alzheimer's Disease Research Center (ADRC) were analyzed for 11 steroids and follicle-stimulating hormone. Logistic regression (LR), correlation analyses, and recursive partitioning (RP) were used to examine the interactions of hormones and hormone ratios and their association with AD. Models generated were then tested on an additional 43 ADRC samples. RESULTS The wide variation and substantial overlap in the concentrations of all circulating sex steroids across control and AD groups precluded their use for predicting AD. Classification tree analyses (RP) revealed interactions among single hormones and hormone ratios that associated with AD status, the most predictive including only the hormone ratios identified by LR. The strongest associations were observed between cortisol, cortisone, and androstenedione with AD, with contributions from progesterone and 17β-estradiol. Utilizing this model, we correctly predicted 81% of AD test cases and 64% of control test cases. CONCLUSION We have developed a diagnostic model for AD, the Wisconsin Hormone Algorithm Test for Cognition (WHAT-Cog), that utilizes classification tree analyses of hormone ratios. Further refinement of this technology could provide a quick and cheap diagnostic method for screening those with AD.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Tina K Gonzales
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, USA
| | - Amita Kapoor
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Toni E Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sivan Vadakkadath Meethal
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, USA.,School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
20
|
Fjellaksel R, Moldes-Anaya A, Vasskog T, Oteiza A, Martin-Armas M, Hjelstuen OK, Hansen JH, Riss PJ, Sundset R. Evaluation by metabolic profiling and in vitro autoradiography of two promising GnRH-receptor ligands for brain SPECT imaging. J Labelled Comp Radiopharm 2020; 63:72-84. [PMID: 31813158 DOI: 10.1002/jlcr.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/07/2022]
Abstract
The increased expression of gonadotropin releasing hormone receptor (GnRH-R) in brain has been strongly linked to Alzheimer disease. Therefore, the development of radiolabeled imaging agents for GnRH-R is relevant for early diagnosis of Alzheimer disease. We have recently disclosed the discovery of two promising compounds displaying nanomolar-range affinity for the GnRH-R. In the present study, a preclinical evaluation of the compound properties was performed to evaluate their potential as single photon emission computed tomography (SPECT) radiotracers for imaging the GnRH-receptor. The compounds were assessed in vitro by performing serum stability analysis by human and rat serum, metabolic profiling by human liver microsomes, and exploratory rat brain autoradiography. The investigated compounds displayed satisfactory stability against human, rat serum, and liver microsomal metabolism, which favors their potential as SPECT-imaging agents. Additionally, we identified and quantified the formation rate of the metabolites by fragmentation of up to five mass spectrometric stages. The GnRH-R rat brain specificity of these compounds was tested in competition with a known ligand for the receptor and the in vitro autoradiography confirmed that compounds 3 and 4 binds to rat GnRH-R in different rat brain regions.
Collapse
Affiliation(s)
- Richard Fjellaksel
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Organic Chemistry Research Group, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Angel Moldes-Anaya
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
- Pharmacology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Neurobiology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Vasskog
- Natural Products and Medicinal Chemistry Research group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ana Oteiza
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Montserrat Martin-Armas
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Ole Kristian Hjelstuen
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jørn H Hansen
- Organic Chemistry Research Group, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Patrick J Riss
- Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
- Realomics SFI, Department of Chemistry, University of Oslo, Oslo, Norway
- Norsk Medisinsk Syklotronsenter AS, Oslo, Norway
| | - Rune Sundset
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
21
|
Kandasamy M, Radhakrishnan RK, Poornimai Abirami GP, Roshan SA, Yesudhas A, Balamuthu K, Prahalathan C, Shanmugaapriya S, Moorthy A, Essa MM, Anusuyadevi M. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res 2019; 44:1781-1795. [PMID: 31254250 DOI: 10.1007/s11064-019-02833-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
The hippocampus-derived neuroestradiol plays a major role in neuroplasticity, independent of circulating estradiol that originates from gonads. The response of hypothalamus-pituitary regions towards the synthesis of neuroestradiol in the hippocampus is an emerging scientific concept in cognitive neuroscience. Hippocampal plasticity has been proposed to be regulated via neuroblasts, a major cellular determinant of functional neurogenesis in the adult brain. Defects in differentiation, integration and survival of neuroblasts in the hippocampus appear to be an underlying cause of neurocognitive disorders. Gonadotropin receptors and steroidogenic enzymes have been found to be expressed in neuroblasts in the hippocampus of the brain. However, the reciprocal relationship between hippocampal-specific neuroestradiol synthesis along neuroblastosis and response of pituitary based feedback regulation towards regulation of estradiol level in the hippocampus have not completely been ascertained. Therefore, this conceptual article revisits (1) the cellular basis of neuroestradiol synthesis (2) a potential relationship between neuroestradiol synthesis and neuroblastosis in the hippocampus (3) the possible involvement of aberrant neuroestradiol production with mitochondrial dysfunctions and dyslipidemia in menopause and adult-onset neurodegenerative disorders and (4) provides a hypothesis for the possible existence of the hypothalamic-pituitary-hippocampal (HPH) axis in the adult brain. Eventually, understanding the regulation of hippocampal neurogenesis by abnormal levels of neuroestradiol concentration in association with the feedback regulation of HPH axis might provide additional cues to establish a neuroregenerative therapeutic management for mood swings, depression and cognitive decline in menopause and neurocognitive disorders.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Faculty Recharge Programme, University Grants Commission(UGC-FRP), New Delhi, India.
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - G P Poornimai Abirami
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Syed Aasish Roshan
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Ajisha Yesudhas
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Kadalmani Balamuthu
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Chidambaram Prahalathan
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | - Anbalagan Moorthy
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Muthuswamy Anusuyadevi
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| |
Collapse
|
22
|
Schalla MA, Stengel A. The role of phoenixin in behavior and food intake. Peptides 2019; 114:38-43. [PMID: 30953667 DOI: 10.1016/j.peptides.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered peptide phoenixin was initially implicated in reproduction as a regulator of gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release from the pituitary. Subsequently, various functions of phoenixin have been demonstrated including mediation of itching sensation, stimulation of vasopressin secretion, stimulation of white adipogenesis and hypothalamic nutrient sensing. Subsequently, additional actions of phoenixin have been described, namely effects on behavior. A systematic search of four data bases was performed and original articles selected accordingly. The present systematic review will present the current knowledge on the effects of phoenixin on different behaviors such as anxiety and food intake as well as cognition. Lastly, gaps in knowledge will be mentioned to stimulate further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Jahanshahi M, Saeidi M, Nikmahzar E, Babakordi F, Bahlakeh G. Effects of hCG on reduced numbers of hCG receptors in the prefrontal cortex and cerebellum of rat models of Alzheimer's disease. Biotech Histochem 2019; 94:360-365. [PMID: 30760053 DOI: 10.1080/10520295.2019.1571228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Age-associated changes in the levels of luteinizing hormone and human chorionic gonadotropin (hCG) are potential risk factors for Alzheimer's disease (AD); hCG concentration is related to the incidence of AD. The highest density of hCG receptors is in zones of the brain that are vulnerable to AD and streptozotocin (STZ) can decrease the density of this receptor. We investigated the effects of different doses of hCG on hCG receptor density in the prefrontal cortex and cerebellum in a rat model of STZ-induced AD. AD was induced by intracerebroventricular injection of 3 mg/kg STZ. The resulting AD rats were treated for 3 days with 50, 100 or 200 IU/200 μl hCG, or with saline as a control. Sections of prefrontal cortex and cerebellum were stained immunohistochemically and hCG receptor-immunoreactive (ir) neurons were counted. STZ injected into the lateral ventricles of rat brains reduced the density of hCG receptor-ir neurons in the prefrontal cortex and cerebellum. hCG administration resulted in a significant dose-dependent increase in the number of hCG receptor-ir neurons in the prefrontal cortex and cerebellum. The maximum increase in the number of receptors occurred following the 200 IU dose of hCG. Administration of hCG ameliorated the lowered density of hCG receptor-ir neurons in the cerebellum and prefrontal cortex in STZ-induced AD rats.
Collapse
Affiliation(s)
- M Jahanshahi
- a Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - M Saeidi
- b Stem Cell Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - E Nikmahzar
- a Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - F Babakordi
- a Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - G Bahlakeh
- a Neuroscience Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| |
Collapse
|
24
|
Nikmahzar E, Jahanshahi M, Elyasi L, Saeidi M, Babakordi F, Bahlakeh G. Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:166-172. [PMID: 30834082 PMCID: PMC6396995 DOI: 10.22038/ijbms.2018.31412.7569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Amyloid β plaques, in Alzheimer's disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we investigated the effect of hCG on the density of the congophilic Aβ plaque and cytochrome c-ir neurons in the hippocampus, prefrontal cortex, and cerebellum of Streptozotocin (STZ)-treated rats. MATERIALS AND METHODS Alzheimer model in rats (except the control group) was induced by streptozotocin (3 mg/kg, Intracerebroventricularly (ICV)). Experimental group rats received streptozotocin and then different doses of hCG (50, 100, and 200 IU, intraperitoneally) for 3 days. 48 hr after last drug injection and after histological processing, the brain sections were stained by congo red for congophilic amyloid β plaques and cytochrome c in the hippocampus, prefrontal cortex, and cerebellum were immunohistochemically stained. RESULTS Density of congophilic Aβ plaques and cytochrome c-immunoreactive neurons was significantly higher in ICV STZ treated rats than controls. Treatment with three doses of hCG significantly decreased the density of congophilic Aβ plaques and cytochrome c-immunoreactive neurons in the rat hippocampus, prefrontal cortex, and cerebellum in ICV STZ-treated rats (P<0.05). CONCLUSION hCG can be useful in AD patients to prevent the congophilic Aβ plaque formation and decrease cytochrome c-immunoreactive neuron density in the brain.
Collapse
Affiliation(s)
- Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Babakordi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gozal Bahlakeh
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
25
|
Anderson RC, Newton CL, Anderson RA, Millar RP. Gonadotropins and Their Analogs: Current and Potential Clinical Applications. Endocr Rev 2018; 39:911-937. [PMID: 29982442 DOI: 10.1210/er.2018-00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
The gonadotropin receptors LH receptor and FSH receptor play a central role in governing reproductive competency/fertility. Gonadotropin hormone analogs have been used clinically for decades in assisted reproductive therapies and in the treatment of various infertility disorders. Though these treatments are effective, the clinical protocols demand multiple injections, and the hormone preparations can lack uniformity and stability. The past two decades have seen a drive to develop chimeric and modified peptide analogs with more desirable pharmacokinetic profiles, with some displaying clinical efficacy, such as corifollitropin alfa, which is now in clinical use. More recently, low-molecular-weight, orally active molecules with activity at gonadotropin receptors have been developed. Some have excellent characteristics in animals and in human studies but have not reached the market-largely as a result of acquisitions by large pharma. Nonetheless, such molecules have the potential to mitigate risks currently associated with gonadotropin-based fertility treatments, such as ovarian hyperstimulation syndrome and the demands of injection-based therapies. There is also scope for novel use beyond the current remit of gonadotropin analogs in fertility treatments, including application as novel contraceptives; in the treatment of polycystic ovary syndrome; in the restoration of function to inactivating mutations of gonadotropin receptors; in the treatment of ovarian and prostate cancers; and in the prevention of bone loss and weight gain in postmenopausal women. Here we review the properties and clinical application of current gonadotropin preparations and their analogs, as well as the development of novel orally active, small-molecule nonpeptide analogs.
Collapse
Affiliation(s)
- Ross C Anderson
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Claire L Newton
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Li H, Sun X, Yu F, Xu L, Miu J, Xiao P. In Silico Investigation of the Pharmacological Mechanisms of Beneficial Effects of Ginkgo biloba L. on Alzheimer's Disease. Nutrients 2018; 10:nu10050589. [PMID: 29747475 PMCID: PMC5986469 DOI: 10.3390/nu10050589] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022] Open
Abstract
Based on compelling experimental and clinical evidence, Ginkgo biloba L. exerts a beneficial effect in ameliorating mild to moderate dementia in patients with Alzheimer’s disease (AD) and other neurological disorders, although the pharmacological mechanisms remain unknown. In the present study, compounds, their putative target proteins identified using an inverse docking approach, and clinically tested AD-related target proteins were systematically integrated together with applicable bioinformatics methods in silico. The results suggested that the beneficial effects of G. biloba on AD may be contributed by the regulation of hormone sensitivity, improvements in endocrine homeostasis, maintenance of endothelial microvascular integrity, and proteolysis of tau proteins, particularly prior to amyloid β-protein (Aβ) plaque formation. Moreover, we identified six putative protein targets that are significantly related to AD, but have not been researched or have had only preliminary studies conducted on the anti-AD effects of G. biloba. These mechanisms and protein targets are very significant for future scientific research. In addition, the existing mechanisms were also verified, such as the reduction of oxidative stress, anti-apoptotic effects, and protective effects against amyloidogenesis and Aβ aggregation. The discoveries summarized here may provide a macroscopic perspective that will improve our understanding of the molecular mechanism of medicinal plants or dietary supplements, as well as new clues for the future development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Hongxiang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 151 Malianwa North Road, Beijing 100193, China.
| | - Xiaoyuan Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 151 Malianwa North Road, Beijing 100193, China.
| | - Fan Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 151 Malianwa North Road, Beijing 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 151 Malianwa North Road, Beijing 100193, China.
| | - Jianhua Miu
- Guangxi Institute of Medicinal Plant Development, Nanning, 189 Changgang Road, Nanning 520023, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, 151 Malianwa North Road, Beijing 100193, China.
| |
Collapse
|
27
|
Fjellaksel R, Boomgaren M, Sundset R, Haraldsen IH, Hansen JH, Riss PJ. Small molecule piperazinyl-benzimidazole antagonists of the gonadotropin-releasing hormone (GnRH) receptor. MEDCHEMCOMM 2017; 8:1965-1969. [PMID: 30108717 PMCID: PMC6072469 DOI: 10.1039/c7md00320j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
Abstract
In this communication, we report the synthesis and characterization of a library of small molecule antagonists of the human gonadotropin releasing hormone receptor based upon the 2-(4-tert-butylphenyl)-4-piperazinyl-benzimidazole scaffold via Cu-catalysed azide alkyne cycloaddition. Our main purpose was to find a more soluble compound based on the WAY207024 lead with nanomolar potency to inhibit the GnRH receptor. A late stage diversification by the use of click chemistry was, furthermore developed to allow for expansion of the library in future optimisations. All compounds were tested in a functional assay to determine the individual potency of inhibiting stimulation of the receptor by the endogenous agonist GnRH. In conclusion, we found that compound 8a showed improved solubility compared to WAY207024 and nanomolar affinity to GnRH receptor.
Collapse
Affiliation(s)
- Richard Fjellaksel
- Medical Imaging Group , Department of Clinical Medicine , UiT The Arctic University of Norway , 9037 Tromsø , Norway . .,Drug Transport and Delivery Group , Department of Pharmacy , UiT The Arctic University of Norway , 9037 Tromsø , Norway.,Organic Chemistry Group , Department of Chemistry , UiT The Arctic University of Norway , 9037 Tromsø , Norway
| | - Marc Boomgaren
- Organic Chemistry Group , Department of Chemistry , UiT The Arctic University of Norway , 9037 Tromsø , Norway
| | - Rune Sundset
- Medical Imaging Group , Department of Clinical Medicine , UiT The Arctic University of Norway , 9037 Tromsø , Norway . .,PET imaging center, division of diagnostics , UNN - University Hospital of North-Norway , 9038 Tromsø , Norway
| | - Ira H Haraldsen
- Department of neuropsychiatry and psychosomatic medicine , Oslo University Hospital , Oslo , Norway
| | - Jørn H Hansen
- Organic Chemistry Group , Department of Chemistry , UiT The Arctic University of Norway , 9037 Tromsø , Norway
| | - Patrick J Riss
- Department of neuropsychiatry and psychosomatic medicine , Oslo University Hospital , Oslo , Norway.,Realomics SFI, Department of Chemistry , University of Oslo , PO BOX 1033 , Oslo 0371 , Norway.,Norsk Medisinsk Syklotronsenter AS , Postboks 4950 Nydalen , 0424 Oslo , Norway
| |
Collapse
|
28
|
Arfa-Fatollahkhani P, Nahavandi A, Abtahi H, Anjidani S, Borhani S, Jameie SB, Shabani M, Mehrzadi S, Shahbazi A. The Effect of Luteinizing Hormone Reducing Agent on Anxiety and Novel Object Recognition Memory in Gonadectomized Rats. Basic Clin Neurosci 2017; 8:113-119. [PMID: 28539995 PMCID: PMC5440920 DOI: 10.18869/nirp.bcn.8.2.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Mood disorders such as anxiety and depression are common following menopause and andropause. Lack of sex steroid hormones is suggested as the primary cause of these disturbances. The level of luteinizing hormone (LH) would also rise 3-4 times than normal in these people. The potential effects of LH on mood and cognitive symptoms following menopause and andropause are still unknown. This study aimed to investigate the effect of increased LH on novel object discrimination (NOD) memory and anxiety like behavior in gonadectomized rats. METHODS Four-month-old male and female Wistar rats were randomly assigned into 4 groups (in each sex): control rats (Cont), gonadectomized without treatment (GnX), gonadectomized treated with triptorelin, a GnRH agonist which reduces LH release eventually, (GnX+Tr), gonadectomized treated with triptorelin plus sex steroid hormone, estradiol in female and testosterone in male rats (GnX+Tr+S/T). After 4 weeks treatment, anxiety score (elevated plus maze) and NOD were measured. Data were analyzed using One-way ANOVA, and P-values less than 0.05 were considered as significant. RESULTS Gonadectomy increased anxiety like behaviors (decrease of presence time in the open arms) in female rats (P=0.012), but not in male ones (P=0.662). Additionally, triptorelin alone reduced the increased anxiety score in gonadectomized female rats, compared to group treated with both triptorelin and estradiol. Furthermore, it was shown that gonadectomy and or treatment with triptorelin and sex steroids had no significant effect on novel object recognition memory in both female (P=0.472) and male rats (P=0.798). CONCLUSION Findings of this study revealed that increased level of LH following menopause or andropause should be considered as a possible cause for increased anxiety. Also, this study showed that LH reducing agents would reduce anxiety like behavior in gonadectomized female rats. The effect of increased LH on cognitive functions such as novel object recognition memory was not evident in this study and needs further studies.
Collapse
Affiliation(s)
- Paria Arfa-Fatollahkhani
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezo Nahavandi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Abtahi
- Department of Biochemistry and Nutrition, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shabnam Anjidani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Borhani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Behnam Jameie
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Rahimi M, Mobedi H, Behnamghader A. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation. J Microencapsul 2016; 33:355-64. [DOI: 10.1080/02652048.2016.1194905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Maggi R. Physiology of Gonadotropin-Releasing Hormone (Gnrh): Beyond the Control of Reproductive Functions. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/mojap.2016.02.00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Phoenixin-14 enhances memory and mitigates memory impairment induced by Aβ1-42 and scopolamine in mice. Brain Res 2015; 1629:298-308. [DOI: 10.1016/j.brainres.2015.10.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
|
32
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
33
|
Rahimi M, Mobedi H, Behnamghader A. In situforming poly(lactic acid-co-glycolic acid) implants containing leuprolide acetate/β-cyclodextrin complexes: preparation, characterization, andin vitrodrug release. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1055633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Jiang JH, He Z, Peng YL, Jin WD, Wang Z, Han RW, Chang M, Wang R. Kisspeptin-13 enhances memory and mitigates memory impairment induced by Aβ1-42 in mice novel object and object location recognition tasks. Neurobiol Learn Mem 2015; 123:187-95. [PMID: 26103138 DOI: 10.1016/j.nlm.2015.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/16/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
Abstract
Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease.
Collapse
Affiliation(s)
- J H Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Z He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Y L Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - W D Jin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Z Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - R W Han
- Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - M Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | - R Wang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Lafarga T, O’Connor P, Hayes M. In silico methods to identify meat-derived prolyl endopeptidase inhibitors. Food Chem 2015; 175:337-43. [DOI: 10.1016/j.foodchem.2014.11.150] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/05/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022]
|
36
|
Olberg DE, Hausner SH, Bauer N, Klaveness J, Indrevoll B, Andressen KW, Dahl M, Levy FO, Sutcliffe JL, Haraldsen I. Radiosynthesis of high affinity fluorine-18 labeled GnRH peptide analogues: in vitro studies and in vivo assessment of brain uptake in rats. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00486h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of high affinity 18F-GnRH peptides have been synthesized and show utility as imaging agents for GnRH receptor expression in vivo.
Collapse
Affiliation(s)
| | - Sven H. Hausner
- Department of Biomedical Engineering
- University of California Davis
- Davis
- USA
- Department of Internal Medicine
| | - Nadine Bauer
- Department of Biomedical Engineering
- University of California Davis
- Davis
- USA
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology
- Faculty of Medicine
- University of Oslo and Oslo University Hospital
- Oslo
- Norway
| | - Marie Dahl
- Department of Pharmacology
- Faculty of Medicine
- University of Oslo and Oslo University Hospital
- Oslo
- Norway
| | - Finn Olav Levy
- Department of Pharmacology
- Faculty of Medicine
- University of Oslo and Oslo University Hospital
- Oslo
- Norway
| | - Julie L. Sutcliffe
- Department of Biomedical Engineering
- University of California Davis
- Davis
- USA
- Department of Internal Medicine
| | - Ira Haraldsen
- Department of Neuropsychiatry and Psychosomatic Medicine
- Oslo University Hospital
- Oslo
- Norway
| |
Collapse
|
37
|
Nuruddin S, Syverstad GHE, Lillehaug S, Leergaard TB, Nilsson LNG, Ropstad E, Krogenæs A, Haraldsen IRH, Torp R. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer's disease transgenic mice. PLoS One 2014; 9:e103607. [PMID: 25089901 PMCID: PMC4121068 DOI: 10.1371/journal.pone.0103607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/04/2014] [Indexed: 12/27/2022] Open
Abstract
Research on Alzheimer's disease (AD) has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG) axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh) and its receptor (Gnrhr) were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate). The study was performed on mice carrying the Arctic and Swedish amyloid-β precursor protein (AβPP) mutations (tgArcSwe). At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrh-a treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental approach should serve as a platform for further studies on the usefulness of Gnrh-a treatment in suppressing plaque development in AD.
Collapse
Affiliation(s)
- Syed Nuruddin
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Sveinung Lillehaug
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lars N. G. Nilsson
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Public Health & Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden
| | - Erik Ropstad
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Ira Ronit Hebold Haraldsen
- Department of Neuropsychiatry and Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Reidun Torp
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
38
|
Olberg DE, Andressen KW, Levy FO, Klaveness J, Haraldsen I, Sutcliffe JL. Synthesis and in vitro evaluation of small-molecule [18F] labeled gonadotropin-releasing hormone (GnRH) receptor antagonists as potential PET imaging agents for GnRH receptor expression. Bioorg Med Chem Lett 2014; 24:1846-50. [DOI: 10.1016/j.bmcl.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 01/29/2014] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
|
39
|
Overk CR, Perez SE, Ma C, Taves MD, Soma KK, Mufson EJ. Sex steroid levels and AD-like pathology in 3xTgAD mice. J Neuroendocrinol 2013; 25:131-144. [PMID: 22889357 PMCID: PMC4065422 DOI: 10.1111/j.1365-2826.2012.02374.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 12/20/2022]
Abstract
Decreases in testosterone and 17β-oestradiol (E(2)) are associated with an increased risk for Alzheimer's disease (AD), which has been attributed to an increase in β-amyloid and tau pathological lesions. Although recent studies have used transgenic animal models to test the effects of sex steroid manipulations on AD-like pathology, almost none have systematically characterised the associations between AD lesions and sex steroid levels in the blood or brain in any mutant model. The present study evaluated age-related changes in testosterone and E(2) concentrations, as well as androgen receptor (AR) and oestrogen receptor (ER) α and β expression, in brain regions displaying AD pathology in intact male and female 3xTgAD and nontransgenic (ntg) mice. We report for the first time that circulating and brain testosterone levels significantly increase in male 3xTgAD mice with age, but without changes in AR-immunoreactive (IR) cell number in the hippocampal CA1 or medial amygdala. The age-related increase in hippocampal testosterone levels correlated positively with increases in the conformational tau isoform, Alz50. These data suggest that the over-expression of human tau up-regulate the hypothalamic-pituitary-gonadal axis in these mice. Although circulating and brain E(2) levels remained stable with age in both male and female 3xTgAD and ntg mice, ER-IR cell number in the hippocampus and medial amygdala decreased with age in female transgenic mice. Furthermore, E(2) levels were significantly higher in the hippocampus than in serum, suggesting local production of E(2). Although triple transgenic mice mimic AD-like pathology, they do not fully replicate changes in human sex steroid levels, and may not be the best model for studying the effects of sex steroids on AD lesions.
Collapse
Affiliation(s)
- Cassia R. Overk
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL USA 60612
| | - Sylvia E. Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL USA 60612
| | - Chunqi Ma
- Department of Psychology, Department of Zoology, and Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC Canada V6T 1Z4
| | - Matthew D. Taves
- Department of Psychology, Department of Zoology, and Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC Canada V6T 1Z4
| | - Kiran K. Soma
- Department of Psychology, Department of Zoology, and Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC Canada V6T 1Z4
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL USA 60612
| |
Collapse
|
40
|
Development of psychophysiological motoric reactivity is influenced by peripubertal pharmacological inhibition of gonadotropin releasing hormone action--results of an ovine model. Psychoneuroendocrinology 2012; 37:1876-84. [PMID: 22534405 DOI: 10.1016/j.psyneuen.2012.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 11/24/2022]
Abstract
This study reports the effects of peripubertal GnRH receptor inactivation on development of psychophysiological motoric reactivity (PMR; sometimes also called emotional reactivity), plasma cortisol concentrations and the relationship between plasma cortisol and PMR in male and female sheep. The study formed part of a larger trial and utilised 46 same sex twins. One twin remained untreated (control) while the other received a subcutaneous GnRH agonist (GnRHa Goserelin-Acetate) implant every 4th week, beginning at 8 and 28 weeks of age, in males and females, respectively (different, due to sex specific age of puberty). PMR, a measure of an animals' response to social isolation, was measured over a two minute period at 8, 28 and 48 weeks of age, using a three axis accelerometer. During the test period vocalisation rate was recorded. Cortisol was assayed in blood samples collected on a single day when animals were 40 weeks of age. PMR and vocalisation rate were significantly higher in females than males at all ages tested. At 28 weeks of age (20 weeks treatment) PMR was increased in treated males to the level seen in control females, by 48 weeks of age treated males' PMR was significantly less than controls. In females, 20 weeks of GnRHa treatment (28-48 weeks of age) was not associated with differences in PMR. Cortisol concentrations were significantly higher in females than males but were not affected by treatment. Plasma cortisol concentrations were positively correlated with PMR; this relationship being driven by the treated animals in both sexes. The results demonstrate that PMR is sexually dimorphic and cortisol dependent in sheep from at least 8 weeks of age. Importantly, they also demonstrate that long-term treatment of males with a GnRH agonist results in changes in age-dependent development of PMR.
Collapse
|
41
|
Dutta B, Wallqvist A, Reifman J. PathNet: a tool for pathway analysis using topological information. SOURCE CODE FOR BIOLOGY AND MEDICINE 2012; 7:10. [PMID: 23006764 PMCID: PMC3563509 DOI: 10.1186/1751-0473-7-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/03/2012] [Indexed: 01/01/2023]
Abstract
Background Identification of canonical pathways through enrichment of differentially expressed genes in a given pathway is a widely used method for interpreting gene lists generated from high-throughput experimental studies. However, most algorithms treat pathways as sets of genes, disregarding any inter- and intra-pathway connectivity information, and do not provide insights beyond identifying lists of pathways. Results We developed an algorithm (PathNet) that utilizes the connectivity information in canonical pathway descriptions to help identify study-relevant pathways and characterize non-obvious dependencies and connections among pathways using gene expression data. PathNet considers both the differential expression of genes and their pathway neighbors to strengthen the evidence that a pathway is implicated in the biological conditions characterizing the experiment. As an adjunct to this analysis, PathNet uses the connectivity of the differentially expressed genes among all pathways to score pathway contextual associations and statistically identify biological relations among pathways. In this study, we used PathNet to identify biologically relevant results in two Alzheimer’s disease microarray datasets, and compared its performance with existing methods. Importantly, PathNet identified de-regulation of the ubiquitin-mediated proteolysis pathway as an important component in Alzheimer’s disease progression, despite the absence of this pathway in the standard enrichment analyses. Conclusions PathNet is a novel method for identifying enrichment and association between canonical pathways in the context of gene expression data. It takes into account topological information present in pathways to reveal biological information. PathNet is available as an R workspace image from
http://www.bhsai.org/downloads/pathnet/.
Collapse
Affiliation(s)
- Bhaskar Dutta
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U,S, Army Medical Research and Materiel Command, Ft, Detrick, MD, 21702, USA.
| | | | | |
Collapse
|
42
|
Rosario ER, Carroll JC, Pike CJ. Evaluation of the effects of testosterone and luteinizing hormone on regulation of β-amyloid in male 3xTg-AD mice. Brain Res 2012; 1466:137-45. [PMID: 22587890 DOI: 10.1016/j.brainres.2012.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/12/2012] [Accepted: 05/05/2012] [Indexed: 01/15/2023]
Abstract
During normal aging, men experience a significant decline in testosterone levels and a compensatory elevation in levels of gonadotropin luteinizing hormone (LH). Both low testosterone and elevated LH have been identified as significant risk factors for the development of Alzheimer's disease (AD) in men. It is unclear whether changes in testosterone or LH primarily underlie the relationship with AD, and therefore may be a more suitable therapeutic target. To examine this issue, we compared levels of β-amyloid (Aβ) immunoreactivity in male 3xTg-AD mice under varying experimental conditions associated with relatively low or high levels of testosterone and/or LH. In gonadally intact mice, Aβ accumulation increased after treatment with the gonadotropin-releasing hormone agonist leuprolide, which inhibits the hypothalamic-pituitary-gonadal (HPG) axis and reduces both testosterone and LH levels. In gonadectomized (GDX) mice with low testosterone and high LH, we also observed increased Aβ levels. Treatment of GDX mice with testosterone significantly reduced Aβ levels. In contrast, leuprolide did not significantly decrease Aβ levels and moreover, inhibited the Aβ-lowering effect of testosterone. Evaluation of hippocampal-dependent behavior revealed parallel findings, with performance in GDX mice improved by testosterone but not leuprolide. These data suggest that Aβ-lowering actions of testosterone are mediated directly by androgen pathways rather than indirectly via regulation of LH and the HPG axis. These findings support the clinical evaluation of androgen therapy in the prevention and perhaps treatment of AD in hypogonadal men.
Collapse
Affiliation(s)
- Emily R Rosario
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
43
|
Clark IA, Atwood CS. Is TNF a link between aging-related reproductive endocrine dyscrasia and Alzheimer's disease? J Alzheimers Dis 2012; 27:691-9. [PMID: 21891866 DOI: 10.3233/jad-2011-110887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This commentary addresses a novel mechanism by which aging-related changes in reproductive hormones could mediate their action in the brain. It presents the evidence that dyotic endocrine signals modulate the expression of tumor necrosis factor (TNF) and related cytokines, and that these cytokines are a functionally important downstream link mediating neurodegeneration and dysfunction. This convergence of dyotic signaling on TNF-mediated degeneration and dysfunction has important implications for understanding the pathophysiology of AD, stroke, and traumatic brain disease, and also for the treatment of these diseases.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
44
|
Abstract
The serum amyloid A (SAA) protein is an acute phase protein that is synthesized under the regulation of inflammatory cytokines during both acute and chronic inflammation. It is suggested that the SAA increases correlate with many types of carcinogenesis and neoplastic diseases. Th changes in SAA in serum could therefore indicate the progress and malignancy of the disease, as well as the host responses. The present paper reviewed the rationale of using SAA as potential cancer biomarker in clinical diagnosis, including the contribution and involvement of SAA in cancer growth and development. Then we discussed the current applications of SAA in diagnosis and tracing of different types of cancers. Finally the proteomics techniques, especially the SELDI-TOF MS to identify SAA in serum from patients were appreciated as an important manner in clinical diagnosis.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
45
|
Piau A, Nourhashémi F, Hein C, Caillaud C, Vellas B. Progress in the development of new drugs in Alzheimer's disease. J Nutr Health Aging 2011; 15:45-57. [PMID: 21267520 DOI: 10.1007/s12603-011-0012-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with a global prevalence estimated at 26.55 million in 2006. During the past decades, several agents have been approved that enhance cognition of AD patients. However, the effectiveness of these treatments are limited or controversial and they do not modify disease progression. Recent advances in understanding AD pathogenesis have led to the development of numerous compounds that might modify the disease process. AD is mainly characterized neuropathologically by the presence of two kinds of protein aggregates: extracellular plaques of Abeta-peptide and intracellular neurofibrillary tangles. Abeta and tau could interfere in an original way contributing to a cascade of events leading to neuronal death and transmitter deficits. Investigation for novel therapeutic approaches targeting the presumed underlying pathogenic mechanisms is major focus of research. Antiamyloid agents targeting production, accumulation, clearance, or toxicity associated with Abeta peptide, are some approaches under investigation to limit extracellular plaques of Abeta-peptide accumulation. We can state as an example: Abeta passive and active immunization, secretases modulation, Abeta degradation enhancement, or antiaggregation and antifibrillization agents. Tau-related therapies are also under clinical investigation but few compounds are available. Another alternative approach under development is neuroprotective agents such as antioxidants, anti-inflammatory drugs, compounds acting against glutamate mediated neurotoxicity. Neurorestorative approaches through neurotrophin or cell therapy also represent a minor avenue in AD research. Finally, statins, receptor for advanced glycation end products inhibitors, thiazolidinediones, insulin, and hormonal therapies are some other ways of research for a therapeutic approach of Alzheimer's disease. Taking into account AD complexity, it becomes clear that polypharmacology with drugs targeting different sites could be the future treatment approach and a majority of the recent drugs under evaluation seems to act on multiple targets. This article exposes general classes of disease-modifying therapies under investigation.
Collapse
|
46
|
Carroll JC, Rosario ER, Kreimer S, Villamagna A, Gentzschein E, Stanczyk FZ, Pike CJ. Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res 2010; 1366:233-45. [PMID: 20934413 PMCID: PMC2993873 DOI: 10.1016/j.brainres.2010.10.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/16/2022]
Abstract
The risk of Alzheimer's disease (AD) is higher in women than in men, a sex difference that likely results from the effects of sex steroid hormones. To investigate this relationship, we first compared progression of β-amyloid (Aβ) pathology in male and female triple transgenic (3xTg-AD) mice. We found that female 3xTg-AD mice exhibit significantly greater Aβ burden and larger behavioral deficits than age-matched males. Next, we evaluated how the organizational effects of sex steroid hormones during postnatal development may affect adult vulnerability to Aβ pathology. We observed that male 3xTg-AD mice demasculinized during early development exhibit significantly increased Aβ accumulation in adulthood. In contrast, female mice defeminized during early development exhibit a more male-like pattern of Aβ pathology in adulthood. Taken together, these results demonstrate significant sex differences in pathology in 3xTg-AD mice and suggest that these differences may be mediated by organizational actions of sex steroid hormones during development.
Collapse
Affiliation(s)
- Jenna C. Carroll
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Emily R. Rosario
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Sara Kreimer
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Angela Villamagna
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Elisabet Gentzschein
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA 90089
| | - Frank Z. Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA 90089
| | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
47
|
Rosario ER, Carroll J, Pike CJ. Testosterone regulation of Alzheimer-like neuropathology in male 3xTg-AD mice involves both estrogen and androgen pathways. Brain Res 2010; 1359:281-90. [PMID: 20807511 DOI: 10.1016/j.brainres.2010.08.068] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/20/2010] [Accepted: 08/22/2010] [Indexed: 01/20/2023]
Abstract
Normal, age-related depletion of the androgen testosterone is a risk factor for Alzheimer's disease (AD) in men. Previously, we reported that experimental androgen depletion significantly accelerates development of AD-like neuropathology in the 3xTg-AD triple-transgenic mouse model of AD, an effect prevented by androgen treatment. Because testosterone is metabolized in brain into both the androgen dihydrotestosterone (DHT) and the estrogen 17β-estradiol (E2), testosterone can mediate its effects through androgen and or estrogen pathways. To define the role of androgen and estrogen pathways in regulation of AD-like neuropathology, we compared the effects of testosterone (T) and its metabolites DHT and E2 in male 3xTg-AD mice depleted of endogenous sex steroid hormones by gonadectomy (GDX). Male 3xTg-AD mice were sham GDX or GDX, immediately treated with vehicle, T, DHT, or E2, and 4 months later evaluated for two indices of AD-like neuropathology, β-amyloid (Aβ) accumulation and tau hyperphosphorylation. In comparison to sham GDX mice, we observed a significant increase in Aβ accumulation in GDX mice in subiculum, hippocampus, and amygdala. Treatment of GDX mice with T prevented the increased Aβ accumulation in all three brain regions. DHT treatment yielded similar results, significantly reducing Aβ accumulation across brain regions. Interestingly, E2 prevented Aβ accumulation in hippocampus but exerted only partial effects in subiculum and amygdala. Levels of tau hyperphosphorylation in sham GDX male 3xTg-AD mice were modest and only slightly increased by GDX. Treatment of GDX mice with T or E2 but not DHT reduced tau hyperphosphorylation to levels lower than observed in sham animals. These data suggest that testosterone regulates Aβ pathology through androgen and estrogen pathways and reduces tau pathology largely through estrogen pathways. These findings further define hormone pathways involved in regulation of AD-related pathology, information that is important for understanding disease etiology and developing pathway-specific hormone interventions.
Collapse
Affiliation(s)
- Emily R Rosario
- Neuroscience Graduate Program, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
48
|
Ward MA, Bendlin BB, McLaren DG, Hess TM, Gallagher CL, Kastman EK, Rowley HA, Asthana S, Carlsson CM, Sager MA, Johnson SC. Low HDL Cholesterol is Associated with Lower Gray Matter Volume in Cognitively Healthy Adults. Front Aging Neurosci 2010; 2. [PMID: 20725527 PMCID: PMC2914583 DOI: 10.3389/fnagi.2010.00029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/26/2010] [Indexed: 02/05/2023] Open
Abstract
Dyslipidemia is common in adults and contributes to high rates of cardiovascular disease and may be linked to subsequent neurodegenerative and neurovascular diseases. This study examined whether lower brain volumes and cognition associated with dyslipidemia could be observed in cognitively healthy adults, and whether apolipoprotein E (APOE) genotype or family history of Alzheimer's disease (FHAD) alters this effect. T1-weighted magnetic resonance imaging was used to examine regional brain gray matter (GM) and white matter (WM) in 183 individuals (58.4 ± 8.0 years) using voxel-based morphometry. A non-parametric multiple linear regression model was used to assess the effect of high-density lipoprotein (HDL) and non-HDL cholesterol, APOE, and FHAD on regional GM and WM volume. A post hoc analysis was used to assess whether any significant correlations found within the volumetric analysis had an effect on cognition. HDL was positively correlated with GM volume in the bilateral temporal poles, middle temporal gyri, temporo-occipital gyri, and left superior temporal gyrus and parahippocampal region. This effect was independent of APOE and FHAD. A significant association between HDL and the Brief Visuospatial Memory Test was found. Additionally, GM volume within the right middle temporal gyrus, the region most affected by HDL, was significantly associated with the Controlled Oral Word Association Test and the Center for Epidemiological Studies Depression Scale. These findings suggest that adults with decreased levels of HDL cholesterol may be experiencing cognitive changes and GM reductions in regions associated with neurodegenerative disease and therefore, may be at greater risk for future cognitive decline.
Collapse
Affiliation(s)
- Michael A Ward
- Geriatric Research, Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Loskutova N, Honea RA, Brooks WM, Burns JM. Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer's disease. J Alzheimers Dis 2010; 20:313-22. [PMID: 20164583 PMCID: PMC2892930 DOI: 10.3233/jad-2010-1364] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Accelerated bone loss is associated with Alzheimer's disease (AD). Although the central nervous system plays a direct role in regulating bone mass, primarily through the actions of the hypothalamus, there is little work investigating the possible role of neurodegeneration in bone loss. In this cross-sectional study, we examined the association between bone mineral density (BMD) and neuroimaging markers of neurodegeneration (i.e., global and regional measures of brain volume) in early AD and non-demented aging. Fifty-five non-demented and 63 early AD participants underwent standard neurological and neuropsychological assessment, structural MRI scanning, and dual energy x-ray absorptiometry. In early AD, voxel-based morphometry analyses demonstrated that low BMD was associated with low volume in limbic grey matter (GM) including the hypothalamus, cingulate, and parahippocampal gyri and in the left superior temporal gyrus and left inferior parietal cortex. No relationship between BMD and regional GM volume was found in non-demented controls. The hypothesis-driven region of interest analysis further isolating the hypothalamus demonstrated a positive relationship between BMD and hypothalamic volume after controlling for age and gender in the early AD group but not in non-demented controls. These results demonstrate that lower BMD is associated with lower hypothalamic volume in early AD, suggesting that central mechanisms of bone remodeling may be disrupted by neurodegeneration.
Collapse
Affiliation(s)
- Natalia Loskutova
- Department of Physical Therapy and Rehabilitation Sciences University of Kansas School of Allied Health, Kansas City, KS, USA
| | - Robyn A. Honea
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - William M. Brooks
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
- Hoglund Brain Imaging Center, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|