1
|
Silva PH, Peñaloza HF, Cordero J, Kalergis AM, Barrera NP, Bueno SM. Clustering analyses of murine bone marrow-derived neutrophils reveal a phenotypic heterogeneity that can respond differentially to stimulation. Heliyon 2025; 11:e42227. [PMID: 40040995 PMCID: PMC11876930 DOI: 10.1016/j.heliyon.2025.e42227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Neutrophils are granulocytic cells produced in the bone marrow from a granulocytic progenitor cell. During infection, the production of chemokines and cytokines induces the recruitment of neutrophils to the infected tissue to promote the clearance of microbial pathogens. Several studies have shown that different subpopulations of neutrophils can be identified during infection. However, no previous studies evaluated subpopulations of neutrophils purified from the bone marrow (BM), which are typically used to study the biology of these cells based on the assumption that the neutrophil population is homogeneous. In the present study, responses of purified BM-derived neutrophils to various stimuli such as PMA, LPS, and Streptococcus pneumoniae were evaluated using flow cytometry and bh-SNE analyses. Further, neutrophil population heterogeneity was assessed by clustering analyses. Our data suggest that purified BM-derived neutrophils were not a homogeneous cell population and were clustered into 12 subsets, each displaying a unique marker profile, where CD11b and CD62L emerged as pivotal markers for neutrophil function. Importantly, the subsets responded differentially to each stimulus, suggesting a nuanced activation pattern. Changes in biomarker expression were analyzed via Ingenuity Pathway Analysis (IPA) to unravel functional implications of the identified clusters, revealing subsets associated with different neutrophil functions, such as "Migration of neutrophils" or "Phagocytosis in neutrophils". This study contributes to understanding the diversity of purified BM-derived neutrophils and the implications of using these cellular preparations to raise conclusions about the functionality of these cells in various infection models.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330023, Chile
| | - Nelson P. Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| |
Collapse
|
2
|
Baker JT, Deng Z, Sokale A, Frederick B, Kim SW. Nutritional and functional roles of β-mannanase on intestinal health and growth of newly weaned pigs fed two different types of feeds. J Anim Sci 2024; 102:skae206. [PMID: 39044687 PMCID: PMC11306790 DOI: 10.1093/jas/skae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to investigate the nutritional and functional roles of β-mannanase on the intestinal health and growth of newly weaned pigs fed a typical or low-cost formulated feeds (LCF). Twenty-four newly weaned pigs at 6.2 kg ± 0.4 body weight (BW) were allotted to three dietary treatments based on a randomized complete block design with sex and initial BW as blocks. Three dietary treatments are as follows: Control, typical nursery feeds including animal protein supplements and enzyme-treated soybean meal; LCF with increased amounts of soybean meal, decreased amounts of animal protein supplements, and no enzyme-treated soybean meal; LCF+, low-cost formulated feed with β-mannanase at 100 g/t, providing 800 thermostable β-mannanase unit (TMU) per kg of feed. Pigs were fed based on a three-phase feeding program for a total of 37 d. On day 37 of feeding, all pigs were euthanized and the gastrointestinal tract was removed for sample collection to analyze intestinal health parameters, mucosa-associated microbiota, and gene expression of tight junction proteins. Pigs fed LCF increased (P < 0.05) the relative abundance of Proteobacteria and Helicobacter in the jejunal mucosa, tended to decrease (P = 0.097; P = 0.098) the concentration of malondialdehyde (MDA) and the expression of zona occluden 1 (ZO-1) gene in the jejunum, tended to decrease average daily gain (ADG; P = 0.084) and final BW (P = 0.090), and decreased (P < 0.05) average daily feed intake. Pigs fed LCF + tended to decrease (P = 0.088) digesta viscosity, decreased (P < 0.05) the relative abundance of Helicobacter, and increased (P < 0.05) Lactobacillus in the jejunal mucosa compared to LCF. Additionally, LCF + tended to increase final BW (P = 0.059) and ADG (P = 0.054), increased (P < 0.05) gain to feed ratio (G:F), and reduced (P < 0.05) fecal score compared to LCF. LCF with decreased amounts of animal protein supplements and increased amounts of soybean meal had negative effects on the composition of the mucosa-associated microbiota, intestinal integrity, and growth performance of nursery pigs. Beta-mannanase supplementation to LCF decreased digesta viscosity, increased the relative abundance of potentially health-benefitting microbiota such as Lactobacillus, and improved growth and fecal score, thus reflecting its efficacy in low-cost formulated feeds with increased amounts of soybean meal.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Kitamura H. Flow cytometric detection of CD11b + Gr-1 + cells in nontumor-bearing mice: A propolis-elicited model. Methods Cell Biol 2023; 184:17-32. [PMID: 38555156 DOI: 10.1016/bs.mcb.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenous myeloid lineage population whose conventional surface phenotype is CD11b+ Gr-1+. Due to their rarity and fragility, analyses using primary isolated MDSCs are extremely difficult. However, counting CD11b+ Gr-1+ cells in associated tissues such as tumors and inflammatory lesions provides critical information regarding MDSC involvement in immune disorders in the tissues. Specific MDSC markers have not been identified, limiting our ability to apply histochemical approaches during MDSCs research. However, profiling surface antigens using multi-colorimetric flow cytometry enables us to easily monitor the abundance of MDSCs in vivo. Monitoring of mouse MDSCs and their subpopulations using flow cytometry is well established. In this article, I exemplify a conventional method of monitoring CD11b+ Gr-1+ cells in mouse adipose tissue after administration of Brazilian propolis ethanol extract, which is a strong inducer of MDSCs.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Disease Models, College of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
4
|
Curran CS, Kopp JB. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front Med (Lausanne) 2022; 9:970423. [PMID: 36017003 PMCID: PMC9395689 DOI: 10.3389/fmed.2022.970423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
The multi-ligand receptor for advanced glycation end-products (RAGE) and its ligands are contributing factors in autoimmunity, cancers, and infectious disease. RAGE activation is increased in chronic kidney disease (CKD) and coronavirus disease 2019 (COVID-19). CKD may increase the risk of COVID-19 severity and may also develop in the form of long COVID. RAGE is expressed in essentially all kidney cell types. Increased production of RAGE isoforms and RAGE ligands during CKD and COVID-19 promotes RAGE activity. The downstream effects include cellular dysfunction, tissue injury, fibrosis, and inflammation, which in turn contribute to a decline in kidney function, hypertension, thrombotic disorders, and cognitive impairment. In this review, we discuss the forms and mechanisms of RAGE and RAGE ligands in the kidney and COVID-19. Because various small molecules antagonize RAGE activity in animal models, targeting RAGE, its co-receptors, or its ligands may offer novel therapeutic approaches to slowing or halting progressive kidney disease, for which current therapies are often inadequate.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Gottschalk TA, Hall P, Tsantikos E, L’Estrange-Stranieri E, Hickey MJ, Hibbs ML. Loss of CD11b Accelerates Lupus Nephritis in Lyn-Deficient Mice Without Disrupting Glomerular Leukocyte Trafficking. Front Immunol 2022; 13:875359. [PMID: 35634296 PMCID: PMC9134083 DOI: 10.3389/fimmu.2022.875359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous autoimmune disease. A common manifestation, lupus nephritis, arises from immune complex deposition in the kidney microvasculature promoting leukocyte activation and infiltration, which triggers glomerular damage and renal dysfunction. CD11b is a leukocyte integrin mainly expressed on myeloid cells, and aside from its well-ascribed roles in leukocyte trafficking and phagocytosis, it can also suppress cytokine production and autoreactivity. Genome-wide association studies have identified loss-of-function polymorphisms in the CD11b-encoding gene ITGAM that are strongly associated with SLE and lupus nephritis; however, it is not known whether these polymorphisms act alone to induce disease or in concert with other risk alleles. Herein we show using Itgam-/- mice that loss of CD11b led to mild inflammatory traits, which were insufficient to trigger autoimmunity or glomerulonephritis. However, deficiency of CD11b in autoimmune-prone Lyn-deficient mice (Lyn-/-Itgam-/-) accelerated lupus-like disease, driving early-onset immune cell dysregulation, autoantibody production and glomerulonephritis, impacting survival. Migration of leukocytes to the kidney in Lyn-/- mice was unhindered by lack of CD11b. Indeed, kidney inflammatory macrophages were further enriched, neutrophil retention in glomerular capillaries was increased and kidney inflammatory cytokine responses were enhanced in Lyn-/-Itgam-/- mice. These findings indicate that ITGAM is a non-monogenic autoimmune susceptibility gene, with loss of functional CD11b exacerbating disease without impeding glomerular leukocyte trafficking when in conjunction with other pre-disposing genetic mutations. This highlights a primarily protective role for CD11b in restraining inflammation and autoimmune disease and provides a potential therapeutic avenue for lupus treatment.
Collapse
Affiliation(s)
- Timothy A. Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pamela Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Elan L’Estrange-Stranieri
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Margaret L. Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- *Correspondence: Margaret L. Hibbs,
| |
Collapse
|
6
|
Iliev DB, Strandskog G, Sobhkhez M, Bruun JA, Jørgensen JB. Secretome Profiling of Atlantic Salmon Head Kidney Leukocytes Highlights the Role of Phagocytes in the Immune Response to Soluble β-Glucan. Front Immunol 2021; 12:736964. [PMID: 34917074 PMCID: PMC8671040 DOI: 10.3389/fimmu.2021.736964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
β‐Glucans (BG) are glucose polymers which are produced in bacteria and fungi but not in vertebrate organisms. Being recognized by phagocytic leukocytes including macrophages and neutrophils through receptors such as dectin-1 and Complement receptor 3 (CR3), the BG are perceived by the innate immune system of vertebrates as foreign substances known as Pathogen Associated Molecular Patterns (PAMPs). The yeast-derived BG has been recognized for its potent biological activity and it is used as an immunomodulator in human and veterinary medicine. The goal of the current study was to characterize the immunostimulatory activity of soluble yeast BG in primary cultures of Atlantic salmon (Salmo salar) head kidney leukocytes (HKLs) in which phagocytic cell types including neutrophils and mononuclear phagocytes predominate. The effect of BG on the secretome of HKL cultures, including secretion of extracellular vesicles (EVs) and soluble protein55s was characterized through western blotting and mass spectrometry. The results demonstrate that, along with upregulation of proinflammatory genes, BG induces secretion of ubiquitinated proteins (UbP), MHCII-containing EVs from professional antigen presenting cells as well as proteins derived from granules of polymorphonuclear granulocytes (PMN). Among the most abundant proteins identified in BG-induced EVs were beta-2 integrin subunits, including CD18 and CD11 homologs, which highlights the role of salmon granulocytes and mononuclear phagocytes in the response to soluble BG. Overall, the current work advances the knowledge about the immunostimulatory activity of yeast BG on the salmon immune system by shedding light on the effect of this PAMP on the secretome of salmon leukocytes.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Guro Strandskog
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jack A Bruun
- Department of Medical Biology, Proteomics Platform, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Payros D, Alonso H, Malaga W, Volle A, Mazères S, Déjean S, Valière S, Moreau F, Balor S, Stella A, Combes-Soia L, Burlet-Schiltz O, Bouchez O, Nigou J, Astarie-Dequeker C, Guilhot C. Rv0180c contributes to Mycobacterium tuberculosis cell shape and to infectivity in mice and macrophages. PLoS Pathog 2021; 17:e1010020. [PMID: 34724002 PMCID: PMC8584747 DOI: 10.1371/journal.ppat.1010020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/11/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis, the main causative agent of human tuberculosis, is transmitted from person to person via small droplets containing very few bacteria. Optimizing the chance to seed in the lungs is therefore a major adaptation to favor survival and dissemination in the human population. Here we used TnSeq to identify genes important for the early events leading to bacterial seeding in the lungs. Beside several genes encoding known virulence factors, we found three new candidates not previously described: rv0180c, rv1779c and rv1592c. We focused on the gene, rv0180c, of unknown function. First, we found that deletion of rv0180c in M. tuberculosis substantially reduced the initiation of infection in the lungs of mice. Next, we established that Rv0180c enhances entry into macrophages through the use of complement-receptor 3 (CR3), a major phagocytic receptor for M. tuberculosis. Silencing CR3 or blocking the CR3 lectin site abolished the difference in entry between the wild-type parental strain and the Δrv0180c::km mutant. However, we detected no difference in the production of both CR3-known carbohydrate ligands (glucan, arabinomannan, mannan), CR3-modulating lipids (phthiocerol dimycocerosate), or proteins in the capsule of the Δrv0180c::km mutant in comparison to the wild-type or complemented strains. By contrast, we established that Rv0180c contributes to the functionality of the bacterial cell envelope regarding resistance to toxic molecule attack and cell shape. This alteration of bacterial shape could impair the engagement of membrane receptors that M. tuberculosis uses to invade host cells, and open a new perspective on the modulation of bacterial infectivity. The epidemic efficiency of tuberculosis bacilli is determined by their capacity to transmit via aerosol. Currently, the bacterial functions that favor Mycobacterium tuberculosis seeding in the lung of naïve host remain mostly unknown. Here we implemented a genome-wide approach to identify M. tuberculosis mutants deficient for seeding and early replication in the lung of mice. In addition to genes known to encode virulence factors, we identified three genes not previously described. We used complementary approaches to characterize the phenotype of a M. tuberculosis mutant with insertion within the rv0180c gene. We found that this mutant is impaired for seeding in the lung of mice and for invasion and replication in human macrophages. In macrophages, the defect relies on a lack of engagement of CR3 receptor. Although we did not detect any difference between the wild type strain and the rv0180c mutant with regard to potential CR3-ligand, we found that the bacterial cell envelope is altered in the rv0180c mutant. Our study provides new insight into bacterial genes required for early interaction of M. tuberculosis with the host and perspective to understand the bacterial functions enhancing infectivity.
Collapse
Affiliation(s)
- Delphine Payros
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Henar Alonso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Volle
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Flavie Moreau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphanie Balor
- Plateforme de Microscopie Électronique Intégrative (METi), Centre de Biologie Intégrative (CBI), CNRS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucie Combes-Soia
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (CAD); (CG)
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- * E-mail: (CAD); (CG)
| |
Collapse
|
8
|
Zhou M, Dascani P, Ding C, Kos JT, Tieri D, Lin X, Caster D, Powell D, Wen C, Watson CT, Yan J. Integrin CD11b Negatively Regulates B Cell Receptor Signaling to Shape Humoral Response during Immunization and Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2021; 207:1785-1797. [PMID: 34470858 DOI: 10.4049/jimmunol.2100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Our previous work has revealed the ability of CD11b to regulate BCR signaling and control autoimmune disease in mice. However, how CD11b regulates the immune response under normal conditions remains unknown. Through the use of a CD11b knockout model on a nonautoimmune background, we demonstrated that CD11b-deficient mice have an elevated Ag-specific humoral response on immunization. Deletion of CD11b resulted in elevated low-affinity and high-affinity IgG Ab and increases in Ag-specific germinal center B cells and plasma cells (PCs). Examination of BCR signaling in CD11b-deficient mice revealed defects in association of negative regulators pLyn and CD22 with the BCR, but increases in colocalizations between positive regulator pSyk and BCR after stimulation. Using a CD11b-reporter mouse model, we identified multiple novel CD11b-expressing B cell subsets that are dynamically altered during immunization. Subsequent experiments using a cell-specific CD11b deletion model revealed this effect to be B cell intrinsic and not altered by myeloid cell CD11b expression. Importantly, CD11b expression on PCs also impacts on BCR repertoire selection and diversity in autoimmunity. These studies describe a novel role for CD11b in regulation of the healthy humoral response and autoimmunity, and reveal previously unknown populations of CD11b-expressing B cell subsets, suggesting a complex function for CD11b in B cells during development and activation.
Collapse
Affiliation(s)
- Mingqian Zhou
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY.,College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Paul Dascani
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Chuanlin Ding
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY
| | - Justin T Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY; and
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY; and
| | - Xiaoying Lin
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY.,College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dawn Caster
- Department of Medicine, University of Louisville, Louisville, KY
| | - David Powell
- Department of Medicine, University of Louisville, Louisville, KY
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY; and
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr. Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY; .,Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
9
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
10
|
Mouse IgG3 binding to macrophage-like cells is prevented by deglycosylation of the antibody or by Accutase treatment of the cells. Sci Rep 2021; 11:10295. [PMID: 33986441 PMCID: PMC8119965 DOI: 10.1038/s41598-021-89705-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
The binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.
Collapse
|
11
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
12
|
Balneger N, Kroesen M, Lindau D, Wassink M, Boon L, den Brok MH, Büll C, Adema GJ. Generation of αCD11b-CpG antibody conjugates for the targeted stimulation of myeloid cells. J Control Release 2021; 332:148-159. [PMID: 33609622 DOI: 10.1016/j.jconrel.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
CpG oligonucleotides are short single-stranded synthetic DNA molecules. Upon binding to Toll-like receptor 9 (TLR9), CpG activates immune cells in humans and mice. This results in robust Th1 type immunity potentially resulting in clearance of pathogens, reduction of allergy and anti-tumor immunity. However, the effectiveness of CpG as an adjuvant depends on its administration route, with only strong effects seen when CpG is administered locally. As local administration is not always feasible, we generated conjugates to specifically deliver CpG to myeloid cells often abundantly present in tumors. For this we coupled CpG (3'-Thiol-modified phosphorothioate (PTO) CpG-ODN1826 type B (5'-tccatgacgttcctgacgtt-3')) to monoclonal antibodies (mAbs) directed against the myeloid cell marker CD11b using maleimide-thiol coupling. The CD11b-CpG mAb (αCD11b-CpG) conjugates contained about four CpG molecules/conjugate and displayed binding and internalization characteristics similar to unconjugated CD11b mAbs (αCD11b). The αCD11b-CpG conjugates readily induced maturation of murine dendritic cells (DCs) in a TLR9-dependent manner in vitro. Following intravenous injection, αCD11b-CpG conjugates efficiently targeted CD11b+ immune cells in the blood, lymph nodes and spleen. Finally, injection of αCD11b-CpG conjugates, but not untargeted conjugates, induced maturation of CD11b+ cell subsets in vivo. In conclusion, conjugating CpG to αCD11b enabled specific targeting and activation of myeloid cells in vivo.
Collapse
Affiliation(s)
- N Balneger
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands
| | - M Kroesen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands; Holland Proton Therapy Center, Delft, the Netherlands
| | - D Lindau
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands; Henkel IP and Holding GmbH, Henkelstr. 67, 40589 Duesseldorf, Germany
| | - M Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands
| | - L Boon
- Bioceros BV, Yalelaan 46, 3584 CM Utrecht, the Netherlands
| | - M H den Brok
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands
| | - C Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands
| | - G J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
14
|
Bohn E, Sonnabend M, Klein K, Autenrieth IB. Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. Int J Med Microbiol 2019; 309:344-350. [DOI: 10.1016/j.ijmm.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023] Open
|
15
|
Vorup-Jensen T, Jensen RK. Structural Immunology of Complement Receptors 3 and 4. Front Immunol 2018; 9:2716. [PMID: 30534123 PMCID: PMC6275225 DOI: 10.3389/fimmu.2018.02716] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasmus Kjeldsen Jensen
- Department of Molecular Biology and Genetics-Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Maxson ME, Naj X, O'Meara TR, Plumb JD, Cowen LE, Grinstein S. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 2018; 7:34798. [PMID: 29553370 PMCID: PMC5897098 DOI: 10.7554/elife.34798] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
Candida albicans hyphae can reach enormous lengths, precluding their internalization by phagocytes. Nevertheless, macrophages engulf a portion of the hypha, generating incompletely sealed tubular phagosomes. These frustrated phagosomes are stabilized by a thick cuff of F-actin that polymerizes in response to non-canonical activation of integrins by fungal glycan. Despite their continuity, the surface and invaginating phagosomal membranes retain a strikingly distinct lipid composition. PtdIns(4,5)P2 is present at the plasmalemma but is not detectable in the phagosomal membrane, while PtdIns(3)P and PtdIns(3,4,5)P3 co-exist in the phagosomes yet are absent from the surface membrane. Moreover, endo-lysosomal proteins are present only in the phagosomal membrane. Fluorescence recovery after photobleaching revealed the presence of a diffusion barrier that maintains the identity of the open tubular phagosome separate from the plasmalemma. Formation of this barrier depends on Syk, Pyk2/Fak and formin-dependent actin assembly. Antimicrobial mechanisms can thereby be deployed, limiting the growth of the hyphae.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xenia Naj
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Khan SQ, Khan I, Gupta V. CD11b Activity Modulates Pathogenesis of Lupus Nephritis. Front Med (Lausanne) 2018; 5:52. [PMID: 29600248 PMCID: PMC5862812 DOI: 10.3389/fmed.2018.00052] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) with unclear etiology and limited treatment options. Immune cell infiltration into the kidneys, a hallmark of LN, triggers tissue damage and proteinuria. CD11b, the α-chain of integrin receptor CD11b/CD18 (also known as αMβ2, Mac-1, and CR3), is highly expressed on the surface of innate immune cells, including macrophages and neutrophils. Genetic variants in the human ITGAM gene, which encodes for CD11b, are strongly associated with susceptibility to SLE, LN, and other complications of SLE. CD11b modulates several key biological functions in innate immune cells, including cell adhesion, migration, and phagocytosis. CD11b also modulates other signaling pathways in these cells, such as the Toll-like receptor signaling pathways, that mediate generation of type I interferons, a key proinflammatory cytokine and circulating biomarker in SLE and LN patients. However, how variants in ITGAM gene contribute to disease pathogenesis has not been completely established. Here, we provide an overview of CD11b modulated mechanisms and the functional consequences of the genetic variants that can drive disease pathogenesis. We also present recent insights from studies after pharmacological activation of CD11b. These studies offer novel mechanisms for development of therapeutics for LN, SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Samia Q Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical School, Chicago, IL, United States
| | - Imran Khan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical School, Chicago, IL, United States
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical School, Chicago, IL, United States
| |
Collapse
|
18
|
Liu H, Gong F, Wei F, Wu H. Artificial simulation of salivary and gastrointestinal digestion, and fermentation by human fecal microbiota, of polysaccharides from Dendrobium aphyllum. RSC Adv 2018; 8:13954-13963. [PMID: 35539317 PMCID: PMC9079872 DOI: 10.1039/c8ra01179f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022] Open
Abstract
In vitro salivary and gastrointestinal (GI) digestion and fermentation of polysaccharides extracted from Dendrobium aphyllum were investigated in this study. Salivary amylase showed no influence on D. aphyllum polysaccharides (DAP). The molecular weight of DAP decreased dramatically during the first 0.5 h of gastric digestion, and then reduced steadily during the subsequent GI tract consumption. The content of reducing sugars increased steadily during GI digestion. Only released free mannose of DAP was detectable by gas chromatography-mass spectrometry analysis during the first 12 h of fermentation, which was contributed by fecal microbiota metabolism. In terms of the fermentation pattern, the pH dropped significantly due to the formation of six types of short-chain fatty acids (SCFAs). This study demonstrates that polysaccharides extracted from D. aphyllum can be digested by the GI tract and are physiologically active in the human large bowel by lowering the pH of the large intestinal environment and promoting the production of SCFAs. D. aphyllum polysaccharide showed variational tendencies after artificial stimulated gastrointestinal digestion and fermentation by human feces.![]()
Collapse
Affiliation(s)
- Huifan Liu
- Department of Food Quality and Safety
- College of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Fan Gong
- Henan Institute of Product Quality Inspection and Supervision
- Zhengzhou
- China
| | - Fashan Wei
- Henan Institute of Product Quality Inspection and Supervision
- Zhengzhou
- China
| | - Hui Wu
- Department of Food Quality and Safety
- College of Food Science and Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
19
|
Li C, Tong F, Ma Y, Qian K, Zhang J, Chen X. Association of the CD11b rs1143679 polymorphism with systemic lupus erythematosus in the Han Chinese population. J Int Med Res 2017; 46:1008-1014. [PMID: 29207897 PMCID: PMC5972232 DOI: 10.1177/0300060517719210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective To investigate the association of the CD11b single nucleotide polymorphism (SNP) rs1143679 with systemic lupus erythematosus (SLE) in Han Chinese patients, and to clarify this association with SLE clinical manifestations. Methods PCR–restriction fragment length polymorphism and direct sequencing of CD11b rs1143679 were conducted in 584 patients with SLE and 628 healthy controls in this case–control study to compare genotype and allele frequency distributions. Correlations between CD11b genotypes and clinical manifestations were also determined. Results The frequency of the CD11b rs1143679 GA genotype was 1.89% in Han Chinese patients with SLE, which was much lower than that of European and American populations, but close to the frequency observed in individuals from Hong Kong and Thailand. The CD11b rs1143679 GA genotype was also shown to confer susceptibility to SLE (odds ratio = 4.00, 95% confidence interval = 1.11–14.41). CD11b rs1143679 was found to be significantly associated with nephritis, but not with age of disease onset, arthritis, hematological involvement, or neural lesions. Conclusion CD11b rs1143679 appears to be associated with risk for SLE in the Han Chinese population, and may play an important role in the development of lupus nephritis.
Collapse
Affiliation(s)
- Chunmei Li
- 1 Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | - Yi Ma
- 1 Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Qian
- 1 Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junyu Zhang
- 1 Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xingguo Chen
- 1 Department of Rheumatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Lukácsi S, Nagy-Baló Z, Erdei A, Sándor N, Bajtay Z. The role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in complement-mediated phagocytosis and podosome formation by human phagocytes. Immunol Lett 2017; 189:64-72. [DOI: 10.1016/j.imlet.2017.05.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 01/13/2023]
|
21
|
Distinct Effects of Integrins αXβ2 and αMβ2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 2016; 85:IAI.00644-16. [PMID: 27799334 DOI: 10.1128/iai.00644-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Integrins αMβ2 and αXβ2 are homologous adhesive receptors that are expressed on many of the same leukocyte populations and bind many of the same ligands. Although αMβ2 was extensively characterized and implicated in leukocyte inflammatory and immune functions, the roles of αXβ2 remain largely obscure. Here, we tested the ability of mice deficient in integrin αMβ2 or αXβ2 to deal with opportunistic infections and the capacity of cells derived from these animals to execute inflammatory functions. The absence of αMβ2 affected the recruitment of polymorphonuclear neutrophils (PMN) to bacterial and fungal pathogens as well as to model inflammatory stimuli, and αMβ2-deficient PMN displayed defective inflammatory functions. In contrast, deficiency of αXβ2 abrogated intraperitoneal recruitment and adhesive functions of monocytes and macrophages (Mϕ) and the ability of these cells to kill/phagocytose Candida albicans or Escherichia coli cells both ex vivo and in vivo During systemic candidiasis, the absence of αXβ2 resulted in the loss of antifungal activity by tissue Mϕ and inhibited the production of tumor necrosis factor alpha (TNF-α)/interleukin-6 (IL-6) in infected kidneys. Deficiency of αMβ2 suppressed Mϕ egress from the peritoneal cavity, decreased the production of anti-inflammatory IL-10, and stimulated the secretion of IL-6. The absence of αXβ2, but not of αMβ2, increased survival against a septic challenge with lipopolysaccharide (LPS) by 2-fold. Together, these results suggest that αMβ2 plays a primary role in PMN inflammatory functions and regulates the anti-inflammatory functions of Mϕ, whereas αXβ2 is central in the regulation of inflammatory functions of recruited and tissue-resident Mϕ.
Collapse
|
22
|
Fraser IP, Stuart L, Ezekowitz RAB. TLR-independent pattern recognition receptors and anti-inflammatory mechanisms. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100020801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pattern recognition receptors recognize molecular patterns associated with the surfaces of microbes and apoptotic cells. These receptors act alone and in concert to bind, phagocytose, and transduce cellular signals derived from these molecular patterns. The outcome of these interactions is dependent on the nature of the ligands, and upon the nature and combination of the ligated receptors. Whereas much attention has been focused on the properties and activities of the Toll-like receptors (TLRs) in this process, many other pattern recognition molecules have been described. Here we review some of these non-TLR receptors and their ligands, and focus attention on the mannose binding lectin, a humoral pattern recognition molecule. In addition, we describe how recognition of apopotic cells via pattern recognition receptors appears to result in responses that differ from those elicited by microbial ligands.
Collapse
Affiliation(s)
- Iain P. Fraser
- Laboratory of Developmental Immunology, MassGeneral Hospital for Children, Boston, Massachusetts, USA,
| | - Lynda Stuart
- Laboratory of Developmental Immunology, MassGeneral Hospital for Children, Boston, Massachusetts, USA, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - R. Alan B. Ezekowitz
- Laboratory of Developmental Immunology, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Okwor I, Uzonna JE. Pathways leading to interleukin-12 production and protective immunity in cutaneous leishmaniasis. Cell Immunol 2016; 309:32-36. [PMID: 27394077 DOI: 10.1016/j.cellimm.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/16/2023]
Abstract
Leishmaniasis affects millions of people worldwide and continues to pose public health problem. There is extensive evidence supporting the critical role for IL-12 in initiating and maintaining protective immune response to Leishmania infection. Although gene deletion studies show that CD40-CD40L interaction is an important pathway for IL-12 production by antigen-presenting cells and subsequent development of protective immunity in cutaneous leishmaniasis, several studies have uncovered other pathways that could also lead to IL-12 production and immunity in the absence of intact CD40-CD40L signaling. Here, we review the literature on the role of IL-12 in the induction and maintenance of protective T cell-mediated immunity in cutaneous leishmaniasis and the different pathways leading to IL-12 production by antigen-presenting cells following Leishmania major infection.
Collapse
Affiliation(s)
- Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg R3E 0T5, Canada.
| | - Jude E Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg R3E 0T5, Canada
| |
Collapse
|
24
|
Kim D, Kim TH, Wu G, Park BK, Ha JH, Kim YS, Lee K, Lee Y, Kwon HJ. Extracellular Release of CD11b by TLR9 Stimulation in Macrophages. PLoS One 2016; 11:e0150677. [PMID: 26954233 PMCID: PMC4783063 DOI: 10.1371/journal.pone.0150677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
CpG-DNA upregulates the expression of pro-inflammatory cytokines, chemokines and cell surface markers. Investigators have shown that CD11b (integrin αM) regulates TLR-triggered inflammatory responses in the macrophages and dendritic cells. Therefore, we aimed to identify the effects of CpG-DNA on the expression of CD11b in macrophages. There was no significant change in surface expression of CD11b after CpG-DNA stimulation. However, CD11b was released into culture supernatants after stimulation with phosphorothioate-backbone modified CpG-DNA such as PS-ODN CpG-DNA 1826(S). In contrast, MB-ODN 4531 and non-CpG-DNA control (regardless of backbone type and liposome-encapsulation) failed to induce release of CD11b. Therefore, the context of the CpG-DNA sequence and phosphorothioate backbone modification may regulate the effects of CpG-DNA on CD11b release. Based on inhibitor studies, CD11b release is mediated by p38 MAP kinase activation, but not by the PI3K and NF-κB activation. CD11b release is mediated by lysosomal degradation and by vacuolar acidification in response to CpG-DNA stimulation. The amount of CD11b in the exosome precipitant was significantly increased by CpG-DNA stimulation in vivo and in vitro depending on TLR9. Our observations perhaps give more insight into understanding of the mechanisms involved in CpG-DNA-induced immunomodulation in the innate immunity.
Collapse
Affiliation(s)
- Dongbum Kim
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Te Ha Kim
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Guang Wu
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byoung Kwon Park
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ji-Hee Ha
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Eby JC, Hoffman CL, Gonyar LA, Hewlett EL. Review of the neutrophil response to Bordetella pertussis infection. Pathog Dis 2015; 73:ftv081. [PMID: 26432818 DOI: 10.1093/femspd/ftv081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 01/13/2023] Open
Abstract
The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors.
Collapse
Affiliation(s)
- Joshua C Eby
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Casandra L Hoffman
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Laura A Gonyar
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Erik L Hewlett
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Regulating billions of blood platelets: glycans and beyond. Blood 2015; 126:1877-84. [PMID: 26330242 DOI: 10.1182/blood-2015-01-569129] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.
Collapse
|
28
|
Okwor I, Jia P, Uzonna JE. Interaction of Macrophage Antigen 1 and CD40 Ligand Leads to IL-12 Production and Resistance in CD40-Deficient Mice Infected with Leishmania major. THE JOURNAL OF IMMUNOLOGY 2015; 195:3218-26. [PMID: 26304989 DOI: 10.4049/jimmunol.1500922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023]
Abstract
Although some studies indicate that the interaction of CD40 and CD40L is critical for IL-12 production and resistance to cutaneous leishmaniasis, others suggest that this pathway may be dispensable. In this article, we compared the outcome of Leishmania major infection in both CD40- and CD40L-deficient mice after treatment with rIL-12. We show that although CD40 and CD40L knockout (KO) mice are highly susceptible to L. major, treatment with rIL-12 during the first 2 wk of infection causes resolution of cutaneous lesions and control of parasite replication. Interestingly, although treated CD40 KO mice remained healed, developed long-term immunity, and were resistant to secondary L. major challenge, treated CD40L KO reactivated their lesion after cessation of rIL-12 treatment. Disease reactivation in CD40L KO mice was associated with impaired IL-12 and IFN-γ production and a concomitant increase in IL-4 production by cells from lymph nodes draining the infection site. We show that IL-12 production by dendritic cells and macrophages via CD40L-macrophage Ag 1 (Mac-1) interaction is responsible for the sustained resistance in CD40 KO mice after cessation of rIL-12 treatment. Blockade of CD40L-Mac-1 interaction with anti-Mac-1 mAb led to spontaneous disease reactivation in healed CD40 KO mice, which was associated with impaired IFN-γ response and loss of infection-induced immunity after secondary L. major challenge. Collectively, our data reveal a novel role of CD40L-Mac-1 interaction in IL-12 production, development, and maintenance of optimal Th1 immunity in mice infected with L. major.
Collapse
Affiliation(s)
- Ifeoma Okwor
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; and
| | - Ping Jia
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; and Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
29
|
Grozovsky R, Giannini S, Falet H, Hoffmeister K. Molecular mechanisms regulating platelet clearance and thrombopoietin production. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/voxs.12144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Grozovsky
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - S. Giannini
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - H. Falet
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | - K.M. Hoffmeister
- Division of Hematology; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| |
Collapse
|
30
|
Reuter A, Panozza SE, Macri C, Dumont C, Li J, Liu H, Segura E, Vega-Ramos J, Gupta N, Caminschi I, Villadangos JA, Johnston APR, Mintern JD. Criteria for dendritic cell receptor selection for efficient antibody-targeted vaccination. THE JOURNAL OF IMMUNOLOGY 2015; 194:2696-705. [PMID: 25653426 DOI: 10.4049/jimmunol.1402535] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ab-targeted vaccination involves targeting a receptor of choice expressed by dendritic cells (DCs) with Ag-coupled Abs. Currently, there is little consensus as to which criteria determine receptor selection to ensure superior Ag presentation and immunity. In this study, we investigated parameters of DC receptor internalization and determined how they impact Ag presentation outcomes. First, using mixed bone marrow chimeras, we established that Ag-targeted, but not nontargeted, DCs are responsible for Ag presentation in settings of Ab-targeted vaccination in vivo. Next, we analyzed parameters of DEC205 (CD205), Clec9A, CD11c, CD11b, and CD40 endocytosis and obtained quantitative measurements of internalization speed, surface turnover, and delivered Ag load. Exploiting these parameters in MHC class I (MHC I) and MHC class II (MHC II) Ag presentation assays, we showed that receptor expression level, proportion of surface turnover, or speed of receptor internalization did not impact MHC I or MHC II Ag presentation efficiency. Furthermore, the Ag load delivered to DCs did not correlate with the efficiency of MHC I or MHC II Ag presentation. In contrast, targeting Ag to CD8(+) or CD8(-) DCs enhanced MHC I or MHC II Ag presentation, respectively. Therefore, receptor expression levels, speed of internalization, and/or the amount of Ag delivered can be excluded as major determinants that dictate Ag presentation efficiency in setting of Ab-targeted vaccination.
Collapse
Affiliation(s)
- Anika Reuter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Max Planck Graduate Center, 55128 Mainz, Germany; Institute of Physical Chemistry, 55099 Mainz, Germany
| | - Scott E Panozza
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Claire Dumont
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jessica Li
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Haiyin Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Elodie Segura
- INSERM Unité 932, 75248 Paris Cedex 05, France; Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France
| | - Javier Vega-Ramos
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Nishma Gupta
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Irina Caminschi
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia;
| |
Collapse
|
31
|
Baert K, Sonck E, Goddeeris BM, Devriendt B, Cox E. Cell type-specific differences in β-glucan recognition and signalling in porcine innate immune cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:192-203. [PMID: 25453580 DOI: 10.1016/j.dci.2014.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 05/04/2023]
Abstract
β-glucans exert receptor-mediated immunomodulating activities, including oxidative burst activity and cytokine secretion. The role of the β-glucan receptors dectin-1 and complement receptor 3 (CR3) in the response of immune cells towards β-glucans is still unresolved. Dectin-1 is considered as the main β-glucan receptor in mice, while recent studies in man show that CR3 is more important in β-glucan-mediated responses. This incited us to elucidate which receptor contributes to the response of innate immune cells towards particulate β-glucans in pigs as the latter might serve as a better model for man. Our results show an important role of CR3 in β-glucan recognition, as blocking this receptor strongly reduced the phagocytosis of β-glucans and the β-glucan-induced ROS production by porcine neutrophils. Conversely, dectin-1 does not seem to play a major role in β-glucan recognition in neutrophils. However, recognition of β-glucans appeared cell type-specific as both dectin-1 and CR3 are involved in the β-glucan-mediated responses in pig macrophages. Moreover, CR3 signalling through focal adhesion kinase (FAK) was indispensable for β-glucan-mediated ROS production and cytokine production in neutrophils and macrophages, while the Syk-dependent pathway was only partly involved in these responses. We may conclude that CR3 plays a cardinal role in β-glucan signalling in porcine neutrophils, while macrophages use a more diverse receptor array to detect and respond towards β-glucans. Nonetheless, FAK acts as a master switch that regulates β-glucan-mediated responses in neutrophils as well as macrophages.
Collapse
Affiliation(s)
- Kim Baert
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Eva Sonck
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Bruno M Goddeeris
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium; Vaccine Design, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 30 bus 2456, Heverlee B-3001, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| |
Collapse
|
32
|
Integrin CD11b negatively regulates BCR signalling to maintain autoreactive B cell tolerance. Nat Commun 2014; 4:2813. [PMID: 24264377 DOI: 10.1038/ncomms3813] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
A variant of the integrin-α-M (CD11b) gene has been linked to the pathogenesis of systemic lupus erythematosus. However, how this genotype results in the lupus phenotype is not fully understood. Here we show that autoreactive B cells lacking CD11b exhibit a hyperproliferative response to B cell receptor (BCR) crosslinking and enhanced survival. In vivo engagement of BCR in CD11b-deficient mice leads to increased autoAb production and kidney Ig deposition. In addition, CD11b-deficient autoreactive B cells have decreased tyrosine phosphorylation including Lyn and CD22 with decreased phosphatase SHP-1 recruitment but increased calcium influx. Results obtained using B cells transfected with the wild type or rs1143679 lupus-associated variant of CD11b suggest that this mutation completely abrogates the regulatory effect of CD11b on BCR signalling. This is through disruption of CD22-CD11b direct binding. These results reveal a previously unrecognized role of CD11b in maintaining autoreactive B cell tolerance.
Collapse
|
33
|
Friedrichs K, Adam M, Remane L, Mollenhauer M, Rudolph V, Rudolph TK, Andrié RP, Stöckigt F, Schrickel JW, Ravekes T, Deuschl F, Nickenig G, Willems S, Baldus S, Klinke A. Induction of atrial fibrillation by neutrophils critically depends on CD11b/CD18 integrins. PLoS One 2014; 9:e89307. [PMID: 24558493 PMCID: PMC3928425 DOI: 10.1371/journal.pone.0089307] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/21/2014] [Indexed: 01/09/2023] Open
Abstract
Background Recent observational clinical and ex-vivo studies suggest that inflammation and in particular leukocyte activation predisposes to atrial fibrillation (AF). However, whether local binding and extravasation of leukocytes into atrial myocardium is an essential prerequisite for the initiation and propagation of AF remains elusive. Here we investigated the role of atrial CD11b/CD18 mediated infiltration of polymorphonuclear neutrophils (PMN) for the susceptibility to AF. Methods and Results C57bl/6J wildtype (WT) and CD11b/CD18 knock-out (CD11b−/−) mice were treated for 14 days with subcutaneous infusion of angiotensin II (Ang II), a known stimulus for PMN activation. Atria of Ang II-treated WT mice were characterized by increased PMN infiltration assessed in immunohistochemically stained sections. In contrast, atrial sections of CD11b−/− mice lacked a significant increase in PMN infiltration upon Ang II infusion. PMN infiltration was accompanied by profoundly enhanced atrial fibrosis in Ang II treated WT as compared to CD11b−/− mice. Upon in-vivo electrophysiological investigation, Ang II treatment significantly elevated the susceptibility for AF in WT mice if compared to vehicle treated animals given an increased number and increased duration of AF episodes. In contrast, animals deficient of CD11b/CD18 were entirely protected from AF induction. Likewise, epicardial activation mapping revealed decreased electrical conduction velocity in atria of Ang II treated WT mice, which was preserved in CD11b−/− mice. In addition, atrial PMN infiltration was enhanced in atrial appendage sections of patients with persistent AF as compared to patients without AF. Conclusions The current data critically link CD11b-integrin mediated atrial PMN infiltration to the formation of fibrosis, which promotes the initiation and propagation of AF. These findings not only reveal a mechanistic role of leukocytes in AF but also point towards a potential novel avenue of treatment in AF.
Collapse
Affiliation(s)
- Kai Friedrichs
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Matti Adam
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Lisa Remane
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Volker Rudolph
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Tanja K. Rudolph
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - René P. Andrié
- Department of Medicine-Cardiology, University Hospital of Bonn, Bonn, Germany
| | - Florian Stöckigt
- Department of Medicine-Cardiology, University Hospital of Bonn, Bonn, Germany
| | - Jan W. Schrickel
- Department of Medicine-Cardiology, University Hospital of Bonn, Bonn, Germany
| | - Thorben Ravekes
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Florian Deuschl
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Georg Nickenig
- Department of Medicine-Cardiology, University Hospital of Bonn, Bonn, Germany
| | - Stephan Willems
- Department of Electrophysiology, University Heart Center Hamburg, Hamburg, Germany
| | - Stephan Baldus
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Heart Center, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
34
|
Kushner BH, Cheung IY, Modak S, Kramer K, Ragupathi G, Cheung NKV. Phase I trial of a bivalent gangliosides vaccine in combination with β-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res 2014; 20:1375-82. [PMID: 24520094 DOI: 10.1158/1078-0432.ccr-13-1012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To report on a phase I trial designed to find the maximally tolerated dose in children of the immunologic adjuvant OPT-821 in a vaccine containing neuroblastoma-associated antigens (GD2 and GD3; Clinicaltrials.gov NCT00911560). Secondary objectives were to obtain preliminary data on immune response and activity against minimal residual disease (MRD). Treatment also included the immunostimulant β-glucan. EXPERIMENTAL DESIGN Patients with neuroblastoma in ≥2nd complete/very good partial remission received vaccine subcutaneously (weeks 1-2-3-8-20-32-52). Vaccine contained 30 μg each of GD2 and GD3 stabilized as lactones and conjugated to the immunologic carrier protein keyhole limpet hemocyanin; and OPT-821, which was dose escalated as 50, 75, 100, and 150 μg/m(2) per injection. Oral β-glucan (40 mg/kg/day, 14 days on/14 days off) started week 6. RESULTS The study was completed with 15 patients because there was no dose-limiting toxicity at 150 μg/m(2) of OPT-821 (the dosing used in adults). Thirteen of fifteen patients received the entire protocol treatment, including 12 who remain relapse-free at 24+ to 39+ (median 32+) months and 1 who relapsed (single node) at 21 months. Relapse-free survival was 80% ± 10% at 24 months. Vaccine and β-glucan were well tolerated. Twelve of fifteen patients had antibody responses against GD2 and/or GD3. Disappearance of MRD was documented in 6 of 10 patients assessable for response. CONCLUSIONS This immunotherapy program lacks major toxicity and is transportable to any outpatient clinic. Patient outcome is encouraging but the efficacy is uncertain because of the complexity and heterogeneity of prior therapies. A larger phase II trial is underway.
Collapse
Affiliation(s)
- Brian H Kushner
- Authors' Affiliations: Departments of Pediatrics and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | |
Collapse
|
35
|
Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun 2014; 5:3039. [PMID: 24423728 PMCID: PMC3905776 DOI: 10.1038/ncomms4039] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022] Open
Abstract
Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS.
Collapse
Affiliation(s)
- Guang Sheng Ling
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Kevin J. Woollard
- Renal and Vascular Inflammation Section, Division of Immunology and Inflammation, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Marta Szajna
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Liliane Fossati-Jimack
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Philip R. Taylor
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XN, UK
| | - Diane Scott
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - H. Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Marina Botto
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
36
|
Hawley KL, Martín-Ruiz I, Iglesias-Pedraz JM, Berwin B, Anguita J. CD14 targets complement receptor 3 to lipid rafts during phagocytosis of Borrelia burgdorferi. Int J Biol Sci 2013; 9:803-10. [PMID: 23983613 PMCID: PMC3753444 DOI: 10.7150/ijbs.7136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/03/2013] [Indexed: 12/03/2022] Open
Abstract
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is mediated partly by the interaction of the spirochete with Complement Receptor (CR) 3. CR3 requires the GPI-anchored protein, CD14, in order to efficiently internalize CR3-B. burgdorferi complexes. GPI-anchored proteins reside in cholesterol-rich membrane microdomains, and through its interaction with partner proteins, help initiate signaling cascades. Here, we investigated the role of CD14 on the internalization of B. burgdorferi mediated by CR3. We show that CR3 partly colocalizes with CD14 in lipid rafts. The use of the cholesterol-sequestering compound methyl-β-cyclodextran completely prevents the internalization of the spirochete in CHO cells that co-express CD14 and CR3, while no effect was observed in CD11b-deficient macrophages. These results show that lipid rafts are required for CR3-dependent, but not independent, phagocytosis of B. burgdorferi. Our results also suggest that CD14 interacts with the C-lectin domain of CR3, favoring the formation of multi-complexes that allow their internalization, and the use of β-glucan, a known ligand for the C-lectin domain of CR3, can compensate for the lack of CD14 in CHO cells that express CR3. These results provide evidence to understand the mechanisms that govern the interaction between CR3 and CD14 during the phagocytosis of B. burgdorferi.
Collapse
Affiliation(s)
- Kelly L Hawley
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
37
|
Ma J, Cai W, Zhang Y, Huang C, Zhang H, Liu J, Tang K, Xu P, Katirai F, Zhang J, He W, Ye D, Shen GX, Huang B. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β₂ to tumor cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:3453-61. [PMID: 23956429 DOI: 10.4049/jimmunol.1300171] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Off-pump coronary artery bypass surgery induces prolonged alterations to host neutrophil physiology. Shock 2013; 39:149-54. [PMID: 23324884 DOI: 10.1097/shk.0b013e31827c2aba] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Persistent alteration to host polymorphonuclear cell (PMN) physiology has been demonstrated after cardiac surgery performed with cardiopulmonary bypass (CPB). However, to date, PMN physiology and function beyond the first 24 h have not been investigated after cardiac surgery performed without CPB (off-pump coronary artery bypass grafting [OPCAB]). Blood samples of 15 patients were collected preoperatively and on days 1, 3, and 5 after OPCAB. Expression of CD11b, CD18, CBRM1/5, and CD62L were assessed by flow cytometry under resting conditions and after stimulation with formyl methionyl-leucyl-phenylalanine (fMLF), and respiratory burst activity was also measured. Under resting conditions, PMN CD11b, CBRM1/5, and CD62L expressions were minimally altered by surgery. Compared with the response of preoperative PMNs, PMNs assayed on days 3 and 5 after OPCAB demonstrated a significantly blunted increase in the expression of CD11b and CBRM1/5 after fMLF, significantly diminished shedding of CD62L in response to platelet-activating factor and fMLF, and diminished superoxide production after stimulation on day 3. The alteration of PMN function after OPCAB implies that cardiac surgical trauma without CPB directly modulates host PMN physiology.
Collapse
|
39
|
Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol Reprod 2013; 88:84. [PMID: 23426436 DOI: 10.1095/biolreprod.113.107870] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In pigs, conceptus attachment to the uterine surface epithelium starts around Day 14 of pregnancy preceded by a pronounced vascularization at the implantation zones, initiating the epitheliochorial placentation. To characterize the complex transcriptome changes in the endometrium in the course of initial conceptus attachment, deep sequencing of endometrial RNA samples of pregnant animals (n = 4) and corresponding cyclic controls (n = 4) was performed using Illumina RNA-Seq. The obtained sequence reads were mapped to the porcine genome, and relative expression values were calculated for the analysis of differential gene expression. Statistical analysis revealed 1933 differentially expressed genes (false discovery rate 1%), 1229 with higher and 704 with lower mRNA concentration, in the samples from pregnant animals. Expression of selected genes was validated by the use of quantitative real-time RT-PCR. The RNA-Seq data were compared to results of a microarray study of bovine endometrium on Day 18 of pregnancy and additional related data sets. Bioinformatics analysis revealed for the genes with higher mRNA concentration in pregnant samples strong overrepresentation, particularly for immune-related functional terms but also for apoptosis and cell adhesion. Overrepresented terms for the genes with lower mRNA concentration in pregnant samples were related to extracellular region, ion transport, cell adhesion, and lipid and steroid metabolic process. In conclusion, RNA-Seq analysis revealed comprehensive transcriptome differences in porcine endometrium between Day 14 of pregnancy and corresponding cyclic endometrium and highlighted new processes and pathways probably involved in regulation of noninvasive implantation in the pig.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Polando R, Dixit UG, Carter CR, Jones B, Whitcomb JP, Ballhorn W, Harintho M, Jerde CL, Wilson ME, McDowell MA. The roles of complement receptor 3 and Fcγ receptors during Leishmania phagosome maturation. J Leukoc Biol 2013; 93:921-32. [PMID: 23543768 DOI: 10.1189/jlb.0212086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Leishmania are intracellular parasites adapted to surviving in macrophages, whose primary function is elimination of invading pathogens. Leishmania entry into host cells is receptor-mediated. These parasites are able to engage multiple host cell-surface receptors, including MR, TLRs, CR3, and FcγRs. Here, we investigated the role of CR3 and FcγR engagement on the maturation of Leishmania-containing phagosomes using CD11b-/- and FcγR-/- macrophages, and assessing EEA1 and lysosome-associated proteins is necessary for the phagosome maturation delay, characteristic of Leishmania infection. Leishmania-containing phagosomes do not fuse with lyosomes until 5 h postinfection in WT mice. Phagolysosome fusion occurs by 1 h in CD11b and FcγR common chain KO macrophages, although receptor deficiency does not influence Leishmania entry or viability. We also investigated the influence of serum components and their effects on phagosome maturation progression. Opsonization with normal mouse serum, complement-deficient serum, or serum from Leishmania-infected mice all influenced phagosome maturation progression. Our results indicate that opsonophagocytosis influences phagosomal trafficking of Leishmania without altering the intracellular fate.
Collapse
Affiliation(s)
- Rachel Polando
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
42
|
Involvement of Toso in activation of monocytes, macrophages, and granulocytes. Proc Natl Acad Sci U S A 2013; 110:2593-8. [PMID: 23359703 DOI: 10.1073/pnas.1222264110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Rapid activation of immune responses is necessary for antibacterial defense, but excessive immune activation can result in life-threatening septic shock. Understanding how these processes are balanced may provide novel therapeutic potential in treating inflammatory disease. Fc receptors are crucial for innate immune activation. However, the role of the putative Fc receptor for IgM, known as Toso/Faim3, has to this point been unclear. In this study, we generated Toso-deficient mice and used them to uncover a critical regulatory function of Toso in innate immune activation. Development of innate immune cells was intact in the absence of Toso, but Toso-deficient neutrophils exhibited more reactive oxygen species production and reduced phagocytosis of pathogens compared with controls. Cytokine production was also decreased in Toso(-/-) mice compared with WT animals, rendering them resistant to septic shock induced by lipopolysaccharide. However, Toso(-/-) mice also displayed limited cytokine production after infection with the bacterium Listeria monocytogenes that was correlated with elevated presence of Listeria throughout the body. Accordingly, Toso(-/-) mice succumbed to infections of L. monocytogenes, whereas WT mice successfully eliminated the infection. Taken together, our data reveal Toso to be a unique regulator of innate immune responses during bacterial infection and septic shock.
Collapse
|
43
|
Mankovich AR, Lee CY, Heinrich V. Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils. PLoS One 2013; 8:e54735. [PMID: 23349959 PMCID: PMC3551912 DOI: 10.1371/journal.pone.0054735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/14/2012] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, in cooperation with serum, are vital gatekeepers of a host’s microbiome and frontline defenders against invading microbes. Yet because human neutrophils are not amenable to many biological techniques, the mechanisms governing their immunological functions remain poorly understood. We here combine state-of-the-art single-cell experiments with flow cytometry to examine how temperature-dependent heat treatment of serum affects human neutrophil interactions with “target” particles of the fungal model zymosan. Assessing separately both the chemotactic as well as the phagocytic neutrophil responses to zymosan, we find that serum heat treatment modulates these responses in a differential manner. Whereas serum treatment at 52°C impairs almost all chemotactic activity and reduces cell-target adhesion, neutrophils still readily engulf target particles that are maneuvered into contact with the cell surface under the same conditions. Higher serum-treatment temperatures gradually suppress phagocytosis even after enforced cell-target contact. Using fluorescent staining, we correlate the observed cell behavior with the amounts of C3b and IgG deposited on the zymosan surface in sera treated at the respective temperatures. This comparison not only affirms the critical role of complement in chemotactic and adhesive neutrophil interactions with fungal surfaces, but also unmasks an important participation of IgGs in the phagocytosis of yeast-like fungal particles. In summary, this study presents new insight into fundamental immune mechanisms, including the chemotactic recruitment of immune cells, the adhesive capacity of cell-surface receptors, the role of IgGs in fungal recognition, and the opsonin-dependent phagocytosis morphology of human neutrophils. Moreover, we show how, by fine-tuning the heat treatment of serum, one can selectively study chemotaxis or phagocytosis under otherwise identical conditions. These results not only refine our understanding of a widely used laboratory method, they also establish a basis for new applications of this method.
Collapse
Affiliation(s)
- Alexander R. Mankovich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Eosinophils and Anti-Pathogen Host Defense. EOSINOPHILS IN HEALTH AND DISEASE 2013. [PMCID: PMC7156009 DOI: 10.1016/b978-0-12-394385-9.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Vorup-Jensen T. On the roles of polyvalent binding in immune recognition: perspectives in the nanoscience of immunology and the immune response to nanomedicines. Adv Drug Deliv Rev 2012; 64:1759-81. [PMID: 22705545 DOI: 10.1016/j.addr.2012.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/31/2022]
Abstract
Immunology often conveys the image of large molecules, either in the soluble state or in the membrane of leukocytes, forming multiple contacts with a target for actions of the immune system. Avidity names the ability of a polyvalent molecule to form multiple connections of the same kind with ligands tethered to the same surface. Polyvalent interactions are vastly stronger than their monovalent equivalent. In the present review, the functional consequences of polyvalent interactions are explored in a perspective of recent theoretical advances in understanding the thermodynamics of such binding. From insights on the structural biology of soluble pattern recognition molecules as well as adhesion molecules in the cell membranes or in their proteolytically shed form, this review documents the prominent role of polyvalent interactions in making the immune system a formidable barrier to microbial infection as well as constituting a significant challenge to the application of nanomedicines.
Collapse
|
46
|
Curran CS, Bertics PJ. Lactoferrin regulates an axis involving CD11b and CD49d integrins and the chemokines MIP-1α and MCP-1 in GM-CSF-treated human primary eosinophils. J Interferon Cytokine Res 2012; 32:450-61. [PMID: 22731992 DOI: 10.1089/jir.2011.0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are multifunctional immune cells that contribute to innate and adaptive immune/repair responses. Lactoferrin (LF) is an iron-binding protein indicated to alter cell adhesion and immune function by receptor-mediated interactions or by participating in redox mechanisms. The eosinophil adhesion molecules, αMβ2 and α4β1, are differentially expressed following exposure to the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) and various redox agents. We hypothesized that LF can alter the function and production of proteins involved in adhesion/migration. Utilizing eosinophil peroxidase activity or fluorescent labeling adhesion assays, LF reduced GM-CSF-induced eosinophil adhesion in the presence of fibronectin or vascular adhesion molecule-1 compared with GM-CSF treatment alone. Flow cytometric analysis of eosinophil αM (CD11b) and α4 (CD49d) integrins revealed that cotreatments (24 h) with LF plus GM-CSF induced a significant increase in CD11b compared with control and GM-CSF treatments but a significant decrease in CD49d compared with control and GM-CSF treatments. These changes in CD11b and CD49d levels were significantly correlated with the increased production of chemokines (macrophage inflammatory Protein-1α, monocyte chemotactic protein-1) and an identified increase in S100A9 production. Thus, LF release at sites of inflammation may alter eosinophil recruitment/activation and possibly the progression of diseases such as cancer and asthma where significant eosinophil influx has been described.
Collapse
Affiliation(s)
- Colleen S Curran
- Department of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
47
|
Role of Carbohydrate Receptors in the Macrophage Uptake of Dextran-Coated Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 733:115-23. [DOI: 10.1007/978-94-007-2555-3_11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Guimarães AJ, de Cerqueira MD, Nosanchuk JD. Surface architecture of histoplasma capsulatum. Front Microbiol 2011; 2:225. [PMID: 22121356 PMCID: PMC3220077 DOI: 10.3389/fmicb.2011.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface. Surface components associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins, and melanins. Here, we describe the various structures comprising the cell surface of H. capsulatum that have been associated with virulence and discuss their involvement in the pathobiology of disease.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Imunology, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA
| | | | | |
Collapse
|
49
|
Primary Porcine Kupffer Cell Phagocytosis of Human Platelets Involves the CD18 Receptor. Transplantation 2011; 92:739-44. [DOI: 10.1097/tp.0b013e31822bc986] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Protective effect of beta-glucan on contrast induced-nephropathy and a comparison of beta-glucan with nebivolol and N-acetylcysteine in rats. Clin Exp Nephrol 2011; 15:658-665. [DOI: 10.1007/s10157-011-0451-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|