1
|
Otoo B, Calise DG, Park SC, Bok JW, Keller NP, Rawa MSA. ZfpA-Dependent Quorum Sensing Shifts in Morphology and Secondary Metabolism in Aspergillus flavus. Environ Microbiol 2025; 27:e70100. [PMID: 40262766 PMCID: PMC12014256 DOI: 10.1111/1462-2920.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Development of the fungal pathogen Aspergillus flavus involves the balance of asexual spores (conidia) and overwintering hardened hyphal masses (sclerotia). This balance is achieved by an oxylipin-based density-dependent mechanism regulating the switch from sclerotia to conidia as population density increases in A. flavus. Here, we show the transcription factor ZfpA, required for normal oxylipin synthesis, regulates the morphology switch. ZfpA overexpression (OE::zfpA) accelerates the shift leading to increased conidial production and reduced sclerotial production under conditions normally supporting sclerotia formation. In contrast, zfpA deletion (ΔzfpA) produces more sclerotia than wild-type control. These morphology changes are coupled with changes in tissue-specific secondary metabolites. Specifically, the production of four sclerotial metabolites (oxyasparasone A, hydroxyaflatrem, aflavinine, and kotanin) decreases in OE::zfpA whereas the hyphal metabolite aspergillic acid is upregulated in this mutant. Chemical profiling of OE::zfpA compared to a double mutant where the aspergillic acid non-ribosomal synthetase was deleted in the OE::zfpA background confirmed synthesis of known aspergillic acid pathway products as well as putative Val-derived pyrazinones involved in metal chelation. These findings offer valuable insights into the quorum sensing networks connecting fungal development and tissue-specific secondary metabolite production.
Collapse
Affiliation(s)
- Benjamin Otoo
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Dante G. Calise
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sung Chul Park
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Jin Woo Bok
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Nancy P. Keller
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | |
Collapse
|
2
|
Mukherjee A, Sarkar R. Unlocking the microbial treasure trove: advances in Streptomyces derived secondary metabolites in the battle against cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04001-5. [PMID: 40100372 DOI: 10.1007/s00210-025-04001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Streptomyces is widely recognized as the "biological factory" of specialized metabolites comprising a huge variety of bioactive molecules with diverse chemical properties. The potential of this Gram-positive soil bacteria to produce such diversified secondary metabolites with significant biological properties positions them as an ideal candidate for anticancer drug discovery. Some of the Streptomyces-derived secondary metabolites include siderophores (enterobactin, desferrioxamine), antibiotics (xiakemycin, dinactin) pigments (prodigiosin, melanin), and enzymes (L-methioninase, L-asperginase, cholesterol oxidase) which exhibit a pronounced anticancer effect on both in vitro and in vivo system. These secondary metabolites are endowed with antiproliferative, pro-apoptotic, antimetastatic, and antiangiogenic properties, presenting several promising characteristics that make them suitable candidates in the battle against this deadly disease. In this comprehensive review, we have dived deep and explored their history of discovery, their role as anticancer agents, underlying mechanisms, the approaches for the discovery of anticancer molecules from the secondary metabolites of Streptomyces (isolation of Streptomyces, characterization of bacterial strain, screening for anticancer activity and determination of in vitro and in vivo toxicity, structure-activity relationship studies, clinical translation, and drug development studies). The hurdles and challenges associated with this process and their future prospect were also illustrated. This review highlights the efficacy of Streptomyces as a "microbial treasure island" for novel anticancer agents, which warrants sustained research and exploration in this field to disclose more molecules from Streptomyces that are unidentified and to translate the clinical application of these secondary metabolites for cancer patients.
Collapse
Affiliation(s)
- Adrija Mukherjee
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Ruma Sarkar
- B.D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India.
| |
Collapse
|
3
|
Wyman EM, Grayburn WS, Gilbert MK, Lebar MD, Lohmar JM, Cary JW, Sauters TJC, Rokas A, Calvo AM. An environmental isolate of Pseudomonas, 20EI1, reduces Aspergillus flavus growth in an iron-dependent manner and alters secondary metabolism. Front Microbiol 2025; 15:1514950. [PMID: 39902287 PMCID: PMC11788345 DOI: 10.3389/fmicb.2024.1514950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Aspergillus flavus is an opportunistic pathogenic fungus that infects oilseed crops worldwide. When colonizing plants, it produces mycotoxins, including carcinogenic compounds such as aflatoxins. Mycotoxin contamination results in an important economic and health impact. The design of new strategies to control A. flavus colonization and mycotoxin contamination is paramount. Methods The biocontrol potential of a promising new isolate of Pseudomonas spp., 20EI1 against A. flavus was assessed using bioassays and microscopy. To further elucidate the nature of this bacterial-fungal interaction, we also performed chemical and transcriptomics analyses. Results In the present study, Pseudomonas spp., 20EI1 was able to reduce the growth of A. flavus. Furthermore, we determined that this growth inhibition is iron-dependent. In addition, Pseudomonas 20EI1 reduced or blocked the production of aflatoxin, as well as cyclopiazonic acid and kojic acid. Expression of iron-related genes was altered in the presence of the bacteria and genes involved in the production of aflatoxin were down-regulated. Iron supplementation partially reestablished their expression. Expression of other secondary metabolite (SM) genes was also reduced by the bacteria, including genes of clusters involved in cyclopiazonic acid, kojic acid and imizoquin biosynthesis, while genes of the cluster corresponding to aspergillicin, a siderophore, were upregulated. Interestingly, the global SM regulatory gene mtfA was significantly upregulated by 20EI1, which could have contributed to the observed alterations in SM. Discussion Our results suggest that Pseudomonas 20EI1 is a promising biocontrol against A. flavus, and provide further insight into this iron-dependent bacterial-fungal interaction affecting the expression of numerous genes, among them those involved in SM.
Collapse
Affiliation(s)
- Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - W. Scott Grayburn
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Matthew K. Gilbert
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Thomas J. C. Sauters
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, United States
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
4
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis. Appl Environ Microbiol 2024; 90:e0081924. [PMID: 39230285 PMCID: PMC11497805 DOI: 10.1128/aem.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Collapse
Affiliation(s)
- Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Dada TA, Ekwomadu TI, Ngoma L, Mwanza M. Biodiversity of Aspergillus Species and Their Mycotoxin Production Potential in Dry Meat. Foods 2024; 13:3221. [PMID: 39456283 PMCID: PMC11507283 DOI: 10.3390/foods13203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to examine fungi diversity in dried beef meat sold in Ekiti State, characterize the isolated fungi, and determine the aflatoxin-producing ability of the Aspergillus fungi in the samples. Dried beef meat was collected from different markets in Ekiti State and screened for the presence of filamentous fungi using molecular methods. Samples were cultured aseptically on potato dextrose agar (PDA) for fungi isolation, and molecular identification was performed using DNA extraction, Polymerase chain Reaction (PCR), ITS-1/ITS-4 primer pair, and nucleotide sequencing. The results obtained indicated a range of filamentous fungi genera including Aspergillus, Rhizopus, Penicillium, Fusarium, Cladosporium, Alternaria, and other fungi species contaminating the dried meat at (43%), (42%), (3%), (2%), (2%), (1%), and (7%), respectively. High incidences were recorded for Aspergillus flavus, Aspergillus niger, and Aspergillus fumigatus in most of the screened samples. Aspergillus flavus accounted for (24.7%) of all the Aspergillus species isolated with the presence of the gene needed for aflatoxin production. The occurrences of these filamentous fungal species pose a cause for concern, as most of these fungal species are known producers of certain toxic substances. Maximum likelihood phylogenetic analysis showed a high similarity index score, which indicated a good relationship between isolated Aspergillus Species and the closely related strains from GenBank, isolated from different sources and countries. The implication of this study is that consumer health may be at risk through exposure to contaminated dried meat.
Collapse
Affiliation(s)
- Toluwase Adeseye Dada
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa; (T.I.E.); (L.N.)
- Department of Agricultural Technology, School of Agriculture, Ekiti State Polytechnic, Isan-Ekiti PMB 1101, Nigeria
| | - Theodora Ijeoma Ekwomadu
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa; (T.I.E.); (L.N.)
| | - Lubanza Ngoma
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa; (T.I.E.); (L.N.)
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa; (T.I.E.); (L.N.)
| |
Collapse
|
6
|
Salvatore MM, Castaldi S, Russo MT, Bani M, DellaGreca M, Staiano I, Cimmino A, Isticato R, Masi M, Andolfi A. First Investigation of Secondary Metabolites from Aspergillus xerophilus Reveals Compounds with Inhibitive Effects against Three Phytopathogenic Fungi of Agrarian Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21667-21676. [PMID: 39292979 DOI: 10.1021/acs.jafc.4c07686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Fungal secondary metabolites play a highly significant role in crop protection, which is related to their antifungal activity against agriculturally important phytopathogens. In fact, plant diseases caused by fungi including species belonging to the genera of Alternaria, Botrytis, and Fusarium have become increasingly serious affecting crop yield and quality. Hence, there is increasing awareness by the scientific community of the importance of exploiting fungal products for finding new compounds able to inhibit phytopathogens. In this study several drimane-type sesquiterpenes have been detected for the first time as products of Aspergillus xerophilus by GC-MS analysis of the organic extracts obtained from the mycelia and culture filtrates of the fungus grown on two different substrates. Seven pure drimane-type sesquiterpenes were also isolated and identified by spectroscopic methods. The inhibitory effects of the pure compounds have been investigated against three phytopathogenic fungi of agrarian crops (i.e., Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum f. sp. pisi). Among the drimane-type sesquiterpenes isolated in this study, 9,11-dihydroxy-6-oxodrim-7-ene is the most active against the three phytopathogens. Our findings also reveal the high sensitivity of A. alternata to the isolated compounds. These results pave the way for future applications in agriculture of both A. xerophilus and its metabolites.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefany Castaldi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Maria Teresa Russo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Moustafa Bani
- Laboratory of Biotechnology, Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP E66, Constantine 25100, Algeria
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Ivana Staiano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- NBFC-National Biodiversity Future Center, Palermo 90133, Italy
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
7
|
Yu M, Zhou X, Chen D, Jiao Y, Han G, Tao F. HacA, a key transcription factor for the unfolded protein response, is required for fungal development, aflatoxin biosynthesis and pathogenicity of Aspergillus flavus. Int J Food Microbiol 2024; 417:110693. [PMID: 38653122 DOI: 10.1016/j.ijfoodmicro.2024.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Aspergillus flavus is a fungus notorious for contaminating food and feed with aflatoxins. As a saprophytic fungus, it secretes large amounts of enzymes to access nutrients, making endoplasmic reticulum (ER) homeostasis important for protein folding and secretion. The role of HacA, a key transcription factor in the unfolded protein response pathway, remains poorly understood in A. flavus. In this study, the hacA gene in A. flavus was knockout. Results showed that the absence of hacA led to a decreased pathogenicity of the strain, as it failed to colonize intact maize kernels. This may be due to retarded vegetable growth, especially the abnormal development of swollen tips and shorter hyphal septa. Deletion of hacA also hindered conidiogenesis and sclerotial development. Notably, the mutant strain failed to produce aflatoxin B1. Moreover, compared to the wild type, the mutant strain showed increased sensitivity to ER stress inducer such as Dithiothreitol (DTT), and heat stress. It also displayed heightened sensitivity to other environmental stresses, including cell wall, osmotic, and pH stresses. Further transcriptomic analysis revealed the involvement of the hacA in numerous biological processes, including filamentous growth, asexual reproduction, mycotoxin biosynthetic process, signal transduction, budding cell apical bud growth, invasive filamentous growth, response to stimulus, and so on. Taken together, HacA plays a vital role in fungal development, pathogenicity and aflatoxins biosynthesis. This highlights the potential of targeting hacA as a novel approach for early prevention of A. flavus contamination.
Collapse
Affiliation(s)
- Min Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoling Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongyue Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Gangurde SS, Korani W, Bajaj P, Wang H, Fountain JC, Agarwal G, Pandey MK, Abbas HK, Chang PK, Holbrook CC, Kemerait RC, Varshney RK, Dutta B, Clevenger JP, Guo B. Aspergillus flavus pangenome (AflaPan) uncovers novel aflatoxin and secondary metabolite associated gene clusters. BMC PLANT BIOLOGY 2024; 24:354. [PMID: 38693487 PMCID: PMC11061970 DOI: 10.1186/s12870-024-04950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.
Collapse
Affiliation(s)
- Sunil S Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
| | - Walid Korani
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Prasad Bajaj
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Hui Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Jake C Fountain
- Department of Plant Pathology, University of Georgia, Griffin, GA, 30223, USA
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Manish K Pandey
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| | - Hamed K Abbas
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Perng-Kuang Chang
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70124, USA
| | - C Corley Holbrook
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Rajeev K Varshney
- WA State Biotechnology Centre, Centre for Crop and Food innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Josh P Clevenger
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA.
| |
Collapse
|
9
|
Ainousah BE, Ibrahim SRM, Alzain AA, Mohamed SGA, Hussein HGA, Ashour A, Abdallah HM, Mohamed GA. Exploring the potential of Aspergillus wentii: secondary metabolites and biological properties. Arch Microbiol 2024; 206:216. [PMID: 38619638 DOI: 10.1007/s00203-024-03934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.
Collapse
Affiliation(s)
- Bayan E Ainousah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, 21442, Jeddah, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Medani, Gezira, Sudan
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hazem G A Hussein
- Preparatory Year Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Chang PK. Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B. Fungal Genet Biol 2024; 170:103863. [PMID: 38154756 DOI: 10.1016/j.fgb.2023.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
Aspergillus flavus produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic A. flavus isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of A. flavus gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic A. flavus morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural A. flavus isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 1100 Allen Toussaint Boulevard, New Orleans, LA 70124, United States.
| |
Collapse
|
11
|
Miyazawa K, Umeyama T, Yoshimi A, Abe K, Miyazaki Y. [Aspergillus Cell Surface Structural Analysis and Its Applications to Industrial and Medical Use]. Med Mycol J 2024; 65:75-82. [PMID: 39218650 DOI: 10.3314/mmj.24.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The hyphal surface of cells of filamentous fungi is covered with cell wall, which is mainly composed of polysaccharides. Since the cell wall is the first structure to come in contact with the infection host, the environment, and the fungus itself, the elucidation of the cell wall structure and biogenesis is essential for understanding fungal ecology. Among filamentous fungi, the genus Aspergillus is an important group in the industrial, food, and medical fields. It is known that Aspergillus species form hyphal pellets in shake liquid culture. The authors previously found the role of α-1,3-glucan in hyphal aggregation in Aspergillus species. In addition, extracellular polysaccharide galactosaminogalactan contributed to hyphal aggregation as well, and dual disruption of biosynthesis genes of α-1,3-glucan and galactosaminogalactan resulted in complete hyphal dispersion in shake liquid culture. The characteristic of mycelia to form pellets under liquid culture conditions was the main reason why the growth measurement methods used for unicellular organisms could not be applied. We reported that hyphal growth of the dual disruption mutant could be measured by optical density. A real-time plate reader could be used to determine the growth curve of the mycelial growth of the dual disruption mutant. This measurement approach not only provides basic microbiological insights in filamentous fungi, but also has the potential to be applied to high-throughput screening of anti-Aspergillus drugs.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases
| | - Akira Yoshimi
- Terrestrial Microbiology and Systematics, Graduate School of Global Environmental Studies, Kyoto University
- New Industry Creation Hatchery Center, Tohoku University
| | - Keietsu Abe
- New Industry Creation Hatchery Center, Tohoku University
- Department of Agricultural Chemistry, Graduate School of Agricultural Sciences, Tohoku University
| | | |
Collapse
|
12
|
Huang Z, Wu D, Yang S, Fu W, Ma D, Yao Y, Lin H, Yuan J, Yang Y, Zhuang Z. Regulation of Fungal Morphogenesis and Pathogenicity of Aspergillus flavus by Hexokinase AfHxk1 through Its Domain Hexokinase_2. J Fungi (Basel) 2023; 9:1077. [PMID: 37998882 PMCID: PMC10671980 DOI: 10.3390/jof9111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
As a filamentous pathogenic fungus with high-yield of aflatoxin B1, Aspergillus flavus is commonly found in various agricultural products. It is crucial to develop effective strategies aimed at the prevention of the contamination of A. flavus and aflatoxin. Hexokinase AfHxk1 is a critical enzyme in fungal glucose metabolism. However, the role of AfHxk1 in A. flavus development, aflatoxin biosynthesis, and virulence has not yet been explored. In this study, afHxk1 gene deletion mutant (ΔafHxk1), complementary strain (Com-afHxk1), and the domain deletion strains (afHxk1ΔD1 and afHxk1ΔD2) were constructed by homologous recombination. Phenotype study and RT-qPCR revealed that AfHxk1 upregulates mycelium growth and spore and sclerotia formation, but downregulates AFB1 biosynthesis through related classical signaling pathways. Invading models and environmental stress analysis revealed that through involvement in carbon source utilization, conidia germination, and the sensitivity response of A. flavus to a series of environmental stresses, AfHxk1 deeply participates in the regulation of pathogenicity of A. flavus to crop kernels and Galleria mellonella larvae. The construction of domain deletion strains, afHxk1ΔD1 and afHxk1ΔD2, further revealed that AfHxk1 regulates the morphogenesis, mycotoxin biosynthesis, and the fungal pathogenicity mainly through its domain, Hexokinase_2. The results of this study revealed the biological role of AfHxk1 in Aspergillus spp., and might provide a novel potential target for the early control of the contamination of A. flavus.
Collapse
Affiliation(s)
- Zongting Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Sile Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Dongmei Ma
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Yanling Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.H.); (D.W.); (S.Y.); (W.F.); (Y.Y.); (H.L.); (J.Y.); (Y.Y.)
| |
Collapse
|
13
|
Variation with In Vitro Analysis of Volatile Profiles among Aspergillus flavus Strains from Louisiana. SEPARATIONS 2023. [DOI: 10.3390/separations10030157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Volatile organic compounds (VOCs) produced by A. flavus strains were first captured and identified to discern between non-aflatoxigenic and toxigenic phenotypes, and more recently to help with detecting fungal infection, but not with the goal of using VOCs produced by non-aflatoxigenic strains to inhibit growth and/or production of one or more mycotoxins (e.g., aflatoxin and cyclopiazonic acid) by toxigenic aspergilli. In this study, four Aspergillus strains from Louisiana (one non-aflatoxigenic and three toxigenic) were grown on various substrates and had their headspaces captured and analyzed by solid-phase microextraction/gas chromatography/mass spectroscopy (SPME/GC/MS), to find biocontrol and biomarker compounds. Here, we present a collection of nearly 100 fungus-related VOCs, many of which were substrate dependent. Thirty-one were produced across multiple replicates and the rest were observed in a single replicate. At least three VOCs unique to non-aflatoxigenic strain LA1 can be tested for biocontrol properties (e.g., euparone, 4-nonyne), and at least four VOCs unique to toxigenic strains LA2-LA4 can be explored as biomarkers (e.g., 2-heptanone, glycocyamidine) to detect their presence while infecting crops in the field or in storage.
Collapse
|
14
|
Malhotra S, Ranjan V, Suman C, Patil S, Malhotra A, Bhatia NK. Advanced Microbiological Diagnostic Techniques in Fungal Infections of the Central Nervous System. VIRAL AND FUNGAL INFECTIONS OF THE CENTRAL NERVOUS SYSTEM: A MICROBIOLOGICAL PERSPECTIVE 2023:419-463. [DOI: 10.1007/978-981-99-6445-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Wu S, Zhang Q, Zhang W, Huang W, Kong Q, Liu Q, Li W, Zou X, Liu CM, Yan S. Linolenic Acid-Derived Oxylipins Inhibit Aflatoxin Biosynthesis in Aspergillus flavus through Activation of Imizoquin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15928-15944. [PMID: 36508213 PMCID: PMC9785051 DOI: 10.1021/acs.jafc.2c06230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Oxylipins play important signaling roles in aflatoxin (AF) biosynthesis in Aspergillus flavus. We previously showed that exogenous supply of autoxidated linolenic acid (AL) inhibited AF biosynthesis in A. flavus via oxylipins, but the molecular mechanism is still unknown. Here, we performed multiomics analyses of A. flavus grown in media with or without AL. Targeted metabolite analyses and quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) showed that the imizoquin (IMQ) biosynthetic pathway was distinctly upregulated in the presence of AL. 13C-glucose labeling confirmed in parallel that the tricarboxylic acid cycle was also enhanced by AL, consistent with observed increases in mycelial growth. Moreover, we integrated thermal proteome profiling and molecular dynamics simulations to identify a potential receptor of AL; AL was found to interact with a transporter (ImqJ) located in the IMQ gene cluster, primarily through hydrophobic interactions. Further analyses of strains with an IMQ pathway transcription factor overexpressed or knocked out confirmed that this pathway was critical for AL-mediated inhibition of AF biosynthesis. Comparison of 22 assembled A. flavus and Aspergillus oryzae genomes showed that genes involved in the IMQ pathway were positively selected in A. oryzae. Taken together, the results of our study provide novel insights into oxylipin-mediated regulation of AF biosynthesis and suggest potential methods for preventing AF contamination of crops.
Collapse
Affiliation(s)
- Shaowen Wu
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Qunjie Zhang
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
- Institution
of Genomics and Bioinformatics, South China
Agricultural University, Guangzhou510642, China
| | - Wenyang Zhang
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Wenjie Huang
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Qian Kong
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Qinjian Liu
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Wenyan Li
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Xinlu Zou
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| | - Chun-Ming Liu
- Key
Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Fragrant Hill, Beijing100093, China
| | - Shijuan Yan
- Guangdong
Key Laboratory for Crop Germplasm Resources Preservation and Utilization,
Agro-biological Gene Research Center, Guangdong
Academy of Agricultural Sciences, Guangzhou510640, China
| |
Collapse
|
16
|
Shankar A, Sharma KK. Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Appl Microbiol Biotechnol 2022; 106:3465-3488. [PMID: 35546367 PMCID: PMC9095418 DOI: 10.1007/s00253-022-11945-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 01/16/2023]
Abstract
Fungi produce several bioactive metabolites, pigments, dyes, antioxidants, polysaccharides, and industrial enzymes. Fungal products are also the primary sources of functional food and nutrition, and their pharmacological products are used for healthy aging. Their molecular properties are validated through the use of recent high-throughput genomic, transcriptomic, and metabolomic tools and techniques. Together, these updated multi-omic tools have been used to study fungal metabolites structure and their mode of action on biological and cellular processes. Diverse groups of fungi produce different proteins and secondary metabolites, which possess tremendous biotechnological and pharmaceutical applications. Furthermore, its use and acceptability can be accelerated by adopting multi-omics, bioinformatics, and machine learning tools that generate a huge amount of molecular data. The integration of artificial intelligence and machine learning tools in the era of omics and big data has opened up a new outlook in both basic and applied researches in the area of nutraceuticals and functional food and nutrition. KEY POINTS: • Multi-omic tool helps in the identification of novel fungal metabolites • Intra-omic data from genomics to bioinformatics • Novel metabolites and application in human health.
Collapse
Affiliation(s)
- Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
17
|
Zhou Y, Du C, Odiba AS, He R, Ahamefule CS, Wang B, Jin C, Fang W. Phosphoglucose Isomerase Plays a Key Role in Sugar Homeostasis, Stress Response, and Pathogenicity in Aspergillus flavus. Front Cell Infect Microbiol 2022; 11:777266. [PMID: 34976860 PMCID: PMC8715936 DOI: 10.3389/fcimb.2021.777266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 01/22/2023] Open
Abstract
Aspergillus flavus is one of the important human and plant pathogens causing not only invasive aspergillosis in immunocompromised patients but also crop contamination resulting from carcinogenic aflatoxins (AFs). Investigation of the targeting factors that are involved in pathogenicity is of unmet need to dismiss the hazard. Phosphoglucose isomerase (PGI) catalyzes the reversible conversion between glucose-6-phosphate and fructose-6-phosphate, thus acting as a key node for glycolysis, pentose phosphate pathway, and cell wall biosynthesis in fungi. In this study, we constructed an A. flavus pgi deletion mutant, which exhibited specific carbon requirement for survival, reduced conidiation, and slowed germination even under optimal experimental conditions. The Δpgi mutant lost the ability to form sclerotium and displayed hypersusceptibility to osmotic, oxidative, and temperature stresses. Furthermore, significant attenuated virulence of the Δpgi mutant was documented in the Caenorhabditis elegans infection model, Galleria mellonella larval model, and crop seeds. Our results indicate that PGI in A. flavus is a key enzyme in maintaining sugar homeostasis, stress response, and pathogenicity of A. flavus. Therefore, PGI is a potential target for controlling infection and AF contamination caused by A. flavus.
Collapse
Affiliation(s)
- Yao Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Chao Du
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Arome Solomon Odiba
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Rui He
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | | | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
18
|
Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus. Fungal Biol 2022; 126:187-200. [DOI: 10.1016/j.funbio.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
|
19
|
Kagot V, De Boevre M, Landschoot S, Obiero G, Okoth S, De Saeger S. Comprehensive analysis of multiple mycotoxins and Aspergillus flavus metabolites in maize from Kenyan households. Int J Food Microbiol 2021; 363:109502. [PMID: 34952410 DOI: 10.1016/j.ijfoodmicro.2021.109502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
This study assessed the levels of mycotoxins in maize from Kenyan households. Further, local open pollinated maize varieties were compared with commercial hybrids to evaluate which variety is less susceptible to mycotoxin contamination. Four hundred and eighty (n = 480) maize samples were collected in the years 2018-2020 from households in Eastern, Western, Coastal and Lake Victoria regions of Kenya. Liquid chromatography coupled to tandem mass spectrometry was used to detect and quantify 22 mycotoxins, along with 31 Aspergillus flavus metabolites in the samples. Eastern Kenya had the highest aflatoxin (AF) contamination with 75% of samples having AF levels above the Kenyan regulatory limits (10 μg/kg), the highest concentration was 558.1 μg/kg. In Western Kenya, only 18% of samples had concentration levels above the Kenyan regulatory limits for AF with highest sample having 73.3 μg/kg. The Lake Victoria region had the most fumonisins (F) contamination, with 53% of the samples having fumonisin B1 (FB1) < 1000 μg/kg. However, only 20% of the samples surpassed the Kenyan regulatory limit for total fumonisins (2000 μg/kg) with the highest concentration being 13,022 μg/kg. In addition, 21.6% of samples from the Lake Victoria region had zearalenone (ZEN) and deoxynivalenol (DON) above regulatory limits for European countries (1000 μg/kg). Western region had the least A. flavus metabolites contamination (18%) while the Eastern region had the highest incidence of A. flavus metabolites (81%). Among the A. flavus metabolites, cyclopiazonic acid (CPA), beta-cyclopiazonic acid (β CPA), flavacol (FLV) and methylcitreo-isocoumarin (MIC) positively correlated with each other but negatively correlated with the other metabolites. Significant positive co-occurrence was also noted among Fusarium mycotoxins: nivalenol (NIV) positively correlated with DON (r = 0.81), fusarenon-X (FX) (r = 0.81) and ZEN (r = 0.70). Negative correlations were observed between Aspergillus and Fusarium mycotoxins: aflatoxin B1 (AFB1) negatively correlated with FB1 (r = -0.11), FX (r = -0.17) and ZEN (r = -0.20). Local open-pollinated maize varieties (L-opv) were less susceptible to mycotoxin contamination compared to the commercial hybrids (C-hy). This study reveals that Kenyan maize is contaminated with multiple mycotoxins most of which are not regulated in Kenya despite being regulated in other parts of the world. A comprehensive legislation should therefore be put in place to protect the Kenyan public against chronic exposure to these mycotoxins. In addition to high yield, there is a need for commercial hybrid maize breeders to incorporate mycotoxin resistance as an important trait in germplasm improvement in seeds production.
Collapse
Affiliation(s)
- Victor Kagot
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - George Obiero
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Sheila Okoth
- School of Biological sciences, University of Nairobi, Nairobi, Kenya
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, Johannesburg, South Africa..
| |
Collapse
|
20
|
Updates on the Functions and Molecular Mechanisms of the Genes Involved in Aspergillus flavus Development and Biosynthesis of Aflatoxins. J Fungi (Basel) 2021; 7:jof7080666. [PMID: 34436205 PMCID: PMC8401812 DOI: 10.3390/jof7080666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus flavus (A. flavus) is a ubiquitous and opportunistic fungal pathogen that causes invasive and non-invasive aspergillosis in humans and animals. This fungus is also capable of infecting a large number of agriculture crops (e.g., peanuts, maze, cotton seeds, rice, etc.), causing economic losses and posing serious food-safety concerns when these crops are contaminated with aflatoxins, the most potent naturally occurring carcinogens. In particular, A. flavus and aflatoxins are intensely studied, and they continue to receive considerable attention due to their detrimental effects on humans, animals, and crops. Although several studies have been published focusing on the biosynthesis of the aforementioned secondary metabolites, some of the molecular mechanisms (e.g., posttranslational modifications, transcription factors, transcriptome, proteomics, metabolomics and transcriptome, etc.) involved in the fungal development and aflatoxin biosynthesis in A. flavus are still not fully understood. In this study, a review of the recently published studies on the function of the genes and the molecular mechanisms involved in development of A. flavus and the production of its secondary metabolites is presented. It is hoped that the information provided in this review will help readers to develop effective strategies to reduce A. flavus infection and aflatoxin production.
Collapse
|
21
|
Abuhijjleh RK, Shabbir S, Al-Abd AM, Jiaan NH, Alshamil S, El-labbad EM, Khalifa SI. Bioactive marine metabolites derived from the Persian Gulf compared to the Red Sea: similar environments and wide gap in drug discovery. PeerJ 2021; 9:e11778. [PMID: 34395070 PMCID: PMC8325427 DOI: 10.7717/peerj.11778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Marine life has provided mankind with unique and extraordinary chemical structures and scaffolds with potent biological activities. Many organisms and secondary metabolites derived from fungi and symbionts are found to be more environmentally friendly to study than the marine corals per se. Marine symbionts such as Aspergillus sp., a fungus, which can be isolated and grown in the lab would be a potential and continuous source of bioactive natural compounds without affecting the marine environment. The Red Sea is known for its biodiversity and is well-studied in terms of its marine-derived bioactive metabolites. The harsh environmental conditions lead to the development of unique metabolic pathways. This, in turn, results in enhanced synthesis and release of toxic and bioactive chemicals. Interestingly, the Persian Gulf and the Gulf of Oman carry a variety of environmental stresses, some of which are similar to the Red Sea. When compared to the Red Sea, the Persian Gulf has been shown to be rich in marine fungi as well, and is, therefore, expected to contain elaborate and interesting bioactive compounds. Such compounds may or may not be similar to the ones isolated from the Red Sea environment. Astoundingly, there are a very limited number of studies on the bioactive portfolio of marine-derived metabolites from the Persian Gulf and the Gulf of Oman. In this perspective, we are looking at the Red Sea as a comparator marine environment and bioactive materials repertoire to provide a futuristic perspective on the potential of the understudied and possibly overlooked bioactive metabolites derived from the marine life of the Persian Gulf and the Gulf of Oman despite its proven biodiversity and harsher environmental stress.
Collapse
Affiliation(s)
- Reham K. Abuhijjleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Samiullah Shabbir
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Ahmed M. Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
- Pharmacology Department, Medical Division, National Research Centre, Giza, Cairo, Egypt
| | - Nada H. Jiaan
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Shahad Alshamil
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Eman M. El-labbad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherief I. Khalifa
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
22
|
Subject fields in Food Safety during 10 years. Food Saf (Tokyo) 2021; 9:25-31. [PMID: 34249587 DOI: 10.14252/foodsafetyfscj.d-21-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
|
23
|
Anjorin TS, Ariyo AL, Peter AO, Sulyok M, Krska R. Co-occurrence of mycotoxins, aflatoxin biosynthetic precursors, and Aspergillus metabolites in garlic ( Allium sativum L) marketed in Zaria, Nigeria. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 14:23-29. [PMID: 33287649 DOI: 10.1080/19393210.2020.1852608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multi-mycotoxin analysis of 72 samples of garlic bulbs sold in Zaria markets was carried out using a liquid chromatography-mass spectrometry (LC-MS/MS) method. The results indicated the presence of seven major mycotoxins, including aflatoxin B1 (AFB1), ochratoxin A (OTA), and the fumonisins B1, B2, B3, B4, and B6, at different levels of contamination. AFB1 and OTA were detected in 1 of the 72 samples (1.4%) with median concentrations of 5.48 and 12.3 µg/kg, respectively. FB1 and FB2 were detected in 77% and 100% of the analysed samples, with median concentrations of 401 µg/kg and 491 µg/kg, respectively. The observed levels of AFB1, OTA, FB1, and FB2 were above the EU maximum limit in herbal products. Sterigmatocystin (STC), an AFB1 biosynthetic precursor, was present in all tested samples. The contamination level of mycotoxins and Aspergillus metabolites of marketed garlic in the study area is of public health concern.
Collapse
Affiliation(s)
- Toba S Anjorin
- Department of Crop Protection, Faculty of Agriculture, University of Abuja , Abuja, Nigeria
| | - Adeniran L Ariyo
- Department of Physiology/Biochemistry, Faculty of Veterinary Medicine, University of Abuja , Abuja, Nigeria
| | - Ajagbonna O Peter
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja , Abuja, Nigeria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (Ifa-tulln), University of Natural Resources and Life Sciences , Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (Ifa-tulln), University of Natural Resources and Life Sciences , Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast , Belfast, United Kingdom
| |
Collapse
|
24
|
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf 2020; 19:2797-2842. [PMID: 33337039 DOI: 10.1111/1541-4337.12638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Division of Pharmacy, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Chalivendra S, Huang F, Busman M, Williams WP, Ham JH. Low Aflatoxin Levels in Aspergillus flavus-Resistant Maize Are Correlated With Increased Corn Earworm Damage and Enhanced Seed Fumonisin. FRONTIERS IN PLANT SCIENCE 2020; 11:565323. [PMID: 33101334 PMCID: PMC7546873 DOI: 10.3389/fpls.2020.565323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Preharvest mycotoxin contamination of field-grown crops is influenced not only by the host genotype, but also by inoculum load, insect pressure and their confounding interactions with seasonal weather. In two different field trials, we observed a preference in the natural infestation of corn earworm (CEW; Helicoverpa zea Boddie) to specific maize (Zea mays L.) genotypes and investigated this observation. The field trials involved four maize lines with contrasting levels of resistance to Aspergillus flavus. The resistant lines had 7 to 14-fold greater infested ears than the susceptible lines. Seed aflatoxin B1 (AF) levels, in mock- and A. flavus-inoculated ears were consistent with genotype resistance to A. flavus, in that the resistant lines showed low levels of AF (<30 ppb), whereas the susceptible lines had up to 500 ppb. On the other hand, CEW infestation showed a positive correlation with seed fumonisins (FUM) contamination by native Fusarium verticillioides strains. We inferred that the inverse trend in the correlation of AF and FUM with H. zea infestation may be due to a differential sensitivity of CEW to the two mycotoxins. This hypothesis was tested by toxin-feeding studies. H. zea larvae showed decreasing mass with increasing AF in the diet and incurred >30% lethality at 250 ppb. In contrast, CEW was tolerant to fumonisin with no significant loss in larval mass even at 100 ppm, implicating the low seed aflatoxin content as a predominant factor for the prevalence of CEW infestation and the associated fumonisin contamination in A. flavus resistant maize lines. Further, delayed flowering of the two resistant maize lines might have contributed to the pervasive H. zea damage of these lines by providing young silk for egg-laying. These results highlight the need for integrated strategies targeting mycotoxigenic fungi as well as their insect vectors for enhanced food safety.
Collapse
Affiliation(s)
- Subbaiah Chalivendra
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Fangneng Huang
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Mark Busman
- Bacterial Foodborne Pathogens and Mycology Research Unit, USDA-ARS-NCAUR, Peoria, IL, United States
| | - W. Paul Williams
- Corn Host Plant Resistance Research Unit, USDA-ARS, Mississippi State, MS, United States
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
26
|
Masiello M, Somma S, Haidukowski M, Logrieco AF, Moretti A. Genetic polymorphisms associated to SDHI fungicides resistance in selected Aspergillus flavus strains and relation with aflatoxin production. Int J Food Microbiol 2020; 334:108799. [PMID: 32799117 DOI: 10.1016/j.ijfoodmicro.2020.108799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Aspergillus flavus is a common and ubiquitous fungal species able to colonize several agricultural commodities, in both pre- and post-harvest conditions. This species represents a very harmful plant pathogen for its ability to synthesize aflatoxin B1, responsible for human primary hepatocellular carcinoma and classified as a group I (human carcinogenic) by the International Agency for Research on Cancer. Several approaches have been proposed to control A. flavus development and related aflatoxin production in field and storage conditions. The Succinate Dehydrogenase Inhibitor (SDHI) fungicide boscalid has been shown to control A. flavus growth and aflatoxin contamination both in vitro and in field experiments. However, this compound is classified as medium-high risk fungicide for triggering fungal resistance and, indeed, resistant strains can occur on crops treated with boscalid. In this paper, we selected laboratory A. flavus strains resistant to boscalid grown on agar medium containing 50 mg/L of boscalid. In order to investigate the molecular mechanism responsible for the resistant phenotype, specific primer pairs were designed to amplify the whole SdhB, SdhC and SdhD genes. By amino acid sequence analysis, two point mutations, Tyrosine replacing Histidine at codon 249 of SdhB (H249Y) and Arginine replacing Glycine at codon 91 of SdhC (G91R), were identified. The effect of SDHI boscalid and isopyrazam on mycelial growth and conidial germination was evaluated. Both resistant genotypes showed high resistance (MIC and EC50 > 1000 mg/L) to boscalid. A positive cross-resistance was found between boscalid and isopyrazam. Specific sub-lethal doses of both fungicides (0.5 mg/L of boscalid and 0.01 mg/L of isopyrazam) interfered with the mechanisms associated to pigmentation of colonies. In particular, fungal colonies appeared depigmented lacking the typical A. flavus green colour shown on un-amended fungicide medium. A strict correlation between lack of pigmentation and increasing aflatoxin production was also observed.
Collapse
Affiliation(s)
- M Masiello
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - S Somma
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - M Haidukowski
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - A F Logrieco
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| | - A Moretti
- Institute of Sciences of Food Production, Research National Council (ISPA-CNR), Via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|
27
|
Hori M, Aoki Y, Shinoda K, Chiba M, Sasaki R. Wood volatiles as attractants of the confused flour beetle, Tribolium confusum (Coleoptera: Tenebrionidae). Sci Rep 2019; 9:11544. [PMID: 31395934 PMCID: PMC6687883 DOI: 10.1038/s41598-019-48073-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/30/2019] [Indexed: 11/09/2022] Open
Abstract
Confused flour beetles are serious pests of stored grain products, and therefore, it is important to efficiently monitor and control their populations. Aggregation pheromones are commercially used for monitoring this beetle but their efficacy has been questioned and they may be inadequate for practical use. Food attractants as well as pheromones are commonly used for monitoring stored-product insects. However, food attractants may not be effective in the case of food handling facilities, which are already filled with food odours. The ancestors of flour beetles may have been associated with dead or decomposing woody vegetation, so we investigated the attractiveness of several wood odours to beetles using a pitfall olfactometer. The beetles were strongly attracted to all wood odours tested: Castanea crenata, Magnolia obovata, Paulownia tomentosa, Prunus jamasakura, and Zelkova serrata. The attractiveness of these wood odours was also stronger than that of the odours of the usual food of these beetles. Supercritical CO2 extracts of these species of wood were also attractive to the beetles. The Z. serrata extract was the most attractive among these extracts, and was further analysed by gas chromatography mass spectrometry. One major compound, (-)-mellein, was detected in the extract. Synthetic (±)-mellein attracted the beetles.
Collapse
Affiliation(s)
- Masatoshi Hori
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan.
| | - Yoshimi Aoki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kazutaka Shinoda
- Insect Pheromone & Traps Division, Fuji Flavor Co., Ltd., Hamura, Tokyo, 205-8503, Japan
- Pest Control Engineering Department, Seibu Kasei Co., Ltd., Shimonoseki, Yamaguchi, 750-0067, Japan
| | - Mitsuo Chiba
- Insect Pheromone & Traps Division, Fuji Flavor Co., Ltd., Hamura, Tokyo, 205-8503, Japan
| | - Rikiya Sasaki
- Insect Pheromone & Traps Division, Fuji Flavor Co., Ltd., Hamura, Tokyo, 205-8503, Japan
| |
Collapse
|
28
|
Lebar M, Mack B, Carter-Wientjes C, Gilbert M. The aspergillic acid biosynthetic gene cluster predicts neoaspergillic acid production in Aspergillus section Circumdati. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fungus Aspergillus flavus is an opportunistic crop pathogen that produces aflatoxins. Aflatoxins are potent carcinogenic and hepatotoxic secondary metabolites that are highly regulated in most countries. A. flavus also produces many other secondary metabolites and harbours more than 50 putative secondary metabolite biosynthetic gene clusters that have yet to be characterised. Bioactive secondary metabolites that augment the ability of the fungus to infect crops are of particular interest. Biosynthetic gene cluster 11 in A. flavus has been recently shown to encode for the biosynthesis of aspergillic acid, a toxic hydroxamic acid-containing pyrazinone compound that can bind iron, resulting in a red-orange pigment known as ferriaspergillin. A decrease in A. flavus pathogenicity and aflatoxin contamination was observed when aspergillic acid biosynthesis was blocked during maize seed infection. In this study, we probe the available genomes of Aspergillus species for biosynthetic gene cluster 11 homologs. We find that all species possessing gene cluster 11 produce aspergillic acid or a closely related isomer. We demonstrate that the Aspergillus section Flavi species harbouring biosynthetic gene cluster 11 produce a mixture of aspergillic acid, hydroxyaspergillic acid, and aspergillic acid analogs differing only in the amino acid precursors. Interestingly, many Aspergillus section Circumdati species, known mainly for their production of the problematic mycotoxin ochratoxin A, also harbour gene cluster 11 homologs, but do not produce aspergillic acid. Instead, these species produce neoaspergillic acid and its hydroxylated analog neohydroxyaspergillic acid, indicating that cluster 11 is responsible for neoaspergillic acid biosynthesis in Aspergillus section Circumdati.
Collapse
Affiliation(s)
- M.D. Lebar
- Southern Regional Research Center, USDA-ARS, Food and Feed Safety Research Unit, 1100 Robert E Lee Blvd, New Orleans, 70124 LA, USA
| | - B.M. Mack
- Southern Regional Research Center, USDA-ARS, Food and Feed Safety Research Unit, 1100 Robert E Lee Blvd, New Orleans, 70124 LA, USA
| | - C.H. Carter-Wientjes
- Southern Regional Research Center, USDA-ARS, Food and Feed Safety Research Unit, 1100 Robert E Lee Blvd, New Orleans, 70124 LA, USA
| | - M.K. Gilbert
- Southern Regional Research Center, USDA-ARS, Food and Feed Safety Research Unit, 1100 Robert E Lee Blvd, New Orleans, 70124 LA, USA
| |
Collapse
|
29
|
DellaGreca M, De Tommaso G, Salvatore MM, Nicoletti R, Becchimanzi A, Iuliano M, Andolfi A. The Issue of Misidentification of Kojic Acid with Flufuran in Aspergillus flavus. Molecules 2019; 24:E1709. [PMID: 31052538 PMCID: PMC6539386 DOI: 10.3390/molecules24091709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
In the course of investigations on the complex phenomenon of bee decline, Aspergillus flavus was isolated from the haemocoel of worker bees. Observations on the metabolomic profile of this strain showed kojic acid to be the dominant product in cultures on Czapek-Dox broth. However, an accurate review of papers documenting secondary metabolite production in A. flavus also showed that an isomer of kojic acid, identified as 5-(hydroxymethyl)-furan-3-carboxylic acid and named flufuran is reported from this species. The spectroscopic data of kojic acid were almost identical to those reported in the literature for flufuran. This motivated a comparative study of commercial kojic acid and 5-(hydroxymethyl)-furan-3-carboxylic acid, highlighting some differences, for example in the 13C-NMR and UV spectra for the two compounds, indicating that misidentification of the kojic acid as 5-(hydroxymethyl)-furan-3-carboxylic acid has occurred in the past.
Collapse
Affiliation(s)
- Marina DellaGreca
- Department of Chemical Sciences, University of Naples 'Federico II', 80126 Naples, Italy.
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples 'Federico II', 80126 Naples, Italy.
| | | | - Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 81100 Caserta, Italy.
- Department of Agriculture, University of Naples 'Federico II', 80055 Portici, Italy.
| | - Andrea Becchimanzi
- Department of Agriculture, University of Naples 'Federico II', 80055 Portici, Italy.
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples 'Federico II', 80126 Naples, Italy.
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples 'Federico II', 80126 Naples, Italy.
| |
Collapse
|
30
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|