1
|
Perera ND, De Silva S, Tomas D, Cuic B, Turner BJ. Mapping Glial Autophagy Dynamics in an Amyotrophic Lateral Sclerosis Mouse Model Reveals Microglia and Astrocyte Autophagy Dysfunction. Glia 2025. [PMID: 40401739 DOI: 10.1002/glia.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is defined by motor neuron death. However, recent research has identified non-cell-autonomous mechanisms, with significant involvement of glia in disease progression. We link previous observations of intracellular protein aggregates in glia to the autophagy pathway, the primary mediator of intracellular degradation of large protein aggregates. While dysfunctional autophagy is reported in ALS motor neurons, pre-clinical and clinical outcomes of autophagy modulators have been inconsistent, indicating the need for a nuanced understanding of autophagy dynamics across CNS cell types and ALS-affected regions. We hypothesized that glial autophagy is defective in ALS, with glial-type-specific dysfunction. To investigate in vivo autophagy dynamics, we intercrossed SOD1G93A mice with transgenic RFP-EGFP-LC3 autophagy reporter mice, enabling the quantification of autophagy degradation, termed flux. Investigation of autophagy dynamics in SOD1 oligodendrocytes, microglia, and astrocytes at key disease stages uncovered useful insights. While oligodendrocytes seemed to mount effective compensatory autophagic responses to combat mutant SOD1, significantly increased autophagy flux was observed in symptomatic spinal microglia and astrocytes in comparison to controls. Symptomatic SOD1 astrocytes displayed greater autophagy dysfunction compared to microglia, with subcellular analysis revealing cell compartment-specific, transient autophagy defects that returned to control levels by end stage. Interestingly, spinal glia showed more pronounced and earlier autophagy dysfunction compared to motor cortex glia, where autophagy dysfunction emerged later in disease end stage, aligning with greater spinal cord pathology reported in this model. Our results suggest that cell-type- and time-specific targeting might be essential when developing autophagy therapeutics for ALS, with prioritization of astrocytic autophagy modulation.
Collapse
Affiliation(s)
- Nirma D Perera
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Subhavi De Silva
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
- Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
Zhang X, Wang J, Zhang J, Jiang C, Liu X, Wang S, Zhang Z, Rastegar-Kashkooli Y, Dialameh F, Peng Q, Tao J, Ding R, Wang J, Cheng N, Wang M, Wang F, Li N, Xing N, Chen X, Fan X, Wang J, Wang J. Humanized rodent models of neurodegenerative diseases and other brain disorders. Neurosci Biobehav Rev 2025; 172:106112. [PMID: 40120962 DOI: 10.1016/j.neubiorev.2025.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Central Nervous System (CNS) diseases significantly affect human health. However, replicating the onset, progression, and pathology of these diseases in rodents is challenging. To address this issue, researchers have developed humanized animal models. These models introduce human genes or cells into rodents. As a result, rodents become more suitable for studying human CNS diseases and their therapies in vivo. This review explores the preparation protocols, pathological and behavioral characteristics, benefits, significance, and limitations of humanized rodent models in researching various CNS diseases, particularly Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, glial cells-related CNS diseases, N-methyl-D-aspartic acid receptor encephalitis, and others. Humanized rodent models have expanded the opportunities for in vivo exploration of human neurodegenerative diseases, other brain disorders, and their treatments. We can enhance translational research on CNS disorders by developing, investigating, and utilizing these models.
Collapse
Affiliation(s)
- Xinru Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianxiang Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450000, China
| | - Xuezhong Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuaijiang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenhua Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fatemeh Dialameh
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan 610060, China
| | - Nan Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
4
|
Liu Z, Zhang H, Lu K, Chen L, Zhang Y, Xu Z, Zhou H, Sun J, Xu M, Ouyang Q, Thompson GJ, Yang Y, Su N, Cai X, Cao L, Zhao Y, Jiang L, Zheng Y, Zhang X. Low-intensity pulsed ultrasound modulates disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Cell Rep 2024; 43:114660. [PMID: 39180748 DOI: 10.1016/j.celrep.2024.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord, and there are no effective drug treatments. Low-intensity pulsed ultrasound (LIPUS) has garnered attention as a promising noninvasive neuromodulation method. In this study, we investigate its effects on the motor cortex and underlying mechanisms using the SOD1G93A mouse model of ALS. Our results show that LIPUS treatment delays disease onset and prolongs lifespan in ALS mice. LIPUS significantly increases cerebral blood flow in the motor cortex by preserving vascular endothelial cell integrity and increasing microvascular density, which may be mediated via the ion channel TRPV4. RNA sequencing analysis reveals that LIPUS substantially reduces the expression of genes associated with neuroinflammation. These findings suggest that LIPUS applied to the motor cortex may represent a potentially effective therapeutic tool for the treatment of ALS.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huan Zhang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Chen
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hongsheng Zhou
- Institute of Advanced Ultrasonic Technology, National Innovation Center par Excellence, Shanghai 201203, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Ouyang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Cai
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China; Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lixian Jiang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yuanyi Zheng
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
5
|
Hou M, Zhang Z, Fan Z, Huang L, Wang L. The mechanisms of Ca2+ regulating autophagy and its research progress in neurodegenerative diseases: A review. Medicine (Baltimore) 2024; 103:e39405. [PMID: 39183424 PMCID: PMC11346841 DOI: 10.1097/md.0000000000039405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Neurodegenerative diseases are complex disorders that significantly challenge human health, with their incidence increasing with age. A key pathological feature of these diseases is the accumulation of misfolded proteins. The underlying mechanisms involve an imbalance in calcium homeostasis and disturbances in autophagy, indicating a likely correlation between them. As the most important second messenger, Ca2+ plays a vital role in regulating various cell activities, including autophagy. Different organelles within cells serve as Ca2+ storage chambers and regulate Ca2+ levels under different conditions. Ca2+ in these compartments can affect autophagy via Ca2+ channels or other related signaling proteins. Researchers propose that Ca2+ regulates autophagy through distinct signal transduction mechanisms, under normal or stressful conditions, and thereby contributing to the occurrence and development of neurodegenerative diseases. This review provides a systematic examination of the regulatory mechanisms of Ca2+ in cell membranes and different organelles, as well as its downstream pathways that influence autophagy and its implications for neurodegenerative diseases. This comprehensive analysis may facilitate the development of new drugs and provide more precise treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Hou
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhixiao Zhang
- Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China
| | - Zexin Fan
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Huang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Wang
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
He L, Zhou Q, Xiu C, Shao Y, Shen D, Meng H, Le W, Chen S. Circulating proteomic biomarkers for diagnosing sporadic amyotrophic lateral sclerosis: a cross-sectional study. Neural Regen Res 2024; 19:1842-1848. [PMID: 38103252 PMCID: PMC10960292 DOI: 10.4103/1673-5374.389357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 08/29/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00039/figure1/v/2023-12-16T180322Z/r/image-tiff Biomarkers are required for the early detection, prognosis prediction, and monitoring of amyotrophic lateral sclerosis, a progressive disease. Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarkers. In this study, we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral sclerosis compared with five healthy controls. Substantial upregulation of serum proteins related to multiple functional clusters was observed in patients with sporadic amyotrophic lateral sclerosis. Potential biomarkers were selected based on functionality and expression specificity. To validate the proteomics profiles, blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay. Eight substantially upregulated serum proteins in patients with sporadic amyotrophic lateral sclerosis were selected, of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls (area under the curve [AUC] = 0.713, P < 0.0001). To further enhance diagnostic accuracy, a multi-protein combined discriminant algorithm was developed incorporating five proteins (hemoglobin beta, cathelicidin-related antimicrobial peptide, talin-1, zyxin, and translationally-controlled tumor protein). The algorithm achieved an AUC of 0.811 and a P-value of < 0.0001, resulting in 79% sensitivity and 71% specificity for the diagnosis of sporadic amyotrophic lateral sclerosis. Subsequently, the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls, as well as patients with different disease severities, was examined. A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls (AUC = 0.766, P < 0.0001). Moreover, the expression of three proteins (FK506 binding protein 1A, cathelicidin-related antimicrobial peptide, and hemoglobin beta-1) was found to increase with disease progression. The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in combination with current clinical-based parameters.
Collapse
Affiliation(s)
- Lu He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyang Xiu
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yaping Shao
- Center for Translational Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Dingding Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huanyu Meng
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, Sichuan Province, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Neurology, Xinrui Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
7
|
Guo X, Zhang Z, Gu J, Ke P, Liu J, Meng Y, Zheng W, Que W, Fan R, Luo J, Xiao F. FUDNC1-dependent mitophagy ameliorate motor neuron death in an amyotrophic lateral sclerosis mouse model. Neurobiol Dis 2024; 197:106534. [PMID: 38759931 DOI: 10.1016/j.nbd.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, yet effective treatment is lacking. Moreover, the underlying pathomechanisms of ALS remain unclear, with impaired mitophagy function being increasingly recognized as a contributing factor. FUN14 domain-containing protein 1 (FUNDC1) is an autophagy receptor localized to the outer mitochondrial membrane and a mitochondrial membrane protein that mediates mitophagy and therefore considered as important factor in neurodegenerative diseases. However, its specific role in ALS is not yet clear. Therefore, this study aimed to investigate the regulatory role of FUNDC1 in ALS and determine its regulatory mechanisms. ALS transgenic mice were obtained and maintained under standard conditions. Cell lines were generated by stable transfection with hSOD1G93A or control vectors. Mice received intrathecal injections of AAV9 vectors expressing FUNDC1 or EGFP. Motor function was assessed through behavioral tests, and histological and immunostaining analyses were performed. Colocalization analysis was conducted in transfected cells, and protein expression was evaluated via western blotting. We first observed that FUNDC1 was significantly downregulated in the spinal cord tissues of SOD1G93A mice. FUNDC1 overexpression considerably improved locomotor activity and prolonged survival time in SOD1G93A mice. Mechanistically, reduced expression of FUNDC1 resulted in decreased mitophagy, as indicated by decreased recruitment through LC3 in SOD1G93A mice and cellular models. Consequently, this led to increased mitochondrial accumulation and cell apoptosis, exacerbating the ALS phenotype. Furthermore, we identified transcription factor FOXD3 as an essential upstream factor of FUNDC1, resulting in reduced transcription of FUNDC1 in ALS lesions. This study suggests a novel strategy of targeting FUNDC1-mediated mitophagy for developing therapeutic interventions to mitigate disease progression and improve outcomes for ALS patients.
Collapse
Affiliation(s)
- Xia Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Department of Neurology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhuo Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China; Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - PingYang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuan Meng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Wei Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - WenJun Que
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Rui Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
8
|
Frost OG, Ramkilawan P, Rebbaa A, Stolzing A. A systematic review of lifespan studies in rodents using stem cell transplantations. Ageing Res Rev 2024; 97:102295. [PMID: 38588866 DOI: 10.1016/j.arr.2024.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. Regardless of its origin, cellular aging is consequently reflected at the level of organ and associated systems dysfunction. Aging of stem cell populations within the body and their decreased ability to self-renew, differentiate, and regenerate damaged tissues, is a key contributor to organismal decline. Based on this, supplementing young stem cells may delay tissue aging, improve frailty and extend health and lifespan. This review investigates studies in rodents using stem cell transplantation from either mice or human donors. The aim is to consolidate available information on the efficacy of stem cell therapies in rodent models and provide insights to guide further research efforts. Out of the 21 studies included in this review, the methodology varied significantly including the lifespan measurement. To enable comparison the median lifespan was calculated using WebPlotDigitizer 4.6 if not provided by the literature. A total of 18 out of 21 studies evidenced significant lifespan extension post stem cell transplant, with 7 studies demonstrating benefits in reduced frailty and other aging complications.
Collapse
Affiliation(s)
- Oliver G Frost
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; SENS Research Foundation, Mountain View, CA 94041, USA
| | | | | | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| |
Collapse
|
9
|
Lu J, He AX, Jin ZY, Zhang M, Li ZX, Zhou F, Ma L, Jin HM, Wang JY, Shen X. Desloratadine alleviates ALS-like pathology in hSOD1 G93A mice via targeting 5HTR 2A on activated spinal astrocytes. Acta Pharmacol Sin 2024; 45:926-944. [PMID: 38286832 PMCID: PMC11053015 DOI: 10.1038/s41401-023-01223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/25/2023] [Indexed: 01/31/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.
Collapse
Affiliation(s)
- Jian Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - An-Xu He
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhuo-Ying Jin
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Zhang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhong-Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Ma
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Ming Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Huo D, Liang W, Wang D, Liu Q, Wang H, Wang Y, Zhang C, Cong C, Su X, Tan X, Zhang W, Han L, Zhang D, Wang M, Feng H. Roflupram alleviates autophagy defects and reduces mutant hSOD1-induced motor neuron damage in cell and mouse models of amyotrophic lateral sclerosis. Neuropharmacology 2024; 247:109812. [PMID: 38218579 DOI: 10.1016/j.neuropharm.2023.109812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/15/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable disease involving motor neuron (MN) degeneration and is characterized by ongoing myasthenia and amyotrophia in adults. Most ALS patients die of respiratory muscle paralysis after an average of 3-5 years. Defective autophagy in MNs is considered an important trigger of ALS pathogenesis. Roflupram (ROF) was demonstrated to activate autophagy in microglial cells and exert protective effects against Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, our research aimed to investigate the efficacy and mechanism of ROF in treating ALS both in vivo and in vitro. We found that ROF could delay disease onset and prolong the survival of hSOD1-G93A transgenic mice. Moreover, ROF protected MNs in the anterior horn of the spinal cord, activated the AMPK/ULK1 signaling pathway, increased autophagic flow, and reduced SOD1 aggregation. In an NSC34 cell line stably transfected with hSOD1-G93A, ROF protected against cellular damage caused by hSOD1-G93A. Moreover, we have demonstrated that ROF inhibited gliosis in ALS model mice. Collectively, our study suggested that ROF is neuroprotective in ALS models and the AMPK/ULK1 signaling pathway is a potential therapeutic target in ALS, which increases autophagic flow and reduces SOD1 aggregation.
Collapse
Affiliation(s)
- Di Huo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Weiwei Liang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Di Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Qiaochu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Hongyong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Chunting Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, PR China
| | - Chaohua Cong
- Department of Neurology, Shanghai JiaoTong University School of Medicine, Shanghai No. 9 People's Hospital, Shanghai, PR China
| | - Xiaoli Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xingli Tan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Wenmo Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ling Han
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Dongmei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Ming Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
11
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Kaur S, Sharma N, Kumar V, Sharma D, Devi B, Kapil L, Singh C, Singh A. The Role of Mitophagy in Various Neurological Diseases as a Therapeutic Approach. Cell Mol Neurobiol 2023; 43:1849-1865. [PMID: 36326951 PMCID: PMC11412177 DOI: 10.1007/s10571-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Mitochondria are critical to multiple cellular processes, from the production of adenosine triphosphate (ATP), maintenance of calcium homeostasis, synthesis of key metabolites, and production of reactive oxygen species (ROS) to maintain necrosis, apoptosis, and autophagy. Therefore, proper clearance and regulation are essential to maintain various physiological processes carried out by the cellular mechanism, including mitophagy and autophagy, by breaking down the damaged intracellular connections under the influence of various genes and proteins and protecting against various neurodegenerative diseases such as Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD), and Huntington disease (HD). In this review, we will discuss the role of autophagy, selective macroautophagy, or mitophagy, and its role in neurodegenerative diseases along with normal physiology. In addition, this review will provide a better understanding of the pathways involved in neuron autophagy and mitophagy and how mutations affect these pathways in the various genes involved in neurodegenerative diseases. Various new findings indicate that the pathways that remove dysfunctional mitochondria are impaired in these diseases, leading to the deposition of damaged mitochondria. Apart from that, we have also discussed the therapeutic strategies targeting autophagy and mitophagy in neurodegenerative diseases. The mitophagy cycle results in the degradation of damaged mitochondria and the biogenesis of new healthy mitochondria, also highlighting different stages at which a particular neurodegenerative disease could occur.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Neelam Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
13
|
Valles SL, Singh SK, Campos-Campos J, Colmena C, Campo-Palacio I, Alvarez-Gamez K, Caballero O, Jorda A. Functions of Astrocytes under Normal Conditions and after a Brain Disease. Int J Mol Sci 2023; 24:ijms24098434. [PMID: 37176144 PMCID: PMC10179527 DOI: 10.3390/ijms24098434] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
In the central nervous system (CNS) there are a greater number of glial cells than neurons (between five and ten times more). Furthermore, they have a greater number of functions (more than eight functions). Glia comprises different types of cells, those of neural origin (astrocytes, radial glia, and oligodendroglia) and differentiated blood monocytes (microglia). During ontogeny, neurons develop earlier (at fetal day 15 in the rat) and astrocytes develop later (at fetal day 21 in the rat), which could indicate their important and crucial role in the CNS. Analysis of the phylogeny reveals that reptiles have a lower number of astrocytes compared to neurons and in humans this is reversed, as there have a greater number of astrocytes compared to neurons. These data perhaps imply that astrocytes are important and special cells, involved in many vital functions, including memory, and learning processes. In addition, astrocytes are involved in different mechanisms that protect the CNS through the production of antioxidant and anti-inflammatory proteins and they clean the extracellular environment and help neurons to communicate correctly with each other. The production of inflammatory mediators is important to prevent changes in brain homeostasis. On the contrary, excessive, or continued production appears as a characteristic element in many diseases, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and in neurodevelopmental diseases, such as bipolar disorder, schizophrenia, and autism. Furthermore, different drugs and techniques have been developed to reverse oxidative stress and/or excess of inflammation that occurs in many CNS diseases, but much remains to be investigated. This review attempts to highlight the functional relevance of astrocytes in normal and neuropathological conditions by showing the molecular and cellular mechanisms of their role in the CNS.
Collapse
Affiliation(s)
- Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Juan Campos-Campos
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Carlos Colmena
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Ignacio Campo-Palacio
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Kenia Alvarez-Gamez
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Oscar Caballero
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Blasco Ibañez 15, 46010 Valencia, Spain
- Faculty of Nursing and Podiatry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
14
|
Latif S, Kang YS. Protective Effects of Choline against Inflammatory Cytokines and Characterization of Transport in Motor Neuron-like Cell Lines (NSC-34). Pharmaceutics 2022; 14:2374. [PMID: 36365192 PMCID: PMC9699384 DOI: 10.3390/pharmaceutics14112374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 02/02/2024] Open
Abstract
Choline, a component of the neurotransmitter acetylcholine, is essential for nervous system functions, brain development, and gene expression. In our study, we investigated the protective effect and transport characteristics of choline in amyotrophic lateral sclerosis (ALS) model cell lines. We used the wild-type (WT) motor neuron-like hybrid cell line (NSC-34/hSOD1WT) as a control and the mutant-type (MT; NSC-34/hSOD1G93A) as a disease model. The uptake of [3H]choline was time-, pH-, and concentration-dependent. [3H]Choline transport was sodium-dependent, and, upon pretreatment with valinomycin, induced membrane depolarization. Gene knockdown of Slc44a1 revealed that choline-like transporter 1 (CTL1) mediates the transport of choline. In NSC-34 cell lines, the specific choline transporter inhibitor, hemicholinium-3 demonstrated significant inhibition. Donepezil and nifedipine caused dose-dependent inhibition of [3H]choline uptake by the MT cell line with minimal half inhibitory concentration (IC50) values of 0.14 mM and 3.06 mM, respectively. Four-day pretreatment with nerve growth factor (NGF) resulted in an inhibitory effect on [3H]choline uptake. Choline exerted protective and compensatory effects against cytokines mediators. Hence, the choline transport system CLT1 may act as a potential target for the delivery of novel pharmacological drugs, and the combination of drugs with choline can help treat symptoms related to ALS.
Collapse
Affiliation(s)
| | - Young-Sook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| |
Collapse
|
15
|
Huang Y, Ren H, Gao X, Cai D, Shan H, Bai J, Sheng L, Jin Y, Zhou X. Amlodipine Improves Spinal Cord Injury Repair by Inhibiting Motoneuronal Apoptosis Through Autophagy Upregulation. Spine (Phila Pa 1976) 2022; 47:E570-E578. [PMID: 34923548 PMCID: PMC9365253 DOI: 10.1097/brs.0000000000004310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The effect of amlodipine (AM) on spinal cord injury (SCI) and autophagy was researched by establishing ventral spinal cord cells (VSC4.1) oxygen and glucose deprivation model and SCI mice model. OBJECTIVE To determine the neuroprotective effects of AM by upregulating autophagy during SCI repair. SUMMARY OF BACKGROUND DATA AM, an antihypertensive medication, has been shown in several studies to inhibit neuronal apoptosis and exert neuroprotective effects in various central nervous system diseases. However, its effects on SCI are unexplored. Autophagy could inhibit cell apoptosis, which has been shown to promote SCI repair. However, the role of AM in autophagy remains unclear. METHODS We examined the relationship between AM, apoptosis, and autophagy in ventral spinal cord cells and the injured spinal cords of C57BL/6 female mice respectively, following histological, behavioral, microscopic, immunofluorescence, and western blotting analyses. RESULTS We found that AM could inhibit motor neuronal apoptosis in vitro. Furthermore, AM promoted locomotor recovery by upregulating autophagy and alleviating apoptosis, neuronal loss, and spinal cord damage after SCI. CONCLUSION AM inhibited motoneuronal apoptosis by upregulating autophagy to improve SCI recovery.
Collapse
Affiliation(s)
- Yang Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang
| | - Hao Ren
- Shenzhen ChanGene Biomedicine Technology, Shenzhen, Guangdong
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | | | - Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Yong Jin
- Department of Neurosurgery, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| |
Collapse
|
16
|
Vantaggiato C, Orso G, Guarato G, Brivio F, Napoli B, Panzeri E, Masotti S, Santorelli FM, Lamprou M, Gumeni S, Clementi E, Bassi MT. Rescue of lysosomal function as therapeutic strategy for SPG15 hereditary spastic paraplegia. Brain 2022; 146:1103-1120. [PMID: 36029068 PMCID: PMC9976989 DOI: 10.1093/brain/awac308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 11/14/2022] Open
Abstract
SPG15 is a hereditary spastic paraplegia subtype caused by mutations in Spastizin, a protein encoded by the ZFYVE26 gene. Spastizin is involved in autophagosome maturation and autophagic lysosome reformation and SPG15-related mutations lead to autophagic lysosome reformation defects with lysosome enlargement, free lysosome depletion and autophagosome accumulation. Symptomatic and rehabilitative treatments are the only therapy currently available for patients. Here, we targeted autophagy and lysosomes in SPG15 patient-derived cells by using a library of autophagy-modulating compounds. We identified a rose of compounds affecting intracellular calcium levels, the calcium-calpain pathway or lysosomal functions, which reduced autophagosome accumulation. The six most effective compounds were tested in vivo in a new SPG15 loss of function Drosophila model that mimicked the reported SPG15 phenotype, with autophagosome accumulation, enlarged lysosomes, reduced free lysosomes, autophagic lysosome reformation defects and locomotor deficit. These compounds, namely verapamil, Bay K8644, 2',5'-dideoxyadenosine, trehalose, Small-Molecule Enhancer of Rapamycin 28 and trifluoperazine, improved lysosome biogenesis and function in vivo, demonstrating that lysosomes are a key pharmacological target to rescue SPG15 phenotype. Among the others, the Small-Molecule Enhancer of Rapamycin 28 was the most effective, rescuing both autophagic lysosome reformation defects and locomotor deficit, and could be considered as a potential therapeutic compound for this hereditary spastic paraplegia subtype.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Correspondence to: Chiara Vantaggiato, PhD Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Via D. L. Monza 20 23842 Bosisio Parini, Lecco, Italy E-mail:
| | - Genny Orso
- Correspondence may also be addressed to: Genny Orso, PhD Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy E-mail:
| | - Giulia Guarato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Barbara Napoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Elena Panzeri
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Simona Masotti
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | | | - Maria Lamprou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, ‘Luigi Sacco’ University Hospital, Università di Milano, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
17
|
Paraneoplastic Amyotrophic Lateral Sclerosis: Case Series and Literature Review. Brain Sci 2022; 12:brainsci12081053. [PMID: 36009116 PMCID: PMC9405830 DOI: 10.3390/brainsci12081053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Paraneoplastic amyotrophic lateral sclerosis (ALS) is a rare and special type of ALS. The pathogenesis, clinical presentation, treatment and prognosis remain poorly understood. We herein presented three cases of paraneoplastic ALS. In case 1, we first reported an ALS patient with the positive serum antibodies against both Sry-like high mobility group box 1 (SOX1) and glutamic acid decarboxylase 65 (GAD65). However, immunotherapy did not improve his neurological symptoms. We also reported two ALS patients with renal clear cell carcinoma and chronic myelogenous leukemia. No positive paraneoplastic antibodies were detected in either the serum or the cerebrospinal fluid of the two patients, and their clinical symptoms progressed slowly after tumor treatment. The three cases enriched the existing case pool of this rare disorder. In addition, we have comprehensively reviewed the literature of paraneoplastic ALS. The clinical features, treatment effect and prognosis were summarized to broaden our understanding of paraneoplastic ALS.
Collapse
|
18
|
Antioxidant and Neuroprotective Effects of Paeonol against Oxidative Stress and Altered Carrier-Mediated Transport System on NSC-34 Cell Lines. Antioxidants (Basel) 2022; 11:antiox11071392. [PMID: 35883881 PMCID: PMC9311606 DOI: 10.3390/antiox11071392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paeonol is a naturally occurring phenolic agent that attenuates neurotoxicity in neurodegenerative diseases. We aimed to investigate the antioxidant and protective effects of paeonol and determine its transport mechanism in wild-type (WT; NSC-34/hSOD1WT) and mutant-type (MT; NSC-34/hSOD1G93A) motor neuron-like amyotrophic lateral sclerosis (ALS) cell lines. Cytotoxicity induced by glutamate, lipopolysaccharides, and H2O2 reduced viability of cell; however, the addition of paeonol improved cell viability against neurotoxicity. The [3H]paeonol uptake was increased in the presence of H2O2 in both cell lines. Paeonol recovered ALS model cell lines by reducing mitochondrial oxidative stress induced by glutamate. The transport of paeonol was time-, concentration-, and pH-dependent in both NSC-34 cell lines. Kinetic parameters showed two transport sites with altered affinity and capacity in the MT cell line compared to the WT cell line. [3H]Paeonol uptake increased in the MT cell line transfected with organic anion transporter1 (Oat1)/Slc22a6 small interfering RNA compared to that in the control. Plasma membrane monoamine transporter (Pmat) was also involved in the uptake of paeonol by ALS model cell lines. Overall, paeonol exhibits neuroprotective activity via a carrier-mediated transport system and may be a beneficial therapy for preventing motor neuronal damage under ALS-like conditions.
Collapse
|
19
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
20
|
Xu H, Jia C, Cheng C, Wu H, Cai H, Le W. Activation of autophagy attenuates motor deficits and extends lifespan in a C. elegans model of ALS. Free Radic Biol Med 2022; 181:52-61. [PMID: 35114355 PMCID: PMC8996503 DOI: 10.1016/j.freeradbiomed.2022.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase 1 (SOD1) are linked to amyotrophic lateral sclerosis (ALS). Using a line of ALS-related mutant human SOD1 (hSOD1) transgenic Caenorhabditis elegans, we determined the effects of metformin on the progression of ALS-like pathological abnormalities. We found that metformin significantly extended the lifespan, improved motor performance, and enhanced antioxidant activity of mutant worms. We further showed that metformin enhanced expression of lgg-1, daf-16, skn-1 and other genes known to regulate autophagy, longevity and oxidative stress in hSOD1 transgenic worms. Accordingly, overexpression of lgg-1 or daf-16 attenuated the aging and pathological abnormalities of mutant human SOD1 worms, while genetic deletion of lgg-1 or daf-16 abolished the beneficial effects of metformin. Collectively, we demonstrate that metformin protects against mutant SOD1-induced cytotoxicity in part through enhancement of autophagy and extends lifespan through daf-16 pathway. Our findings suggest that metformin could be further explored as a potential therapeutic agent in treating ALS.
Collapse
Affiliation(s)
- Hui Xu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Haifeng Wu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging (NIA), National Institutes of Health, Bethesda, MD, United States
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China; Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
21
|
Latif S, Kang YS. Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines. Cells 2021; 10:cells10123554. [PMID: 34944061 PMCID: PMC8700480 DOI: 10.3390/cells10123554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
L-Arginine, a semi-essential amino acid, was shown to delay dysfunction of motor neurons and to prolong the lifespan, upon analysis of transgenic mouse models of amyotrophic lateral sclerosis (ALS). We investigated the transport function of arginine and neuronal nitric oxide synthase (nNOS) expression after pretreatment with L-arginine in NSC-34 hSOD1WT (wild-type, WT) and hSOD1G93A (mutant-type, MT) cell lines. [3H]L-Arginine uptake was concentration-dependent, voltage-sensitive, and sodium-independent in both cell lines. Among the cationic amino acid transporters family, including system y+, b0,+, B0,+, and y+L, system y+ is mainly involved in [3H]L-arginine transport in ALS cell lines. System b0,+ accounted for 23% of the transport in both cell lines. System B0,+ was found only in MT, and whereas, system y+L was found only in WT. Lysine competitively inhibited [3H]L-arginine uptake in both cell lines. The nNOS mRNA expression was significantly lower in MT than in WT. Pretreatment with arginine elevated nNOS mRNA levels in MT. Oxidizing stressor, H2O2, significantly decreased their uptake; however, pretreatment with arginine restored the transport activity in both cell lines. In conclusion, arginine transport is associated with system y+, and neuroprotection by L-arginine may provide an edge as a possible therapeutic target in the treatment of ALS.
Collapse
|
22
|
Latif S, Kang YS. Change in Cationic Amino Acid Transport System and Effect of Lysine Pretreatment on Inflammatory State in Amyotrophic Lateral Sclerosis Cell Model. Biomol Ther (Seoul) 2021; 29:498-505. [PMID: 33935047 PMCID: PMC8411026 DOI: 10.4062/biomolther.2021.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurological disorder characterized by the deterioration of motor neurons. The aim of this study was to investigate alteration of cationic amino acid transporter (CAT-1) activity in the transport of lysine and the pretreatment effect of lysine on pro-inflammatory states in an amyotrophic lateral sclerosis cell line. The mRNA expression of cationic amino acid transporter 1 was lower in NSC-34/hSOD1G93A (MT) than the control cell line (WT), lysine transport is mediated by CAT-1 in NSC-34 cell lines. The uptake of [3H]L-lysine was Na+-independent, voltage-sensitive, and strongly inhibited by inhibitors and substrates of cationic amino acid transporter 1 (system y+). The transport process involved two saturable processes in both cell lines. In the MT cell line, at a high-affinity site, the affinity was 9.4-fold higher and capacity 24-fold lower than that in the WT; at a low-affinity site, the capacity was 2.3-fold lower than that in the WT cell line. Donepezil and verapamil competitively inhibited [3H]L-lysine uptake in the NSC-34 cell lines. Pretreatment with pro-inflammatory cytokines decreased the uptake of [3H]L-lysine and mRNA expression levels in both cell lines; however, the addition of L-lysine restored the transport activity in the MT cell lines. L-Lysine exhibited neuroprotective effects against pro-inflammatory states in the ALS disease model cell lines. In conclusion, studying the alteration in the expression of transporters and characteristics of lysine transport in ALS can lead to the development of new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sana Latif
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
23
|
Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10:29. [PMID: 34372914 PMCID: PMC8353789 DOI: 10.1186/s40035-021-00250-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons, leading to paralysis and eventually death. Symptomatic treatments such as inhibition of salivation, alleviation of muscle cramps, and relief of spasticity and pain still play an important role in enhancing the quality of life. To date, riluzole and edaravone are the only two drugs approved by the Food and Drug Administration for the treatment of ALS in a few countries. While there is adequate consensus on the modest efficacy of riluzole, there are still open questions concerning the efficacy of edaravone in slowing the disease progression. Therefore, identification of novel therapeutic strategies is urgently needed. Impaired autophagic process plays a critical role in ALS pathogenesis. In this review, we focus on therapies modulating autophagy in the context of ALS. Furthermore, stem cell therapies, gene therapies, and newly-developed biomaterials have great potentials in alleviating neurodegeneration, which might halt the disease progression. In this review, we will summarize the current and prospective therapies for ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Hongqin Shi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.,Department of Neurology, Xinrui Hospital, Wuxi, 214028, China
| | - Weidong Le
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China. .,Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| |
Collapse
|
24
|
Zhang L, Xu J, Han YF, Zhang HL, Li Y, Chen FL, Hu YQ, Yin JW, Ma KT, Zhao D. Detection of autophagic flux in primary cerebral cortical neurons after oxygen glucose deprivation/reperfusion (OGD/R) using various methods. J Chem Neuroanat 2021; 117:101999. [PMID: 34214593 DOI: 10.1016/j.jchemneu.2021.101999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/18/2023]
Abstract
The current research hot spot in the field of autophagic flux is to explain and alleviate disease from the perspective of autophagy. A highly sophisticated, sensitive, quantifiable and comprehensive method is required to accurately determine the dynamic process of autophagic flux. There are very few methods in neuroscience that specifically examine autophagic flux. Therefore, primary cortical neurons were divided into oxygen glucose deprivation/reperfusion (OGD/R) (group A) and OGD/R plus bafilomycin A1 (BafA1) (group B) groups. ① Transfection of the LC3 gene with the RFP-GFP tandem fluorescent label was performed. ② Direct quantification was performed using transmission electron microscopy (TEM). ③ Autophagy-related tools were used to detect the transformation of LC3I/II. ④ SQSTM1/P62 combined with the LC3 protein flip test was performed to comprehensively evaluate autophagic flux. Using method one, the ratio of autophagolysosomes to autophagosomes in group A was significantly increased based on fluorescence microscopy analysis. Using method two, the autophagy process in group A was more continuous and unobstructed based on TEM analysis, while only some partial processes were observed in group B, and the number of autophagosomes and autophagy lysosomes in group A was significantly greater more than that in group B. The LC3II/I ratio measured in method three was analysed in detail to explain the autophagic flux. The ratio of soluble p62 combined with the ratio of LC3II/I detected using method four reflected the activation of autophagy. In summary, each method has its own advantages, and different methods and indicators can be used to monitor different stages of autophagy. An understanding of these advantages and mastery of these methods, is a very promising strategy to systematically and objectively study central nervous system diseases, facilitate the rational use of drugs, and formulate effective treatment plans from the perspective of autophagy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China; Department of Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836000, China
| | - Jian Xu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Yan-Feng Han
- Department of Xinjiang Production and Construction Corps Tenth Division Disease Prevention and Control Center, Beitun, 836000, China
| | - Hai-Long Zhang
- Department of Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836000, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Fu-Lei Chen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Yu-Qi Hu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Jiang-Wen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ke-Tao Ma
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, 832000, China
| | - Dong Zhao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China.
| |
Collapse
|
25
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
26
|
Cojocaru A, Burada E, Bălșeanu AT, Deftu AF, Cătălin B, Popa-Wagner A, Osiac E. Roles of Microglial Ion Channel in Neurodegenerative Diseases. J Clin Med 2021; 10:jcm10061239. [PMID: 33802786 PMCID: PMC8002406 DOI: 10.3390/jcm10061239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
As the average age and life expectancy increases, the incidence of both acute and chronic central nervous system (CNS) pathologies will increase. Understanding mechanisms underlying neuroinflammation as the common feature of any neurodegenerative pathology, we can exploit the pharmacology of cell specific ion channels to improve the outcome of many CNS diseases. As the main cellular player of neuroinflammation, microglia play a central role in this process. Although microglia are considered non-excitable cells, they express a variety of ion channels under both physiological and pathological conditions that seem to be involved in a plethora of cellular processes. Here, we discuss the impact of modulating microglia voltage-gated, potential transient receptor, chloride and proton channels on microglial proliferation, migration, and phagocytosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandru Cojocaru
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
| | - Adrian-Tudor Bălșeanu
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland;
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH-1011 Lausanne, Switzerland
| | - Bogdan Cătălin
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.C.); (E.B.); (A.-T.B.)
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (B.C.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, 45147 Essen, Germany
- Correspondence: (B.C.); (A.P.-W.)
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
27
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
28
|
Madruga E, Maestro I, Martínez A. Mitophagy Modulation, a New Player in the Race against ALS. Int J Mol Sci 2021; 22:ijms22020740. [PMID: 33450997 PMCID: PMC7828440 DOI: 10.3390/ijms22020740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that usually results in respiratory paralysis in an interval of 2 to 4 years. ALS shows a multifactorial pathogenesis with an unknown etiology, and currently lacks an effective treatment. The vast majority of patients exhibit protein aggregation and a dysfunctional mitochondrial accumulation in their motoneurons. As a result, autophagy and mitophagy modulators may be interesting drug candidates that mitigate key pathological hallmarks of the disease. This work reviews the most relevant evidence that correlate mitophagy defects and ALS, and discusses the possibility of considering mitophagy as an interesting target in the search for an effective treatment for ALS.
Collapse
Affiliation(s)
- Enrique Madruga
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Inés Maestro
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-918373112
| |
Collapse
|
29
|
Pretreatment Effect of Inflammatory Stimuli and Characteristics of Tryptophan Transport on Brain Capillary Endothelial (TR-BBB) and Motor Neuron Like (NSC-34) Cell Lines. Biomedicines 2020; 9:biomedicines9010009. [PMID: 33374302 PMCID: PMC7823355 DOI: 10.3390/biomedicines9010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tryptophan plays a key role in several neurological and psychiatric disorders. In this study, we investigated the transport mechanisms of tryptophan in brain capillary endothelial (TR-BBB) cell lines and motor neuron-like (NSC-34) cell lines. The uptake of [3H]l-tryptophan was stereospecific, and concentration- and sodium-dependent in TR-BBB cell lines. Transporter inhibitors and several neuroprotective drugs inhibited [3H]l-tryptophan uptake by TR-BBB cell lines. Gabapentin and baclofen exerted a competitive inhibitory effect on [3H]l-tryptophan uptake. Additionally, l-tryptophan uptake was time- and concentration-dependent in both NSC-34 wild type (WT) and mutant type (MT) cell lines, with a lower transporter affinity and higher capacity in MT than in WT cell lines. Gene knockdown of LAT1 (l-type amino acid transporter 1) and CAT1 (cationic amino acid transporter 1) demonstrated that LAT1 is primarily involved in the transport of [3H]l-tryptophan in both TR-BBB and NSC-34 cell lines. In addition, tryptophan uptake was increased by TR-BBB cell lines but decreased by NSC-34 cell lines after pro-inflammatory cytokine pre-treatment. However, treatment with neuroprotective drugs ameliorated tryptophan uptake by NSC-34 cell lines after inflammatory cytokines pretreatment. The tryptophan transport system may provide a therapeutic target for treating or preventing neurodegenerative diseases.
Collapse
|
30
|
The neuroprotective effects of activated α7 nicotinic acetylcholine receptor against mutant copper-zinc superoxide dismutase 1-mediated toxicity. Sci Rep 2020; 10:22157. [PMID: 33335227 PMCID: PMC7746719 DOI: 10.1038/s41598-020-79189-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 11/08/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Although many drugs have entered clinical trials, few have shown effectiveness in the treatment of ALS. Other studies have shown that the stimulation of α7 nicotinic acetylcholine receptor (nAChR) can have neuroprotective effects in some models of neurodegenerative disease, as well as prevent glutamate-induced motor neuronal death. However, the effect of α7 nAChR agonists on ALS-associated mutant copper-zinc superoxide dismutase 1 (SOD1) aggregates in motor neurons remains unclear. In the present study, we examined whether α7 nAChR activation had a neuroprotective effect against SOD1G85R-induced toxicity in a cellular model for ALS. We found that α7 nAChR activation by PNU282987, a selective agonist of α7 nAChR, exhibited significant neuroprotective effects against SOD1G85R-induced toxicity via the reduction of intracellular protein aggregates. This reduction also correlated with the activation of autophagy through the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the activation of α7 nAChRs was found to increase the biogenesis of lysosomes by inducing translocation of the transcription factor EB (TFEB) into the nucleus. These results support the therapeutic potential of α7 nAChR activation in diseases that are characterized by SOD1G85R aggregates, such as ALS.
Collapse
|
31
|
Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020; 9:12. [PMID: 33659944 PMCID: PMC7886072 DOI: 10.12703/b/9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by degeneration of both upper and lower motor neurons and subsequent progressive loss of muscle function. Within the last decade, significant progress has been made in the understanding of the etiology and pathobiology of the disease; however, treatment options remain limited and only two drugs, which exert a modest effect on survival, are approved for ALS treatment in the US. Therefore, the search for effective ALS therapies continues, and over 60 clinical trials are in progress for patients with ALS and other therapeutics are at the pre-clinical stage of development. Recent advances in understanding the genetics, pathology, and molecular mechanisms of ALS have led to the identification of novel targets and strategies that are being used in emerging ALS therapeutic interventions. Here, we review the current status and mechanisms of action of a selection of emerging ALS therapies in pre-clinical or early clinical development, including gene therapy, immunotherapy, and strategies that target neuroinflammation, phase separation, and protein clearance.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
32
|
Pedrioli G, Patani R, Paganetti P. Chloroquine, the Coronavirus Crisis, and Neurodegeneration: A Perspective. Front Neurol 2020; 11:596528. [PMID: 33281734 PMCID: PMC7691290 DOI: 10.3389/fneur.2020.596528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
On the verge of the ongoing coronavirus pandemic, in vitro data suggested that chloroquine, and its analog hydroxychloroquine, may be useful in controlling SARS-CoV-2 infection. Efforts are ongoing in order to test this hypothesis in clinical trials. Some studies demonstrated no evidence of efficacy, whereas in some cases results were retracted after reporting. Despite the lack of scientific validation, support for the use of these compounds continues from various influencers. At the cellular level, the lysosomotropic drug chloroquine accumulates in acidic organelles where it acts as an alkalizing agent with possible downstream effects on several cellular pathways. In this perspective, we discuss a possible modulatory role of these drugs in two shared features of neurodegenerative diseases, the cellular accumulation of aberrantly folded proteins and the contribution of neuroinflammation in this pathogenic process. Certainly, the decision on the use of chloroquine must be determined by its efficacy in the specific clinical situation. However, at an unprecedented time of a potential widespread use of chloroquine, we seek to raise awareness of its potential impact in ongoing clinical trials evaluating disease-modifying therapies in neurodegeneration.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,International PhD Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
33
|
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W, Lu W. The Golgi Apparatus May Be a Potential Therapeutic Target for Apoptosis-Related Neurological Diseases. Front Cell Dev Biol 2020; 8:830. [PMID: 33015040 PMCID: PMC7493689 DOI: 10.3389/fcell.2020.00830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence shows that, in addition to the classical function of protein processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one of the most common forms of cell death. The structure and the function of the GA is damaged during apoptosis. However, the specific effect of the GA on the apoptosis process is unclear; it may be involved in initiating or promoting apoptosis, or it may inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. This review summarizes the changes and the possible mechanisms of Golgi structure and function during apoptosis. In addition, we also explore the possible mechanisms by which the GA regulates apoptosis and summarize the potential relationship between the Golgi and certain neurological diseases from the perspective of apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our understanding of the pathological mechanisms of neurological diseases and provides new research directions for the treatment of these diseases. Therefore, we propose that the GA may be a potential therapeutic target for apoptosis-related neurological diseases.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Fischer TT, Ehrlich BE. Wolfram Syndrome: a Monogenic Model to Study Diabetes Mellitus and Neurodegeneration. CURRENT OPINION IN PHYSIOLOGY 2020; 17:115-123. [PMID: 32864536 DOI: 10.1016/j.cophys.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Wolfram syndrome (WS) is a rare, progressive disorder characterized by childhood-onset diabetes mellitus, optic nerve atrophy, hearing loss, diabetes insipidus, and neurodegeneration. Currently, there is no effective treatment for WS, and patients typically die between 30 and 40 years of age. WS is primarily caused by autosomal recessive mutations in the Wolfram syndrome 1 (WFS1) gene (OMIM 222300), which encodes for wolframin (WFS1). This disorder is therefore a valuable monogenic model for prevalent diseases, particularly diabetes mellitus and neurodegeneration. Whereas reduced survival and secretion are known cellular impairments causing WS, the underlying molecular pathways and the physiological function of WFS1 remain incompletely described. Here, we characterize WFS1 as a regulator of intracellular calcium homeostasis, review our current understanding of the disease mechanism of WS, and discuss candidate treatment approaches. These insights will facilitate identification of new therapeutic strategies not only for WS but also for diabetes mellitus and neurodegeneration.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT-06520, USA.,Institute of Pharmacology, University of Heidelberg, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT-06520, USA.,Department of Molecular Physiology, Yale University, New Haven, CT-06520, USA
| |
Collapse
|
35
|
N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish. Food Chem Toxicol 2020; 144:111559. [PMID: 32640352 DOI: 10.1016/j.fct.2020.111559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
There is a strong association between calcium channel blockers (CCBs) and heart failure. CCB toxicity is very common due to overdose and underlying medical conditions. CCBs also have been shown to affect the nervous system. Recently, we demonstrated that the antioxidant N-acetylcysteine (NAC) prevented ketamine-induced cardiotoxicity, developmental toxicity and neurotoxicity. Functionally, we attributed NAC's beneficial effect to its ability to increase cellular calcium. Here, we hypothesized that if there was an involvement of calcium in NAC's preventative effects on ketamine toxicity, NAC might also ameliorate toxicities induced by verapamil, an L-type CCB used to treat hypertension. Using zebrafish embryos, we show that in the absence of NAC, verapamil (up to 100 μM) dose-dependently reduced heart rate and those effects were prevented by NAC co-treatment. Furthermore, a 2-h treatment with NAC rescued reduction of heart rate induced by pre-treatment of 50 and 100 μM of verapamil for 18 h. Verapamil up to 100 μM and NAC up to 1.5 mM did not have any adverse effects on the expression of tyrosine hydroxylase in the noradrenergic neurons of the arch-associated cluster (AAC) located near the heart. NAC did not change cysteine levels in the embryos suggesting that the beneficial effect of NAC on verapamil toxicity may not involve its antioxidant property. In our search for compounds that can prevent CCB toxicity, this study, for the first time, demonstrates protective effects of NAC against verapamil's adverse effects on the heart.
Collapse
|
36
|
Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC. Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases. J Mol Biol 2019; 432:2799-2821. [PMID: 31887286 DOI: 10.1016/j.jmb.2019.12.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Autophagy is a major, conserved cellular pathway by which cells deliver cytoplasmic contents to lysosomes for degradation. Genetic studies have revealed extensive links between autophagy and neurodegenerative disease, and disruptions to autophagy may contribute to pathology in some cases. Autophagy degrades many of the toxic, aggregate-prone proteins responsible for such diseases, including mutant huntingtin (mHTT), alpha-synuclein (α-syn), tau, and others, raising the possibility that autophagy upregulation may help to reduce levels of toxic protein species, and thereby alleviate disease. This review examines autophagy induction as a potential therapy in several neurodegenerative diseases-Alzheimer's disease, Parkinson's disease, polyglutamine diseases, and amyotrophic lateral sclerosis (ALS). Evidence in cells and in vivo demonstrates promising results in many disease models, in which autophagy upregulation is able to reduce the levels of toxic proteins, ameliorate signs of disease, and delay disease progression. However, the effective therapeutic use of autophagy induction requires detailed knowledge of how the disease affects the autophagy-lysosome pathway, as activating autophagy when the pathway cannot go to completion (e.g., when lysosomal degradation is impaired) may instead exacerbate disease in some cases. Investigating the interactions between autophagy and disease pathogenesis is thus a critical area for further research.
Collapse
Affiliation(s)
- Alvin Djajadikerta
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Swati Keshri
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Mariana Pavel
- Department of Immunology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Ryan Prestil
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Laura Ryan
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|