1
|
Yan HX, Zhang YZ, Niu YQ, Wang YW, Liu LH, Tang YP, Huang JM, Leung ELH. Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156377. [PMID: 39798340 DOI: 10.1016/j.phymed.2025.156377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Drug resistance in cancer is steadily rising, making the development of new therapeutic targets increasingly critical for improving treatment outcomes. PURPOSE The mutual regulation of ions is essential for cell growth. Based on this concept, ion interference strategies offer a highly effective approach for cancer treatment. Calcium ions (Ca2+), as major second messengers, are closely associated with ion exchange and homeostasis. Disruptions in this balance can lead to cell death. However, while iron ions are also crucial, the connection between Ca2+and iron-induced cell death (ferroptosis) has not been well established. Therefore, this study suggests that Ca2+ may play a role in the induction of ferroptosis, presenting a novel and efficient target for cancer therapy. STUDY DESIGN PubMed, Google Scholar, and Web of Science databases were systematically searched for articles published in the past 15 years on the mechanisms of calcium ion-induced ferroptosis in cancer and related drugs. RESULTS The analysis highlights how Ca2+regulate ferroptosis. The mechanisms by which Ca2+influence ferroptosis are summarized based on existing literature, and relevant drugs that act on Ca2+/ferroptosis axis are outlined. CONCLUSION Ca2+ regulate ferroptosis primarily through the modulation of reactive oxygen species (ROS) and glutathione (GSH) levels, a mechanism that applies to a wide range of cancer cells as well as paracancerous and normal cells in cancer treatment. Furthermore, plant-derived active compounds exhibit potent anticancer properties and often act on the Ca2+/ferroptosis axis. These natural compounds could play a significant role in the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yu-Qing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China
| | - Yu-Wei Wang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China
| | - Li-Hua Liu
- Economics and Management Yanbian University, Yanji, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China.
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| |
Collapse
|
2
|
Tang Y, Zhuang Y, Zhao C, Gu S, Zhang J, Bi S, Wang M, Bao L, Li M, Zhang W, Zhu L. The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy. Front Pharmacol 2024; 15:1280779. [PMID: 39021832 PMCID: PMC11251977 DOI: 10.3389/fphar.2024.1280779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer is a major disease with ever-increasing morbidity and mortality. The metabolites derived from traditional Chinese medicine (TCM) have played a significant role in combating cancers with curative efficacy and unique advantages. Ferroptosis, an iron-dependent programmed death characterized by the accumulation of lipid peroxide, stands out from the conventional forms of cell death, such as apoptosis, pyroptosis, necrosis, and autophagy. Recent evidence has demonstrated the potential of TCM metabolites targeting ferroptosis for cancer therapy. We collected and screened related articles published in or before June 2023 using PubMed, Google Scholar, and Web of Science. The searched keywords in scientific databases were ferroptosis, cancer, tumor, traditional Chinese medicine, botanical drugs, and phytomedicine. Only research related to ferroptosis, the metabolites from TCM, and cancer was considered. In this review, we introduce an overview of the current knowledge regarding the ferroptosis mechanisms and review the research advances on the metabolites of TCM inhibiting cancer by targeting ferroptosis.
Collapse
Affiliation(s)
- Yu Tang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhuang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junya Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shiqi Bi
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Wang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Bao
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Deng L, Tian W, Luo L. Application of natural products in regulating ferroptosis in human diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155384. [PMID: 38547620 DOI: 10.1016/j.phymed.2024.155384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.
Collapse
Affiliation(s)
- Liyan Deng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Wen Tian
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
4
|
Mitra S, Biswas P, Bandyopadhyay A, Gadekar VS, Gopalakrishnan AV, Kumar M, Radha, Nandy S. Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2637-2650. [PMID: 37955690 DOI: 10.1007/s00210-023-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/12/2023] [Indexed: 11/14/2023]
Abstract
Piperlongumine (PL), an alkaloid found primarily in the fruits and roots of the plant Piper longum L. (Piperaceae), is a natural compound that exhibits potent activity against various cancer cell proliferation. The most frequently caused malignancy in women globally, breast cancer (BC), has been demonstrated to be significantly inhibited by PL. Apoptosis, cell cycle arrest, increased ROS generation, and changes in the signalling protein's expression are all caused by the numerous signalling pathways that PL impacts. Since BC cells resist conventional chemotherapeutic drugs (doxorubicin, docetaxel etc.), researchers have shown that the drugs in combination with PL can exhibit a synergistic effect, greater than the effects of the drug or PL alone. Recently, techniques for drug packaging based on nanotechnology have been employed to improve PL release. The review has presented an outline of the chemistry of PL, its molecular basis in BC, its bioavailability, toxicity, and nanotechnological applications. An attempt to understand the future prospects and direction of research about the compound has also been discussed.
Collapse
Affiliation(s)
- Shatakshi Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Samapika Nandy
- Department of Botany, Vedanta College, 33A, Shiv Krishna Daw Lane, Phool Bagan, Kolkata, 700054, West Bengal, India.
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
5
|
Cui Y, Chen XB, Liu Y, Wang Q, Tang J, Chen MJ. Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosis. Chem Biol Interact 2024; 390:110875. [PMID: 38242274 DOI: 10.1016/j.cbi.2024.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Pyroptosis, a type of programmed cell death, is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Piperlongumine (PL) is a natural bioactive product extracted from Piper longum L, which can effectively exert anti-tumor activities in cancer. However, the effects and the exact molecular mechanisms of PL in esophageal squamous cell carcinoma (ESCC) remain unclear. This research aimed to investigate the role and mechanism of PL on ESCC in vitro and in vivo. In vitro, the MTT results showed that the IC50 of PL in ESCC cells was 28.55 μM. Moreover, PL significantly suppressed malignant behavior by promoting pyroptosis of ESCC cells by inhibiting proliferation, migration, invasion, and colony formation of KYSE-30 cells, up-regulating expressions of ASC, Cleaved-caspase-1, NLRP3, and GSDMD, while inducing the generation of ROS. Further, NRF2 knockdown promoted TXNIP expression, while overexpression of NRF2 inhibited TXNIP expression. However, after PL treatment, this effect was reversed. In addition, PL significantly inhibited the malignant behavior of ESCC cells while the inhibitory effects were reversed by DMF (NRF2 activator) or NAC (ROS eliminator) treatment. Finally, PL markedly increased expressions of ASC, Cleaved-caspase-1, NLRP3, GSDMD, and the generation of ROS while the effects were reversed by TXNIP knockdown or RUS (TXNIP inhibitor) treatment. In vivo, the KYSE-30 xenograft model confirmed that PL inhibited the growth of ESCC transplanted tumors by promoting cell pyroptosis. In conclusion, the results suggested that PL inhibited the malignant behavior of ESCC cells in vitro and tumorigenesis of ESCC in vivo by inhibiting NRF2 and promoting ROS-TXNIP-NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Yue Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiao-Bo Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Ying Liu
- Pathology Department, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, 650500, Yunnan, China
| | - Qian Wang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Man-Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Kim B, Cho SD, Nam JS, Choi C, Che JH, Jung JY. Piperlongumine induces apoptosis and autophagy via the PI3K/Akt/mTOR pathway in KB human cervical cancer cells. Food Chem Toxicol 2023; 180:114051. [PMID: 37734464 DOI: 10.1016/j.fct.2023.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Natural products are continuously being researched to develop safe and effective treatment options for cervical cancer, the fourth most common cancer in women. Piperlongumine (PL), an amide alkaloid mainly present in long pepper, exhibits neuroprotective and anti-cancer properties. However, the specific effect of PL in cervical cancer and the relationship between the anti-cancer pathway and autophagy remain unclear. Therefore, we aimed to investigate PL-induced apoptosis in KB human cervical cancer cells and the relationship between apoptosis and autophagy therein. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays showed that PL treatment suppressed KB cell viability and proliferation. Apoptosis was identified through 4',6-diamidino-2-phenylindole and annexin V-propidium iodide staining, increased cleaved-poly (ADP-ribose) polymerase and Bcl-2 associated X levels, and decreased B cell lymphoma 2 levels. Acridine orange staining and increased microtubule-associated protein 1A/1B-light chain 3-II and Beclin-1 levels confirmed autophagy. We determined that KB cell-related autophagy exerted cytoprotective effects using the autophagy inhibitors 3-methyladenine and hydroxychloroquine. PL treatment promoted apoptosis by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in KB cells; inhibiting the pathway using PI3K inhibitors increased autophagy. We suggest that PL is a potential natural anticancer agent for cervical cancer treatment.
Collapse
Affiliation(s)
- Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Sang-Woo Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Jun-Mo Moon
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Changsun Choi
- School of Food Science and Technology, Chung-ang University, Ansung, 17546, Republic of Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource Development, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan, 32439, Republic of Korea.
| |
Collapse
|
7
|
Duarte ABS, Gomes RC, Nunes VRV, Gonçalves JCR, Correia CA, dos Santos AZG, de Sousa DP. The Antitumor Activity of Piplartine: A Review. Pharmaceuticals (Basel) 2023; 16:1246. [PMID: 37765054 PMCID: PMC10535094 DOI: 10.3390/ph16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a worldwide health problem with high mortality in children and adults, making searching for novel bioactive compounds with potential use in cancer treatment essential. Piplartine, also known as piperlongumine, is an alkamide isolated from Piper longum Linn, with relevant therapeutic potential. Therefore, this review covered research on the antitumor activity of piplartine, and the studies reported herein confirm the antitumor properties of piplartine and highlight its possible application as an anticancer agent against various types of tumors. The evidence found serves as a reference for advancing mechanistic research on this metabolite and preparing synthetic derivatives or analogs with better antitumor activity in order to develop new drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Damião P. de Sousa
- Departament of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (A.B.S.D.); (R.C.G.); (V.R.V.N.); (J.C.R.G.); (C.A.C.); (A.Z.G.d.S.)
| |
Collapse
|
8
|
Koeberle SC, Kipp AP, Stuppner H, Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev 2023; 43:614-682. [PMID: 36658724 PMCID: PMC10947485 DOI: 10.1002/med.21933] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.
Collapse
Affiliation(s)
- Solveigh C. Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| |
Collapse
|
9
|
Lin TH, Kuo CH, Zhang YS, Chen PT, Chen SH, Li YZ, Lee YR. Piperlongumine Induces Cellular Apoptosis and Autophagy via the ROS/Akt Signaling Pathway in Human Follicular Thyroid Cancer Cells. Int J Mol Sci 2023; 24:ijms24098048. [PMID: 37175755 PMCID: PMC10179299 DOI: 10.3390/ijms24098048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recently, the global incidence of TC has increased rapidly. Differentiated thyroid cancer includes papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC), which are the most common types of TC. Although PTCs and FTCs exert good prognoses and high survival rates, FTCs tend to be more aggressive than PTCs. There is an urgent need to improve patient outcomes by developing effective therapeutic agents for FTCs. Piperlongumine exerts anti-cancer effects in various human carcinomas, including human anaplastic TCs and PTCs. However, the anti-cancer effects of piperlongumine in FTCs and the underlying mechanisms are yet to be elucidated. Therefore, in the present study, we evaluated the effect of piperlongumine on cell proliferation, cell cycle, apoptosis, and autophagy in FTC cells with flowcytometry and Western blot. We observed that piperlongumine caused growth inhibition, cell cycle arrest, apoptosis induction, and autophagy elevation in FTC cells. Activities of reactive oxygen species and the downstream PI3K/Akt pathway were the underlying mechanisms involved in piperlongumine mediated anti-FTC effects. Advancements in our understanding of the effects of piperlongumine in FTC hold promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Tsung-Hsing Lin
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung City 433, Taiwan
| | - Chin-Ho Kuo
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Pin-Tzu Chen
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Gao Y, Li M, Wang B, Ma Y. Prognostic value of Nrf2/HO-1 expression and its correlation with occurrence in esophageal squamous cell carcinoma. Genes Genomics 2023; 45:723-739. [PMID: 37043130 DOI: 10.1007/s13258-023-01371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is thought to be started and developed by genes associated with inflammation. A cancer's ability to spread and grow can be aided by nuclear factor erythroid-2 related factor 2 (Nrf2) hyperactivation, which can also make a tumor more resistant to chemotherapy and radiation treatment. However, it is still unknown how Nrf2 gene expression affects ESCC prognosis and controls function throughout ESCC advancement. OBJECTIVE The expression of Nrf2 and HO-1 in ESCC and precancerous esophageal precancerous lesions was analyzed, and their relationship with esophageal squamous cell carcinoma was analyzed. METHODS Immunohistochemistry (IHC) was used to confirm the expression of Nrf2 and heme oxygenase-1 (HO-1) proteins in tissue microarrays from Chinese populations with ESCC. We looked at the connections between Nrf2/HO-1 expression and invading immune cells using the TIMER database. RESULTS Ethnicity and N stage are associated with Nrf2 overexpression. Differentiation, N stage, vascular invasion, distant metastasis, and American Joint Committee on Cancer (AJCC) staging are all associated with HO-1 overexpression. The expression of Nrf2 and HO-1 had a favorable correlation. Patients with elevated Nrf2 and HO-1 expression had lower progression-free survival (PFS) and overall survival (OS). In high-grade intraepithelial neoplasia, Nrf2 and HO-1 expression generally occurred, partially in low-grade intraepithelial neoplasia specimens, and rarely in normal mucosa. We further show that Nrf2 suppression is linked to higher immunological marker expression and lower immune cell infiltration. CONCLUSION The prognosis of ESCC may be improved by inhibiting the expression of Nrf2 and HO-1. A lack of immune cells was seen in ESCC with Nrf2 impairment.
Collapse
Affiliation(s)
- Yongmei Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengyan Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Wang
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuqing Ma
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
11
|
Wang Q, Lin D, Liu XF, Dai F, Jin XJ, Zhou B. Engineering piperlongumine-inspired analogs as Nrf2-dependent neuroprotectors against oxidative damage by an electrophilicity-based strategy. Free Radic Biol Med 2023; 194:298-307. [PMID: 36528122 DOI: 10.1016/j.freeradbiomed.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Oxidative stress contributes significantly to the development of neurodegenerative diseases, thus developing nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent neuroprotectors is highly required for either prevention or treatment of these diseases. This work highlights an electrophilicity-based strategy that allows finding more active Nrf2-dependent neuroprotectors than natural piperlongumine (PL). Electrophilic modification was applied on both the exocylic and endocyclic Michael acceptors of PL, which includes placement of an electron-withdrawing trifluoromethyl group on its aromatic ring in the ortho, meta, or para position to the exocyclic olefin, and further introduction of an electron-withdrawing α-chlorine on its lactam ring. From a panel of PL analogs, we identified PLCl-4CF3, characterized by the presence of p-trifluoromethyl group and α-chlorine, to be significantly superior to the parent PL in protecting PC12 cells from oxidative damage induced by 6-hydroxydopamine hydrochloride. Mechanistic studies reveal that the increased electrophilicity of PLCl-4CF3 in its two Michael acceptors allows its ability to covalently modify Cys-151 at Keap1, facilitating inhibition against Nrf2 ubiquitination, translocation of Nrf2 into the nucleus, induction of phase 2 enzymes and final protection of PC12 cells from oxidative damage.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dong Lin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xue-Feng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Xiao-Jie Jin
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
12
|
Messinis DE, Poussin C, Latino DARS, Eb-Levadoux Y, Dulize R, Peric D, Guedj E, Titz B, Ivanov NV, Peitsch MC, Hoeng J. Systems biology reveals anatabine to be an NRF2 activator. Front Pharmacol 2022; 13:1011184. [DOI: 10.3389/fphar.2022.1011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Anatabine, an alkaloid present in plants of the Solanaceae family (including tobacco and eggplant), has been shown to ameliorate chronic inflammatory conditions in mouse models, such as Alzheimer’s disease, Hashimoto’s thyroiditis, multiple sclerosis, and intestinal inflammation. However, the mechanisms of action of anatabine remain unclear. To understand the impact of anatabine on cellular systems and identify the molecular pathways that are perturbed, we designed a study to examine the concentration-dependent effects of anatabine on various cell types by using a systems pharmacology approach. The resulting dataset, consisting of measurements of various omics data types at different time points, was analyzed by using multiple computational techniques. To identify concentration-dependent activated pathways, we performed linear modeling followed by gene set enrichment. To predict the functional partners of anatabine and the involved pathways, we harnessed the LINCS L1000 dataset’s wealth of information and implemented integer linear programming on directed graphs, respectively. Finally, we experimentally verified our key computational predictions. Using an appropriate luciferase reporter cell system, we were able to demonstrate that anatabine treatment results in NRF2 (nuclear factor-erythroid factor 2-related factor 2) translocation, and our systematic phosphoproteomic assays showed that anatabine treatment results in activation of MAPK signaling. While there are certain areas to be explored in deciphering the exact anti-inflammatory mechanisms of action of anatabine and other NRF2 activators, we believe that anatabine constitutes an interesting molecule for its therapeutic potential in NRF2-related diseases.
Collapse
|
13
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
14
|
Dang YY, Luo H, Li YM, Zhou Y, Luo X, Lin SM, Liu SP, Lee SMY, Li CW, Dai XY. Curcumin prevents As 3+-induced carcinogenesis through regulation of GSK3β/Nrf2. Chin Med 2021; 16:116. [PMID: 34758851 PMCID: PMC8582166 DOI: 10.1186/s13020-021-00527-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Arsenic (As3+) is a carcinogen with considerable environmental and occupational relevancy. Its mechanism of action and methods of prevention remain to be investigated. Previous studies have demonstrated that ROS is responsible for As3+-induced cell transformation, which is considered as the first stage of As3+ carcinogenesis. The NF-E2 p45-related factor-2 (Nrf2) signaling pathway regulates the cellular antioxidant response, and activation of Nrf2 has recently been shown to limit oxidative damage following exposure to As3+ Methods and results In this study, molecular docking was used to virtually screen natural antioxidant chemical databases and identify molecules that interact with the ligand-binding site of Keap1 (PDB code 4L7B). The cell-based assays and molecular docking findings revealed that curcumin has the best inhibitory activity against Keap1-4L7B. Co-immunoprecipitation (Co-IP) results indicated that curcumin is a potent Keap1 Kelch domain-dependent Nrf2 activator that stabilizes Nrf2 by hindering its ubiquitination. The increased activation of Nrf2 and its target antioxidant genes by curcumin could significantly decrease As3+-generated ROS. Moreover, curcumin induced autophagy in As3+-treated BEAS-2B via inducing autophagy by the formation of a p62/LC-3 complex and increasing autophagic flux by promoting transcription factor EB (TFEB) and lysosome-associated membrane protein 1 (LAMP1) expression. Knockdown of Nrf2 abolished curcumin-induced autophagy and downregulated ROS. Further studies showed that inhibition of autophagosome and lysosome fusion with bafilomycin a1 (BafA1) could block curcumin and prevented As3+-induced cell transformation. These results demonstrated that curcumin prevents As3+-induced cell transformation by inducing autophagy via the activation of the Nrf2 signaling pathway in BEAS-2B cells. However, overexpression of Keap-1 showed a constitutively high level of Nrf2 in As3+-transformed BEAS-2B cells (AsT) is Keap1-independent regulation. Overexpression of Nrf2 in AsT demonstrated that curcumin increased ROS levels and induced cell apoptosis via the downregulation of Nrf2. Further studies showed that curcumin decreased the Nrf2 level in AsT by activating GSK-3β to inhibit the activation of PI3K/AKT. Co-IP assay results showed that curcumin promoted the interaction of Nrf2 with the GSK-3β/β-TrCP axis and ubiquitin. Moreover, the inhibition of GSK-3β reversed Nrf2 expression in curcumin-treated AsT, indicating that the decrease in Nrf2 is due to activation of the GSK-3β/β-TrCP ubiquitination pathway. Furthermore, in vitro and in vivo results showed that curcumin induced cell apoptosis, and had anti-angiogenesis and anti-tumorigenesis effects as a result of activating the GSK-3β/β-TrCP ubiquitination pathway and subsequent decrease in Nrf2. Conclusions Taken together, in the first stage, curcumin activated Nrf2, decreased ROS, and induced autophagy in normal cells to prevent As3+-induced cell transformation. In the second stage, curcumin promoted ROS and apoptosis and inhibited angiogenesis via inhibition of constitutive expression of Nrf2 in AsT to prevent tumorigenesis. Our results suggest that antioxidant natural compounds such as curcumin can be evaluated as potential candidates for complementary therapies in the treatment of As3+-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuan-Ye Dang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yong-Mei Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yang Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xiu Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shui-Mu Lin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shou-Ping Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chu-Wen Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Xiao-Yan Dai
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
15
|
Trans-chalcone suppresses tumor growth mediated at least in part by the induction of heme oxygenase-1 in breast cancer. Toxicol Res 2021; 37:485-493. [PMID: 34631505 PMCID: PMC8476688 DOI: 10.1007/s43188-021-00089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/03/2022] Open
Abstract
Despite intensive research efforts in recent decades, cancer remains a leading cause of death worldwide. The chalcone family is a promising group of phytochemicals for therapeutic use against cancer development. Naturally-occurring chalcones, as well as synthetic chalcone analogues, have shown many beneficial biological properties, including anti-inflammatory, antioxidant, and anti-cancer activities. In this report, trans-chalcone (TChal) was found to increase cell death in breast cancer cells, assessed using high content screening. Subsequently, using antibody array analysis, TChal was found to increase heme oxygenase-1 (HO-1) expression in TChal-treated breast cancer cells. Blocking of HO-1 by siRNA in breast cancer cells diminished the effect of TChal on cell growth inhibition. TChal-fed mice also showed less tumor growth compared to vehicle-fed mice. Overall, we found that TChal increases HO-1 expression in breast cancer cells, thereby enhancing anti-tumorigenesis. Our results suggest that HO-1 expression could be a potential new target of TChal for anti-tumorigenesis in breast cancer.
Collapse
|
16
|
Kung FP, Lim YP, Chao WY, Zhang YS, Yu HI, Tai TS, Lu CH, Chen SH, Li YZ, Zhao PW, Yen YP, Lee YR. Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells. Cancers (Basel) 2021; 13:cancers13174266. [PMID: 34503074 PMCID: PMC8428232 DOI: 10.3390/cancers13174266] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary There is no effective treatment currently available for patients with anaplastic, recurrent papillary, or follicular thyroid cancers. Reactive oxygen species (ROS) are believed to hold promise as a new therapeutic strategy for multiple human cancers. However, studies on ROS inducers for human thyroid cancer treatment are scarce. This study assesses the anticancer activity and the detailed downstream mechanisms of piperlongumine, a ROS inducer, in human thyroid cancer cells. We demonstrate that piperlongumine inhibits cell proliferation, regulates the cell cycle, and induces cellular apoptosis in various types of human thyroid cancer cells. The antihuman thyroid cancer activity of piperlongumine was through ROS induction, and it further suppressed the downstream Akt signaling pathway to elevate mitochondria-dependent apoptosis. A mouse xenograft study demonstrated that piperlongumine was safe and could inhibit tumorigenesis in vivo. The present study provides strong evidence that piperlongumine can be used as a therapeutic candidate for human thyroid cancers. Abstract Thyroid cancer (TC) is the most common endocrine malignancy, and its global incidence has steadily increased over the past 15 years. TC is broadly divided into well-differentiated, poorly differentiated, and undifferentiated types, depending on the histological and clinical parameters. Thus far, there are no effective treatments for undifferentiated thyroid cancers or advanced and recurrent cancer. Therefore, the development of an effective therapeutic is urgently needed for such patients. Piperlongumine (PL) is a naturally occurring small molecule derived from long pepper; it is selectively toxic to cancer cells by generating reactive oxygen species (ROS). In this study, we demonstrate the potential anticancer activity of PL in four TC cell lines. For this purpose, we cultured TC cell lines and analyzed the following parameters: Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction. PL modulated the cell cycle, induced apoptosis, and suppressed tumorigenesis in TC cell lines in a dose- and time-dependent manner through ROS induction. Meanwhile, an intrinsic caspase-dependent apoptosis pathway was observed in the TC cells under PL treatment. The activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL. PL-mediated apoptosis in TC cells was through the ROS-Akt pathway. Finally, the anticancer effect and safety of PL were also demonstrated in vivo. Our findings indicate that PL exhibits antitumor activity and has the potential for use as a chemotherapeutic agent against TC. This is the first study to show the sensitivity of TC cell lines to PL.
Collapse
Affiliation(s)
- Fang-Ping Kung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan;
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Hui-I Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Tsai-Sung Tai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Yu-Pei Yen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
18
|
Zhu P, Qian J, Xu Z, Meng C, Zhu W, Ran F, Zhang W, Zhang Y, Ling Y. Overview of piperlongumine analogues and their therapeutic potential. Eur J Med Chem 2021; 220:113471. [PMID: 33930801 DOI: 10.1016/j.ejmech.2021.113471] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/18/2023]
Abstract
Natural products have long been an important source for discovery of new drugs to treat human diseases. Piperlongumine (PL) is an amide alkaloid isolated from Piper longum L. (long piper) and other piper plants and has received widespread attention because of its diverse biological activities. A large number of PL derivatives have been designed, synthesized and assessed in many pharmacological functions, including antiplatelet aggregation, neuroprotective activities, anti-diabetic activities, anti-inflammatory activities, anti-senolytic activities, immune activities, and antitumor activities. Among them, the anti-tumor effects and application of PL and its derivatives are most extensively studied. We herein summarize the development of PL derivatives, the structure and activity relationships (SARs), and their therapeutic potential on the treatments of various diseases, especially against cancer. We also discussed the challenges and future directions associated with PL and its derivatives in these indications.
Collapse
Affiliation(s)
- Peng Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Jianqiang Qian
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Weizhong Zhu
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau.
| | - Yanan Zhang
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- Medical School, Nantong University, Nantong, 226001, China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
19
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
20
|
da Silva MA, Fokoue HH, Fialho SN, Dos Santos APDA, Rossi NRDLP, Gouveia ADJ, Ferreira AS, Passarini GM, Garay AFG, Alfonso JJ, Soares AM, Zanchi FB, Kato MJ, Teles CBG, Kuehn CC. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: an integrated approach in vitro and in silico. Parasitol Res 2021; 120:2199-2218. [PMID: 33963899 DOI: 10.1007/s00436-021-07169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 μM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 μM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 μM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.
Collapse
Affiliation(s)
- Minelly A da Silva
- Federal Institute of Education, Science and Technology of Rondônia - IFRO, Porto Velho, Rondônia, Brazil.
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil.
- Instituto Federal de Rondônia - Porto Velho-Calama, Av. Calama, 4985 - Flodoaldo Pontes Pinto, Porto Velho, RO, 76820-441, Brazil.
| | - Harold H Fokoue
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - Saara N Fialho
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | | | - Norton R D L P Rossi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | | | - Amália S Ferreira
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Guilherme M Passarini
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Ana F G Garay
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Jorge J Alfonso
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Andreimar M Soares
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Fernando B Zanchi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | - Massuo J Kato
- Institute of Chemistry, University of São Paulo - USP, São Paulo, Brazil
| | - Carolina B G Teles
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Christian C Kuehn
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
| |
Collapse
|
21
|
Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021; 10:antiox10040510. [PMID: 33805928 PMCID: PMC8064392 DOI: 10.3390/antiox10040510] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance represents the main obstacle to cancer treatment with both conventional and targeted therapy. Beyond specific molecular alterations, which can lead to targeted therapy, metabolic remodeling, including the control of redox status, plays an important role in cancer cell survival following therapy. Although cancer cells generally have a high basal reactive oxygen species (ROS) level, which makes them more susceptible than normal cells to a further increase of ROS, chemoresistant cancer cells become highly adapted to intrinsic or drug-induced oxidative stress by upregulating their antioxidant systems. The antioxidant response is principally mediated by the transcription factor Nrf2, which has been considered the master regulator of antioxidant and cytoprotective genes. Nrf2 expression is often increased in several types of chemoresistant cancer cells, and its expression is mediated by diverse mechanisms. In addition to Nrf2, other transcription factors and transcriptional coactivators can participate to maintain the high antioxidant levels in chemo and radio-resistant cancer cells. The control of expression and function of these molecules has been recently deepened to identify which of these could be used as a new therapeutic target in the treatment of tumors resistant to conventional therapy. In this review, we report the more recent advances in the study of Nrf2 regulation in chemoresistant cancers and the role played by other transcription factors and transcriptional coactivators in the control of antioxidant responses in chemoresistant cancer cells.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
- Correspondence:
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 11, 10125 Turin, Italy;
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy; (M.A.C.); (M.G.); (G.M.); (S.P.)
| |
Collapse
|
22
|
Lu X, Xu C, Xu Z, Lu C, Yang R, Zhang F, Zhang G. Piperlongumine inhibits the growth of non-small cell lung cancer cells via the miR-34b-3p/TGFBR1 pathway. BMC Complement Med Ther 2021; 21:15. [PMID: 33413277 PMCID: PMC7791704 DOI: 10.1186/s12906-020-03123-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer is a common type of lung cancer. Piperlongumine (PL), which is extracted from the roots of piperaceae plant, long pepper, and peppercorn, is an alkaloid amide that inhibits tumor growth and metastasis. However, whether it affects lung cancer cells remains unclear. METHODS We assessed the effects of PL on the proliferation and apoptosis of A549 and H1299 NSCLC cell lines. RESULTS PL was mildly toxic to normal human bronchial epithelial cells and significantly suppressed growth and facilitated apoptosis of A549 and H1299 cells. It also upregulated microRNA (miR)-34b-3p and downregulated the transforming growth factor beta type I receptor (TGFBR1). The dual-luciferase reporter assay showed that TGFBR1 is a target gene of miR-34b-3p. Silencing of miR-34b-3p or overexpression of TGFBR1 partially attenuated the effects of PL on A549 and H1299 cells. CONCLUSIONS PL inhibits proliferation and induces apoptosis of A549 and H1299 cells by upregulating miR-34b-3p and modulating TGFBR1 signaling pathway.
Collapse
Affiliation(s)
- Xinhua Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Chenyang Xu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450015, China
| | - Zhexuan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Chunya Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Rui Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Furui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
23
|
Wu Z, Zhong M, Liu Y, Xiong Y, Gao Z, Ma J, Zhuang G, Hong X. Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem 2021; 69:190-197. [PMID: 33393679 DOI: 10.1002/bab.2096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/25/2020] [Indexed: 01/17/2023]
Abstract
Ferroptosis is a regulated cell death pathway based on the deposition of lipid-based reactive oxygen species (L-ROS) in the presence of iron ions. The term was first coined in 2012 by Dixon. Decreased glutathione (GSH) synthesis and low glutathione-dependent antioxidant peroxidase 4 (GPX4) activity are the major causes of ferroptosis. Sensitivity to ferroptosis for example in tumor cells may be further enhanced by high cellular iron concentrations and/or high p53 levels. Therefore, driving ferroptosis in tumor cells could be a new way to treat tumors. Thus far, natural products have played considerable roles in antitumor research and treatment, and some drugs, such as paclitaxel, have proven beneficial in many cancer patients. According to current research, natural products can induce ferroptosis when used alone or in conjunction with other cancer therapies. This review mainly elaborates the main mechanism of ferroptosis and the regulating effects of some natural products on ferroptosis, aiming to create a new space for the research and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Zhengxin Wu
- School of Medicine, Guangxi University, Nanning, People's Republic of China
| | - Mengya Zhong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yu Liu
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yubo Xiong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Zhi Gao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, People's Republic of China
| | - Jingsong Ma
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute of Xiamen University, Xiamen University, Xiamen, People's Republic of China
| | - Xuehui Hong
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
24
|
Jang HY, Hong OY, Youn HJ, Kim MG, Kim CH, Jung SH, Kim JS. 15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism. BMB Rep 2021. [PMID: 31964465 PMCID: PMC7196191 DOI: 10.5483/bmbrep.2020.53.4.164] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor γ (PPARγ) serves as a key factor in the proliferation and invasion of breast cancer cells and is a potential therapeutic target for breast cancer. However, the mechanisms underlying this effect remain largely unknown. Heme oxygenase-1 (HO-1) is induced and over-expressed in various cancers and is associated with features of tumor aggressiveness. Recent studies have shown that HO-1 is a major downstream target of PPARγ. In this study, we investigated the effects of induction of HO-1 by PPARγ on TPA-induced MMP-9 expression and cell invasion using MCF-7 breast cancer cells. TPA treatment increased NF-μB /AP-1 DNA binding as well as MMP-9 expression. These effects were significantly blocked by 15d-PGJ2, a natural PPARγ ligand. 15d-PGJ2 induced HO-1 expression in a dose-dependent manner. Interestingly, HO-1 siRNA significantly attenuated the inhibition of TPA-induced MMP-9 protein expression and cell invasion by 15d-PGJ2. These results suggest that 15d-PGJ2 inhibits TPA-induced MMP-9 expression and invasion of MCF-7 cells by means of a heme oxygenase-1-dependent mechanism. Therefore, PPARγ/HO-1 signaling-pathway inhibition may be beneficial for prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - On-Yu Hong
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University and Biomedical Research Institute, Jeonju 54907, Korea
| | - Min-Gul Kim
- Department of Pharmacology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sung Kyun Kwan University, Suwon 16419, Korea
| | - Sung Hoo Jung
- Department of Surgery, Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University and Biomedical Research Institute, Jeonju 54907, Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
25
|
Bezerra DP. Piplartine (piperlongumine), oxidative stress, and use in cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Macrì R, Musolino V, Gliozzi M, Carresi C, Maiuolo J, Nucera S, Scicchitano M, Bosco F, Scarano F, Ruga S, Zito MC, Guarnieri L, Bombardelli E, Mollace V. Ferula L. Plant Extracts and Dose-Dependent Activity of Natural Sesquiterpene Ferutinin: From Antioxidant Potential to Cytotoxic Effects. Molecules 2020; 25:molecules25235768. [PMID: 33297504 PMCID: PMC7731292 DOI: 10.3390/molecules25235768] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
The employment studies of natural extracts in the prevention and treatment of several diseases highlighted the role of different species of genus Ferula L., belonging to the Apiaceae family, dicotyledonous plants present in many temperate zones of our planet. Ferula communis L. is the main source of sesquiterpene ferutinin, a bioactive compound studied both in vitro and in vivo, because of different effects, such as phytoestrogenic, antioxidant, anti-inflammatory, but also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. The present review will focus on the molecular mechanisms involved in the different activities of Ferutinin, starting from its antioxidant potential at low doses until its ionophoric property and the subsequent mitochondrial dysfunction induced through administration of high doses, which represent the key point of its anticancer action. Furthermore, we will summarize the data acquired from some experimental studies on different cell types and on several diseases. The results obtained showed an important antioxidant and phytoestrogenic regulation with lack of typical side effects related to estrogenic therapy. The preferential cell death induction for tumor cell lines suggests that ferutinin may have anti-neoplastic properties, and may be used as an antiproliferative and cytotoxic agent in an estrogen dependent and independent manner. Nevertheless, more data are needed to clearly understand the effect of ferutinin in animals before using it as a phytoestrogen or anticancer drug.
Collapse
Affiliation(s)
- Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
- Correspondence: (R.M.); (V.M.); Tel./Fax: +39-0961-3694301 (R.M. & V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
- Correspondence: (R.M.); (V.M.); Tel./Fax: +39-0961-3694301 (R.M. & V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
| | - Ezio Bombardelli
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (M.G.); (C.C.); (J.M.); (S.N.); (M.S.); (F.B.); (F.S.); (S.R.); (M.C.Z.); (L.G.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy;
| |
Collapse
|
27
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
28
|
Talabnin C, Talabnin K, Wongkham S. Enhancement of piperlongumine chemosensitivity by silencing heme oxygenase-1 expression in cholangiocarcinoma cell lines. Oncol Lett 2020; 20:2483-2492. [PMID: 32782567 DOI: 10.3892/ol.2020.11784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Piperlongumine (PL) produces reactive oxygen species (ROS) and induces G2/M-phase arrest in cholangiocarcinoma (CCA) cells via the JNK/ERK pathway. A differential response to PL was observed among all CCA cell lines However, the underlying mechanisms have remained to be fully elucidated. The aim of the present study was to investigate the molecular mechanisms of PL-induced heme oxygenase-1 (HO-1) expression in CCA cell lines. The anti-proliferative action of PL in the CCA cell lines KKU-100 and KKU-213A was analyzed using sulforhodamine B assays. Reverse transcription-quantitative PCR and western blot analyses were used to examine mRNA and protein expression. HO-1 inhibition was achieved using the chemical inhibitor zinc protophoryn or specific small interfering RNA to HO-1. Intracellular ROS was detected using a 2,7-dichlorodihydrofluorescein diacetate fluorescence assay. High expression of phase-II detoxification enzymes, including NADPH quinone oxidoreductase-1, heme oxygenase-1, superoxide dismutases and aldo-keto reductase 1 subunits C-1 and 3, were detected in the KKU-100 cell line. Of the CCA cell lines tested, KKU-100 was the least sensitive to PL. Dose-dependent upregulation of HO-1 expression via PI3K/Akt activation was detected in PL-treated CCA cells. Inhibition of HO-1 eliminated the antioxidant defense mechanisms, leading to increased anti-cancer activity of PL in the CCA cell lines via an increase in intracellular ROS levels and apoptotic protein expression. These observations indicated that HO-1 inhibition had a chemosensitizing effect on CCA to PL.
Collapse
Affiliation(s)
- Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Krajang Talabnin
- School of Pathology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
29
|
Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished T H17 but Enhanced T reg Differentiation. Front Immunol 2020; 11:1172. [PMID: 32595640 PMCID: PMC7303365 DOI: 10.3389/fimmu.2020.01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Piperlongumine (PL), a natural small molecule derived from the Piper longum Linn plant, has received growing interest as a prooxidative drug with promising anticancer properties. Yet, the influence of PL on primary human T cells remained elusive. Knowledge of this is of crucial importance, however, since T cells in particular play a critical role in tumor control. Therefore, we investigated the effects of PL on the survival and function of primary human peripheral blood T cells (PBTs). While PL was not cytotoxic to PBTs, it interfered with several stages of T cell activation as it inhibited T cell/APC immune synapse formation, co-stimulation-induced upregulation of CD69 and CD25, T cell proliferation and the secretion of proinflammatory cytokines. PL-induced immune suppression was prevented in the presence of thiol-containing antioxidants. In line with this finding, PL increased the levels of intracellular reactive oxygen species and decreased glutathione in PBTs. Diminished intracellular glutathione was accompanied by a decrease in S-glutathionylation on actin suggesting a global alteration of the antioxidant response. Gene expression analysis demonstrated that TH17-related genes were predominantly inhibited by PL. Consistently, the polarization of primary human naïve CD4+ T cells into TH17 subsets was significantly diminished while differentiation into Treg cells was substantially increased upon PL treatment. This opposed consequence for TH17 and Treg cells was again abolished by thiol-containing antioxidants. Taken together, PL may act as a promising agent for therapeutic immunosuppression by exerting prooxidative effects in human T cells resulting in a diminished TH17 but enhanced Treg cell differentiation.
Collapse
Affiliation(s)
- Jie Liang
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Jacqueline D. Ziegler
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Beate Jahraus
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Christian Orlik
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Renata Blatnik
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Norbert Blank
- Division of Rheumatology, Department of Internal Medicine V, Heidelberg University, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Guido Wabnitz
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- Mass Spectrometry Core Facility, Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Katrin Hübner
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Cheng X, Tian P, Zheng W, Yan X. Piplartine attenuates the proliferation of hepatocellular carcinoma cells via regulating hsa_circ_100338 expression. Cancer Med 2020; 9:4265-4273. [PMID: 32281302 PMCID: PMC7300402 DOI: 10.1002/cam4.3043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
Researches have pointed that piplartine inhibits the proliferation of hepatocellular carcinoma (HCC) cells, however, the underlying mechanisms has not been well defined. Currently, more and more studies have pointed out that circRNAs can regulate tumor cell proliferation, involve in the tumorigenesis mechanism of various tumors. In this study, we explored whether piplartine may participate in the development of HCC through the regulation of ability of HCC cell proliferation by circRNA. Based on the chip analysis, we selected candidate circRNAs that are highly correlated with HCC. CircRNA expression in OSCC cells treated with piplartine was detected by qRT-PCR. We found that only the expression of hsa_circ_100338 (circ-100338) was observably reduced. The expression characteristics of circ-100338 in HCC cell lines were also verified by qRT-PCR. Subsequently, whether or notcirc-100338 can regulate ZEB1 via competitively binding to miR-141-3p was determined by the RIP assay and dual luciferase reporter gene assay. The effect of the circ-100338/miR-141-3p/ZEB1 axis on the proliferation of HCC cell was tested by EdU and CCK-8 assay. Results showed that circ-100338 expression was observably increased in HCC cell lines. Simultaneously, circ-100338 can regulate the expression of ZEB1by competitively binding to miR-141-3p. Moreover high expression of circ-100338 can stimulate the proliferation of HCC cells. Our current study revealed that circ-100338 played as a ceRNA in promoting the progression of HCC by sponging miR-141-3p, while piplartine can participate in the development of HCC by inhibiting the expression of circ-100338.
Collapse
Affiliation(s)
- Xiaoli Cheng
- Department of PharmacyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Pan Tian
- Department of PharmacyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Wengzhong Zheng
- Department of AnesthesiologyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Xuetao Yan
- Department of AnesthesiologyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| |
Collapse
|
31
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
32
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
33
|
Sellami M, Bragazzi NL. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020; 12:nu12020512. [PMID: 32085420 PMCID: PMC7071273 DOI: 10.3390/nu12020512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Proper nutrition plays a major role in preventing diseases and, therefore, nutritional interventions constitute crucial strategies in the field of Public Health. Nutrigenomics and nutriproteomics are arising from the integration of nutritional, genomics and proteomics specialties in the era of postgenomics medicine. In particular, nutrigenomics and nutriproteomics focus on the interaction between nutrients and the human genome and proteome, respectively, providing insights into the role of diet in carcinogenesis. Further omics disciplines, like metabonomics, interactomics and microbiomics, are expected to provide a better understanding of nutrition and its underlying factors. These fields represent an unprecedented opportunity for the development of personalized diets in women at risk of developing breast cancer.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (CAS), Qatar University, Doha 2713, Qatar
- Correspondence: (M.S.); (N.L.B.)
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University if Genoa, 16132 Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: (M.S.); (N.L.B.)
| |
Collapse
|
34
|
Chen D, Ma Y, Guo Z, Liu L, Yang Y, Wang Y, Pan B, Wu L, Hui Y, Yang W. Two Natural Alkaloids Synergistically Induce Apoptosis in Breast Cancer Cells by Inhibiting STAT3 Activation. Molecules 2020; 25:E216. [PMID: 31948057 PMCID: PMC6982934 DOI: 10.3390/molecules25010216] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has become a worldwide threat, and chemotherapy remains a routine treatment. Patients are forced to receive continuous chemotherapy and suffer from severe side effects and poor prognosis. Natural alkaloids, such as piperine (PP) and piperlongumine (PL), are expected to become a new strategy against breast cancer due to their reliable anticancer potential. In the present study, cell viability, flow cytometry, and Western blot assays were performed to evaluate the suppression effect of PP and PL, alone or in combination. Data showed that PP and PL synergistically inhibited breast cancer cells proliferation at lower doses, while only weak killing effect was observed in normal breast cells, indicating a good selectivity. Furthermore, apoptosis and STAT3 signaling pathway-associated protein levels were analyzed. We demonstrated that PP and PL in combination inhibit STAT3 phosphorylation and regulate downstream molecules to induce apoptosis in breast cancer cells. Taken together, these results revealed that inactivation of STAT3 was a novel mechanism with treatment of PP and PL, suggesting that combination application of natural alkaloids may be a potential strategy for prevention and therapy of breast cancer.
Collapse
Affiliation(s)
- Di Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Zhiyu Guo
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Li Liu
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yaru Yang
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Yuru Wang
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Bonan Pan
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China; (Z.G.); (L.L.); (Y.Y.); (Y.W.); (B.P.)
| | - Luyang Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Yuyu Hui
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
| | - Wenjuan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.C.); (L.W.); (Y.H.); (W.Y.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
35
|
Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells. Antioxidants (Basel) 2019; 8:antiox8110553. [PMID: 31739520 PMCID: PMC6912225 DOI: 10.3390/antiox8110553] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Piperlongumine (PL), a natural product derived from long pepper (Piper longum L.), is known to exhibit anticancer effects. However, the effect of PL on cell cycle-regulatory proteins in estrogen receptor (ER)-positive breast cancer cells is unclear. Therefore, we investigated whether PL can modulate the growth of ER-positive breast cancer cell line, MCF-7. We found that PL decreased MCF-7 cell proliferation and migration. Flow cytometric analysis demonstrated that PL induced G2/M phase cell cycle arrest. Moreover, PL significantly modulated the mRNA levels of cyclins B1 and D1, cyclin-dependent kinases 1, 4, and 6, and proliferating cell nuclear antigen. PL induced intracellular reactive oxygen species (hydrogen peroxide) accumulation and glutathione depletion. PL-mediated inhibition of IKKβ expression decreased nuclear translocation of NF-κB p65. Furthermore, PL significantly increased p21 mRNA levels. In conclusion, our data suggest that PL exerts anticancer effects in ER-positive breast cancer cells by inhibiting cell proliferation and migration via ROS accumulation and IKKβ suppression.
Collapse
|
36
|
Chen SY, Huang HY, Lin HP, Fang CY. Piperlongumine induces autophagy in biliary cancer cells via reactive oxygen species-activated Erk signaling pathway. Int J Mol Med 2019; 44:1687-1696. [PMID: 31485612 PMCID: PMC6777669 DOI: 10.3892/ijmm.2019.4324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Biliary cancer (BC) is an aggressive neoplasm with high mortality. BC can be categorized into three groups: Intrahepatic cholangiocarcinoma (CCA; also known as bile duct cancer), extrahepatic cholangiocarcinoma and gallbladder cancer. Due to its heterogeneity and aggressiveness, the response to current chemotherapy and radiotherapy methods in patients with BC is poor. Therefore, there is an urgent requirement to develop drugs to treat BC. Piperlongumine (PL), a naturally occurring small molecule isolated from Piper longum L., exhibits anticancer activity by inducing reactive oxygen species (ROS) production. In the present study, the effects of PL on cell proliferation, cell cycle, apoptosis and autophagy in BC cells were investigated. PL induced BC cell death in a concentration‑ and time‑dependent manner by inducing ROS production. PL induced cell cycle arrest in CCA cells (HuCCT‑1) and gallbladder cancer cells (OCUG‑1) cells, but with distinct cell cycle distribution profiles. PL caused G2/M cell cycle arrest in HuCCT‑1 cells, and G0/G1 cell cycle arrest in OCUG‑1 cells. PL induced apoptosis and autophagy; PL treatment induced accumulation of LC3‑II in a concentration‑ and time‑dependent manner. The Erk signaling pathway appeared to be involved in autophagy induction. Application of the ROS scavenger, N‑acetyl‑l‑cysteine, to BC cells attenuated the cell death, cell cycle arrest, apoptosis and autophagy induced by PL treatment. These findings indicated that PL may be a potential agent for BC treatment in the future.
Collapse
Affiliation(s)
- San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600
- Department of Sports Management, Chia Nan University of Pharmacy and Science, Tainan 717
| | - Hsin-Yi Huang
- Department of Chinese Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Han-Pei Lin
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| |
Collapse
|
37
|
Uesugi S, Honmura Y, Nishiyama M, Kusakabe K, Tonouchi A, Yamashita T, Hashimoto M, Kimura KI. Identification of neomacrophorins isolated from Trichoderma sp. 1212-03 as proteasome inhibitors. Bioorg Med Chem 2019; 27:115161. [PMID: 31732281 DOI: 10.1016/j.bmc.2019.115161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023]
Abstract
Neomacrophorins I-III (1-3) and X have previously been isolated from Trichoderma sp. 1212-03. Their mode of action against cancer cells and the mechanism of biosynthesis of the characteristic [4.4.3] propellane framework in neomacrophorin X have not been reported. The isolation and characterization of neomacrophorins IV (4), V (5), and VI (6) is reported. Epoxyquinones 1, 4, and 6 potently induced apoptotic cell death in human acute promyelocytic leukemia HL60 cells, while epoxysemiquinols 2, 3, and 5 showed weak activity. This indicates that the epoxyquinone moiety is crucial for apoptosis-inducing activities of neomacrophorins. We also found that neomacrophorins inhibit proteasome in vitro, and 1, 4, and 6 induced significant accumulation of ubiquitinated proteins in HL60 cells. These activities were completely suppressed by a nucleophile, N-acetyl-l-cysteine (NAC). The analysis of reaction mechanisms using LC-MS suggested that C2' and C7' of neomacrophorins could be Michael acceptors in the reaction with NAC methyl ester (NACM). These findings indicated that the electrophilic properties of neomacrophorins are responsible for both their potent biological effects and the biosynthesis of unique [4.4.3] propellane framework in neomacrophorin X.
Collapse
Affiliation(s)
- Shota Uesugi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Yuna Honmura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Mami Nishiyama
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Kazuaki Kusakabe
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akio Tonouchi
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tetsuro Yamashita
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Masaru Hashimoto
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Ken-Ichi Kimura
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
38
|
Mohammad J, Singh RR, Riggle C, Haugrud B, Abdalla MY, Reindl KM. JNK inhibition blocks piperlongumine-induced cell death and transcriptional activation of heme oxygenase-1 in pancreatic cancer cells. Apoptosis 2019; 24:730-744. [PMID: 31243599 PMCID: PMC6713602 DOI: 10.1007/s10495-019-01553-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Piperlongumine (PL) is an alkaloid that inhibits glutathione S-transferase pi 1 (GSTP1) activity, resulting in elevated reactive oxygen species (ROS) levels and cancer-selective cell death. We aimed to identify stress-associated molecular responses to PL treatment in pancreatic ductal adenocarcinoma (PDAC) cells. GSTP1 directly interacts with JNK, which is activated by oxidative stress and can lead to decreased cancer cell proliferation and cell death. Therefore, we hypothesized that JNK pathways are activated in response to PL treatment. Our results show PL causes dissociation of GSTP1 from JNK; robust JNK, c-Jun, and early ERK activation followed by suppression; increased expression of cleaved caspase-3 and cleaved PARP; and nuclear translocation of Nrf2 and c-Myc in PDAC cells. Gene expression analysis revealed PL caused a > 20-fold induction of heme oxygenase-1 (HO-1), which we hypothesized was a survival mechanism for PDAC cells under enhanced oxidative stress. HO-1 knockout resulted in enhanced PL-induced PDAC cell death under hypoxic conditions. Similarly, high concentrations of the HO-1 inhibitor, ZnPP (10 µM), sensitized PDAC cells to PL; however, lower concentrations ZnPP (10 nM) and high or low concentrations of SnPP both protected PDAC cells from PL-induced cell death. Interestingly, the JNK inhibitor significantly blocked PL-induced PDAC cell death, Nrf-2 nuclear translocation, and HMOX-1 mRNA expression. Collectively, the results demonstrate JNK signaling contributes to PL-induced PDAC cell death, and at the same time, activates Nrf-2 transcription of HMOX-1 as a compensatory survival mechanism. These results suggest that elevating oxidative stress (using PL) while at the same time impairing antioxidant capacity (inhibiting HO-1) may be an effective therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Jiyan Mohammad
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Rahul R Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Cody Riggle
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Brandon Haugrud
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
39
|
Gu X, Chen J, Zhang Y, Guan M, Li X, Zhou Q, Song Q, Qiu J. Synthesis and assessment of phenylacrylamide derivatives as potential anti-oxidant and anti-inflammatory agents. Eur J Med Chem 2019; 180:62-71. [PMID: 31301564 DOI: 10.1016/j.ejmech.2019.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/11/2022]
Abstract
Oxidative stress and inflammation are major causes of numerous life-threatening human diseases. In the present study, we synthesized a series of phenylacrylamide derivatives as novel anti-oxidant and anti-inflammatory agents. Biological evaluation showed that compound 6a could more potently protect HBZY-1 mesangial cells from H2O2-caused oxidative stress than positive controls resveratrol and sulforaphane by dose- and time-dependently impairing the ROS accumulation. Preliminary anti-oxidant mechanism studies indicated that compound 6a could activate Nrf2 and increase the protein and mRNA expression of downstream anti-oxidant enzymes, ie. NQO-1, HO-1, GCLM and GCLC. Notably, 6a could inhibit the production of NO and the activity of NF-κB in LPS-stimulated HBZY-1 mesangial cells, indicating its potential anti-inflammatory activity. Interestingly, both effects could be significantly attenuated by Nrf2 inhibitor TRG, HO-1 inhibitor ZnPP or GCL inhibitor BSO at non-toxic concentrations, confirming that the anti-oxidant and anti-inflammatory activity of 6a is related to the activation of Nrf2 signaling pathway. These results, together with the relatively safety profile, indicated that compound 6a could be a promising lead to develop novel anti-oxidant and anti-inflammatory agents, thus preventing diseases induced by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Jing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yinpeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Mingyu Guan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qingqing Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qinghua Song
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jingying Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
40
|
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ 2019; 26:199-212. [PMID: 30538286 PMCID: PMC6329812 DOI: 10.1038/s41418-018-0246-9] [Citation(s) in RCA: 540] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
Forty years of research have established that the p53 tumor suppressor provides a major barrier to neoplastic transformation and tumor progression by its unique ability to act as an extremely sensitive collector of stress inputs, and to coordinate a complex framework of diverse effector pathways and processes that protect cellular homeostasis and genome stability. Missense mutations in the TP53 gene are extremely widespread in human cancers and give rise to mutant p53 proteins that lose tumor suppressive activities, and some of which exert trans-dominant repression over the wild-type counterpart. Cancer cells acquire selective advantages by retaining mutant forms of the protein, which radically subvert the nature of the p53 pathway by promoting invasion, metastasis and chemoresistance. In this review, we consider available evidence suggesting that mutant p53 proteins can favor cancer cell survival and tumor progression by acting as homeostatic factors that sense and protect cancer cells from transformation-related stress stimuli, including DNA lesions, oxidative and proteotoxic stress, metabolic inbalance, interaction with the tumor microenvironment, and the immune system. These activities of mutant p53 may explain cancer cell addiction to this particular oncogene, and their study may disclose tumor vulnerabilities and synthetic lethalities that could be exploited for hitting tumors bearing missense TP53 mutations.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, Trieste, Italy.
| |
Collapse
|
41
|
Zhang X, Wang M, Teng S, Wang D, Li X, Wang X, Liao W, Wang D. Indolyl-chalcone derivatives induce hepatocellular carcinoma cells apoptosis through oxidative stress related mitochondrial pathway in vitro and in vivo. Chem Biol Interact 2018; 293:61-69. [DOI: 10.1016/j.cbi.2018.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
|
42
|
Yang H, Chen B, Zhao Z, Zhang L, Zhang Y, Chen J, Zhang X, Zhang X, Zhao L. Heme oxygenase-1 exerts pro-apoptotic effects on hepatic stellate cells in vitro through regulation of nuclear factor-κB. Exp Ther Med 2018; 16:291-299. [PMID: 29896252 PMCID: PMC5995052 DOI: 10.3892/etm.2018.6185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an antioxidant and cytoprotective protein, which has been proven to alleviate the proliferation of hepatic stellate cells (HSCs) and the development of liver fibrosis. However, the role of HO-1 in HSC apoptosis remains unclear. The aim of the present study was to investigate the effect of HO-1 on HSC apoptosis and its possible underlying mechanisms. HSCs-T6 were incubated with different concentrations of hemin (HO-1 chemical inducer) and Znpp-IX (HO-1 chemical inhibitor) for 12, 24 and 48 h. Cell viability was determined using an MTT assay. HSCs were classified into 4 groups as follows: Control, hemin, Znpp-IX and hemin+Znpp-IX co-treatment groups. Apoptosis was quantitatively measured by Annexin V/propidium iodide double staining and a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The mRNA and protein expression of HO-1, α-smooth muscle actin, B-cell lymphoma (Bcl)-2, caspase-3 and nuclear factor (NF)-κB p65 were measured using quantitative polymerase chain reaction and western blotting. The levels of tumor growth factor (TGF)-β and interleukin (IL)-6 in HSC supernatants were examined by ELISA. The results demonstrated that HO-1 exerted antiproliferative effects on HSCs in a time- and concentration-dependent manner. Increasing HO-1 expression induced HSC apoptosis in vitro as demonstrated by a significant decrease in Bcl-2 and an increase in caspase-3 expression. Additionally, the expression of NF-κB p65 and its downstream inflammatory factors TGF-β and IL-6 in the HO-1 overexpression group was significantly decreased compared with the control group. Therefore, the present study provided evidence that HO-1 serves an anti-fibrosis role in the liver by enhancing HSC apoptosis, which was partially associated with the regulation of NF-κB and its downstream effectors.
Collapse
Affiliation(s)
- Hui Yang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bangtao Chen
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Zhongfu Zhao
- Institute of Hepatopathy, Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Li Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yun Zhang
- Institute of Hepatopathy, Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Jie Chen
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoqian Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaohua Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Longfeng Zhao
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
43
|
Lisek K, Campaner E, Ciani Y, Walerych D, Del Sal G. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget 2018; 9:20508-20523. [PMID: 29755668 PMCID: PMC5945496 DOI: 10.18632/oncotarget.24974] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
NRF2 (NFE2L2) is one of the main regulators of the antioxidant response of the cell. Here we show that in cancer cells NRF2 targets are selectively upregulated or repressed through a mutant p53-dependent mechanism. Mechanistically, mutant p53 interacts with NRF2, increases its nuclear presence and resides with NRF2 on selected ARE containing gene promoters activating the transcription of a specific set of genes while leading to the transcriptional repression of others. We show that thioredoxin (TXN) is a mutant p53-activated NRF2 target with pro-survival and pro-migratory functions in breast cancer cells under oxidative stress, while heme oxygenase 1 (HMOX1) is a mutant p53-repressed target displaying opposite effects. A gene signature of NRF2 targets activated by mutant p53 shows a significant association with bad overall prognosis and with mutant p53 status in breast cancer patients. Concomitant inhibition of thioredoxin system with Auranofin and of mutant p53 with APR-246 synergizes in killing cancer cells expressing p53 gain-of-function mutants.
Collapse
Affiliation(s)
- Kamil Lisek
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Present address: Max-Delbrück-Centrum for Molecular Medicine, Berlin 13092, Germany
| | - Elena Campaner
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Yari Ciani
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy
| | - Dawid Walerych
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Giannino Del Sal
- National Laboratory CIB, Area Science Park Padriciano, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
44
|
Yamaguchi Y, Kasukabe T, Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 2018; 52:1011-1022. [PMID: 29393418 DOI: 10.3892/ijo.2018.4259] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of cancer with a mortality rate of almost 95%. Treatment with current chemotherapeutic drugs has limited success due to poor responses. Therefore, the development of novel drugs or effective combination therapies is urgently required. Piperlongumine (PL) is a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular reactive oxygen species (ROS) levels. In the present study, we demonstrated that PL induced cancer cell death through, at least in part, the induction of ferroptosis, as the cancer cell-killing activity was inhibited by the antioxidant, N‑acetylcysteine, ferroptosis inhibitors (ferrostatin‑1 and liproxstatin‑1) and the iron chelator, deferoxamine (DFO), but not by the apoptosis inhibitor, Z-VAD-FMK, or the necrosis inhibitor, necrostatin‑1. Cotylenin A (CN‑A; a plant growth regulator) exhibits potent antitumor activities in several cancer cell lines, including pancreatic cancer cell lines. We found that CN‑A and PL synergistically induced the death of pancreatic cancer MIAPaCa‑2 and PANC‑1 cells for 16 h. CN‑A enhanced the induction of ROS by PL for 4 h. The synergistic induction of cell death was also abrogated by the ferroptosis inhibitors and DFO. The present results revealed that clinically approved sulfasalazine (SSZ), a ferroptosis inducer, enhanced the death of pancreatic cancer cells induced by PL and the combined effects were abrogated by the ferroptosis inhibitors and DFO. SSZ further enhanced the cancer cell-killing activities induced by combined treatment with PL plus CN‑A. On the other hand, the synergistic induction of cell death by PL and CN‑A was not observed in mouse embryonic fibroblasts (MEFs), and SSZ did not enhance the death of MEFs induced by PL plus CN‑A. These results suggest that the triple combined treatment with PL, CN‑A and SSZ is highly effective against pancreatic cancer.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
45
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
46
|
Jang HJ, Hong EM, Kim M, Kim JH, Jang J, Park SW, Byun HW, Koh DH, Choi MH, Kae SH, Lee J. Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer. Oncotarget 2018; 7:46219-46229. [PMID: 27323826 PMCID: PMC5216792 DOI: 10.18632/oncotarget.10078] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022] Open
Abstract
Statin has been known not only as their cholesterol-lowering action but also on their pleiotropic effects including anti-inflammatory and anti-oxidant as well as anti-cancer effect. Nrf2 (NF-E2-related factor 2) is a transcription factor to activate cellular antioxidant response to oxidative stress. There are little known whether statins affect activation of Nrf2 and Nrf2 signaling pathway in colon cancer cells. We investigated whether simvastatin stimulates the expression of Nrf2 and nuclear translocation of Nrf2 and which signal pathway is involved in the expression of Nrf2 and antioxidant enzymes. We investigated the effect of simvastatin on the expression of Nrf2 and nuclear translocation of Nrf2 in two human colon cancer cell lines, HT-29 and HCT 116 through cell proliferation assay, Western blotting and immunocytochemical analysis. We evaluated which signal pathway such as ERK or PI3K pathway affect Nrf2 activation and whether simvastatin induces antioxidant enzymes (heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1), γ-glutamate-cysteine ligase catalytic subunit (GCLC)). We demonstrated simvastatin-induced dose-dependent up-regulation of Nrf2 expression and stimulated Nrf2 nuclear translocation in colon cancer cells. We also demonstrated that simvastatin-induced anti-oxidant enzymes (HO-1, NQO1, and GCLC) in HT-29 and HCT 116 cells. PI3K/Akt inhibitor (LY294002) and ERK inhibitor (PD98059) suppressed simvastatin-induced Nrf2 and HO-1 expression in both HT-29 and HCT 116 cells. This study shows that simvastatin induces the activation and nuclear translocation of Nrf2 and the expression of various anti-oxidant enzymes via ERK and PI3K/Akt pathway in colon cancer cells.
Collapse
Affiliation(s)
- Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Eun Mi Hong
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Mikang Kim
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Jae Hyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Juah Jang
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Hyun Wu Byun
- Division of Gastroenterology, Department of Internal Medicine, Hangang Sacred Heart Hospital, Hallym University School of Medicine, Seoul, Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Min Ho Choi
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Sea Hyub Kae
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| | - Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Gyeonggi do, Korea
| |
Collapse
|
47
|
Mohammad J, Dhillon H, Chikara S, Mamidi S, Sreedasyam A, Chittem K, Orr M, Wilkinson JC, Reindl KM. Piperlongumine potentiates the effects of gemcitabine in in vitro and in vivo human pancreatic cancer models. Oncotarget 2017. [PMID: 29535819 PMCID: PMC5828188 DOI: 10.18632/oncotarget.23623] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC.
Collapse
Affiliation(s)
- Jiyan Mohammad
- Department of Biological Sciences, North Dakota State University, Fargo, ND 51808, USA
| | - Harsharan Dhillon
- Department of Biological Sciences, North Dakota State University, Fargo, ND 51808, USA
| | - Shireen Chikara
- Department of Biological Sciences, North Dakota State University, Fargo, ND 51808, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, ND 51808, USA
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND 51808, USA
| | - John C Wilkinson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 51808, USA
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 51808, USA
| |
Collapse
|
48
|
Thongsom S, Suginta W, Lee KJ, Choe H, Talabnin C. Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway. Apoptosis 2017; 22:1473-1484. [PMID: 28913568 DOI: 10.1007/s10495-017-1422-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive, metastatic bile duct cancer. CCA is difficult to diagnose, and responds poorly to current radio- and chemo-therapy. Piperlongumine (PL) is a naturally-occurring small molecule selectively toxic to cancer cells by targeting reactive oxygen species (ROS). In this study, we demonstrated the potential anticancer activity of PL in CCA. PL markedly induced death in CCA cell lines in a dose- and time-dependent manner through the activation of caspase-3 and PARP. PL also stimulated ROS accumulation in CCA. Co-exposure of PL with the ROS scavenger N-acetyl-L-cysteine or GSH completely blocked PL-induced apoptosis in CCA cell lines. Increased p21 via the p53-independent pathway in PL-treated CCA cells led to G2/M phase arrest and cell apoptosis. In addition, the study showed that PL trigger CCA cell lines death through JNK-ERK activation. Furthermore, the different antioxidant capacity of CCA cell lines also indicates the susceptibility of the cells to PL treatment. Our findings reveal that PL exhibits anti-tumor activity and has potential to be used as a chemotherapeutic agent against CCA.
Collapse
Affiliation(s)
- Sunisa Thongsom
- Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
- Center of Excellence on Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Han Choe
- Department of Physiology, Asan-Minnesota Institute for Innovating Transplantation, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea.
| | - Chutima Talabnin
- Biochemistry-Electrochemistry Research Unit and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
49
|
Pandey P, Singh AK, Singh M, Tewari M, Shukla HS, Gambhir IS. The see-saw of Keap1-Nrf2 pathway in cancer. Crit Rev Oncol Hematol 2017; 116:89-98. [DOI: 10.1016/j.critrevonc.2017.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
|
50
|
Sowmya PRR, Arathi BP, Vijay K, Baskaran V, Lakshminarayana R. Astaxanthin from shrimp efficiently modulates oxidative stress and allied cell death progression in MCF-7 cells treated synergistically with β-carotene and lutein from greens. Food Chem Toxicol 2017; 106:58-69. [PMID: 28511808 DOI: 10.1016/j.fct.2017.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/07/2017] [Accepted: 05/12/2017] [Indexed: 11/18/2022]
Abstract
This study investigated the synergistic efficacy of keto-carotenoid astaxanthin (AST, from shrimp) plus hydrocarbon (β-carotene, BC) and hydroxyl (lutein, L) carotenoids (from greens) on molecular events in MCF-7 cells. MCF-7 cells were treated with either of carotenoid (20 μM, AST or BC or L) separately or the mixture of them (an equimolar concentration of carotenoids mixture, CM) or saponified carotenoid extract from shrimp (SSCE) for 48 h and analyzed cellular uptake, cytotoxicity, and apoptosis. The IC50 and combination-index values of AST co-treatment with a lower concentration of BC and L (5 μM) exhibited enhanced cytotoxicity and oxidative stress as compared with individual carotenoids or SSCE. Further, higher cellular uptake/accumulation of AST along with BC and L found to synergistically induce apoptosis through modulation of cyclin D1, p53, Bax and Bcl-2 expressions by arresting cell cycle at G0/G1 phase. Further, CM or SSCE treatments are unlikely to affect proliferation of normal breast epithelial cells (MCF-10A). The results of selective killing of MCF-7 cells demonstrated a greater insight on the synergistic effect of shrimp AST plus BC and L. It is concluded that consumption of shrimp along with green leafy vegetables helps in combating cancer chemoprevention.
Collapse
Affiliation(s)
| | | | - Kariyappa Vijay
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560 056, India
| | - Vallikannan Baskaran
- Department of Biochemistry and Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | | |
Collapse
|