1
|
Lou QX, Xu KP. Analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive inguinal hernia surgery. World J Gastrointest Surg 2025; 17:99597. [PMID: 40162425 PMCID: PMC11948098 DOI: 10.4240/wjgs.v17.i3.99597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Currently, very few studies have examined the analgesic effectiveness and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia. AIM To investigate the analgesic effect and safety of dexmedetomidine-assisted intravenous-inhalation combined general anesthesia in laparoscopic minimally invasive surgery for inguinal hernia. METHODS In this retrospective study, 94 patients scheduled for laparoscopic minimally invasive surgery for inguinal hernia, admitted to Yiwu Central Hospital between May 2022 and May 2023, were divided into a control group (inhalation combined general anesthesia) and a treatment group (dexmedetomidine-assisted intravenous-inhalation combined general anesthesia). Perioperative indicators, analgesic effect, preoperative and postoperative 24-hours blood pressure (BP) and heart rate (HR), stress indicators, immune function levels, and adverse reactions were compared between the two groups. RESULTS Baseline data, including age, hernia location, place of residence, weight, monthly income, education level, and underlying diseases, were not significantly different between the two groups, indicating comparability (P > 0.05). No significant difference was found in operation time and anesthesia time between the two groups (P > 0.05). However, the treatment group exhibited a shorter postoperative urinary catheter removal time and hospital stay than the control group (P < 0.05). Preoperatively, no significant differences were found in the visual analog scale (VAS) scores between the two groups (P > 0.05). However, at 12, 18, and 24 hours postoperatively, the treatment group had significantly lower VAS scores than the control group (P < 0.05). Although no significant differences in preoperative hemodynamic indicators were found between the two groups (P > 0.05), both groups experienced some extent of changes in postoperative HR, diastolic BP (DBP), and systolic BP (SBP). Nevertheless, the treatment group showed smaller changes in HR, DBP, and SBP than the control group (P < 0.05). Preoperative immune function indicators showed no significant differences between the two groups (P > 0.05). However, postoperatively, the treatment group demonstrated higher levels of CD3+, CD4+, and CD4+/CD8+ and lower levels of CD8+ than the control group (P < 0.05). The rates of adverse reactions were 6.38% and 23.40% in the treatment and control groups, respectively, revealing a significant difference (χ 2 = 5.371, P = 0.020). CONCLUSION Dexmedetomidine-assisted intravenous-inhalation combined general anesthesia can promote early recovery of patients undergoing laparoscopic minimally invasive surgery for inguinal hernia. It ensures stable blood flow, improves postoperative analgesic effects, reduces postoperative pain intensity, alleviates stress response, improves immune function, facilitates anesthesia recovery, and enhances safety.
Collapse
Affiliation(s)
- Qian-Xing Lou
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Ke-Ping Xu
- Department of Anesthesia, Zhuji Traditional Chinese Medicine Hospital of Zhejiang Province, Shaoxing 311800, Zhejiang Province, China
| |
Collapse
|
2
|
Dai D, Wang S, Li J, Zhao Y. Exploring radiation resistance-related genes in pancreatic cancer and their impact on patient prognosis and treatment. Front Immunol 2025; 16:1524798. [PMID: 40103813 PMCID: PMC11914796 DOI: 10.3389/fimmu.2025.1524798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Background Pancreatic cancer is a highly lethal disease with increasing incidence worldwide. Despite surgical resection being the main curative option, only a small percentage of patients are eligible for surgery. Radiotherapy, often combined with chemotherapy, remains a critical treatment, especially for locally advanced cases. However, pancreatic cancer's aggressiveness and partial radio resistance lead to frequent local recurrence. Understanding the mechanisms of radiotherapy resistance is crucial to improving patient outcomes. Methods Pancreatic cancer related gene microarray data were downloaded from GEO database to analyze differentially expressed genes before and after radiotherapy using GEO2R online tool. The obtained differentially expressed genes were enriched by GO and KEGG to reveal their biological functions. Key genes were screened by univariate and multivariate Cox regression analysis, and a risk scoring model was constructed, and patients were divided into high-risk group and low-risk group. Subsequently, Kaplan-Meier survival analysis was used to compare the survival differences between the two groups of patients, further analyze the differential genes of the two groups of patients, and evaluate their sensitivity to different drugs. Results Our model identified 10 genes associated with overall survival (OS) in pancreatic cancer. Based on risk scores, patients were categorized into high- and low-risk groups, with significantly different survival outcomes and immune profile characteristics. High-risk patients showed increased expression of pro-inflammatory immune markers and increased sensitivity to specific chemotherapy agents, while low-risk patients had higher expression of immune checkpoints (CD274 and CTLA4), indicating potential sensitivity to targeted immunotherapies. Cross-dataset validation yielded consistent AUC values above 0.77, confirming model stability and predictive accuracy. Conclusion This study provides a scoring model to predict radiotherapy resistance and prognosis in pancreatic cancer, with potential clinical application for patient stratification. The identified immune profiles and drug sensitivity variations between risk groups highlight opportunities for personalized treatment strategies, contributing to improved management and survival outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Dong Dai
- Department of Nuclear Medicine, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiaze Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
3
|
He X, Guan XY, Li Y. Clinical significance of the tumor microenvironment on immune tolerance in gastric cancer. Front Immunol 2025; 16:1532605. [PMID: 40028336 PMCID: PMC11868122 DOI: 10.3389/fimmu.2025.1532605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
In the realm of oncology, the tumor microenvironment (TME)-comprising extracellular matrix components, immune cells, fibroblasts, and endothelial cells-plays a pivotal role in tumorigenesis, progression, and response to therapeutic interventions. Initially, the TME exhibits tumor-suppressive properties that can inhibit malignant transformation. However, as the tumor progresses, various factors induce immune tolerance, resulting in TME behaving in a state that promotes tumor growth and metastasis in later stages. This state of immunosuppression is crucial as it enables TME to change from a role of killing tumor cells to a role of promoting tumor progression. Gastric cancer is a common malignant tumor of the gastrointestinal tract with an alarmingly high mortality rate. While chemotherapy has historically been the cornerstone of treatment, its efficacy in prolonging survival remains limited. The emergence of immunotherapy has opened new therapeutic pathways, yet the challenge of immune tolerance driven by the gastric cancer microenvironment complicates these efforts. This review aims to elucidate the intricate role of the TME in mediating immune tolerance in gastric cancer and to spotlight innovative strategies and clinical trials designed to enhance the efficacy of immunotherapeutic approaches. By providing a comprehensive theoretical framework, this review seeks to advance the understanding and application of immunotherapy in the treatment of gastric cancer, ultimately contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Xiangyang He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Clinical Oncology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Arneth B. Molecular Mechanisms of Immune Regulation: A Review. Cells 2025; 14:283. [PMID: 39996755 PMCID: PMC11853995 DOI: 10.3390/cells14040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The immune system must carefully balance fighting pathogens with minimization of inflammation and avoidance of autoimmune responses. Over the past ten years, researchers have extensively studied the mechanisms regulating this delicate balance. Comprehending these mechanisms is essential for developing treatments for inflammatory conditions. AIM This review aims to synthesize knowledge of immunoregulatory processes published from 2014-2024 and to highlight discoveries that provide fresh perspectives on this complex balance. METHODS The keywords "molecular mechanisms", "immune regulation", "immune signaling pathways", and "immune homeostasis" were used to search PubMed for articles published between 2014 and 2024, with a preference for articles published in the past three years. RESULTS Recent research has pinpointed the impact of factors such as cytokine signaling, T-cell regulation, epigenetic regulation, and immunometabolism on immune function. DISCUSSION New research highlights the intricate interactions between the immune system and other molecular elements. A key area of interest is the impact of non-coding RNAs and metabolic pathways on the regulation of immune responses. CONCLUSIONS Exploring the mechanisms by which the immune system is regulated will provide new avenues for developing treatments to address autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg UKGM, Philipps University Marburg, Baldingerst 1, 35043 Marburg, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
5
|
Hu Y, Yang R, Ni S, Song Z. Bibliometric analysis of targeted immunotherapy for osteosarcoma-current knowledge, hotspots and future perspectives. Front Immunol 2025; 15:1485053. [PMID: 39995821 PMCID: PMC11847827 DOI: 10.3389/fimmu.2024.1485053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025] Open
Abstract
Objective The objective of this study is to conduct a bibliometric analysis on examining the current condition, areas of interest, and rising trends of immunotherapy for osteosarcoma (ITFOS), as well as its importance in associated research domains. Methods An extensive collection of academic papers on the use of ITFOS was obtained from the Web of Science between January 1, 2000 and October 20, 2023. Then, using a variety of tools like HisCite, VOSviewer, CiteSpace, and the bibliometrix package, a bibliometric study was carried out. This study included the collection of information on country, institution, author, journal, and keywords. Results A comprehensive analysis was undertaken on a total of 616 publications obtained from 247 journals, encompassing the contributions of 3725 authors affiliated with 831 institutes spanning across 43 countries/regions. Notably, China exhibited the highest quantity of published 277 (44.99%) articles on ITFOS. The most productive institution was Zhejiang University, with 26 (4.22%) publications. The author with the highest publication output was Tsukahara, Tomohide from Japan with 15 (2.44%) publications. The article with the most citation was "DOI: 10.1200/JCO.2014.58.0225". Frontiers in Immunology demonstrated the highest level of productivity, having published a total of 31 (5.03%) articles. The most frequently used were "osteosarcoma," "immunotherapy," and "cancer,". Meanwhile, "sequencing", "prognostic signature" and "immune microenvironment" have been identified as the research frontiers for the forthcoming years. Conclusion This paper provides a thorough evaluation of current research trends and advancements in ITFOS. It includes relevant research findings and emphasizes collaborative efforts among authors, institutions, and countries.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Yang
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Shuai Ni
- Department of Orthopaedic Trauma, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- School of Graduates, Dalian Medical University, Dalian, Liaoning, China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
6
|
Zhao H, Huang S, Wu J, Lu Y, Zou Y, Zeng H, Li C, Wang J, Zhang X, Duan S, Liang W. Efficacy and safety of first-line PD-1/PD-L1 inhibitor in combination with CTLA-4 inhibitor in the treatment of patients with advanced non-small cell lung cancer: a systemic review and meta-analysis. Front Immunol 2025; 16:1515027. [PMID: 39981238 PMCID: PMC11839650 DOI: 10.3389/fimmu.2025.1515027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction The combination of PD-1/PD-L1 inhibitor with CTLA-4 inhibitor for advanced non-small cell lung cancer(NSCLC) is presently a significant area of research, however its clinical application remains contentious. This meta-analysis aimed to assess the efficacy and safety of first-line PD-1/PD-L1 inhibitor in combination with CTLA-4 inhibitor (CP) in the treatment of patients with advanced NSCLC. Methods A systemic search was conducted in four databases (PubMed, Cochrane library, Embase, and Web of Science) from their establishment until January 17, 2024, for randomized controlled trials that investigated the use of the first-line PD-1/PD-L1 inhibitor plus CTLA-4 inhibitor in patients with advanced NSCLC. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and adverse events (AEs) were subjected to meta-analyses. Results Totally 7 eligible randomized controlled trials including 4682 people were included. Two comparative analyses were performed: CP versus chemotherapy, CP versus PD-1/PD-L1 inhibitor (P). Compared with the chemotherapy group, CP improved OS (HR: 0.84, 95% CI: 0.75-0.94, p<0.05) but not PFS (HR: 0.94, 95%CI: 0.73-1.20, p = 0.63) or ORR (OR: 1.16, 95% CI: 0.79-1.71, p = 0.45). In terms of toxicity, CP had slightly fewer any AEs compared to chemotherapy (RR: 0.94, 95% CI: 0.91-0.97; p<0.05). Compared to the P group, there was no significant difference in OS (MD: -0,25, 95% CI: -2.47-1.98, p = 0.83), PFS (MD: -0.91, 95% CI: -3.19-1.36, p = 0.43), and ORR (OR:1.05, 95% CI. 0.80-1.36, p = 0.73). Subgroup analysis revealed that CP provided superior OS compared with P in patients with PD-L1 expression < 1%. Conclusion CP was a feasible and safe first-line therapy for patients with advanced NSCLC. Specifically, CP may function as a therapeutic alternative for individuals with low or negative PD-L1 expression, resulting in enhanced long-term outcomes compared to chemotherapy or P. Further randomized controlled trials with prolonged follow-up periods are necessary to validate these results, particularly focusing on efficacy in patients with differing PD-L1 expression levels, to improve the stratified implementation of immunotherapy. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024621116, identifier CRD42024621116.
Collapse
Affiliation(s)
- Huimin Zhao
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shanshan Huang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Jianyu Wu
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yanlan Lu
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yue Zou
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Haijian Zeng
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Chunlan Li
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Jin Wang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xiaochen Zhang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Medicine College, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Siliang Duan
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Medicine College, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Weiming Liang
- The First Affiliated Hospital of Guangxi University of Science and Technology, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
7
|
Kim GR, Nam KH, Choi JM. Belatacept and regulatory T cells in transplantation: synergistic strategies for immune tolerance and graft survival. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:326-340. [PMID: 39690903 PMCID: PMC11732762 DOI: 10.4285/ctr.24.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Calcineurin inhibitors (CNIs) have been a cornerstone in solid organ transplantation for many years; however, their prolonged use is linked to significant adverse effects, most notably nephrotoxicity. Belatacept, a modified version of cytotoxic T lymphocyte antigen-4 immunoglobulin with increased binding affinity for its ligand, has emerged as a viable alternative to traditional CNIs due to its lower toxicity profile. Despite these benefits, belatacept is associated with a higher rate of acute rejection, which presents a challenge for long-term graft survival. This review reevaluates the limitations of belatacept in achieving long-term acceptance of transplants and highlights the importance of regulatory T (Treg) cells in maintaining immune tolerance and preventing graft rejection. Additionally, it discusses the potential benefits of combining therapies that boost Treg cells with belatacept to increase the effectiveness of immunosuppression and improve graft outcomes.
Collapse
Affiliation(s)
- Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
8
|
Eshaq AM, Flanagan TW, Ba Abbad AA, Makarem ZAA, Bokir MS, Alasheq AK, Al Asheikh SA, Almashhor AM, Binyamani F, Al-Amoudi WA, Bawzir AS, Haikel Y, Megahed M, Hassan M. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int J Mol Sci 2024; 26:88. [PMID: 39795946 PMCID: PMC11719825 DOI: 10.3390/ijms26010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common. ICI-associated cutaneous adverse effects include mostly inflammatory and bullous dermatoses, as well as severe cutaneous side reactions such as rash or inflammatory dermatitis encompassing erythema multiforme; lichenoid, eczematous, psoriasiform, and morbilliform lesions; and palmoplantar erythrodysesthesia. The development of immunotherapy-related adverse effects is a consequence of ICIs' unique molecular action that is mainly mediated by the activation of cytotoxic CD4+/CD8+ T cells. ICI-associated cutaneous disorders are the most prevalent effects induced in response to anti-programmed cell death 1 (PD-1), anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and anti-programmed cell death ligand 1 (PD-L1) agents. Herein, we will elucidate the mechanisms regulating the occurrence of cutaneous adverse effects following treatment with ICIs.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatstics, Milken Institute School of Public Health, George Washington University Washington, Washington, DC 20052, USA;
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulqader A. Ba Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Zain Alabden A. Makarem
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Mohammed S. Bokir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Ahmed K. Alasheq
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdullah M. Almashhor
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Faroq Binyamani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdulaziz S. Bawzir
- Department of Radiology, King Saud Medical City, Riyadh 11533, Saudi Arabia;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
9
|
Dadwal S, Dhar S, Baghel K, Mishra A, Mehrotra S, Prajapati VK. From past to present: The evolution of immunotherapy and its modern modalities. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:1-32. [PMID: 39978965 DOI: 10.1016/bs.apcsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Immunotherapy is emerging as a novel and reliable therapeutic technique for treating diseases such as autoimmunity, HIV/AIDS, allergy and cancers. This approach works by modulating the patient's immune system, activating both the innate and humoral branches to combat life-threatening diseases. The foundation of immunotherapy began with the discovery and development of "serum therapy" by German physiologist Emil Von Behring who received the Nobel Prize in 1901 for his contributions to the treatment of diphtheria. Around the same time, Dr. William Coley expanded the field for cancer treatment by developing the first immune based cure for sarcomas using attenuated strains of bacteria injected directly into patient's tumours. As medical science advanced, a broader understanding of the immune system and its components led to the emergence of different immunotherapeutic techniques. These include adoptive cell transfer therapy, cytokine therapy, cancer vaccines, and antibody-drug conjugates. The chapter provides a comprehensive understanding of the history and the current techniques used in immunotherapy, detailing the principles behind their mechanisms and the types of diseases tackled by each immunotherapeutic technique. By examining the journey from early discoveries to modern advancements, the chapter highlights the transformative impact of immunotherapy on medical science and patient care.
Collapse
Affiliation(s)
- Surbhi Dadwal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sarthak Dhar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Kirti Baghel
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
10
|
Jarvi NL, Patel M, Shetty KA, Nguyen NH, Grasperge BF, Mager DE, Straubinger RM, Balu-Iyer SV. Immune regulatory adjuvant approach to mitigate subcutaneous immunogenicity of monoclonal antibodies. Front Immunol 2024; 15:1496169. [PMID: 39720710 PMCID: PMC11666448 DOI: 10.3389/fimmu.2024.1496169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
Introduction Immunogenicity continues to be a challenge for development and clinical utility of monoclonal antibodies, and there are gaps in our current ability to prevent anti-drug antibody development in a safe and antigen-specific manner. Methods To mitigate immunogenicity of monoclonal antibodies administered subcutaneously, O-phospho-L-serine (OPLS)-the head group of the tolerance-inducing phospholipid, phosphatidylserine-was investigated as an immunoregulatory adjuvant. Results Formulations of adalimumab, trastuzumab or rituximab with OPLS showed reduction in relative immunogenicity in mice compared to vehicle formulations, indicated by reduced anti-drug antibody development and significant reductions in CD138+ plasma cell differentiation in bone marrow. Titer development toward recombinant human hyaluronidase, a dispersion enhancer that was co-formulated with monoclonal antibodies, was similarly reduced. Subcutaneous administration of adalimumab with OPLS resulted in a two-fold increase in expression of type 1 regulatory (Tr1) T cell subset in the spleen. This is consistent with in vitro studies where co-culturing of dendritic cells primed with ovalbumin in the presence and absence of OPLS and antigen specific T-cells induced expression of Tr1 phenotype on live CD4+ T cells. Conclusion This adjuvant does not impact immune competence of non-human primates and mice, and repeated administration of the adjuvant does not show renal or hepatic toxicity. Formulation of monoclonal antibodies with the immunoregulatory adjuvant, OPLS, was found to be safe and effective at mitigating immunogenicity.
Collapse
Affiliation(s)
- Nicole L. Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Manali Patel
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Krithika A. Shetty
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | | | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Enhanced Pharmacodynamics, LLC, Buffalo, NY, United States
| | - Robert M. Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
11
|
Franzese O. Tumor Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumor-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int J Mol Sci 2024; 25:12848. [PMID: 39684559 DOI: 10.3390/ijms252312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores some of the complex mechanisms underlying antitumor T-cell response, with a specific focus on the balance and cross-talk between selected co-stimulatory and inhibitory pathways. The tumor microenvironment (TME) fosters both T-cell activation and exhaustion, a dual role influenced by the local presence of inhibitory immune checkpoints (ICs), which are exploited by cancer cells to evade immune surveillance. Recent advancements in IC blockade (ICB) therapies have transformed cancer treatment. However, only a fraction of patients respond favorably, highlighting the need for predictive biomarkers and combination therapies to overcome ICB resistance. A crucial aspect is represented by the complexity of the TME, which encompasses diverse cell types that either enhance or suppress immune responses. This review underscores the importance of identifying the most critical cross-talk between inhibitory and co-stimulatory molecules for developing approaches tailored to patient-specific molecular and immune profiles to maximize the therapeutic efficacy of IC inhibitors and enhance clinical outcomes.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Cho YA, Moon Y, Park W, Lee Y, Lee KE, Kim DC, Kim W. Factors inducing cutaneous adverse reactions in cancer patients treated with PD-1 and PD-L1 inhibitors: a machine-learning algorithm approach. Immunopharmacol Immunotoxicol 2024:1-6. [PMID: 39542723 DOI: 10.1080/08923973.2024.2430670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) show promise in cancer treatment but can lead to immune-related adverse events (irAEs), notably affecting the skin. Understanding the factors behind these skin reactions is crucial for effective management during treatment. Hence, the aim of this study was to uncover associations between patient characteristics and cutaneous adverse reactions among cancer patients undergoing ICI treatment. METHODS The study involved 209 cancer patients receiving ICIs. Statistical methods, including the chi-square test, Fisher's exact test, and multivariable logistic regression, were employed to analyze variables such as hypertension, antihistamine use, cancer metastasis, diabetes, and opioid usage. Additionally, machine learning techniques, including logistic regression, elastic net, random forest, and support vector machines (SVM), were utilized to develop predictive models anticipating skin-related adverse events. RESULTS Results highlighted significant associations between specific patient attributes and the incidence of skin reactions post-ICI treatment. Notably, patients using antihistamines or with cancer metastasis exhibited higher rates of skin adverse reactions, while those with diabetes or using opioids displayed lower incidence rates. Robust performance in forecasting these adverse events was observed, particularly in the predictive models employing logistic regression and elastic net. CONCLUSIONS This pioneering study contributes crucial insights into predictive modeling for ICI-induced skin reactions, emphasizing the importance of personalized treatment strategies. By identifying risk factors and utilizing tailored predictive models, healthcare providers can proactively manage adverse events, optimizing the benefits of ICIs while mitigating potential side effects.
Collapse
Affiliation(s)
- Young-Ah Cho
- The Prime Hospital, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Youngyun Moon
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Wooyoung Park
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yerin Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyung-Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong-Chul Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Republic of Korea
- School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woorim Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
13
|
Quiniou SMA, Clark T, Bengtén E, Rast JP, Ohta Y, Flajnik M, Boudinot P. Extraordinary diversity of the CD28/CTLA4 family across jawed vertebrates. Front Immunol 2024; 15:1501934. [PMID: 39606244 PMCID: PMC11599192 DOI: 10.3389/fimmu.2024.1501934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Members of the CD28 family are critical for the control of immune cell activation. While CD28 and CTLA4 were previously identified in teleost fish, most members of the CD28 family have been described only in tetrapods. Using a comparative genomics approach, we found (co)orthologs of all members of the CD28 family both in Chondrichthyes and basal Osteichthyes groups, but not in Agnathans. Four additional members of the family were identified, which were present in both Chondrichthyes and Osteichthyes, some even in the tetrapod lineage but all of them absent in human. Herein, we extend the composition of the jawed vertebrate CD28 family to nine members: CD28, CTLA4, ICOS, CD28H, CD28HL1, CD28HL2, CD28HL3, CD28X and PD-1. Each of these genes had a single extracellular IgSF V domain, and conserved motifs in the V and the cytoplasmic domain. While a genomic cluster of three consecutive genes like CD28/CTLA4/ICOS was conserved across jawed vertebrates except in teleosts, the other members of the CD28 family were located on multiple chromosomes. Our findings show that these co-stimulatory/co-inhibitory receptors likely arose in early jawed vertebrates, and diversified when the Ig/TCR/MHC-based adaptive immunity emerged, heralding the advent of complex regulatory networks controlling lymphocyte activation.
Collapse
Affiliation(s)
| | - Thomas Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva Bengtén
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jonathan P. Rast
- Emory University School of Medicine, Pathology & Laboratory Medicine, Atlanta, GA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy−en−Josas, France
| |
Collapse
|
14
|
Lee SY, Roh H, Gonzalez-Perez D, Mackey MR, Kim KY, Hoces D, McLaughlin CN, Adams SR, Nguyen K, Luginbuhl DJ, Luo L, Udeshi ND, Carr SA, Hernández-López RA, Ellisman MH, Alcalde M, Ting AY. Directed evolution of the multicopper oxidase laccase for cell surface proximity labeling and electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620861. [PMID: 39554088 PMCID: PMC11565909 DOI: 10.1101/2024.10.29.620861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Enzymes that oxidize aromatic substrates have shown utility in a range of cell-based technologies including live cell proximity labeling (PL) and electron microscopy (EM), but are associated with drawbacks such as the need for toxic H 2 O 2 . Here, we explore laccases as a novel enzyme class for PL and EM in mammalian cells. LaccID, generated via 11 rounds of directed evolution from an ancestral fungal laccase, catalyzes the one-electron oxidation of diverse aromatic substrates using O 2 instead of toxic H 2 O 2 , and exhibits activity selective to the surface plasma membrane of both living and fixed cells. We show that LaccID can be used with mass spectrometry-based proteomics to map the changing surface composition of T cells that engage with tumor cells via antigen-specific T cell receptors. In addition, we use LaccID as a genetically-encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.
Collapse
|
15
|
Yu KH, Lin WT, Chen DP. How Co-Stimulatory/Inhibitory Molecules Vary Across Immune Cell Subtypes in the Severity of Systemic Lupus Erythematosus Compared to Controls. Biomedicines 2024; 12:2444. [PMID: 39595011 PMCID: PMC11591756 DOI: 10.3390/biomedicines12112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Co-stimulatory and co-inhibitory molecules are critical to T cell responses and involved in the pathogenesis of systemic lupus erythematosus (SLE). This study aimed to comprehensively analyze the surface expression of these molecules in various phenotypic immune cells, comparing the differences between various levels of the severity in SLE and control groups. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque from blood samples of severe SLE patients (treatment with immunosuppressants), mild SLE patients (excluding those with persistent proteinuria or thrombocytopenia), and healthy controls (n = 10 each). PBMCs were stimulated for 48 h. The cells were stained with anti-CD3, CD4, CD28, PD-1, and CTLA-4 antibodies and analyzed by flow cytometry. Differences between groups were assessed using the Kruskal-Wallis test and Mann-Whitney U-test, with median values and statistical significance (p < 0.05) reported. RESULTS The results showed that CD28 expression was significantly higher in SLE patients compared to controls, with the highest levels in mild SLE. However, CD3+ CD28+ and CD4+ CD28+ cells were more prevalent in controls (p = 0.032 and 0.017, respectively). Mild SLE patients exhibited the highest CTLA-4 expression, with significant differences from severe SLE and controls (p = 0.030 and 0.037, respectively). PD-1 expression was lowest in severe SLE but highest in mild SLE within CD3+ CD4+ cells (p = 0.001). After 48 h of activation, CD4+ CTLA4+ and CD3+ CTLA4+ expression levels were significantly higher in controls compared to SLE groups. CONCLUSIONS Our study highlighted that the expression of CD28, CTLA-4, and PD-1 in lymphocytes and specific T cell subsets was various according the severity of SLE in patients, underscoring their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Kuang-Hui Yu
- Division of Rheumatology, Allergy, and Immunology, Chang Gung University and Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
16
|
Zhang W, Zhang J, Zhang J, Chu J, Zhang Z. Novel combination therapy using recombinant oncolytic adenovirus silk hydrogel and PD-L1 inhibitor for bladder cancer treatment. J Nanobiotechnology 2024; 22:638. [PMID: 39420389 PMCID: PMC11487847 DOI: 10.1186/s12951-024-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Recombinant oncolytic adenovirus offers a novel and promising cancer treatment approach, but its standalone efficacy remains limited. This study investigates a combination treatment strategy by co-administering recombinant oncolytic Adv-loaded silk hydrogel with a PD-L1 inhibitor for patients with bladder cancer to enhance treatment outcomes. Bladder cancer tissues from mice were collected and subjected to single-cell sequencing, identifying CRB3 as a key gene in malignant cells. Differential expression and functional enrichment analyses were performed, validating CRB3's inhibitory role through in vitro experiments showing suppression of bladder cancer cell proliferation, migration, and invasion. Recombinant oncolytic adenoviruses encoding CRB3 and GM-CSF were constructed and encapsulated in silk hydrogel to enhance drug loading and release efficiency. In vivo experiments demonstrated that the nano-composite hydrogel significantly inhibited tumor growth and increased immune infiltration in tumor tissues. Co-administration of adenovirus silk hydrogel (Adv-CRB3@gel) with a PD-L1 inhibitor significantly enhanced T-cell infiltration and tumor killing. The combination of recombinant oncolytic Adv-loaded nano-composite hydrogel encoding CRB3 and GM-CSF with a PD-L1 inhibitor improves bladder cancer treatment outcomes by effectively recruiting T cells, providing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jianqiang Zhang
- Department of Urology, The First People's Hospital of Nanning, Nanning, Guangxi, China
- Department of Urology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Jingwei Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China.
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China.
| | - Zhenxing Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| |
Collapse
|
17
|
Morgun EI, Govorova IA, Chernysheva MB, Machinskaya MA, Vorotelyak EA. Mini-Review: Tregs as a Tool for Therapy-Obvious and Non-Obvious Challenges and Solutions. Cells 2024; 13:1680. [PMID: 39451198 PMCID: PMC11506333 DOI: 10.3390/cells13201680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tregs have the potential to be utilized as a novel therapeutic agent for the treatment of various chronic diseases, including diabetes, Alzheimer's disease, asthma, and rheumatoid arthritis. One of the challenges associated with developing a therapeutic product based on Tregs is the non-selectivity of polyclonal cells. A potential solution to this issue is a generation of antigen-specific CAR-Tregs. Other challenges associated with developing a therapeutic product based on Tregs include the phenotypic instability of these cells in an inflammatory microenvironment, discrepancies between engineered Treg-like cells and natural Tregs, and the expression of dysfunctional isoforms of Treg marker genes. This review presents a summary of proposed strategies for addressing these challenges.
Collapse
Affiliation(s)
- Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia; (I.A.G.); (M.B.C.); (M.A.M.)
| | | | | | | | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia; (I.A.G.); (M.B.C.); (M.A.M.)
| |
Collapse
|
18
|
Ahkam AH, Susilawati Y, Sumiwi SA. Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective. BIOLOGY 2024; 13:744. [PMID: 39336171 PMCID: PMC11428267 DOI: 10.3390/biology13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Immunomodulators are pivotal in managing various health conditions by regulating the immune response by either enhancing or suppressing it to maintain homeostasis. The growing interest in natural sources of immunomodulatory agents has spurred the investigation of numerous medicinal plants, including Peronema canescens, commonly known in Asia as sungkai. Traditionally used for its medicinal properties in Southeast Asia, Peronema canescens belongs to the Verbenaceae family and has garnered significant attention. This review discusses the immunomodulatory activity of the active compounds in Peronema canescens and explores the potential directions for future research.
Collapse
Affiliation(s)
- Ahmad Hafidul Ahkam
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
- The Herbal Studies Center, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
19
|
Shen Z, vom Steeg LG, Patel MV, Rodriguez-Garcia M, Wira CR. Impact of aging on the frequency, phenotype, and function of CD4+ T cells in the human female reproductive tract. Front Immunol 2024; 15:1465124. [PMID: 39328419 PMCID: PMC11424415 DOI: 10.3389/fimmu.2024.1465124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Since CD4+ T cells are essential for regulating adaptive immune responses and for long lasting mucosal protection, changes in CD4+ T cell numbers and function are likely to affect protective immunity. What remains unclear is whether CD4+ T cell composition and function in the female reproductive tract (FRT) changes as women age. Here we investigated the changes in the composition and function of CD4+ T cells in the endometrium (EM), endocervix (CX), and ectocervix (ECX) with aging. We observed a significant decrease in both the total number and percentage of CD4+ T cells in the EM with increasing age, particularly in the years following menopause. CD4+ T cells within the FRT predominantly expressed CD69. The proportion of CD69+CD4+ T cells increased significantly with increasing age in the EM, CX and ECX. The composition of T helper cell subsets within the EM CD4+ T cell population also showed age-related changes. Specifically, there was a significant increase in the proportion of Th1 cells and a significant decrease in Th17 and Treg cells with increasing age. Furthermore, the production of IFNγ by CD4+ T cells in the EM, CX, and ECX significantly decreased with increasing age upon activation. Our findings highlight the complex changes occurring in CD4+ T cell frequency, phenotype, and function within the FRT as women age. Understanding these age-related immune changes in the FRT is crucial for enhancing our knowledge of reproductive health and immune responses in women.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Landon G. vom Steeg
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
20
|
Cha J, Hur M, Kim H, Yun S, Nam M, Cho Y, Nam M. Comparative Assessment of Risk and Turn-Around Time between Sequence-Based Typing and Next-Generation Sequencing for HLA Typing. Diagnostics (Basel) 2024; 14:1793. [PMID: 39202281 PMCID: PMC11353627 DOI: 10.3390/diagnostics14161793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
This study compared laboratory risk and turn-around time (TAT) between sequence-based typing (SBT) and next-generation sequencing (NGS) for human leukocyte antigen (HLA) typing. For risk assessment, we utilized the risk priority number (RPN) score based on failure mode and effect analysis (FMEA) and a risk acceptability matrix (RAM) according to the Clinical Laboratory Standards Institute (CLSI) guidelines (EP23-A). Total TAT was documented for the analytical phase, and hands-on time was defined as manual processes conducted by medical technicians. NGS showed a significantly higher total RPN score than SBT (1169 vs. 465). NGS indicated a higher mean RPN score, indicating elevated severity and detectability scores in comparison to SBT (RPN 23 vs. 12, p = 0.001; severity 5 vs. 3, p = 0.005; detectability 5 vs. 4, p < 0.001, respectively). NGS required a greater number of steps than SBT (44 vs. 25 steps), all of which were acceptable for the RAM. NGS showed a longer total TAT, total hands-on time, and hands-on time per step than SBT (26:47:20 vs. 12:32:06, 03:59:35 vs. 00:47:39, 00:05:13 vs. 00:01:54 hh:mm:ss, respectively). Transitioning from SBT to NGS for HLA typing involves increased risk and an extended TAT. This study underscored the importance of evaluating these factors to optimize laboratory efficiency in HLA typing.
Collapse
Affiliation(s)
- Jaehyun Cha
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.C.); (S.Y.); (M.N.); (Y.C.)
| | - Mina Hur
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (M.H.)
| | - Hanah Kim
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (M.H.)
| | - Seunggyu Yun
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.C.); (S.Y.); (M.N.); (Y.C.)
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Myunghyun Nam
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.C.); (S.Y.); (M.N.); (Y.C.)
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.C.); (S.Y.); (M.N.); (Y.C.)
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Minjeong Nam
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea; (J.C.); (S.Y.); (M.N.); (Y.C.)
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
22
|
Xu F, Ye Y, Gao Y, Xu S. Dual Role of Necroptosis in Cervical Cancer: Promoting Tumor Aggression and Modulating the Immune Microenvironment via the JAK2-STAT3 Pathway. J Cancer 2024; 15:5288-5307. [PMID: 39247606 PMCID: PMC11375541 DOI: 10.7150/jca.98738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.
Collapse
Affiliation(s)
- Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingjun Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yueqing Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
23
|
Bhattacharya S, Paraskar G, Jha M, Gupta GL, Prajapati BG. Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations. ACS Pharmacol Transl Sci 2024; 7:2215-2236. [PMID: 39144553 PMCID: PMC11320738 DOI: 10.1021/acsptsci.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient's TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Gaurav Paraskar
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
- Faculty
of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
24
|
Duc Nguyen H, Ardeshir A, Fonseca VA, Kim WK. Cluster of differentiation molecules in the metabolic syndrome. Clin Chim Acta 2024; 561:119819. [PMID: 38901629 DOI: 10.1016/j.cca.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) represents a significant public health concern due to its association with an increased risk of cardiovascular disease, type 2 diabetes, and other serious health conditions. Despite extensive research, the underlying molecular mechanisms contributing to MetS pathogenesis remain elusive. This review aims to provide a comprehensive overview of the molecular mechanisms linking MetS and cluster of differentiation (CD) markers, which play critical roles in immune regulation and cellular signaling. Through an extensive literature review with a systematic approach, we examine the involvement of various CD markers in MetS development and progression, including their roles in adipose tissue inflammation, insulin resistance, dyslipidemia, and hypertension. Additionally, we discuss potential therapeutic strategies targeting CD markers for the management of MetS. By synthesizing current evidence, this review contributes to a deeper understanding of the complex interplay between immune dysregulation and metabolic dysfunction in MetS, paving the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Amir Ardeshir
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Vivian A Fonseca
- Department Endocrinology Metabolism & Diabetes, Tulane University School of Medicine, New Orleans, LA, USA
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
25
|
Wang Y, Zeng Y, Yang W, Wang X, Jiang J. Targeting CD8 + T cells with natural products for tumor therapy: Revealing insights into the mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155608. [PMID: 38642413 DOI: 10.1016/j.phymed.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Despite significant advances in cancer immunotherapy over the past decades, such as T cell-engaging chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockade (ICB), therapeutic failure resulting from various factors remains prevalent. Therefore, developing combinational immunotherapeutic strategies is of great significance for improving the clinical outcome of cancer immunotherapy. Natural products are substances that naturally exist in various living organisms with multiple pharmacological or biological activities, and some of them have been found to have anti-tumor potential. Notably, emerging evidences have suggested that several natural compounds may boost the anti-tumor effects through activating immune response of hosts, in which CD8+ T cells play a pivotal role. METHODS The data of this review come from PubMed, Web of Science, Google Scholar, and ClinicalTrials (https://clinicaltrials.gov/) with the keywords "CD8+ T cell", "anti-tumor", "immunity", "signal 1", "signal 2", "signal 3", "natural products", "T cell receptor (TCR)", "co-stimulation", "co-inhibition", "immune checkpoint", "inflammatory cytokine", "hesperidin", "ginsenoside", "quercetin", "curcumin", "apigenin", "dendrobium officinale polysaccharides (DOPS)", "luteolin", "shikonin", "licochalcone A", "erianin", "resveratrol", "procyanidin", "berberine", "usnic acid", "naringenin", "6-gingerol", "ganoderma lucidum polysaccharide (GL-PS)", "neem leaf glycoprotein (NLGP)", "paclitaxel", "source", "pharmacological activities", and "toxicity". These literatures were published between 1993 and 2023. RESULTS Natural products have considerable advantages as anti-tumor drugs based on the various species, wide distribution, low price, and few side effects. This review summarized the effects and mechanisms of some natural products that exhibit anti-tumor effects via targeting CD8+ T cells, mainly focused on the three signals that activate CD8+ T cells: TCR, co-stimulation, and inflammatory cytokines. CONCLUSION Clarifying the role and underlying mechanism of natural products in cancer immunotherapy may provide more options for combinational treatment strategies and benefit cancer therapy, to shed light on identifying potential natural compounds for improving the clinical outcome in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuke Wang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Zeng
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xiuxuan Wang
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., Beijing, China
| | - Jingwen Jiang
- West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
27
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
28
|
Pitts SC, Schlom J, Donahue RN. Soluble immune checkpoints: implications for cancer prognosis and response to immune checkpoint therapy and conventional therapies. J Exp Clin Cancer Res 2024; 43:155. [PMID: 38822401 PMCID: PMC11141022 DOI: 10.1186/s13046-024-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Longitudinal sampling of tumor tissue from patients with solid cancers, aside from melanoma and a few other cases, is often unfeasible, and thus may not capture the plasticity of interactions between the tumor and immune system under selective pressure of a given therapy. Peripheral blood analyses provide salient information about the human peripheral immunome while offering technical and practical advantages over traditional tumor biopsies, and should be utilized where possible alongside interrogation of the tumor. Some common blood-based biomarkers used to study the immune response include immune cell subsets, circulating tumor DNA, and protein analytes such as cytokines. With the recent explosion of immune checkpoint inhibitors (ICI) as a modality of treatment in multiple cancer types, soluble immune checkpoints have become a relevant area of investigation for peripheral immune-based biomarkers. However, the exact functions of soluble immune checkpoints and their roles in cancer for the most part remain unclear. This review discusses current literature on the production, function, and expression of nine soluble immune checkpoints - sPD-L1, sPD-1, sCTLA4, sCD80, sTIM3, sLAG3, sB7-H3, sBTLA, and sHVEM - in patients with solid tumors, and explores their role as biomarkers of response to ICI as well as to conventional therapies (chemotherapy, radiotherapy, targeted therapy, and surgery) in cancer patients.
Collapse
Affiliation(s)
- Stephanie C Pitts
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Stepanov АV, Shapovalov KG. Monitoring the Immune System in Critically Ill Patients (Review). GENERAL REANIMATOLOGY 2024; 20:42-52. [DOI: 10.15360/1813-9779-2024-3-2388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Most patients with critical illness, regardless of the cause, develop activation of innate and adaptive immunity. This is often a critical process leading to organ dysfunction.The aim of the review is to systematize information on monitoring the immune system in critical illness for physicians of different specialties (anesthesiology and intensive care, surgery, general practice, obstetrics and gynecology).The review includes information from 83 recent national and international publications (mostly from 2023), available in the public domain and found by keyword search.We have summarized the current understanding of the relationship between infections and the human immune system, as well as the clinical application of traditional markers of immune status. We provided data on novel promising markers for the assessment of immunity in patients with various diseases.Limitations of the studies reviewed include the need for additional large-scale clinical trials of even the most promising markers, as well as a synthesis of the evidence for their performance. In addition, immune monitoring is likely to increase the cost of patient care, necessitating the development of more affordable research methods.Conclusion. Almost all disorders in critically ill patients are associated with changes in the immune system. Management of patients based on their immune profile requires determination of a personalized strategy for immune modulation, treatment, and prevention of infection. Advanced monitoring of immune system functions will contribute to the personalization of medicine, and the continuous development of biological technologies will allow to improve its methods.
Collapse
Affiliation(s)
- А. V. Stepanov
- Chita State Medical Academy, Ministry of Health of the Russia
| | | |
Collapse
|
30
|
Ngai D, Sukka SR, Tabas I. Crosstalk between efferocytic myeloid cells and T-cells and its relevance to atherosclerosis. Front Immunol 2024; 15:1403150. [PMID: 38873597 PMCID: PMC11169609 DOI: 10.3389/fimmu.2024.1403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Santosh R. Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
31
|
Kong X, Zhang J, Chen S, Wang X, Xi Q, Shen H, Zhang R. Immune checkpoint inhibitors: breakthroughs in cancer treatment. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0055. [PMID: 38801082 PMCID: PMC11208906 DOI: 10.20892/j.issn.2095-3941.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Over the past two decades, immunotherapies have increasingly been considered as first-line treatments for most cancers. One such treatment is immune checkpoint blockade (ICB), which has demonstrated promising results against various solid tumors in clinical trials. Monoclonal antibodies (mAbs) are currently available as immune checkpoint inhibitors (ICIs). These ICIs target specific immune checkpoints, including cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Clinical trial results strongly support the feasibility of this immunotherapeutic approach. However, a substantial proportion of patients with cancer develop resistance or tolerance to treatment, owing to tumor immune evasion mechanisms that counteract the host immune response. Consequently, substantial research focus has been aimed at identifying additional ICIs or synergistic inhibitory receptors to enhance the effectiveness of anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), and anti-CTLA-4 treatments. Recently, several immune checkpoint molecular targets have been identified, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT), mucin domain containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), V-domain immunoglobulin suppressor of T cell activation (VISTA), B and T lymphocyte attenuator (BTLA), and signal-regulatory protein α (SIRPα). Functional mAbs targeting these molecules are under development. CTLA-4, PD-1/PD-L1, and other recently discovered immune checkpoint proteins with distinct structures are at the forefront of research. This review discusses these structures, as well as clinical progress in mAbs targeting these immune checkpoint molecules and their potential applications.
Collapse
Affiliation(s)
- Xueqing Kong
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinyi Zhang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuwei Chen
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianyang Wang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qing Xi
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Han Shen
- Department of Biology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
32
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
33
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
34
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
35
|
El Demerdash DM, Saber MM, Ayad A, Gomaa K, Abdelkader Morad M. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) gene polymorphisms in a cohort of Egyptian patients with immune thrombocytopenia (ITP). Blood Res 2024; 59:8. [PMID: 38485815 PMCID: PMC10917709 DOI: 10.1007/s44313-024-00011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is characterized by immune response dysregulations. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) plays a central role in immune checkpoint pathways and preventing autoimmune diseases by regulating immune tolerance. We aimed to explore the potential association between CTLA-4 gene polymorphisms and ITP as well as study their impact on the response to therapy. METHODS We investigated two CTLA-4 single-nucleotide polymorphisms (SNPs; rs: 231775 and rs: 3087243) using real-time PCR as well as the plasma levels of CTLA-4 by ELISA in 88 patients with ITP and 44 healthy participants (HC). RESULTS CTLA-4 (rs: 3087243) A > G polymorphism analysis showed most HC had the homozygous AA genotype, which was statistically significant compared to patients with ITP. Plasma levels of CTLA4 were statistically lower in patients with acute ITP. There was no correlation between CTLA-4 (rs: 231775 and rs: 3087243) A/G SNPs were not correlated to the response to all lines of therapy assessed (corticosteroids, thrombopoietin receptor agonists, splenectomy, and rituximab). CONCLUSION CTLA-4 CT 60 A/G may affect the susceptibility of ITP, but both CTLA-4 + 49 A/G and CT60 A/G did not impact the response of patients with ITP to different lines of therapy.
Collapse
Affiliation(s)
- Doaa Mohamed El Demerdash
- Internal Medicine Department, Faculty of Medicine, Teaching Kasr AL-Ainy Hospital, Cairo University, Al Kasr Al Aini, Old Cairo, 4240310, Cairo Governorate, Egypt.
| | - Maha Mohamed Saber
- Internal Medicine Department, Faculty of Medicine, Teaching Kasr AL-Ainy Hospital, Cairo University, Al Kasr Al Aini, Old Cairo, 4240310, Cairo Governorate, Egypt
| | - Alia Ayad
- Internal Medicine Department, Faculty of Medicine, Teaching Kasr AL-Ainy Hospital, Cairo University, Al Kasr Al Aini, Old Cairo, 4240310, Cairo Governorate, Egypt
| | - Kareeman Gomaa
- Clinical and Chemical Pathology Department, Faculty of Medicine, Kasr AL-Ainy Hospital, Cairo University, Cairo, Egypt
| | - Mohamed Abdelkader Morad
- Internal Medicine Department, Faculty of Medicine, Teaching Kasr AL-Ainy Hospital, Cairo University, Al Kasr Al Aini, Old Cairo, 4240310, Cairo Governorate, Egypt
| |
Collapse
|
36
|
Dreschers S, Platen C, Oppermann L, Doughty C, Ludwig A, Babendreyer A, Orlikowsky TW. EGF-Receptor against Amphiregulin (AREG) Influences Costimulatory Molecules on Monocytes and T Cells and Modulates T-Cell Responses. J Immunol Res 2023; 2023:8883045. [PMID: 38046264 PMCID: PMC10691888 DOI: 10.1155/2023/8883045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR) and has been shown to regulate the phagocytosis-induced cell death of monocytes in peripheral blood. AREG-dependent apoptotic signaling engages factors of the intrinsic and extrinsic apoptotic pathway, such as BCL-2, BCL-XL, and death ligand/receptor CD95/CD95L. Here, we tested the hypothesis that AREG influences costimulatory monocyte functions, which are crucial for T-cell responses. We found a stronger expression of AREG and EGFR in monocytes compared to lymphocytes. As a novel function of AREG, we observed reduced T-cell proliferation following polyclonal T-cell stimulation with OKT3. This reduction of proliferation occurred in the presence of monocytes as well as in their absence, monocyte signaling being replaced by crosslinking of OKT3. Increasing concentrations of AREG down-modulated the concentration of costimulatory B7 molecules (CD80/CD86) and HLA-DR on monocytes. In proliferation assays, CD28 expression on T cells was down-modulated on the application of OKT3 but unaltered by AREG. LcK activation, following OKT3-stimulation, was reduced in T cells that had been coincubated with AREG. The effects of AREG on T-cell phenotypes were also present when monocytes were depleted and OKT3 was crosslinked. The rearranged expression of immunological synapse proteins was accompanied by an alteration of T-cell polarization. Although the proportion of regulatory T cells was not shifted by AREG, IL-17-expressing T cells were significantly enhanced, with a bias toward TH1-polarization. Taken together, these results suggest that AREG acts as an immunoregulatory molecule at the interface between antigen-presenting cells and T cells.
Collapse
Affiliation(s)
- Stephan Dreschers
- Department of Neonatology, University Children's Hospital, Aachen, Germany
| | - Christopher Platen
- Department of Neonatology, University Children's Hospital, Aachen, Germany
| | - Louise Oppermann
- Department of Neonatology, University Children's Hospital, Aachen, Germany
| | - Caitlin Doughty
- Department of Neonatology, University Children's Hospital, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
37
|
Mou P, Ge QH, Sheng R, Zhu TF, Liu Y, Ding K. Research progress on the immune microenvironment and immunotherapy in gastric cancer. Front Immunol 2023; 14:1291117. [PMID: 38077373 PMCID: PMC10701536 DOI: 10.3389/fimmu.2023.1291117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment, particularly the immune microenvironment, plays an indispensable role in the malignant progression and metastasis of gastric cancer (GC). As our understanding of the GC microenvironment continues to evolve, we are gaining deeper insights into the biological mechanisms at the single-cell level. This, in turn, has offered fresh perspectives on GC therapy. Encouragingly, there are various monotherapy and combination therapies in use, such as immune checkpoint inhibitors, adoptive cell transfer therapy, chimeric antigen receptor T cell therapy, antibody-drug conjugates, and cancer vaccines. In this paper, we review the current research progress regarding the GC microenvironment and summarize promising immunotherapy research and targeted therapies.
Collapse
Affiliation(s)
- Pei Mou
- Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Qing-hua Ge
- Department of Otolaryngology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Rong Sheng
- Department of Outpatient, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Teng-fei Zhu
- Department of Anesthesiology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Ye Liu
- Department of Blood Transfusion, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
38
|
Lee WS, Nam KH, Kim JH, Kim WJ, Kim JE, Shin EC, Kim GR, Choi JM. Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide. Front Immunol 2023; 14:1233514. [PMID: 37818377 PMCID: PMC10560854 DOI: 10.3389/fimmu.2023.1233514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of keratinocytes and immune cell infiltration. The IL-17-producing T cells play a key role in psoriasis pathogenesis, while regulatory T (Treg) cells are diminished during psoriatic inflammation. Current psoriasis treatments largely focus on IL-17 and IL-23, however, few studies have explored therapeutic drugs targeting an increase of Treg cells to control immune homeostasis. In this study, we investigated the effects of a cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling peptide (dNP2-ctCTLA-4) in Th17, Tc17, γδ T cells, Treg cells in vitro and a mouse model of psoriasis. Treatment with dNP2-ctCTLA-4 peptide showed a significant reduction of psoriatic skin inflammation with increased Treg cell proportion and reduced IL-17 production by T cells, indicating a potential role in modulating psoriatic skin disease. We compared dNP2-ctCTLA-4 with CTLA-4-Ig and found that only dNP2-ctCTLA-4 ameliorated the psoriasis progression, with increased Treg cells and inhibited IL-17 production from γδ T cells. In vitro experiments using a T cell-antigen presenting cell co-culture system demonstrated the distinct mechanisms of dNP2-ctCTLA-4 compared to CTLA-4-Ig in the induction of Treg cells. These findings highlight the therapeutic potential of dNP2-ctCTLA-4 peptide in psoriasis by augmenting Treg/Teff ratio, offering a new approach to modulating the disease.
Collapse
Affiliation(s)
- Woo-Sung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Kyung-Ho Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won-Ju Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Jeong Eun Kim
- Department of Dermatology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Zhou A, Zhang D, Kang X, Brooks JD. Identification of age- and immune-related gene signatures for clinical outcome prediction in lung adenocarcinoma. Cancer Med 2023; 12:17475-17490. [PMID: 37434467 PMCID: PMC10501266 DOI: 10.1002/cam4.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The understanding of the factors causing decreased overall survival (OS) in older patients compared to younger patients in lung adenocarcinoma (LUAD) remains. METHODS Gene expression profiles of LUAD were obtained from publicly available databases by Kaplan-Meier analysis was performed to determine whether age was associated with patient OS. The immune cell composition in the tumor microenvironment (TME) was evaluated using CIBERSORT. The fraction of stromal and immune cells in tumor samples were also using assessed using multiple tools including ESTIMATE, EPIC, and TIMER. Differentially expressed genes (DEGs) from the RNA-Seq data that were associated with age and immune cell composition were identified using the R package DEGseq. A 22-gene signature composed of DEGs associated with age and immune cell composition that predicted OS were constructed using Least Absolute Shrinkage and Selection Operator (LASSO). RESULTS In The Cancer Genome Atlas (TCGA)-LUAD dataset, we found that younger patients (≤70) had a significant better OS compared to older patients (>70). In addition, older patients had significantly higher expression of immune checkpoint proteins including inhibitory T cell receptors and their ligands. Moreover, analyses using multiple bioinformatics tools showed increased immune infiltration, including CD4+ T cells, in older patients compared to younger patients. We identified a panel of genes differentially expressed between patients >70 years compared to those ≤70 years, as well as between patients with high or low immune scores and selected 84 common genes to construct a prognostic gene signature. A risk score calculated based on 22 genes selected by LASSO predicted 1, 3, and 5-year OS, with an area under the curve (AUC) of 0.72, 0.72, 0.69, receptively, in TCGA-LUAD dataset and an independent validation dataset available from the European Genome-phenome Archive (EGA). CONCLUSION Our results demonstrate that age contributes to OS of LUAD patients atleast in part through its association with immune infiltration in the TME.
Collapse
Affiliation(s)
- Andrew Zhou
- Department of UrologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Dalin Zhang
- Department of UrologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaoman Kang
- Department of OncologyStanford University School of MedicineStanfordCaliforniaUSA
| | - James D. Brooks
- Department of UrologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
40
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
41
|
Quesada S, Lebreton C, Caux C, Italiano A, Dubois B. [Tertiary lymphoid structures in cancer: From biology to therapeutic guides]. Bull Cancer 2023:S0007-4551(23)00205-9. [PMID: 37150731 DOI: 10.1016/j.bulcan.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Tertiary lymphoid structures (TLS) are inducible ectopic lymphoid aggregates, which form in response to various inflammatory situations, including cancer. TLS are notably composed of B lymphocytes, T lymphocytes, mature dendritic cells and other key players such as high endothelial venules. Furthermore, TLS can present different levels of organization and maturation, from simple T/B lymphocyte aggregates to authentic mature B cell follicles with germinal centers adjacent to T cell rich areas. While over the past decade, TLS may have been associated with a favorable prognosis in various cancers, the year 2022 was marked by the first prospective trial (PEMBROSARC) that reported the interest of TLS as predictive biomarkers of pembrolizumab efficacy for the treatment of soft-tissue sarcomas. All along this review, we will first address the molecular and cellular bases of TLS as well as the different strategies for identifying them in clinical practice, then discuss the prognostic/predictive impact of their presence and finally, we will elaborate on the current limitations and perspectives in translational research.
Collapse
Affiliation(s)
- Stanislas Quesada
- Institut régional du cancer de Montpellier - ICM (UNICANCER), département d'oncologie médicale, Montpellier, France.
| | - Coriolan Lebreton
- Institut Bergonié (UNICANCER), département d'oncologie médicale, Bordeaux, France; ARTiSt Lab, Inserm U1312, université de Bordeaux, Bordeaux, France
| | - Christophe Caux
- Centre Léon Bérard, CNRS 5286, Inserm 1052, université Claude Bernard Lyon 1, université de Lyon, centre de recherche en cancérologie de Lyon (CRCL), Équipe "Surveillance immunitaire des tumeurs et ciblage thérapeutique", Lyon, France; Laboratoire d'immunothérapie du cancer de Lyon (LICL), Lyon, France
| | - Antoine Italiano
- Institut Bergonié (UNICANCER), département d'oncologie médicale, Bordeaux, France; Université de Bordeaux, faculté de médecine, Bordeaux, France; DITEP, institut Gustave Roussy - IGR (UNICANCER), Villejuif, France
| | - Bertrand Dubois
- Centre Léon Bérard, CNRS 5286, Inserm 1052, université Claude Bernard Lyon 1, université de Lyon, centre de recherche en cancérologie de Lyon (CRCL), Équipe "Surveillance immunitaire des tumeurs et ciblage thérapeutique", Lyon, France; Laboratoire d'immunothérapie du cancer de Lyon (LICL), Lyon, France
| |
Collapse
|
42
|
Rimassa L, Finn RS, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol 2023:S0168-8278(23)00178-2. [PMID: 36933770 DOI: 10.1016/j.jhep.2023.03.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/20/2023]
Abstract
Single-agent immune checkpoint inhibitors (ICIs) have been tested in patients with advanced hepatocellular carcinoma (HCC) showing an objective response rate of 15-20%, mostly without a significant overall survival (OS) benefit. Furthermore, approximately 30% of HCC shows intrinsic resistance to ICIs. In the absence of predictive biomarkers to identify patients likely to benefit most from immunotherapy, research has moved to exploring combinations with potential activity in broader patient populations. Basket trials, including cohorts of patients with HCC, and early phase studies tested the combination of ICIs with antiangiogenic agents as well as the combination of two different ICIs. The achieved promising results provided the rationale for the following phase 3 trials, which tested the combination of anti-PD-1/PD-L1 with bevacizumab, or tyrosine kinase inhibitors (TKIs), or anti-CTLA-4. Positive results from the IMbrave150 trial led to the practice-changing approval of atezolizumab-bevacizumab, the first regimen to demonstrate improved survival in the front-line setting, since the approval of sorafenib. More recently, the HIMALAYA trial demonstrated the superiority of durvalumab-tremelimumab (STRIDE regimen) over sorafenib, establishing a new first-line option. In contrast, inconsistent results have been achieved with combinations of ICIs and TKIs, with only one phase 3 trial showing an OS benefit. The rapidly evolving therapeutic landscape for patients with advanced HCC has left significant unmet needs to be addressed in future research. These include choice and sequencing of treatments, identification of biomarkers, combinations with locoregional therapies, and development of new immunotherapy agents. This review summarizes the scientific rationale and available clinical data for combination immunotherapy in advanced HCC.
Collapse
Affiliation(s)
- Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele (Milan), Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano (Milan), Italy.
| | - Richard S Finn
- Department of Medicine, Division of Hematology/ Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| |
Collapse
|
43
|
Kim JE, Kim E, Lee JW. Differential ligand binding/trafficking for distinct CTLA-4 fates: is it an expandable mechanism? Cell Mol Immunol 2023; 20:1-2. [PMID: 36357521 PMCID: PMC9794800 DOI: 10.1038/s41423-022-00945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
44
|
Manes TD, Wang V, Pober JS. Costimulators expressed on human endothelial cells modulate antigen-dependent recruitment of circulating T lymphocytes. Front Immunol 2022; 13:1016361. [PMID: 36275645 PMCID: PMC9582530 DOI: 10.3389/fimmu.2022.1016361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Endothelial cells (ECs) can present antigens to circulating effector memory T cells (TEM) and to regulatory T cells (T regs), triggering antigen-specific extravasation at specific sites where foreign antigens are introduced, e.g. by infection or transplantation. We model human antigen-induced transendothelial migration (TEM) using presentation of superantigen by cultured human dermal microvascular (HDM)ECs to isolated resting human peripheral blood T cell subpopulations or to T effector cells activated in vitro. T cell receptor (TCR)-mediated cytokine synthesis, a common assay of T cell activation by antigen, is modulated by antigen-independent signals provided by various positive or negative costimulator proteins (the latter known as checkpoint inhibitors) expressed by antigen presenting cells, including ECs. We report here that some EC-expressed costimulators also modulate TCR-TEM, but effects differ between TEM and cytokine production and among some T cell types. Blocking EC LFA-3 interactions with TEM CD2 boosts TEM but reduces cytokine production. Blocking EC ICOS-L interactions with TEM CD28 (but not ICOS) reduces both responses but these involve distinct CD28-induced signals. Activated CD4+ T effector cells no longer undergo TCR-TEM. Engagement of T cell CD28 by EC ICOS-L increases TCR-TEM by activated CD8 effectors while engagement of OX40 promotes TCR-TEM by activated CD4 T regs. B7-H3 mostly affects TEM of resting TEM and some checkpoint inhibitors affect cytokine synthesis or TEM depending upon subtype. Our data suggest that blockade or mimicry of costimulators/checkpoint inhibitors in vivo, clinically used to modulate immune responses, may act in part by modulating T cell homing.
Collapse
|