1
|
Barolet AC, Magne B, Barolet D, Germain L. Differential Nitric Oxide Responses in Primary Cultured Keratinocytes and Fibroblasts to Visible and Near-Infrared Light. Antioxidants (Basel) 2024; 13:1176. [PMID: 39456430 PMCID: PMC11504005 DOI: 10.3390/antiox13101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
NO is a crucial signaling molecule involved in skin health, the immune response, and the protection against environmental stressors. This study explores how different wavelengths of light, namely blue (455 nm), red (660 nm), and near infrared (NIR, 850 nm), affect nitric oxide (NO) production in skin cells. Primary keratinocytes and fibroblasts from three donors were exposed to these wavelengths, and NO production was quantified using a DAF-FM fluorescent probe. The results demonstrated that all three wavelengths stimulated NO release, with blue light showing the most pronounced effect. Specifically, blue light induced a 1.7-fold increase in NO in keratinocytes compared to red and NIR light and a 2.3-fold increase in fibroblasts compared to red light. Notably, fibroblasts exposed to NIR light produced 1.5 times more NO than those exposed to red light, while keratinocytes consistently responded more robustly across all wavelengths. In conclusion, blue light significantly boosts NO production in both keratinocytes and fibroblasts, making it the most effective wavelength. Red and NIR light, while less potent, also promote NO production and could serve as complementary therapeutic options, particularly for minimizing potential photoaging effects.
Collapse
Affiliation(s)
- Augustin C. Barolet
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
| | - Brice Magne
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
| | - Daniel Barolet
- RoseLab Skin Optics Research Laboratory, Laval, QC H7T 0G3, Canada;
- Dermatology Division, Department of Medicine, McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.C.B.); (B.M.)
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Centre, Quebec City, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
3
|
Othman A, Gowda A, Andreescu D, Hassan MH, Babu SV, Seo J, Andreescu S. Two decades of ceria nanoparticle research: structure, properties and emerging applications. MATERIALS HORIZONS 2024; 11:3213-3266. [PMID: 38717455 DOI: 10.1039/d4mh00055b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, and structural and surface defects. This review encompasses advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level facilitate the formation of oxygen vacancies and defect states, which confer extremely high reactivity and oxygen buffering capacity and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights key properties of CeNPs, their synthesis, interactions, and reaction pathways and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications, and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Akshay Gowda
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| | - S V Babu
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Jihoon Seo
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, USA.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
| |
Collapse
|
4
|
Zhou X, Chen D, Yu M, Jiao Y, Tao F. Role of Flavohemoglobins in the Development and Aflatoxin Biosynthesis of Aspergillus flavus. J Fungi (Basel) 2024; 10:437. [PMID: 38921422 PMCID: PMC11204391 DOI: 10.3390/jof10060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Aspergillus flavus is notorious for contaminating food with its secondary metabolite-highly carcinogenic aflatoxins. In this study, we found that exogenous nitric oxide (NO) donor could influence aflatoxin production in A. flavus. Flavohemoglobins (FHbs) are vital functional units in maintaining nitric oxide (NO) homeostasis and are crucial for normal cell function. To investigate whether endogenous NO changes affect aflatoxin biosynthesis, two FHbs, FHbA and FHbB, were identified in this study. FHbA was confirmed as the main protein to maintain NO homeostasis, as its absence led to a significant increase in intracellular NO levels and heightened sensitivity to SNP stress. Dramatically, FHbA deletion retarded aflatoxin production. In addition, FHbA played important roles in mycelial growth, conidial germination, and sclerotial development, and response to oxidative stress and high-temperature stress. Although FHbB did not significantly impact the cellular NO level, it was also involved in sclerotial development, aflatoxin synthesis, and stress response. Our findings provide a new perspective for studying the regulatory mechanism of the development and secondary mechanism in A. flavus.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.Z.); (D.C.); (M.Y.); (Y.J.)
| |
Collapse
|
5
|
Maghsoudi S, Shuaib R, Van Bastelaere B, Dakshinamurti S. Adenylyl cyclase isoforms 5 and 6 in the cardiovascular system: complex regulation and divergent roles. Front Pharmacol 2024; 15:1370506. [PMID: 38633617 PMCID: PMC11021717 DOI: 10.3389/fphar.2024.1370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Rabia Shuaib
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ben Van Bastelaere
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Section of Neonatology, Department of Pediatrics, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Wu W, Wen Y, Chen Y, Ji L, Chao H. A Mitochondria-Localized Iridium(III) Complex for Simultaneous Two-Photon Phosphorescence Lifetime Imaging of Downstream Products N 2O 3 and ONOO - of Endogenous Nitric Oxide. Anal Chem 2023; 95:15956-15964. [PMID: 37856322 DOI: 10.1021/acs.analchem.3c03023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO) serves as a ubiquitous and fundamental signaling molecule involved in intricate effects on both physiological and pathological processes. NO, biosynthesized by nitric oxide synthase (NOS) or generated from nitrite, can form nitrosation reagent N2O3 (4NO + O2 = 2N2O3) through its oxidation or quickly produce peroxynitrite anion ONOO- (NO + •O2- = ONOO-) by reacting with superoxide anion (•O2-). However, most of the existing luminescent probes for NO just focus on specificity and utilize only a single signal to distinguish products N2O3 or ONOO-. In most of the present work, they differentiate one product from another simply by fluorescence signal or fluorescence intensity, which is not enough to distinguish accurately the behavior of NO in living cells. Herein, a new mitochondria-targeted and two-photon near-infrared (NIR) phosphorescent iridium(III) complex, known as Ir-NBD, has been designed for accurate detection and simultaneous imaging of two downstream products of endogenous NO, i.e., N2O3 and ONOO-. Ir-NBD exhibits a rapid response to N2O3 and ONOO- in enhanced phosphorescence intensity, increased phosphorescence lifetime, and an exceptionally high two-photon cross-section, reaching values of 78 and 85 GM, respectively, after the reaction. Furthermore, we employed multiple imaging methods, phosphorescence intensity imaging, and phosphorescence lifetime imaging together to image even distinguish N2O3 and ONOO- by probe Ir-NBD. Thus, coupled with its excellent photometrics, Ir-NBD enabled the detection of the basal level of intracellular NO accurately by responding to N2O3 and ONOO- in the lipopolysaccharide-stimulated macrophage model in virtue of fluorescence signal and phosphorescence lifetime imaging, revealing precisely the endogenous mitochondrial NO distribution during inflammation in a cell environment.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yuxin Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
7
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
8
|
Carvalho RPR, Carvalho IRD, Costa RVD, Guimarães-Ervilha LO, Machado-Neves M. The effects of eugenol on histological, enzymatic, and oxidative parameters in the major salivary glands and pancreas of healthy male Wistar rats. Arch Oral Biol 2023; 154:105764. [PMID: 37454526 DOI: 10.1016/j.archoralbio.2023.105764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE We evaluated the effects of eugenol on histological, enzymatic, and oxidative parameters in the pancreas, parotid, submandibular, and sublingual glands of healthy male rats. DESIGN Twenty-four adult Wistar rats were assigned into four groups (n = 6/group). Control rats received 2% Tween-20 (eugenol vehicle), whereas the other animals received 10, 20, and 40 mg kg-1 eugenol through gavage daily for 60 d. Major salivary and pancreatic glands were weighed and preserved fixed for microscopic analysis and frozen for in vitro assays. RESULTS Eugenol did not alter glands' weight and serum amylase activity regardless of the concentration. The highest dose of eugenol caused an increase in pancreatic amylase activity and a reduction of lipase activity from serum and pancreas. Eugenol at 40 mg kg-1 diminished the activity of SOD and FRAP in the submandibular gland and CAT and FRAP in the sublingual gland. However, it did not exert any effect on GST regardless of the gland. Additionally, 40 mg kg-1 eugenol increased MDA levels in pancreatic, parotid, and submandibular glands and NO levels in the sublingual. The concentrations of eugenol induced distinct responses in the glands regarding the activity of Na+/K+, Mg2+, and total ATPase activity. They also affected histomorphometrical and histochemistrical parameters in the submandibular gland only. CONCLUSIONS Results indicated that 40 mg kg-1 eugenol altered most of the biochemical and oxidatived parameters of digestive glands. Only submandibular glands presented histological changes after eugenol exposure suggesting potential implications for its function.
Collapse
Affiliation(s)
| | | | - Rosiany Vieira da Costa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Coutinho F, Guimarães LM, Seeger R, Paula J Santos A, Glaser T, Yamamoto D, Lacerda L, Arnaud-Sampaio V, Rossini CV, Rabelo I, Miranda de Medeiros N, Ramos Truzzi D, Aparecida Juliano M, Juliano L, Ulrich H, Lameu C. Bj-PRO-10c, as an allosteric regulator of argininosuccinate synthase, is a potential therapy for neuroblastoma metastasis. Toxicon 2023; 233:107228. [PMID: 37479190 DOI: 10.1016/j.toxicon.2023.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Cancer is a global public health issue. Neuroblastoma (NB) originates from any tissue of the sympathetic nervous system, and the most affected site is the abdomen. The adrenal gland is the primary site in 38% of cases. Approximately 50% of patients have metastatic disease at diagnosis, and bone marrow is often affected. Metastatic disease is characterized by the spreading of cancer cells that are frequently resistant to chemotherapy and radiotherapy from the primary tumor to other specific parts of the body and is responsible for 90% of cancer-related deaths. Increasing evidence has indicated that nitric oxide (NO) signaling is implicated in the pathophysiology of many types of cancer, particularly in tumorigenesis and cancer progression. However, the effect of NO on metastasis cannot be easily classified as prometastatic or antimetastatic. An understanding at the molecular level of the role of NO in cancer will have profound therapeutic implications for the diagnosis and treatment of disease. Here, the proline-rich decapeptide isolated from Bothrops jararaca venom (Bj-PRO-10c) that enhances and sustains the generation of NO was used to unravel the role of metabolic NO in steps of metastasis. Bj-PRO-10c showed an antimetastatic effect, mainly by interfering with actin cytoskeleton rearrangement, controlling cell proliferation, and decreasing the seeding efficiency of NB in metastatic niches. Therefore, we proposed that an approach for controlled NO induction with the right molecular strategies can hopefully inhibit metastasis and increase the lifespan of NB patients.
Collapse
Affiliation(s)
- Fernanda Coutinho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Lara Mf Guimarães
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo Seeger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Ana Paula J Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Denise Yamamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Lucas Lacerda
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Caio Vt Rossini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Izadora Rabelo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Daniela Ramos Truzzi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | | | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Rahman MA, Shuvo AA, Apu MMH, Bhakta MR, Islam F, Rahman MA, Islam MR, Reza HM. Combination of epigallocatechin 3 gallate and curcumin improves D-galactose and normal-aging associated memory impairment in mice. Sci Rep 2023; 13:12681. [PMID: 37542120 PMCID: PMC10403524 DOI: 10.1038/s41598-023-39919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Previously, we observed curcumin improves aging-associated memory impairment in D-galactose (D-gal) and normal-aged (NA) mice. Evidence showed that multiple agents can be used in managing aging-induced memory dysfunction, drawn by the contribution of several pathways. Curcumin and Epigallocatechin 3 gallate (EGCG) combination substantially reduced the oxidative stress that commonly mediates aging. This study examined the combined effect of EGCG and curcumin on memory improvement in two recognized models, D-gal and normal-aged (NA) mice. The co-administration of EGCG and curcumin significantly (p < 0.05) increased retention time detected by passive avoidance (PA) and freezing response determined in contextual fear conditioning (CFC) compared to the discrete administration of EGCG or curcumin. Biochemical studies revealed that the combination of EGCG and curcumin remarkably ameliorated the levels (p < 0.05) of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation compared to the monotherapy of EGCG or curcumin in mice hippocampi. The behavioral and biochemical studies revealed that the combination of EGCG and curcumin showed better improvement in rescuing aging-associated memory disorders in mice. EGCG and curcumin combination could serve as a better choice in managing aging-related memory disorders.
Collapse
Affiliation(s)
- Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
- Department of Pharmaceutical Sciences, Wilkes University, Wilkes Barre, PA, 18766, USA.
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Monisha Rani Bhakta
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Farzana Islam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh.
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
11
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
13
|
Reddy TP, Glynn SA, Billiar TR, Wink DA, Chang JC. Targeting Nitric Oxide: Say NO to Metastasis. Clin Cancer Res 2023; 29:1855-1868. [PMID: 36520504 PMCID: PMC10183809 DOI: 10.1158/1078-0432.ccr-22-2791] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University Health Science Center, Bryan, Texas
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Sharon A. Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Asgari A, Jurasz P. Role of Nitric Oxide in Megakaryocyte Function. Int J Mol Sci 2023; 24:ijms24098145. [PMID: 37175857 PMCID: PMC10179655 DOI: 10.3390/ijms24098145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Megakaryocytes are the main members of the hematopoietic system responsible for regulating vascular homeostasis through their progeny platelets, which are generally known for maintaining hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow but may also circulate in the vasculature. They are generated directly or through a multi-lineage commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process called "megakaryopoiesis". Immature megakaryocytes enter a complicated development process defined as "thrombopoiesis" that ultimately results in the release of extended protrusions called proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G-2H7, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G-2S2, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB T6G-2R7, Canada
| |
Collapse
|
15
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Feibel D, Kwiatkowski A, Opländer C, Grieb G, Windolf J, Suschek CV. Enrichment of Bone Tissue with Antibacterially Effective Amounts of Nitric Oxide Derivatives by Treatment with Dielectric Barrier Discharge Plasmas Optimized for Nitrogen Oxide Chemistry. Biomedicines 2023; 11:biomedicines11020244. [PMID: 36830781 PMCID: PMC9953554 DOI: 10.3390/biomedicines11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Cold atmospheric plasmas (CAPs) generated by dielectric barrier discharge (DBD), particularly those containing higher amounts of nitric oxide (NO) or NO derivates (NOD), are attracting increasing interest in medical fields. In the present study, we, for the first time, evaluated DBD-CAP-induced NOD accumulation and therapeutically relevant NO release in calcified bone tissue. This knowledge is of great importance for the development of new therapies against bacterial-infectious complications during bone healing, such as osteitis or osteomyelitis. We found that by modulating the power dissipation in the discharge, it is possible (1) to significantly increase the uptake of NODs in bone tissue, even into deeper regions, (2) to significantly decrease the pH in CAP-exposed bone tissue, (3) to induce a long-lasting and modulable NO production in the bone samples as well as (4) to significantly protect the treated bone tissue against bacterial contaminations, and to induce a strong bactericidal effect in bacterially infected bone samples. Our results strongly suggest that the current DBD technology opens up effective NO-based therapy options in the treatment of local bacterial infections of the bone tissue through the possibility of a targeted modulation of the NOD content in the generated CAPs.
Collapse
Affiliation(s)
- Dennis Feibel
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Alexander Kwiatkowski
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, University Witten/Herdecke, 58455 Witten-Herdecke, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Centre, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph V. Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
17
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Anyachor CP, Dooka DB, Orish CN, Amadi CN, Bocca B, Ruggieri F, Senofonte M, Frazzoli C, Orisakwe OE. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci Rep 2022; 13:136-146. [PMID: 35989698 PMCID: PMC9382260 DOI: 10.1016/j.ibneur.2022.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/30/2022] [Indexed: 10/27/2022] Open
Abstract
The environment has been implicated to be a strong determinant of brain health with higher risk of neurodegeneration. The drastic rise in the prevalence of neurodegenerative diseases (NDDs) including Alzheimer's disease (AD), Parkinson's disease (PD), autism spectrum disorder (ASD), multiple sclerosis (MS) etc., supports the idea that environmental factors may play a major role in NDDs aetiology. Nickel is one of the listed environmental metals reported to pose a serious threat to human health. This paper reported available studies on nickel level in NDDs covering both animal and human studies. Different databases were searched for articles reporting the main neurotoxicity mechanisms and the concentration of nickel in fluids and tissues of NDDs patients compared to controls. Data were extracted and synthesized by ensuring the articles were related to nickel and NDDs. Various mechanisms were reported as oxidative stress, disturbances in mitochondrial membrane potential, trace elements homeostasis destabilization, etc. Nickel was found elevated in biological fluids as blood, serum/plasma and CSF and in the brain of NDDs, as a consequence of unintentional exposure thorough nickel-contaminated air, food, water, and skin contact. In addition, after exposure to nickel, the concentration of markers of lipid peroxidation were increased, while some antioxidant defence systems decreased. Thus, the reduction in the exposure to nickel contaminant may hold a promise in reducing the incidence of NDDs.
Collapse
Affiliation(s)
- Chidinma Promise Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Donatus Baridoo Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome Viale Regina Elena, 29900161 Roma, Italy
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
19
|
Rizwan H, Kumar S, Kumari G, Pal A. High glucose-induced increasing reactive nitrogen species accumulation triggered mitochondrial dysfunction, inflammation, and apoptosis in keratinocytes. Life Sci 2022; 312:121208. [PMID: 36427546 DOI: 10.1016/j.lfs.2022.121208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Growing evidence indicates that skin injuries are a common complication of diabetes. However, the cellular and molecular mechanisms of high glucose (HG) environment trigger nitrosative stress-mediated inflammation and apoptosis in keratinocytes remains unknown. Here we investigated whether reactive nitrogen species (RNS) induced by HG environment restrain antioxidant activity, and mitochondrial dysfunction leading to inflammation, and apoptosis via stress signaling pathways in keratinocytes. Our results established that the HG environment enhanced the production of nitric oxide (NO) and peroxynitrite anion (ONOO-) by inducible NO synthase (iNOS) in keratinocytes. Overproduction of RNS in HG environment suppress the antioxidants activity leading to mitochondrial dysfunction, characterized by loss of mitochondrial membrane potential (ΔΨm), increase in mitochondrial mass, decrease in mitochondrial transcription factor A(TFAM), increase in mitochondrial DNA (mtDNA) displacement loop (D-loop) and decrease in glycolytic flux concentration, which was attenuated by pharmacological inhibitors of NO/ONOO-, Nω-Nitro-l-argininemethyl ester hydrochloride (NAME)/hydralazine hydrochloride (Hyd.HCl). Excess production of RNS in HG environment restrained 8-oxoguanine DNA glycosylase-1 (OGG1) expression and increased 8-hydroxydeoxyguanosine (8-OHdG) accumulations in DNA were regulated by NO or ONOO-. Further, HG-induced RNA production caused an increase in the production of inflammatory mediators accompanied by activation of ERK1/2MAPK/Akt/tuberin-mTOR/IRF3 signaling cascade, lipid peroxidation (LPO), and protein carbonylation (PC) reactions followed by breakdown the cell-cell communication and apoptosis. Pre-treatment of cell with NAME/Hyd.HCl, diminished the expression of ERK1/2MAPK/Akt/tuberin-mTOR/IRF3, inflammatory mediators, and attenuated apoptosis in keratinocytes. Together, our results indicated that excess production of RNS in HG environment triggered inflammation and apoptosis, mediated by activation of ERK1/2MAPK/Akt/tuberin-mTOR/IRF3 signaling cascades in keratinocytes.
Collapse
Affiliation(s)
- Huma Rizwan
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | - Sonu Kumar
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Golden Kumari
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India
| | - Arttatrana Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India; Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar 845401, India.
| |
Collapse
|
20
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Karayağmurlu E, Elboğa G, Şahin ŞK, Karayağmurlu A, Taysı S, Ulusal H, Altındağ A. Effects of electroconvulsive therapy on nitrosative stress and oxidative DNA damage parameters in patients with a depressive episode. Int J Psychiatry Clin Pract 2022; 26:259-268. [PMID: 35073501 DOI: 10.1080/13651501.2021.2019788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Few studies have investigated the relationship between electroconvulsive therapy (ECT) and markers of nitrosative stress and oxidative DNA damage. OBJECTIVE The aim of this study is to examine changes in nitrosative stress and oxidative DNA damage in patients with a depressive episode treated with ECT. METHODS The current study included 48 patients with a depressive episode treated with ECT and 30 healthy control participants. First, the serum nitrosative stress markers of nitric oxide (NO•), nitric oxide synthase (NOS), and peroxynitrite (ONOO-) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were compared between the study and control groups. These parameters were also compared pre- and post-treatment for the study group. RESULTS NO•, NOS, and ONOO- levels were significantly higher in patients with depressive disorder (DD) than in the control group. NO• and NOS levels significantly decreased in the ECT group after treatment while 8-OHdG levels significantly increased. CONCLUSIONS The study findings suggest that ECT may have reduced nitrosative stress levels while increasing oxidative DNA damage. More research is now needed to better understand the issue.KEY POINTSNitrosative stress levels can increase in patients with depressive disorder.Electroconvulsive therapy may reduce nitrosative stress while increasıng oxidative DNA damage.These results suggest that nitrosative stress plays an important role in the mechanism of action of electroconvulsive therapy.
Collapse
Affiliation(s)
- Elif Karayağmurlu
- Department of Psychiatry, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Gülçin Elboğa
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Şengül Kocamer Şahin
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ali Karayağmurlu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seyithan Taysı
- Department of Biochemisty, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemisty, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Abdurrahman Altındağ
- Department of Psychiatry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
22
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
23
|
Tranter MH, Redfors B, Wright PT, Couch LS, Lyon AR, Omerovic E, Harding SE. Hyperthermia as a trigger for Takotsubo syndrome in a rat model. Front Cardiovasc Med 2022; 9:869585. [PMID: 35958426 PMCID: PMC9360576 DOI: 10.3389/fcvm.2022.869585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022] Open
Abstract
Takotsubo syndrome is a well-characterized cause of acute yet reversible heart failure associated with periods of intense emotional stress, often mimicking on presentation an acute coronary syndrome. Animal models of Takotsubo syndrome have been developed, either through the application of a stressor, or administration of exogenous catecholamine. We found that in a model of isoproterenol-induced Takotsubo syndrome in anesthetized rats hyperthermia (40-41°C) would occur after the administration of isoproterenol. Maintenance of this hyperthermia would result in an apical hypocontractility typical of the syndrome, whereas prevention of hyperthermia with active cooling to maintain a euthermic core body temperature prevented (but did not subsequently reverse) apical hypocontractility. In vitro experimentation with isolated cardiomyocytes showed no effect of hyperthermia on either baseline contractility or contractility change after beta-adrenoceptor stimulation. We suggest that the rise in body temperature that is characteristic of catecholamine storm may be a component in the development of Takotsubo syndrome.
Collapse
Affiliation(s)
- Matthew H. Tranter
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
- Oriel College, University of Oxford, Oxford, United Kingdom
| | - Bjorn Redfors
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter T. Wright
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Liam S. Couch
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| | - Alexander R. Lyon
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sian E. Harding
- Faculty of Medicine, Imperial College London, Hammersmith Campus, National Heart and Lung Institute (NHLI), London, United Kingdom
| |
Collapse
|
24
|
Moldovan R, Mitrea DR, Florea A, Chiş IC, Suciu Ş, David L, Moldovan BE, Mureşan LE, Lenghel M, Ungur RA, Opriş RV, Decea N, Clichici SV. Effects of Gold Nanoparticles Functionalized with Bioactive Compounds from Cornus mas Fruit on Aorta Ultrastructural and Biochemical Changes in Rats on a Hyperlipid Diet-A Preliminary Study. Antioxidants (Basel) 2022; 11:antiox11071343. [PMID: 35883833 PMCID: PMC9311980 DOI: 10.3390/antiox11071343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Cornus mas L. extract (CM) presents hypolipidemic, antioxidant and anti-inflammatory activity. Gold nanoparticles (AuNPs) are considered potent delivery systems and may be used to release pharmaceutical compounds at the level of injury. In our study, we used gold nanoparticles functionalized with bioactive compounds from Cornus mas L. (AuNPsCM) in an experimental model of a high-fat diet (HFD), and we assessed their effects on aorta wall but also in the serum, as compared to Cornus mas (CM) administration. Sprague Dawley female rats were fed for 9 months with an HFD. During the last month of the experiment, we randomly allocated the animals into three groups that received, by oral gavage: saline solution, CM solution (0.158 mg/mL polyphenols) or AuNPsCM solution (260 μg Au/kg/day), while a Control group received a standard diet and saline solution. At the end of the experiment, we performed an ultrasonography of the aorta and left ventricle and a histology and transmission electron microscopy of the aorta walls; we investigated the oxidative stress and inflammation in aorta homogenates and in serum and, in addition, the lipid profile. AuNPsCM presented better effects in comparison with the natural extract (CM) on lipid peroxidation (p < 0.01) and TNF-alpha (p < 0.001) in aorta homogenates. In serum, both CM and AuNPsCM decreased the triglycerides (p < 0.001) and C-reactive protein (CM, p < 0.01; AuNPsCM, p < 0.001) and increased the antioxidant protection (p < 0.001), in comparison with the HFD group. In intima, AuNPsCM produced ultrastructural lesions, with the disorganization of intima and subendothelial connective layer, whereas CM administration preserved the intima normal aspect, but with a thinned subendothelial connective layer. AuNPsCM oral administration presented certain antioxidant, anti-inflammatory and hypolipidemic effects in an experimental model of HFD, but with a negative impact on the ultrastructure of aorta walls, highlighted by the intima disorganization.
Collapse
Affiliation(s)
- Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Daniela-Rodica Mitrea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
- Correspondence:
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Irina-Camelia Chiş
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Şoimiţa Suciu
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Luminiţa David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Bianca Elena Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania; (L.D.); (B.E.M.)
| | - Laura Elena Mureşan
- Raluca Ripan Institute of Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania;
| | - Manuela Lenghel
- Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1–3 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Rodica Ana Ungur
- Department of Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
| | - Răzvan Vlad Opriş
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (A.F.); (R.V.O.)
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| | - Simona Valeria Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006 Cluj-Napoca, Romania; (R.M.); (I.-C.C.); (Ş.S.); (N.D.); (S.V.C.)
| |
Collapse
|
25
|
Rahman MA, Shuvo AA, Bepari AK, Hasan Apu M, Shill MC, Hossain M, Uddin M, Islam MR, Bakshi MK, Hasan J, Rahman A, Rahman GMS, Reza HM. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One 2022; 17:e0270123. [PMID: 35767571 PMCID: PMC9242463 DOI: 10.1371/journal.pone.0270123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Aging-induced memory impairment is closely associated with oxidative stress. D-Galactose (D-gal) evokes severe oxidative stress and mimics normal aging in animals. Curcumin, a natural flavonoid, has potent antioxidant and anti-aging properties. There are several proteins like glutathione S-transferase A1 (GSTA1), glutathione S-transferase omega-1 (GSTO1), kelch-like ECH-associated protein 1 (KEAP1), beta-secretase 1 (BACE1), and amine oxidase [flavin-containing] A (MAOA) are commonly involved in oxidative stress and aging. This study aimed to investigate the interaction of curcumin to these proteins and their subsequent effect on aging-associated memory impairment in two robust animal models: D-Gal and normal aged (NA) mice. The aging mice model was developed by administering D-gal intraperitoneally (i.p). Mice (n = 64) were divided into the eight groups (8 mice in each group): Vehicle, Curcumin-Control, D-gal (100mg/kg; i.p), Curcumin + D-gal, Astaxanthin (Ast) + D-gal, Normal Aged (NA), Curcumin (30mg/kg Orally) + NA, Ast (20mg/kg Orally) + NA. Retention and freezing memories were assessed by passive avoidance (PA) and contextual fear conditioning (CFC). Molecular docking was performed to predict curcumin binding with potential molecular targets. Curcumin significantly increased retention time (p < 0.05) and freezing response (p < 0.05) in PA and CFC, respectively. Curcumin profoundly ameliorated the levels of glutathione, superoxide dismutase, catalase, advanced oxidation protein products, nitric oxide, and lipid peroxidation in mice hippocampi. In silico studies revealed favorable binding energies of curcumin with GSTA1, GSTO1, KEAP1, BACE1, and MAOA. Curcumin improves retention and freezing memory in D-gal and nature-induced aging mice. Curcumin ameliorates the levels of oxidative stress biomarkers in mice. Anti-aging effects of curcumin could be attributed to, at least partially, the upregulation of antioxidant enzymes through binding with GSTA1, GSTO1, KEAP1, and inhibition of oxidative damage through binding with BACE1 and MAOA.
Collapse
Affiliation(s)
- Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Science Center (TTUHSC), Amarillo, TX, United States of America
- * E-mail: (MAR); (HMR)
| | - Arif Anzum Shuvo
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mehedi Hasan Apu
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Md. Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | - Monjurul Kader Bakshi
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Javed Hasan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | - Atiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
| | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, Bangladesh
- * E-mail: (MAR); (HMR)
| |
Collapse
|
26
|
Sengupta S, Nath R, Bhuyan R, Bhattacharjee A. Variation in glucose metabolism under acidified sodium nitrite mediated nitrosative stress in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:1660-1675. [PMID: 35702895 DOI: 10.1111/jam.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Bio-Science and Biotechnology, Banasthali Vidyapith (Deemed) University, Banasthali, Rajasthan, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| |
Collapse
|
27
|
Zaborova VA, Butenko AV, Shekhter AB, Fayzullin AL, Pekshev AV, Serejnikova NB, Chigirintseva OV, Kryuchkova KY, Gurevich KG. Nitric oxide therapy is beneficial to rehabilitation in professional soccer players: clinical and experimental studies. Med Gas Res 2022; 13:128-132. [PMID: 36571378 PMCID: PMC9979209 DOI: 10.4103/2045-9912.344983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide can activate neutrophils and macrophages, facilitate the synthesis of collagen, which allows significantly accelerating the regeneration of traumatized tissues. We studied the effects of nitric oxide-containing gas flow generated by plasma-chemical device "Plason" in a rat model of full-thickness wounds. Histological and morphometric analyses revealed that Plason treated wounds expressed significantly fewer signs of inflammation and contained a more mature granulation tissue on day 4 after the operation. Considering the results of the experimental study, we applied the Plason device in sports medicine for the treatment of lower limb bruises of 34 professional soccer players. Athletes were asked to assess the intensity of pain with the Visual Analogue Scale. Girths of their lower limbs were measured over the course of rehabilitation. Nitric oxide therapy of full-thickness wounds inhibited inflammation and accelerated the regeneration of skin and muscle tissues. Compared with the control, we observed a significant reduction in pain syndrome on days 2-7 after injuries, edema, and hematoma, and shortened treatment duration. This pilot study indicates that the use of nitric oxide is a promising treatment method for sports injuries.
Collapse
Affiliation(s)
- Victoria A. Zaborova
- Department of Sports Medicine and Medical Rehabilitation, Institute of Clinical Medicine, Sechenov University, Moscow, Russian Federation,Sports Adaptology Lab, Moscow Institute of Physics and Technology (National Research University), Moscow, Russian Federation,Correspondence to: Victoria A. Zaborova, E-mail:
| | - Alexandra V. Butenko
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation,World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Sechenov University, Moscow, Russian Federation
| | - Anatoly B. Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation,World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Sechenov University, Moscow, Russian Federation
| | - Alexander V. Pekshev
- Research Institute of Power Engineering, Bauman Moscow State Technical University, Moscow, Russian Federation
| | | | - Ol'ga V. Chigirintseva
- Sports Adaptology Lab, Moscow Institute of Physics and Technology (National Research University), Moscow, Russian Federation
| | - Kira Yu. Kryuchkova
- Department of Sports Medicine and Medical Rehabilitation, Institute of Clinical Medicine, Sechenov University, Moscow, Russian Federation
| | - Konstantin G. Gurevich
- UNESCO Chair «Healthy Lifestyle for Successful Development», Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russian Federation
| |
Collapse
|
28
|
Ge X, Cao Z, Chu L. The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants (Basel) 2022; 11:antiox11040791. [PMID: 35453476 PMCID: PMC9030860 DOI: 10.3390/antiox11040791] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Inorganic nanoparticles, such as CeO3, TiO2 and Fe3O4 could be served as a platform for their excellent performance in antioxidant effect. They may offer the feasibility to be further developed for their smaller and controllable sizes, flexibility to be modified, relative low toxicity as well as ease of preparation. In this work, the recent progress of these nanoparticles were illustrated, and the antioxidant mechanism of the inorganic nanoparticles were introduced, which mainly included antioxidant enzyme-mimetic activity and antioxidant ROS/RNS scavenging activity. The antioxidant effects and the applications of several nanoparticles, such as CeO3, Fe3O4, TiO2 and Se, are summarized in this paper. The potential toxicity of these nanoparticles both in vitro and in vivo was well studied for the further applications. Future directions of how to utilize these inorganic nanoparticles to be further applied in some fields, such as medicine, cosmetic and functional food additives were also investigated in this paper.
Collapse
|
29
|
Alimoradi H, Thomas A, Lyth DDB, Barzegar-Fallah A, Matikonda SS, Gamble AB, Giles GI. SMA-BmobaSNO: an intelligent photoresponsive nitric oxide releasing polymer for drug nanoencapsulation and targeted delivery. NANOTECHNOLOGY 2022; 33:195101. [PMID: 35078165 DOI: 10.1088/1361-6528/ac4eb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an important biological signalling molecule that acts to vasodilate blood vessels and change the permeability of the blood vessel wall. Due to these cardiovascular actions, co-administering NO with a therapeutic could enhance drug uptake. However current NO donors are not suitable for targeted drug delivery as they systemically release NO. To overcome this limitation we report the development of a smart polymer, SMA-BmobaSNO, designed to release NO in response to a photostimulus. The polymer's NO releasing functionality is an S-nitrosothiol group that, at 10 mg ml-1, is highly resistant to both thermal (t1/216 d) and metabolic (t1/232 h) decomposition, but rapidly brakes down under photoactivation (2700 W m-2, halogen source) to release NO (t1/225 min). Photoresponsive NO release from SMA-BmobaSNO was confirmed in a cardiovascular preparation, where irradiation resulted in a 12-fold decrease in vasorelaxation EC50(from 5.2μM to 420 nM). To demonstrate the polymer's utility for drug delivery we then used SMA-BmobaSNO to fabricate a nanoparticle containing the probe Nile Red (NR). The resulting SMA-BmobaSNO-NR nanoparticle exhibited spherical morphology (180 nm diameter) and sustained NR release (≈20% over 5 d). Targeted delivery was characterised in an abdominal preparation, where photoactivation (450 W m-2) caused localized increases in vasodilation and blood vessel permeability, resulting in a 3-fold increase in NR uptake into photoactivated tissue. Nanoparticles fabricated from SMA-BmobaSNO therefore display highly photoresponsive NO release and can apply the Trojan Horse paradigm by using endogenous NO signalling pathways to smuggle a therapeutic cargo into target tissue.
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ansa Thomas
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel D B Lyth
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Olasehinde TA, Olaniran AO. Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes. Toxicol Res 2022; 38:365-377. [DOI: 10.1007/s43188-021-00115-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
|
31
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
32
|
Can Z, Keskin B, Üzer A, Apak R. Detection of nitric oxide radical and determination of its scavenging activity by antioxidants using spectrophotometric and spectrofluorometric methods. Talanta 2022; 238:122993. [PMID: 34857326 DOI: 10.1016/j.talanta.2021.122993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
Although reactive nitrogen species (RNS) may attack biomacromolecules and cause tissue damage when unbalanced by natural antioxidant defenses of the organism, they can also take part in cell signaling under different physiological states and defend against certain pathogens. Since there is a scarcity of analytical methods to detect radicalic NO and its scavengers, a functionalized gold nanoparticle-based spectrophotometric method and a spectrofluorometric method have been separately developed to test antioxidant activity toward scavenging of NO produced from sodium nitroprusside (SNP). The spectrophotometric method involves conversion of NO to nitrite, followed by the formation of an azo dye with 4-aminothiophenol (4-ATP)-modified gold nanoparticles (AuNPs) and N-(1-naphthyl)-ethylene diamine dichloride (NED) and its absorbance measurement at 565 nm. Calibration equations were established by taking the absorbance difference in the presence and absence of antioxidants. In the spectrofluorometric method, the excess of NO radicals, after being scavenged by thiol type antioxidants, caused a decrease in resorcinol fluorescence. The developed spectrophotometric method was applied to orange juice and its trolox equivalent (TE) antioxidant activity was found. By further applying the developed methods to real samples such as bovine serum albumin (BSA), fetal bovine serum (FBS), saliva and certain biomolecules, it is envisaged that these novel methods improving the selectivity of previous methods can be useful in human health and disease research associated with nitric oxide. The developed methods were compared and validated against the conventional Griess assay with Student t-test and F tests.
Collapse
Affiliation(s)
- Ziya Can
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Büşra Keskin
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey; Institute of Graduate Studies, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Ayşem Üzer
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Reşat Apak
- Engineering Faculty, Chemistry Department, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay St. No:112, Çankaya, Ankara, 06670, Turkey.
| |
Collapse
|
33
|
Kodidela S, Shaik FB, Mittameedi CM, Nallanchakravarthula V. Alcohol exacerbated biochemical and biophysical alterations in liver mitochondrial membrane of diabetic male wistar rats – A possible amelioration by Green tea. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Lum Nde A, Chukwuma CI, Erukainure OL, Chukwuma MS, Matsabisa MG. Ethnobotanical, phytochemical, toxicology and anti-diabetic potential of Senna occidentalis (L.) link; A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114663. [PMID: 34560215 DOI: 10.1016/j.jep.2021.114663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Senna occidentalis (L.) Link is a plant that has been used in medicine in some African countries, Asia and America. It is mainly used in Ayurvedic medicine in India. Several parts of this plant are used for preventing or treating diabetes, haematuria, rheumatism, typhoid, asthma, hepatotoxicity, disorders of haemoglobin and leprosy. AIM OF THE STUDY This review outlines the pharmacological evidence supporting the potential of S. occidentalis to control or compensate for diabetes and associated complications, with intentions to sensitize the scientific community for future research on this promising plant. MATERIALS AND METHODS Information on the anti-diabetic pharmacological studies of Senna occidentalis was collected from various scientific databases including Scopus, PubMed, ScienceDirect and Google Scholar. The studies were analyzed for the toxicological, phytochemical, anti-diabetic, hypoglycemic, anti-hyperlipidemia and antioxidative aspects of the different parts of S. occidentalis. RESULTS Numerous phytochemical constituents (flavonoids, saponins, alkaloids, tannins, terpenes and glycosides) are present in this plant and are responsible for their anti-diabetic, hypoglycemic, anti-hyperlipidemic and antioxidative effects. The different plant parts appears to exert anti-diabetic effects by direct regulation of blood glucose, modulation of lipid profile and improving of antioxidant status and islet function. CONCLUSION Senna occidentalis is rich in phytochemicals. The crude extracts of the different parts have valuable bioactive properties with potential ethnopharmacological relevance for diabetes management and treatment. Further bioassay guided phytochemical analyses of this plant are recommended to explore its therapeutic bioactive principles.
Collapse
Affiliation(s)
- Adeline Lum Nde
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Chika I Chukwuma
- Centre for the Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Maria S Chukwuma
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Motlalepula G Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa.
| |
Collapse
|
35
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
36
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
37
|
Boulebd H. Is cannabidiolic acid an overlooked natural antioxidant? Insights from quantum chemistry calculations. NEW J CHEM 2022. [DOI: 10.1039/d1nj04771j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The radical scavenging capacity of CBDA is moderate in lipid media but it is very important in water via the SET mechanism.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
38
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Huang H, Qiu R, Yang H, Ren F, Wu F, Zhang Y, Zhang H, Li C. Advanced NIR ratiometric probes for intravital biomedical imaging. Biomed Mater 2021; 17. [PMID: 34879355 DOI: 10.1088/1748-605x/ac4147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Near-infrared (NIR) fluorescence imaging technology (NIR-I region, 650-950 nm and NIR-II region, 1000-1700 nm), with deeper tissue penetration and less disturbance from auto-fluorescence than that in visible region (400-650 nm), is playing a more and more extensive role in the field of biomedical imaging. With the development of precise medicine, intelligent NIR fluorescent probes have been meticulously designed to provide more sensitive, specific and accurate feedback on detection. Especially, recently developed ratiometric fluorescent probes have been devoted to quantify physiological and pathological parameters with a combination of responsive fluorescence changes and self-calibration. Herein, we systemically introduced the construction strategies of NIR ratiometric fluorescent probes and their applications in biological imagingin vivo, such as molecular detection, pH and temperature measurement, drug delivery monitoring and treatment evaluation. We further summarized possible optimization on the design of ratiometric probes for quantitative analysis with NIR fluorescence, and prospected the broader optical applications of ratiometric probes in life science and clinical translation.
Collapse
Affiliation(s)
- Haoying Huang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Ruijuan Qiu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular, Imaging Technology Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|
40
|
Miranda KM, Ridnour LA, McGinity CL, Bhattacharyya D, Wink DA. Nitric Oxide and Cancer: When to Give and When to Take Away? Inorg Chem 2021; 60:15941-15947. [PMID: 34694129 DOI: 10.1021/acs.inorgchem.1c02434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanistic roles of nitric oxide (NO) during cancer progression have been important considerations since its discovery as an endogenously generated free radical. Nonetheless, the impacts of this signaling molecule can be seemingly contradictory, being both pro-and antitumorigenic, which complicates the development of cancer treatments based on the modulation of NO fluxes in tumors. At a fundamental level, low levels of NO drive oncogenic pathways, immunosuppression, metastasis, and angiogenesis, while higher levels lead to apoptosis and reduced hypoxia and also sensitize tumors to conventional therapies. However, clinical outcome depends on the type and stage of the tumor as well as the tumor microenvironment. In this Viewpoint, the current understanding of the concentration, spatial, and temporal dependence of responses to NO is correlated with potential treatment and prevention technologies and strategies.
Collapse
Affiliation(s)
- Katrina M Miranda
- Department of Chemistry and Biochemistry and the BIO5 Institute, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Lisa A Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Christopher L McGinity
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dana Bhattacharyya
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David A Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
41
|
Surendran A, Forbes Dewey C, Low BC, Tucker-Kellogg L. A computational model of mutual antagonism in the mechano-signaling network of RhoA and nitric oxide. BMC Mol Cell Biol 2021; 22:47. [PMID: 34635055 PMCID: PMC8507106 DOI: 10.1186/s12860-021-00383-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND RhoA is a master regulator of cytoskeletal contractility, while nitric oxide (NO) is a master regulator of relaxation, e.g., vasodilation. There are multiple forms of cross-talk between the RhoA/ROCK pathway and the eNOS/NO/cGMP pathway, but previous work has not studied their interplay at a systems level. Literature review suggests that the majority of their cross-talk interactions are antagonistic, which motivates us to ask whether the RhoA and NO pathways exhibit mutual antagonism in vitro, and if so, to seek the theoretical implications of their mutual antagonism. RESULTS Experiments found mutual antagonism between RhoA and NO in epithelial cells. Since mutual antagonism is a common motif for bistability, we sought to explore through theoretical simulations whether the RhoA-NO network is capable of bistability. Qualitative modeling showed that there are parameters that can cause bistable switching in the RhoA-NO network, and that the robustness of the bistability would be increased by positive feedback between RhoA and mechanical tension. CONCLUSIONS We conclude that the RhoA-NO bistability is robust enough in silico to warrant the investment of further experimental testing. Tension-dependent bistability has the potential to create sharp concentration gradients, which could contribute to the localization and self-organization of signaling domains during cytoskeletal remodeling and cell migration.
Collapse
Affiliation(s)
- Akila Surendran
- Singapore-MIT Alliance, Computational Systems Biology Programme, National University of Singapore, Singapore, Singapore.,Centre for Assistive Technology & Innovation, National Institute of Speech & Hearing, Trivandrum, Kerala, India
| | - C Forbes Dewey
- Singapore-MIT Alliance, Computational Systems Biology Programme, National University of Singapore, Singapore, Singapore.,Biological Engineering and Mechanical Engineering Departments, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Boon Chuan Low
- Singapore-MIT Alliance, Computational Systems Biology Programme, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,University Scholars Programme, National University of Singapore, Singapore, Singapore
| | - Lisa Tucker-Kellogg
- Singapore-MIT Alliance, Computational Systems Biology Programme, National University of Singapore, Singapore, Singapore. .,Cancer and Stem Cell Biology, and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
42
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
43
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
44
|
NO, way to go: critical amino acids to replenish nitric oxide production in treating mucositis. Curr Opin Support Palliat Care 2021; 15:188-196. [PMID: 34397582 DOI: 10.1097/spc.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW There is still an unmet need for preventive and treatment strategies for chemotherapy-induced and radiotherapy-induced mucositis and its associated systemic inflammatory response (SIR) in cancer patients. Because of citrulline depletion due to cytotoxic therapy, nitric oxide (NO) production can be reduced, limiting its effect in many physiological processes. Restoring NO production could relieve mucositis severity by supporting host damage control mechanisms. Amino acids glutamine, arginine and citrulline are involved in NO production. This review including recent literature of preclinical and clinical studies will discuss the potential benefits of glutamine, arginine and citrulline on mucositis development with focus on NO production. RECENT FINDINGS Mucositis severity is more defined by host response to DNA damage than by DMA damage itself. Citrulline depletion because of afunctional enterocytes could be responsible for NO depletion during cytotoxic therapy. Restoring NO production during cytotoxic therapy could have a beneficial effect on mucositis development. Citrulline seems a more promising NO donor than glutamine or arginine during cytotoxic therapy, although clinical studies in mucositis patients are currently lacking. SUMMARY Glutamine, arginine and citrulline show in-vitro beneficial effects on inflammatory processes involved in mucositis. Translation to the clinic is difficult as demonstrated with use of glutamine and arginine. Citrulline, being the most potent NO donor with excellent oral bio-availability, is very promising as treatment choice for mucositis and its use deserves to be investigated in clinical trials with mucositis patients.
Collapse
|
45
|
McGinity CL, Palmieri EM, Somasundaram V, Bhattacharyya DD, Ridnour LA, Cheng RYS, Ryan AE, Glynn SA, Thomas DD, Miranda KM, Anderson SK, Lockett SJ, McVicar DW, Wink DA. Nitric Oxide Modulates Metabolic Processes in the Tumor Immune Microenvironment. Int J Mol Sci 2021; 22:7068. [PMID: 34209132 PMCID: PMC8268115 DOI: 10.3390/ijms22137068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.
Collapse
Affiliation(s)
- Christopher L. McGinity
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Erika M. Palmieri
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Veena Somasundaram
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Dibyangana D. Bhattacharyya
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
- Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.E.R.); (S.A.G.)
| | - Lisa A. Ridnour
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Robert Y. S. Cheng
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Aideen E. Ryan
- Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.E.R.); (S.A.G.)
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (A.E.R.); (S.A.G.)
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | | | - Stephen K. Anderson
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, LEIDO Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
| | - Daniel W. McVicar
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| | - David A. Wink
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (C.L.M.); (E.M.P.); (V.S.); (D.D.B.); (L.A.R.); (R.Y.S.C.); (S.K.A.); (D.W.M.)
| |
Collapse
|
46
|
Pezzotti G, Asai T, Adachi T, Ohgitani E, Yamamoto T, Kanamura N, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ, Makimura K, Mazda O, Nishimura I. Antifungal activity of polymethyl methacrylate/Si 3N 4 composites against Candida albicans. Acta Biomater 2021; 126:259-276. [PMID: 33727194 DOI: 10.1016/j.actbio.2021.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Previous studies using gram-positive and -negative bacteria demonstrated that hydrolysis of silicon nitride (Si3N4) in aqueous suspensions elutes nitrogen and produces gaseous ammonia while buffering pH. According to immunochemistry assays, fluorescence imaging, and in situ Raman spectroscopy, we demonstrate here that the antipathogenic surface chemistry of Si3N4 can be extended to polymethylmethacrylate (PMMA) by compounding it with a minor fraction (~8 vol.%) of Si3N4 particles without any tangible loss in bulk properties. The hydrolytic products, which were eluted from partly exposed Si3N4 particles at the composite surface, exhibited fungicidal action against Candida albicans. Using a specific nitrative stress sensing dye and highly resolved fluorescence micrographs, we observed in situ congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while these radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. These in situ observations suggest that the surface chemistry of Si3N4 mimics the antifungal activity of macrophages, which concurrently produce NO radicals and superoxide anions (O2•-) resulting in the formation of candidacidal ONOO-. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit the uncontrolled growth of Candida albicans and ensuing candidiasis while being synergic with chemoprophylaxis. STATEMENT OF SIGNIFICANCE: In a follow-up of previous studies of gram-positive and gram-negative bacteria, we demonstrate here that the antipathogenic surface chemistry of Si3N4 could be extended to polymethylmethacrylate (PMMA) containing a minor fraction (~8 vol.%) of Si3N4 particles without tangible loss in bulk properties. Hydrolytic products eluted from Si3N4 particles at the composite surface exhibited fungicidal action against Candida albicans. Highly resolved fluorescence microscopy revealed congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit uncontrolled growth of Candida albicans and ensuing candidiasis in synergy with chemoprophylaxis.
Collapse
|
47
|
Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide 2021; 111-112:64-71. [PMID: 33831567 PMCID: PMC8021449 DOI: 10.1016/j.niox.2021.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.
Collapse
|
48
|
Li B, Sun C, Lin X, Busch W. The Emerging Role of GSNOR in Oxidative Stress Regulation. TRENDS IN PLANT SCIENCE 2021; 26:156-168. [PMID: 33004257 DOI: 10.1016/j.tplants.2020.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 05/19/2023]
Abstract
Oxidative stress is a common event in aerobic organisms and a fundamental and unavoidable cost of the aerobic lifestyle. Reactive oxygen and nitrogen species (ROS/RNS) and iron (Fe) are the most common agents that trigger oxidative stress. A conserved enzyme in the S-nitrosoglutathione (GSNO) metabolism, GSNO reductase (GSNOR), modulates a multitude of abiotic and biotic stress responses. In this review, we focus on the emerging role of GSNOR as a master regulator in oxidative stress through its regulation of the interaction of ROS, RNS, and Fe, and highlight recent discoveries in post-translational modifications of GSNOR and functional variations of natural GSNOR variants during oxidative stress. Recent advances in understanding GSNOR regulation show promise for the modulation of oxidative stress in plants.
Collapse
Affiliation(s)
- Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| | - Wolfgang Busch
- Plant Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
49
|
Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel) 2020; 9:E1279. [PMID: 33333846 PMCID: PMC7765317 DOI: 10.3390/antiox9121279] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) and myofibroblasts are the main producers of extracellular matrix (ECM) proteins that form the fibrotic tissue that leads to hepatic fibrosis. Reactive oxygen species (ROS) can directly activate HSCs or induce inflammation or programmed cell death, especially pyroptosis, in hepatocytes, which in turn activates HSCs and fibroblasts to produce ECM proteins. Therefore, antioxidants and the nuclear factor E2-related factor-2 signaling pathway play critical roles in modulating the profibrogenic response. The master proinflammatory factors nuclear factor-κB (NF-κB) and the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome may coordinate to produce and activate profibrogenic molecules such as interleukins 1β and 18, which effectively activate HSCs, to produce large amounts of fibrotic proteins. Furthermore, the NLRP3 inflammasome activates pro-caspase 1, which is upregulated by NF-κB, to produce caspase 1, which induces pyroptosis via gasdermin and the activation of HSCs. ROS play central roles in the activation of the NF-κB and NLRP3 signaling pathways via IκB (an inhibitor of NF-κB) and thioredoxin-interacting protein, respectively, thereby linking the molecular mechanisms of oxidative stress, inflammation and fibrosis. Elucidating these molecular pathways may pave the way for the development of therapeutic tools to interfere with specific targets.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Postgraduate Studies and Research Section, School of Higher Education in Medicine-IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Mexico City 11340, Mexico;
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Apartado Postal 14-740, Mexico City 07000, Mexico
| |
Collapse
|
50
|
Vo QV, Bay MV, Nam PC, Quang DT, Flavel M, Hoa NT, Mechler A. Theoretical and Experimental Studies of the Antioxidant and Antinitrosant Activity of Syringic Acid. J Org Chem 2020; 85:15514-15520. [PMID: 33150788 DOI: 10.1021/acs.joc.0c02258] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Syringic acid (SA) is a natural phenolic acid found in vegetables, fruits, and other plant-based foods. A range of biological activities were proposed for this compound including anticancer, antimicrobial, anti-inflammation, and anti-diabetic activities, as well as antioxidant and antinitrosant properties. In this study, the focus is on the latter two. The HO•, HOO•, NO, and NO2 scavenging activities of SA were evaluated in physiological environments by kinetic and thermodynamic calculations. The computed rate constants of the HO• radical scavenging of SA were 4.63 × 109 and 9.77 × 107 M-1 s-1 in polar and nonpolar solvents, respectively. A comparison with the experimentally determined rate constant in aqueous solution yields a kcalculated/kexperimental ratio of 0.3, thus the computed kinetic data are reasonably accurate. SA exhibited excellent HOO• and NO2 scavenging activity in water (koverall(HOO•) = 1.53 × 108 M-1 s-1 and koverall(NO2) = 1.98 × 108 M-1 s-1), whereas it did not show NO scavenging activity in any of the studied environments. In lipid medium, SA exhibited weak activity. Thus, in polar environments, the HOO• radical scavenging of SA is 1.53 times higher than that of ascorbic acid. Consistently, SA is a promising antioxidant and antinitrosant agent in polar environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| | - Mai Van Bay
- Department of Chemistry, The University of Danang-University of Science and Education, Danang 550000, Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Danang-University of Science and Technology, Danang 550000, Vietnam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City 530000, Vietnam
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty Ltd., Melbourne 3173, Australia.,School of Life Sciences, La Trobe University, Victoria 3086, Australia
| | - Nguyen Thi Hoa
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| |
Collapse
|