1
|
Campbell-Tofte J, Mu H, Winther K, Mølgaard P, Belin N, Josefsen K. Standardization parameters and synergism of source plant materials for the antidiabetic efficacy of the Rauvolfia-Citrus tea. Fitoterapia 2024; 176:106004. [PMID: 38744382 DOI: 10.1016/j.fitote.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The introduction of glucagon-like peptide 1 (GLP-1)-based therapies has greatly improved the management of type 2 diabetes (T2D), as they ensure good blood glucose control and promote weight loss. Ingestion of standardized herbal remedies that promote the same endogenous metabolic processes affected by the GLP-1-based treatments could provide cheaper alternatives in low- and middle-income countries, where there is currently an increase in the incidence of T2D. The focus in this study was to determine quality control parameters and the prime factors for the Rauvolfia-Citrus tea (RC-tea), as used in Nigerian traditional medicine to treat T2D. We have previously shown that the RC-tea that is made by boiling leaves of Rauvolfia vomitoria Afzel. and fruits of Citrus aurantium L. causes normalization of blood glucose and reduction of ectopic lipid accumulation in genetic diabetic (BKS-db) mice and in humans with T2D. The standardized RC-tea was made by boiling 40 g dried R. vomitoria foliage and 200 g fresh C. aurantium fruits per litre. The resulting golden-brown extract is free of microbial contamination, has pH 5 and contains ca. 230 mg naringin (marker compound for C. aurantium) and 25 mg robinin (marker compound for R. vomitoria) per litre. In addition, the herbal extract has the characteristic HPLC-DAD fingerprint where the marker compounds, naringin and robinin have retention times of approximately 26.3 min and 26.9 min, respectively, when using the outlined column and gradient elution conditions. Comparative evaluations of the antidiabetic effects of the standardized RC-tea and boiling water-extracts made with C. aurantium fruits alone (CA), R. vomitoria foliage alone (RV) and a combination of CA and RV, (CA + RV) in BKS-db mice, indicate that components from R. vomitoria foliage drive the reductions in ectopic lipid accumulation, since CA-treated mice lacked this effect. However, the normalization of blood glucose arises from combination of components from the two source plant materials as administration of either CA or RV resulted in hypoglycaemia. Interestingly, treatment with the CA + RV mixture, generated by mixing individually produced CA and RV plant extracts, resulted in hyperglycaemia, possibly due to drug-drug interactions of the blood glucose-reducing components in either plant extract. Hence, our data show that the best antidiabetic outcome results from the traditional practice of boiling R. vomitoria foliage and C. aurantium fruits together.
Collapse
Affiliation(s)
- Joan Campbell-Tofte
- Affiliated to Parker Institute, Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark.
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Kaj Winther
- Department of Nutrition, Exercise and Sports, University of Copenhagen Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Per Mølgaard
- Department of Drug Design and Pharmacology, Peptides and Proteins, Faculty of Health Sciences, University of Copenhagen, Jagtvej 162, Copenhagen, Denmark.
| | - Nicolas Belin
- Les Laboratoires Phytodia, 300 Boulevard Sébastien Brant, 67412 ILLKIRCH CEDEX, France.
| | - Knud Josefsen
- The Bartholin Institute, Rigshospitalet Department, 3733, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
2
|
Radi M, Eddardar Z, Drioiche A, Remok F, Hosen ME, Zibouh K, Ed-Damsyry B, Bouatkiout A, Amine S, Touijer H, Salamatullah AM, Bourhia M, Ibenmoussa S, Zair T. Comparative study of the chemical composition, antioxidant, and antimicrobial activity of the essential oils extracted from Lavandula abrialis and Lavandula stoechas: in vitro and in silico analysis. Front Chem 2024; 12:1353385. [PMID: 38591060 PMCID: PMC10999623 DOI: 10.3389/fchem.2024.1353385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
This work aims to add value to the Lavandula genus by identifying the chemical composition, antioxidant, and antimicrobial activities of two species lavender from Oulmès in Morocco; Lavandula abrialis and Lavandula stoechas. The uniqueness lies in the integrated approach that combines in vitro and in silico analyses to assess the biological properties of the essential oils (EO). The objective of this study is to enhance the significance of the Lavandula genus by analyzing the chemical composition, antioxidant properties, and antimicrobial effects of two lavender species found in Oulmès, Morocco: Lavandula abrialis and Lavandula stoechas. The distinctiveness is in the comprehensive methodology that merges in vitro and in silico investigations to evaluate the biological characteristics of the essential oils (EO). The extraction of essential oils (EO) by hydrodistillation from the aerial parts of Lavandula abrialis gave a high yield of essential oils (2.9%) compared to Lavandula stoechas (2.3%). A GC-MS analysis of the chemical composition revealed 56 chemical compounds, with some variation in the predominant components, representing between 99.98% and 100% of the EOs of the studied lavenders. Their antioxidant activity was assessed using the DPPH test. This method revealed that L. stoechas EO has a higher percentage of free radical inhibition than L. abrialis. The IC50 values demonstrate that the antioxidant activity of ascorbic acid is higher (1.62 g/mL) than the EOs of tested plants. Noteworthy, the EO of L. stoechas is more potent (12.94 g/mL) than that of Lavandula tibialis (34.71 g/mL). Regrading, the antibacterial tests, the EO of L. abrialis was particularly active against Staphylococcus aureus BLACT, which is inhibited at a concentration of 6.25 g/mL, while L. stoechas EO has a strong effect on Escherichia coli, with a MIC of 1.56 g/mL. Concerning the antifungal activity of the EOs, yeasts showed sensitivity toward EOs extracted from both L. tibialis and L. stoechas. Moreover, an in silico study was conducted targeting sarA protein of S. aureus (PDB ID: 2fnp) and NADPH oxidase from Lavandula sanfranciscensis (PDB: 2CDU) and results showed that Ishwarone and Selina-3,7 (11)-diene exhibited highest binding energy with -9.8 and -10.8 kcal/mol respectively. Therefore, these two compounds could be used as an antibacterial and antioxidant agents however more experimental and molecular study should be required.
Collapse
Affiliation(s)
- Mohamed Radi
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Zaina Eddardar
- Equipe Ecosystèmes et Sciences de l’environnement, Faculté des Sciences Appliquées, Ait Melloul—Université Ibn Zohr, Agadir, Morocco
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Firdaous Remok
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Md. Eram Hosen
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Khalid Zibouh
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Brahim Ed-Damsyry
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Amale Bouatkiout
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Sanae Amine
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Hanane Touijer
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, France
| | - Touriya Zair
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Research Team of Chemistry of Bioactive Molecules and the Environment, Moulay Ismaïl University, Meknes, Morocco
| |
Collapse
|
3
|
Mejri H, Aidi Wannes W, Mahjoub FH, Hammami M, Dussault C, Legault J, Saidani-Tounsi M. Potential bio-functional properties of Citrus aurantium L. leaf: chemical composition, antiviral activity on herpes simplex virus type-1, antiproliferative effects on human lung and colon cancer cells and oxidative protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1113-1123. [PMID: 37029956 DOI: 10.1080/09603123.2023.2200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
This study examined the antioxidant, anticancer and antiviral properties of the methanolic extracts from bigarade (Citrus aurantium L.) leaves at two development stages. Ferulic acid, naringin and naringenin were the principal phenolic components of young and old leaves. The highest total antioxidant capacity was obtained in young leaf extracts (YLE). These latter also exhibited the highest antiradical DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) activities, while the highest iron chelating and reducing power activities were observed in old leaf extracts (OLE). The potent anticancer activity was observed in YLE for human lung carcinoma (A-549) and in OLE for colon adenocarcinoma (DLD-1) cells. YLE showed the highest virucidal effects as compared to OLE and the positive control acyclovir against herpes simplex virus type-1 (HSV-1) propagation in Vero cells during the absorption and replication periods. The young and old leaves might be a source of natural antioxidants and protective agents against oxidative damage.
Collapse
Affiliation(s)
- Houda Mejri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Université du Québec a Chicoutimi, Chicoutimi, GH, Canada
| | - Wissem Aidi Wannes
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
| | | | - Majdi Hammami
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
| | - Catherine Dussault
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Université du Québec a Chicoutimi, Chicoutimi, GH, Canada
| | - Jean Legault
- Laboratoire LASEVE, Université du Québec a Chicoutimi, Université du Québec a Chicoutimi, Chicoutimi, GH, Canada
| | - Moufida Saidani-Tounsi
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center in Borj-Cedria Technopole, Hammam-lif, Tunisia
| |
Collapse
|
4
|
Wang GH, Huang CT, Huang HJ, Tang CH, Chung YC. Biological Activities of Citrus aurantium Leaf Extract by Optimized Ultrasound-Assisted Extraction. Molecules 2023; 28:7251. [PMID: 37959671 PMCID: PMC10649195 DOI: 10.3390/molecules28217251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Several studies have explored the biological activities of Citrus aurantium flowers, fruits, and seeds, but the bioactivity of C. aurantium leaves, which are treated as waste, remains unclear. Thus, this study developed a pilot-scale ultrasonic-assisted extraction process using the Box-Behnken design (BBD) for the optimized extraction of active compounds from C. aurantium leaves, and their antityrosinase, antioxidant, antiaging, and antimicrobial activities were evaluated. Under optimal conditions in a 150× scaleup configuration (a 30 L ultrasonic machine) of a pilot plant, the total phenolic content was 69.09 mg gallic acid equivalent/g dry weight, which was slightly lower (3.17%) than the theoretical value. The half maximal inhibitory concentration of C. aurantium leaf extract (CALE) for 2,2-diphenyl-1-picrylhydrazyl-scavenging, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-scavenging, antityrosinase, anticollagenase, antielastase and anti-matrix metalloprotein-1 activities were 123.5, 58.5, 181.3, 196.4, 216.3, and 326.4 mg/L, respectively. Moreover, the minimal inhibitory concentrations for bacteria and fungi were 150-350 and 500 mg/L, respectively. In total, 17 active compounds were detected in CALE-with linalool, linalyl acetate, limonene, and α-terpineol having the highest concentrations. Finally, the overall transdermal absorption and permeation efficiency of CALE was 95.9%. In conclusion, our CALE demonstrated potential whitening, antioxidant, antiaging, and antimicrobial activities; it was also nontoxic and easily absorbed into the skin as well as inexpensive to produce. Therefore, it has potential applications in various industries.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen 361008, China
| | - Chun-Ta Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| | - Hsiu-Ju Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| | - Chi-Hsiang Tang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan (C.-H.T.)
| |
Collapse
|
5
|
Indira M, Peele KA, Krupanidhi S, Prabhakar KV, Vimala K, kavya PS, Sravya I, Venkateswarulu TC. In Vitro Assessment of The Bioactive Compounds and Anticancer Potential of Citrus medica Leaf Extract. Trop Life Sci Res 2023; 34:197-215. [PMID: 37860090 PMCID: PMC10583853 DOI: 10.21315/tlsr2023.34.3.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/06/2023] [Indexed: 10/21/2023] Open
Abstract
Citrus medica is a horticultural crop grown in different parts of the world. The plant leaves have medicinal importance in traditional medicine for the treatment of various diseases. The leaves are an underutilised part of the plant, despite having various bioactive compounds with health benefits, with phytochemical analysis having revealed the presence of flavonoids, fatty acids, alkaloids, terpenoids, glycosides, carbohydrates and phytosterols. The biochemical constituents were identified using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS), which confirmed the presence of terpenoids, alcohols, alkanes, phytosterols and fatty acids. Among these, methyl 8, 11, 14-heptadecatrienoate is a linolenic acid, and α-linolenic acid, trimethylsilyl ester and levulinic acid are the predominant compounds belonging to the omega-3 fatty acid group, which has known health benefits. Further, the antimicrobial activity of C. medica plant leaves were tested against certain food-borne pathogens and showed significant results. The minimum inhibitory concentrations ranged from 6.09 mg/mL to 390 mg/mL for bacterial organisms and 48.75 mg/mL to 390 mg/mL for fungal organisms. The antioxidant activity values were 300 μg/mL and 450 μg/mL by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, respectively. The methanolic extract from the C. medica leaves also showed anticancer activity against MCF7 breast cancer cell lines, with an IC50 value of material for developing a healthy processed food such as nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Mikkili Indira
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Karlapudi Abraham Peele
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Srirama Krupanidhi
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| | - Kodali Vidya Prabhakar
- Department of Biotechnology, Vikrama Simhapuri University, Nellore-524004, Andhra Pradesh, India
| | - K.B.S. Vimala
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| | - P. Satya kavya
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| | - I. Sravya
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| | - T. C. Venkateswarulu
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi-522213, Andhra Pradesh, India
| |
Collapse
|
6
|
Jia S, Jiang S, Chen Y, Wei Y, Shao X. Comparison of Inhibitory Effects of Cinnamic Acid, β-Cyclodextrin, L-Cysteine, and Ascorbic Acid on Soluble and Membrane-Bound Polyphenol Oxidase in Peach Fruit. Foods 2022; 12:foods12010167. [PMID: 36613383 PMCID: PMC9818785 DOI: 10.3390/foods12010167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There has been considerable interest in controlling polyphenol oxidase (PPO) activity to prevent enzymatic browning in foods. However, studies on inhibitions of different forms of PPO are very limited. Thus, this study focuses on the effects of cinnamic acid, β-cyclodextrin, L-cysteine, and ascorbic acid on soluble PPO (sPPO) and membrane-bound PPO (mPPO) in peach fruit. The activity of partially purified sPPO was 3.17 times higher than that of mPPO. However, mPPO was shown to be more stable than sPPO in the presence of inhibitors with different concentrations (i.e., 1, 3, 5 mM); activation of mPPO was found by 5 mM L-cysteine. Both sPPO and mPPO inhibitions were PPO substrate-dependent. Ascorbic acid showed the highest inhibitory effect on both sPPO and mPPO with all studied inhibitors and substrates. The inhibition of 1 mM ascorbic acid on sPPO and mPPO reached 95.42 ± 0.07% and 65.60 ± 1.16%, respectively. β-Cyclodextrin had a direct inhibitory effect only on sPPO, while the other three inhibitors had direct effects on both sPPO and mPPO. Cinnamic acid exhibited a non-competitive inhibition on sPPO and mPPO, with L-cysteine showing the same, though on sPPO. The inhibition of studied inhibitors on sPPO and mPPO is highly related to the substrate environment, type, and concentration of inhibitors. This study provides a basis for the further prevention of peach fruit browning from the perspective of different enzyme forms.
Collapse
Affiliation(s)
| | - Shu Jiang
- Correspondence: ; Tel.: +86-574-8760-4379
| | | | | | | |
Collapse
|
7
|
Bhatt R, Sarkar S, Sharma P, Soni L, Sahoo A. Comparing the efficacy of forage combinations with different hydrolysable and condensed tannin levels to improve production and lower methane emission in finisher lambs. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
WANG B, AN X, QU L, WANG F. Review on oral plant extracts in Skin Whitening. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bo WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Xiaohong AN
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Liping QU
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| | - Feifei WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| |
Collapse
|
10
|
Maksoud S, Abdel-Massih RM, Rajha HN, Louka N, Chemat F, Barba FJ, Debs E. Citrus aurantium L. Active Constituents, Biological Effects and Extraction Methods. An Updated Review. Molecules 2021; 26:molecules26195832. [PMID: 34641373 PMCID: PMC8510401 DOI: 10.3390/molecules26195832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Citrus genus is a prominent staple crop globally. Long-term breeding and much hybridization engendered a myriad of species, each characterized by a specific metabolism generating different secondary metabolites. Citrus aurantium L., commonly recognized as sour or bitter orange, can exceptionally be distinguished from other Citrus species by unique characteristics. It is a fruit with distinctive flavor, rich in nutrients and phytochemicals which possess different health benefits. This paper presents an overview of the most recent studies done on the matter. It intends to provide an in-depth understanding of the biological activities and medicinal uses of active constituents existing in C. aurantium. Every plant part is first discussed separately with regards to its content in active constituents. All extraction methods, their concepts and yields, used to recover these valuable molecules from their original plant matrix are thoroughly reported.
Collapse
Affiliation(s)
- Sawssan Maksoud
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon; (S.M.); (R.M.A.-M.); (E.D.)
| | - Roula M. Abdel-Massih
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon; (S.M.); (R.M.A.-M.); (E.D.)
| | - Hiba N. Rajha
- Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Saint-Joseph University, CST Mkalles Mar Roukos, P.O. Box 11-514, Riad El Solh, Beirut 1107 2050, Lebanon;
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Saint-Joseph University, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon;
| | - Nicolas Louka
- Centre d’Analyses et de Recherche, Unité de Recherche Technologies et Valorisation Agro-alimentaire, Faculté des Sciences, Saint-Joseph University, P.O. Box 17-5208, Riad El Solh, Beirut 1104 2020, Lebanon;
| | - Farid Chemat
- GREEN Extraction Team, INRA, UMR408, Avignon University, F-84000 Avignon, France;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
- Correspondence: ; Tel.: +34-963-544-972
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon; (S.M.); (R.M.A.-M.); (E.D.)
| |
Collapse
|
11
|
Fernández C, Romero T, Martí JV, Moya VJ, Hernando I, Loor JJ. Energy, nitrogen partitioning, and methane emissions in dairy goats differ when an isoenergetic and isoproteic diet contained orange leaves and rice straw crop residues. J Dairy Sci 2021; 104:7830-7844. [PMID: 33865581 DOI: 10.3168/jds.2020-19953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the effects of incorporating rice straw and orange leaves into the diets for goats. Ten Murciano-Granadina goats at mid lactation weighing 45 ± 0.3 kg were used in a crossover design. Two isoproteic and isoenergetic diets (180 g/kg DM and 17 MJ/kg DM, respectively) with alfalfa hay as forage source (33% of DM) were fed. A control diet (CON) incorporated barley as energy source and soy hulls as fiber component. The experimental diet (ORG) replaced barley and soy hulls with orange leaves (19% on DM basis), rice straw (12%, on DM basis) and soya oil (2%). Peas and horsebeans were the protein source in both diets. Each goat received the 2 treatments in 2 periods. Goats were fed the experimental diets and after 14 d on their respective treatments moved to individual metabolism cages for another 7 d. Subsequently, feed intake, total fecal and urine output and milk yield were recorded daily over the first 5 d. During the next 2 d ruminal fluid and blood samples were collected, and then individual gas-exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. No differences in dry matter intake were detected, and apparent total-tract digestibility was greater in CON than ORG. Efficiency of metabolizable energy intake for milk and maintenance also was lower in response to ORG (0.65 vs. 0.63), with energy balance being negative (-12 kJ/kg of BW0.75) due to mobilization of fat (-16 g/animal vs. 68 g/animal for ORG and CON, respectively). Although actual milk yield was lower in goats fed ORG (2.32 vs. 2.06 kg/d, respectively), energy-corrected milk did not differ (2.81 kg/d on average). In terms of milk quality, milk fat content, and concentrations of monounsaturated (18.54 vs. 11.55 g/100 g milk fat) and polyunsaturated fatty acids (5.75 vs. 3.99 g/100 g milk fat) were greater in goats fed ORG. Based on various indices, the milk produced by ORG would be less atherogenic and thrombogenic than CON milk. Compared with CON, enteric CH4 emission was lower due to feeding ORG (reduction of 38 g CH4/kg milk fat). Data suggest that greater fat mobilization in goats fed ORG might have been due to the apparent lack of synchrony between degradable protein and carbohydrate and the lipogenic nutrients associated with the lower cereal content of the ORG diet. Thus, goats fed ORG seemed to rely more on fat depots to help meet energy requirements and reach optimal performance. As such, the lower content of glucogenic nutrients in ORG did not favor body fat deposition and partitioning of ME into body tissue. Overall, responses in terms of CH4 emissions and milk quality suggest that inclusion of rice straw and orange leaves in diets for small ruminants could be a valuable alternative to reuse, recycle and revalue agricultural by-products.
Collapse
Affiliation(s)
- C Fernández
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain.
| | - T Romero
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - J V Martí
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - V J Moya
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - I Hernando
- Facultad de Magisterio y Ciencias de la Educación, Universidad Católica de Valencia, 46110 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
12
|
Kačániová M, Terentjeva M, Galovičová L, Ivanišová E, Štefániková J, Valková V, Borotová P, Kowalczewski PŁ, Kunová S, Felšöciová S, Tvrdá E, Žiarovská J, Benda Prokeinová R, Vukovic N. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules 2020; 25:E3956. [PMID: 32872611 PMCID: PMC7504819 DOI: 10.3390/molecules25173956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
The main aim of the study was to investigate the chemical composition, antioxidant, antimicrobial, and antibiofilm activity of Citrus aurantium essential oil (CAEO). The biofilm profile of Stenotrophonomonas maltophilia and Bacillus subtilis were assessed using the mass spectrometry MALDI-TOF MS Biotyper and the antibiofilm activity of Citrus aurantium (CAEO) was studied on wood and glass surfaces. A semi-quantitative composition using a modified version was applied for the CAEO characterization. The antioxidant activity of CAEO was determined using the DPPH method. The antimicrobial activity was analyzed by disc diffusion for two biofilm producing bacteria, while the vapor phase was used for three penicillia. The antibiofilm activity was observed with the agar microdilution method. The molecular differences of biofilm formation on different days were analyzed, and the genetic similarity was studied with dendrograms constructed from MSP spectra to illustrate the grouping profiles of S. maltophilia and B. subtilis. A differentiated branch was obtained for early growth variants of S. maltophilia for planktonic cells and all experimental groups. The time span can be reported for the grouping pattern of B. subtilis preferentially when comparing to the media matrix, but without clear differences among variants. Furthermore, the minimum inhibitory doses of the CAEO were investigated against microscopic fungi. The results showed that CAEO was most active against Penicillium crustosum, in the vapor phase, on bread and carrot in situ.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.K.); (L.G.); (V.V.)
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņaiela 8, LV-3004 Jelgava, Latvia;
| | - Lucia Galovičová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.K.); (L.G.); (V.V.)
| | - Eva Ivanišová
- Department of Technology and Quality of Plant Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Š.); (P.B.)
| | - Veronika Valková
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (M.K.); (L.G.); (V.V.)
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Š.); (P.B.)
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (J.Š.); (P.B.)
| | - Przemysław Łukasz Kowalczewski
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Simona Kunová
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Soňa Felšöciová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Jana Žiarovská
- Department of Plant Genetics and Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Renáta Benda Prokeinová
- Department of Statistics and Operations Research, Faculty of Economic and Management, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia
| |
Collapse
|
13
|
Dias C, Fonseca AMA, Amaro AL, Vilas-Boas AA, Oliveira A, Santos SAO, Silvestre AJD, Rocha SM, Isidoro N, Pintado M. Natural-Based Antioxidant Extracts as Potential Mitigators of Fruit Browning. Antioxidants (Basel) 2020; 9:E715. [PMID: 32784698 PMCID: PMC7463621 DOI: 10.3390/antiox9080715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Fruit enzymatic browning (EB) inhibition continues to be a challenge in the Food Industry. This physiological disorder results mainly from the oxidation of natural phenolic compounds by polyphenoloxidase (PPO) and peroxidase (POX) leading to the formation of brown pigments. EB can be controlled with the application of antioxidants, reducing/inhibiting the activity of these oxidative enzymes. In this study, strawberry tree (leaves and branches) and apple byproduct were the natural-based extracts (NES) selected, as potential tissue browning inhibitors, within a first screening of fifteen natural-based extracts with antioxidant properties. Phenolic profile, total phenolic content and antioxidant activity of the selected extracts were also performed as well as their depletion effect on the oxidative enzyme's activity and browning inhibiton in fresh-cut pears. Strawberry tree extracts (leaves and branches) revealed higher total phenolic content (207.97 ± 0.01 mg GAE.gNES-1 and 104.07 ± 16.38 mg GAE.gNES-1, respectively), confirmed by the plethora of phenolic compounds identified by LC-ESI-UHR-QqTOF-HRMS and quantified by HPLC. This phytochemical composition was reflected in the low IC50 against PPO and POX obtained. Despite the lower phenolic content (6.76 ± 0.11 mg GAE.gNES-1) and antioxidant activity (IC50 = 45.59 ± 1.34 mg mL-1), apple byproduct extract showed potential in delaying browning. This study highlights the opportunity of byproducts and agricultural wastes extracts as novel anti-browning agents.
Collapse
Affiliation(s)
- Cindy Dias
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Alexandre M. A. Fonseca
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portuga; (A.M.A.F.); (S.A.O.S.); (A.J.D.S.)
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana L. Amaro
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Ana A. Vilas-Boas
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Ana Oliveira
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| | - Sonia A. O. Santos
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portuga; (A.M.A.F.); (S.A.O.S.); (A.J.D.S.)
| | - Armando J. D. Silvestre
- CICECO-Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portuga; (A.M.A.F.); (S.A.O.S.); (A.J.D.S.)
| | - Sílvia M. Rocha
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Nélson Isidoro
- Cooperativa Agrícola dos Fruticultores do Cadaval, CRL (COOPVAL), Estrada Nacional 115, Km 26 2550-108 Cadaval, Portugal;
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; (C.D.); (A.L.A.); (A.A.V.-B.); (A.O.)
| |
Collapse
|
14
|
Siddique M, Khan NM, Saeed M, Ali S, Shah Z. Green synthesis of cobalt oxide nanoparticles using Citrus medica leaves extract: characterization and photo-catalytic activity. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The study deals with the green and eco-friendly synthesis and characterization of cobalt oxide nanoparticles using leaf extract of Citrus medica plant. The crystalline nature and functional groups analysis of cobalt oxide Nps was confirmed by X-ray diffraction and diffused reflectance infra-red spectroscopy respectively. The band gap of the Nps was calculated using Tauc plot. Scanning microscope analysis was carried out to get an insight to the structural morphology of the catalyst. The catalyst was found to be very active for the degradation of methyl orange dye using a very small amount of catalyst (0.006 g) using ultra violet radiation source. Approximately, 90% of the dye (Initial Conc. 10 mg L−1) was degraded in 60 min at natural pH (6.5). The dye degradation increased with increase in pH of the solution, due to the enhanced production of OH radicals, at higher pH values. Different experimental parameters like catalyst amount, agitation speed, initial pH of the solution, initial concentration of dye and recycling of the catalyst were varied to test the performance of the catalyst.
Collapse
Affiliation(s)
- Mohsin Siddique
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| | - Noor Muhammad Khan
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Saeed
- Depertment of Chemistry , Government College University , Faisalabad , Pakistan
| | - Sajid Ali
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| | - Zarbad Shah
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
15
|
Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan. leaves: New opportunity for under-utilized food by-products. Food Res Int 2020; 127:108742. [DOI: 10.1016/j.foodres.2019.108742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 11/18/2022]
|
16
|
Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules 2019; 24:molecules24142625. [PMID: 31330951 PMCID: PMC6680596 DOI: 10.3390/molecules24142625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 01/18/2023] Open
Abstract
The nutraceutical properties of extra-virgin olive oil (EVOO) can be further improved by the addition of olive leaves during olive pressing. However, while Citrus leaves are rich sources of bioactive substances, no data are available in the literature about the effect of Citrus leaf addition on the nutraceutical and sensorial profiles of olive oil. This study aimed at comparing the chemical and sensorial qualities of olive oils obtained from ripe olives pressed together with either Olea or Citrus spp. (lemon or orange) cryomacerated leaves. General composition parameters as well as major antioxidants and antioxidant activity were measured. A panel test evaluation, as well as headspace volatile characterization (headspace solid phase microextraction, HS-SPME), were also performed. All data were compared with an EVOO extracted from the same olive batch used as control. It was possible to obtain Leaf Olive Oils (LOOs) characterized by a higher (p < 0.05) content of antioxidants, compared to the control sample, and the highest oleuropein concentration was detected in the olive oil extracted in presence of olive leaf (+50% in comparison with the control). All the LOOs showed a higher smell complexity and the scent of ripe fruit was generally mitigated. Lemon and olive LOOs showed the best smell profile.
Collapse
|
17
|
Haraoui N, Allem R, Chaouche TM, Belouazni A. In-vitro antioxidant and antimicrobial activities of some varieties citrus grown in Algeria. ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00379-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Montes A, Hanke F, Williamson D, Guamán-Balcázar M, Valor D, Pereyra C, Teipel U, Martínez de la Ossa E. Precipitation of powerful antioxidant nanoparticles from orange leaves by means of supercritical CO2. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Casacchia T, Occhiuzzi MA, Grande F, Rizzuti B, Granieri MC, Rocca C, Gattuso A, Garofalo A, Angelone T, Statti G. A pilot study on the nutraceutical properties of the Citrus hybrid Tacle® as a dietary source of polyphenols for supplementation in metabolic disorders. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|