1
|
Shen Y, Wang J, Liang J, Chen Y, Wu X, Ren Z, Zhou J, Feng L, Shen Y. E3 Ubiquitin Ligase Ring Finger Protein 2 Alleviates Cerebral Ischemia-Reperfusion Injury by Stabilizing Mesencephalic Astrocyte-Derived Neurotrophic Factor Through Monoubiquitination. CNS Neurosci Ther 2024; 30:e70136. [PMID: 39614674 DOI: 10.1111/cns.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
AIM Cerebral ischemic stroke (IS) is one of the leading causes of morbidity and mortality globally. However, the mechanisms underlying IS injury remain poorly understood. Ring finger protein 2 (RNF2), the member of the polycomb family (PcG), has been implicated in diverse biological and pathological conditions. However, whether RNF2 plays a role in IS progression is not clarified. This study aims to investigate the potential effects of RNF2 on IS. METHODS The effects of RNF2 were studied in human postmortem IS brains, a rat model of IS, tunicamycin (TM)-induced mouse neuroblastoma neuro2a (N2a) cells, and oxygen-glucose deprivation/reperfusion (OGD/R)-induced SH-SY5Y cells. RESULTS Here, we demonstrated that RNF2 was markedly upregulated both in human postmortem IS brains and ischemic rat brains and RNF2 overexpression alleviated brain injury induced by middle cerebral artery occlusion by reducing neuron apoptosis. Mechanistically, we found that RNF2 is an E3 ubiquitin ligase for the mesencephalic astrocyte-derived neurotrophic factor (MANF), which confers protection against brain ischemia. RNF2 interacted with MANF and promoted the monoubiquitination of MANF, consequently facilitating its stability and nuclear localization. CONCLUSION Collectively, RNF2 is identified as a critical inhibitor of IS injury by stabilizing MANF through monoubiquitination, suggesting that RNF2 is a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Jinfeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Junxing Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Ying Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xueyan Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Zhenhua Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Jiangning Zhou
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Hu N, Zou L. Multiple functions of Hes genes in the proliferation and differentiation of neural stem cells. Ann Anat 2021; 239:151848. [PMID: 34715307 DOI: 10.1016/j.aanat.2021.151848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/24/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
The HES proteins (hairy and Enhancer of split (E(spl)) homologs) are basic helix-loop-helix (bHLH) transcription factors that regulate the proliferation and differentiation of stem cells. Family members HES1, 3, and 5 are all critical regulators of nervous system development. The Hes genes exhibit oscillatory expression levels, and this dynamic expression allows for the complex regulation of numerous downstream genes such as Ascl1, Neurog2, Olig2 involved in the differentiation of specific cell types. In addition, HES proteins act as hubs for the molecule crosstalk among Notch, Wnt, and other signaling pathways that regulate nervous system development.
Collapse
Affiliation(s)
- Nan Hu
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
3
|
Adult Neurogenesis in the Subventricular Zone and Its Regulation After Ischemic Stroke: Implications for Therapeutic Approaches. Transl Stroke Res 2019; 11:60-79. [DOI: 10.1007/s12975-019-00717-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
4
|
Marques BL, Carvalho GA, Freitas EMM, Chiareli RA, Barbosa TG, Di Araújo AGP, Nogueira YL, Ribeiro RI, Parreira RC, Vieira MS, Resende RR, Gomez RS, Oliveira-Lima OC, Pinto MCX. The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Dev Biol 2019; 95:98-110. [PMID: 30550812 DOI: 10.1016/j.semcdb.2018.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Stroke consists of an abrupt reduction of cerebral blood flow resulting in hypoxia that triggers an excitotoxicity, oxidative stress, and neuroinflammation. After the ischemic process, neural precursor cells present in the subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus proliferate and migrate towards the lesion, contributing to the brain repair. The neurogenesis is induced by signal transduction pathways, growth factors, attractive factors for neuroblasts, transcription factors, pro and anti-inflammatory mediators and specific neurotransmissions. However, this endogenous neurogenesis occurs slowly and does not allow a complete restoration of brain function. Despite that, understanding the mechanisms of neurogenesis could improve the therapeutic strategies for brain repair. This review presents the current knowledge about brain repair process after stroke and the perspectives regarding the development of promising therapies that aim to improve neurogenesis and its potential to form new neural networks.
Collapse
Affiliation(s)
- Bruno L Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo A Carvalho
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elis M M Freitas
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Raphaela A Chiareli
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thiago G Barbosa
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Armani G P Di Araújo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Yanley L Nogueira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Raul I Ribeiro
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo C Parreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato S Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Onésia C Oliveira-Lima
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
5
|
Zhong W, Huang Q, Zeng L, Hu Z, Tang X. Caveolin-1 and MLRs: A potential target for neuronal growth and neuroplasticity after ischemic stroke. Int J Med Sci 2019; 16:1492-1503. [PMID: 31673241 PMCID: PMC6818210 DOI: 10.7150/ijms.35158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke. Membrane lipid rafts (MLRs) are crucial structures for neuron survival and growth signaling pathways. Caveolin-1 (Cav-1), the main scaffold protein present in MLRs, targets many neural growth proteins and promotes growth of neurons and dendrites. Targeting Cav-1 may be a promising therapeutic strategy to enhance neuroplasticity after cerebral ischemia. This review addresses the role of Cav-1 and MLRs in neuronal growth after ischemic stroke, with an emphasis on the mechanisms by which Cav-1/MLRs modulate neuroplasticity via related receptors, signaling pathways, and gene expression. We further discuss how Cav-1/MLRs may be exploited as a potential therapeutic target to restore neuroplasticity after ischemic stroke. Finally, several representative pharmacological agents known to enhance neuroplasticity are discussed in this review.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Yang X, Geng KY, Zhang YS, Zhang JF, Yang K, Shao JX, Xia WL. Sirt3 deficiency impairs neurovascular recovery in ischemic stroke. CNS Neurosci Ther 2018; 24:775-783. [PMID: 29777578 DOI: 10.1111/cns.12853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS Sirt3 is one member of the NAD+ -dependent protein deacetylase family and plays crucial roles in diverse aspects of mammalian biological function. Then the role of Sirt3 on ischemia stroke is unknown. METHODS To examine the effect of Sirt3 on ischemic stroke, we performed transient middle cerebral artery occlusion (tMCAO) in adult male Sirt3 knockout (KO) and wild-type (WT) mice. RESULTS The level of Sirt3 in infarct region is decreased after ischemic stroke. In addition, we found that Sirt3 KO mice showed worse neurobehavioral outcome compared with WT mice, accompanied by decreased neurogenesis and angiogenesis as shown by the reduction in number of DCX+ /BrdU+ cells, NeuN+ /BrdU+ cells, and CD31+ /BrdU+ cells in the perifocal region during recovery phase after ischemic stroke. Furthermore, Sirt3 deficiency reduced the activation of vascular endothelial growth factor (VEGF), AKT, and extracellular signal-regulated kinases (ERK) signaling pathways. CONCLUSION Our results indicated that Sirt3 is beneficial to neurovascular and functional recovery following chronic ischemic stroke.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ke-Yi Geng
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Shuang Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Fan Zhang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Yang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xiang Shao
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Liang Xia
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Xiao X, Putatunda R, Zhang Y, Soni PV, Li F, Zhang T, Xin M, Luo JJ, Bethea JR, Cheng Y, Hu W. Lymphotoxin β receptor-mediated NFκB signaling promotes glial lineage differentiation and inhibits neuronal lineage differentiation in mouse brain neural stem/progenitor cells. J Neuroinflammation 2018; 15:49. [PMID: 29463313 PMCID: PMC5819232 DOI: 10.1186/s12974-018-1074-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lymphotoxin (LT) is a lymphokine mainly expressed in lymphocytes. LTα binds one or two membrane-associated LTβ to form LTα2β1 or LTα1β2 heterotrimers. The predominant LTα1β2 binds to LTβ receptor (LTβR) primarily expressed in epithelial and stromal cells. Most studies on LTβR signaling have focused on the organization, development, and maintenance of lymphoid tissues. However, the roles of LTβR signaling in the nervous system, particularly in neurogenesis, remain unknown. Here, we investigated the role of LTβR-mediated NFκB signaling in regulating neural lineage differentiation. METHODS The C57BL/6J wild-type and GFAP-dnIκBα transgenic mice were used. Serum-free embryoid bodies were cultured from mouse embryonic stem cells and further induced into neural stem/progenitor cells (NSCs/NPCs). Primary neurospheres were cultured from embryonic and adult mouse brains followed by monolayer culture for amplification/passage. NFκB activation was determined by adenovirus-mediated NFκB-firefly-luciferase reporter assay and p65/RelB/p52 nuclear translocation assay. LTβR mRNA expression was evaluated by quantitative RT-PCR and LTβR protein expression was determined by immunohistochemistry and Western blot analysis. Multilabeled immunocytochemistry or immunohistochemistry followed by fluorescent confocal microscopy and quantitative analysis of neural lineage differentiation were performed. Graphing and statistical analysis were performed with GraphPad Prism software. RESULTS In cultured NSCs/NPCs, LTα1β2 stimulation induced an activation of classical and non-classical NFκB signaling. The expression of LTβR-like immunoreactivity in GFAP+/Sox2+ NSCs was identified in well-established neurogenic zones of adult mouse brain. Quantitative RT-PCR and Western blot analysis validated the expression of LTβR in cultured NSCs/NPCs and brain neurogenic regions. LTβR expression was significantly increased during neural induction. LTα1β2 stimulation in cultured NSCs/NPCs promoted astroglial and oligodendrocytic lineage differentiation, but inhibited neuronal lineage differentiation. Astroglial NFκB inactivation in GFAP-dnIκBα transgenic mice rescued LTβR-mediated abnormal phenotypes of cultured NSCs/NPCs. CONCLUSION This study provides the first evidence for the expression and function of LTβR signaling in NSCs/NPCs. Activation of LTβR signaling promotes glial lineage differentiation. Our results suggest that neurogenesis is regulated by the adaptive immunity and inflammatory responses.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Yonggang Zhang
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Priya V Soni
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Ting Zhang
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Mingyang Xin
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Jin Jun Luo
- Department of Neurology, Temple University Lewis Katz School of Medicine, 3401 N Broad Street, Philadelphia, PA, USA
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:94-105. [PMID: 27889412 DOI: 10.1016/j.pnpbp.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
9
|
Soares LM, De Vry J, Steinbusch HW, Milani H, Prickaerts J, Weffort de Oliveira RM. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016; 326:69-83. [DOI: 10.1016/j.neuroscience.2016.03.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
|
10
|
Song J, Kang SM, Kim E, Kim CH, Song HT, Lee JE. Adiponectin receptor-mediated signaling ameliorates cerebral cell damage and regulates the neurogenesis of neural stem cells at high glucose concentrations: an in vivo and in vitro study. Cell Death Dis 2015; 6:e1844. [PMID: 26247729 PMCID: PMC4558511 DOI: 10.1038/cddis.2015.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.
Collapse
Affiliation(s)
- J Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - S M Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - E Kim
- Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - C-H Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - H-T Song
- Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - J E Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, South Korea
- BK21 Plus Project for Medical Sciences and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| |
Collapse
|
11
|
Li H, Zhu YH, Chi C, Wu HW, Guo J. Role of cytoskeleton in axonal regeneration after neurodegenerative diseases and CNS injury. Rev Neurosci 2015; 25:527-42. [PMID: 24622784 DOI: 10.1515/revneuro-2013-0062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/09/2014] [Indexed: 11/15/2022]
Abstract
With the occurrence of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, a number of well-functioning neurons need to be developed to make up for the loss of neurons and to restore the brain functions. Unfortunately, because the axons cannot regenerate well, brain function cannot be well compensated for even with the increasing number of newborn neurons, let alone the reformation of neural network. Cytoskeletal proteins play a crucial role in regeneration of axon. In this review, we summarize some cytoskeletal proteins, for instance, actin and actin-binding proteins, as well as tubulin and microtubule-associated proteins, and more importantly, their roles in the regulation of axonal regeneration in the brain. It will provide new opportunities for axonal regeneration after brain damage and will even bring new treatments to patients with neurodegenerative diseases.
Collapse
|
12
|
Qi Y, Li Y, Cui SC, Zhao JJ, Liu XY, Ji CX, Sun FY, Xu P, Chen XH. Splicing factor NSSR1 reduces neuronal injury after mouse transient global cerebral ischemia. Glia 2015; 63:826-45. [PMID: 25627895 DOI: 10.1002/glia.22787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 11/06/2022]
Abstract
This study focuses on the function of NSSR1, a splicing factor, in neuronal injury in the ischemic mouse brain using the transient global cerebral ischemic mouse model and the cultured cells treated with oxygen-glucose deprivation (OGD). The results showed that the cerebral ischemia triggers the expression of NSSR1 in hippocampal astrocytes, predominantly the dephosphorylated NSSR1 proteins, and the Exon3 inclusive NCAM-L1 variant and the Exon4 inclusive CREB variant. While in the hippocampus of astrocyte-specific NSSR1 conditional knockdown (cKD) mice, where cerebral ischemia no longer triggers NSSR1 expression in astrocytes, the expression of Exon3 inclusive NCAM-L1 variant and Exon4 inclusive CREB variant were no longer triggered as well. In addition, the injury of hippocampal neurons was more severe in astrocyte-specific NSSR1 cKD mice compared with in wild-type mice after brain ischemia. Of note, the culture media harvested from the astrocytes with overexpression of NSSR1 or the Exon3 inclusive NCAM-L1 variant, or Exon4 inclusive CREB variant were all able to reduce the neuronal injury induced by OGD. The results provide the evidence demonstrating that: (1) Splicing factor NSSR1 is a new factor involved in reducing ischemic injury. (2) Ischemia induces NSSR1 expression in astrocytes, not in neurons. (3) NSSR1-mediated pathway in astrocytes is required for reducing ischemic neuronal injury. (4) NCAM-L1 and CREB are probably mediators in NSSR1-mediated pathway. In conclusion, our results suggest for the first time that NSSR1 may provide a novel mechanism for reducing neuronal injury after ischemia, probably through regulation on alternative splicing of NCAM-L1 and CREB in astrocytes.
Collapse
Affiliation(s)
- Yao Qi
- State Key Laboratory of Medical Neurobiology and Laboratory of Genomic Physiology, Institutes of Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:108003. [PMID: 25292167 PMCID: PMC4189010 DOI: 10.1117/1.jbo.19.10.108003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/15/2014] [Indexed: 05/09/2023]
Abstract
The use of transcranial low-level laser (light) therapy (tLLLT) to treat stroke and traumatic brain injury (TBI) is attracting increasing attention. We previously showed that LLLT using an 810-nm laser 4 h after controlled cortical impact (CCI)-TBI in mice could significantly improve the neurological severity score, decrease lesion volume, and reduce Fluoro-Jade staining for degenerating neurons. We obtained some evidence for neurogenesis in the region of the lesion. We now tested the hypothesis that tLLLT can improve performance on the Morris water maze (MWM, learning, and memory) and increase neurogenesis in the hippocampus and subventricular zone (SVZ) after CCI-TBI in mice. One and (to a greater extent) three daily laser treatments commencing 4-h post-TBI improved neurological performance as measured by wire grip and motion test especially at 3 and 4 weeks post-TBI. Improvements in visible and hidden platform latency and probe tests in MWM were seen at 4 weeks. Caspase-3 expression was lower in the lesion region at 4 days post-TBI. Double-stained BrdU-NeuN (neuroprogenitor cells) was increased in the dentate gyrus and SVZ. Increases in double-cortin (DCX) and TUJ-1 were also seen. Our study results suggest that tLLLT may improve TBI both by reducing cell death in the lesion and by stimulating neurogenesis.
Collapse
Affiliation(s)
- Weijun Xuan
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Department of Otolaryngology, Nanning 530021, China
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
| | - Fatma Vatansever
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
| | - Liyi Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
- Guangxi Medical University, First Affiliated College and Hospital, Department of Infectious Diseases, Nanning 530021, China
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- Address all correspondence to: Michael R. Hamblin E-mail:
| |
Collapse
|
14
|
Oct-2 transcription factor binding activity and expression up-regulation in rat cerebral ischaemia is associated with a diminution of neuronal damage in vitro. Neuromolecular Med 2013; 16:332-49. [PMID: 24282026 DOI: 10.1007/s12017-013-8279-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
Abstract
Brain plasticity provides a mechanism to compensate for lesions produced as a result of stroke. The present study aims to identify new transcription factors (TFs) following focal cerebral ischaemia in rat as potential therapeutic targets. A transient focal cerebral ischaemia model was used for TF-binding activity and TF-TF interaction profile analysis. A permanent focal cerebral ischaemia model was used for the transcript gene analysis and for the protein study. The identification of TF variants, mRNA analysis, and protein study was performed using conventional polymerase chain reaction (PCR), qPCR, and Western blot and immunofluorescence, respectively. Rat cortical neurons were transfected with small interfering RNA against the TF in order to study its role. The TF-binding analysis revealed a differential binding activity of the octamer family in ischaemic brain in comparison with the control brain samples both in acute and late phases. In this study, we focused on Oct-2 TF. Five of the six putative Oct-2 transcript variants are expressed in both control and ischaemic rat brain, showing a significant increase in the late phase of ischaemia. Oct-2 protein showed neuronal localisation both in control and ischaemic rat brain cortical slices. Functional studies revealed that Oct-2 interacts with TFs involved in important brain processes (neuronal and vascular development) and basic cellular functions and that Oct-2 knockdown promotes neuronal injury. The present study shows that Oct-2 expression and binding activity increase in the late phase of cerebral ischaemia and finds Oct-2 to be involved in reducing ischaemic-mediated neuronal injury.
Collapse
|
15
|
Quadrato G, Di Giovanni S. Waking up the sleepers: shared transcriptional pathways in axonal regeneration and neurogenesis. Cell Mol Life Sci 2013; 70:993-1007. [PMID: 22899311 PMCID: PMC11113138 DOI: 10.1007/s00018-012-1099-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/13/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
In the last several years, relevant progress has been made in our understanding of the transcriptional machinery regulating CNS repair after acute injury, such as following trauma or stroke. In order to survive and functionally reconnect to the synaptic network, injured neurons activate an intrinsic rescue program aimed to increase their plasticity. Perhaps, in the attempt to switch back to a plastic and growth-competent state, post-mitotic neurons wake up and re-express a set of transcription factors that are also critical for the regulation of their younger brothers, the neural stem cells. Here, we review and discuss the transcriptional pathways regulating both axonal regeneration and neurogenesis highlighting the connection between the two. Clarification of their common molecular substrate may help simultaneous targeting of both neurogenesis and axonal regeneration with the hope to enhance functional recovery following CNS injury.
Collapse
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
16
|
Transcriptional Regulation and Specification of Neural Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:129-55. [DOI: 10.1007/978-94-007-6621-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Mu J, Ostrowski RP, Soejima Y, Rolland WB, Krafft PR, Tang J, Zhang JH. Delayed hyperbaric oxygen therapy induces cell proliferation through stabilization of cAMP responsive element binding protein in the rat model of MCAo-induced ischemic brain injury. Neurobiol Dis 2012; 51:133-43. [PMID: 23146993 DOI: 10.1016/j.nbd.2012.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
Abstract
Treatments that could extend the therapeutic window of opportunity for stroke patients are urgently needed. Early administration of hyperbaric oxygen therapy (HBOT) has been proven neuroprotective in the middle cerebral artery occlusion (MCAo) in rodents. Our aim was to determine: 1) whether delayed HBOT after permanent MCAo (pMCAo) can still convey neuroprotection and restorative cell proliferation, and 2) whether these beneficial effects rely on HBO-induced activation of protein phosphatase-1γ (PP1-γ) leading to a decreased phosphorylation and ubiquitination of CREB and hence its stabilization. The experiments were performed in one hundred thirty-two male Sprague-Dawley rats with the body weight ranging from 240 to 270 g. Permanent MCAo was induced with the intraluminal filament occluding the right middle cerebral artery (MCA). In the first experiment, HBOT (2.5 ATA, 1h daily for 10 days) was started 48 h after pMCAo. Neurobehavioral deficits and infarct size as well as cyclic AMP response element-binding protein (CREB) expression and BrdU-DAB staining in the hippocampus and the peri-infarct region were evaluated on day 14 and day 28 post-MCAo. In the second experiment, HBOT (2.5 ATA, 1h) was started 3h after pMCAo. The effects of CREB siRNA or PP1-γ siRNA on HBO-induced infarct size alterations and target protein expression were studied. HBOT started with 48 h delay reduced infarct size, ameliorated neurobehavioral deficits and increased protein expression of CREB, resulting in increased cell proliferations in the hippocampus and peri-infarct region, on day 14 and day 28 post-MCAo. In the acute experiment pMCAo resulted in cerebral infarction and functional deterioration and reduced brain expression of PP1-γ, which led to increased phosphorylation and ubiquitination of CREB 24h after MCAo. However HBOT administered 3h after ischemia reversed these molecular events and resulted in CREB stabilization, infarct size reduction and neurobehavioral improvement. Gene silencing with CREB siRNA or PP1-γ siRNA reduced acute beneficial effects of HBO. In conclusion, delayed daily HBOT presented as potent neuroprotectant in pMCAo rats, increased CREB expression and signaling activity, and bolstered regenerative type cell proliferation in the injured brain. As shown in the acute experiment these effects of HBO were likely to be mediated by reducing ubiquitin-dependent CREB degradation owing to HBO-induced activation of PP1γ.
Collapse
Affiliation(s)
- Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
19
|
Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L, Fan JB, Murray S, April C, Belinson H, Fu XD, Wynshaw-Boris A, Schork NJ, Courchesne E. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 2012; 8:e1002592. [PMID: 22457638 PMCID: PMC3310790 DOI: 10.1371/journal.pgen.1002592] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/22/2012] [Indexed: 01/09/2023] Open
Abstract
Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. Autism is a disorder characterized by aberrant social, communication, and restricted and repetitive behaviors. It develops clinically in the first years of life. Toddlers and children with autism often exhibit early brain enlargement and excess neuron numbers in the prefrontal cortex. Adults with autism generally do not display enlargement but instead may have a smaller brain size. Thus, we investigated DNA and mRNA patterns in prefrontal cortex from young versus adult postmortem individuals with autism to identify age-related gene expression differences as well as possible genetic correlates of abnormal brain enlargement, excess neuron numbers, and abnormal functioning in this disorder. We found abnormalities in genetic pathways governing cell number, neurodevelopment, and cortical lateralization in autism. We also found that the key pathways associated with autism are different between younger and older autistic individuals. These findings suggest that dysregulated gene pathways in the early stages of neurodevelopment could lead to later behavioral and cognitive deficits associated with autism.
Collapse
Affiliation(s)
- Maggie L. Chow
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Tiziano Pramparo
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Division of Medical Genetics, Department of Pediatrics and Institute of Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Mary E. Winn
- Scripps Genomic Medicine and The Scripps Translational Sciences Institute (STSI), La Jolla, California, United States of America
- Graduate Program in Biomedical Sciences, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Cynthia Carter Barnes
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Ri Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Lauren Weiss
- Department of Psychiatry, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jian-Bing Fan
- Illumina, San Diego, California, United States of America
| | - Sarah Murray
- Scripps Genomic Medicine and The Scripps Translational Sciences Institute (STSI), La Jolla, California, United States of America
| | - Craig April
- Illumina, San Diego, California, United States of America
| | - Haim Belinson
- Division of Medical Genetics, Department of Pediatrics and Institute of Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Anthony Wynshaw-Boris
- Division of Medical Genetics, Department of Pediatrics and Institute of Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nicholas J. Schork
- Scripps Genomic Medicine and The Scripps Translational Sciences Institute (STSI), La Jolla, California, United States of America
- * E-mail: (NJS); (EC)
| | - Eric Courchesne
- Department of Neuroscience, NIH–UCSD Autism Center of Excellence, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (NJS); (EC)
| |
Collapse
|