1
|
Popescu SC, Popescu R, Voiculescu V, Negrei C. Skin Lesions as Signs of Neuroenhancement in Sport. Brain Sci 2025; 15:315. [PMID: 40149836 PMCID: PMC11940593 DOI: 10.3390/brainsci15030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Neuroenhancement in sports, through pharmacological and non-pharmacological methods, is a complex and highly debated topic with no definitive regulatory framework established by the World Anti-Doping Agency (WADA). The hypothesis that dermatological changes could serve as observable biomarkers for neurodoping introduces a novel and promising approach to detecting and understanding the physiological impacts of cognitive enhancers in athletes. As neurodoping methods become increasingly sophisticated, developing objective, reliable, and non-invasive detection strategies is imperative. Utilizing dermatological signs as a diagnostic tool for internal neurophysiological changes could offer critical insights into the safety, fairness, and ethical considerations of cognitive enhancement in competitive sports. A systematic correlation between skin manifestations, the timeline of neurodoping practices, and the intensity of cognitive enhancement methods could provide healthcare professionals valuable tools for monitoring athletes' health and ensuring strict compliance with anti-doping regulations. METHODS Due to the limited body of research on this topic, a systematic review of the literature was conducted, spanning from 2010 to 31 December 2024, using databases such as PubMed, Science Direct, and Google Scholar. This study followed the 2020 PRISMA guidelines and included English-language articles published within the specified period, focusing on skin lesions as adverse reactions to pharmacological and non-pharmacological neuroenhancement methods. The research employed targeted keywords, including "skin lesions AND rivastigmine", "skin lesions AND galantamine", "skin lesions AND donepezil", "skin lesions AND memantine", and "skin lesions AND transcranial direct electrical stimulation". Given the scarcity of studies directly addressing neurodoping in sports, the search criteria were broadened to include skin reactions associated with cognitive enhancers and brain stimulation. Eighteen relevant articles were identified and analyzed. RESULTS The review identified rivastigmine patches as the most used pharmacological method for neuroenhancement, with pruritic (itchy) skin lesions as a frequent adverse effect. Donepezil was associated with fewer and primarily non-pruritic skin reactions. Among non-pharmacological methods, transcranial direct current stimulation (tDCS) was notably linked to skin burns, primarily due to inadequate electrode-skin contact, prolonged exposure, or excessive current intensity. These findings suggest that specific dermatological manifestations could serve as potential indicators of neurodoping practices in athletes. CONCLUSIONS Although specific neuroenhancement methods demonstrate distinctive dermatological side effects that might signal neurodoping, the current lack of robust clinical data involving athletes limits the ability to draw definitive conclusions. Athletes who engage in neurodoping without medical supervision are at an elevated risk of adverse dermatological and systemic reactions. Skin lesions, therefore, could represent a valuable early diagnostic marker for the inappropriate use or overuse of cognitive-enhancing drugs or neuromodulation therapies. The findings emphasize the need for focused clinical research to establish validated dermatological criteria for detecting neurodoping. This research could contribute significantly to the ongoing neuroethical discourse regarding the legitimacy and safety of cognitive enhancement in sports.
Collapse
Affiliation(s)
- Sorana-Cristiana Popescu
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.-C.P.)
| | - Roman Popescu
- Department of Orthopaedics, “Carol Davila” University of Medicine and Pharmacy, Rectorate—Dionisie Lupu Street, No. 37, District 1, 020021 Bucharest, Romania
| | - Vlad Voiculescu
- Elias University Emergency Hospital—Marasti Boulevard, No. 17, District 1, 011461 Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.-C.P.)
| |
Collapse
|
2
|
Chu L, Shu Z, Gu X, Wu Y, Yang J, Deng H. The Endocannabinoid System as a Potential Therapeutic Target for HIV-1-Associated Neurocognitive Disorder. Cannabis Cannabinoid Res 2023. [PMID: 36745405 DOI: 10.1089/can.2022.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Despite the successful introduction of combined antiretroviral therapy, the prevalence of mild to moderate forms of HIV-associated neurocognitive disorders (HAND) remains high. It has been demonstrated that neuronal injury caused by HIV is excitotoxic and inflammatory, and it correlates with neurocognitive decline in HAND. Endocannabinoid system (ECS) protects the body from excitotoxicity and neuroinflammation on demand and presents a promising therapeutic target for treating HAND. Here, we firstly discuss the potential pathogenesis of HAND. We secondly discuss the structural and functional changes in the ECS that are currently known among HAND patients. We thirdly discuss current clinical and preclinical findings concerning the neuroprotective and anti-inflammatory properties of the ECS among HAND patients. Fourth, we will discuss the interactions between the ECS and neuroendocrine systems, including the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes under the HAND conditions. Materials and Methods: We have carried out a review of the literature using PubMed to summarize the current state of knowledge on the association between ECS and HAND. Results: The ECS may be ideally suited for modulation of HAND pathophysiology. Direct activation of presynaptic cannabinoid receptor 1 or reduction of cannabinoid metabolism attenuates HAND excitotoxicity. Chronic neuroinflammation associated with HAND can be reduced by activating cannabinoid receptor 2 on immune cells. The sensitivity of the ECS to HIV may be enhanced by increased cannabinoid receptor expression in HAND. In addition, indirect regulation of the ECS through modulation of hormone-related receptors may be a potential strategy to influence the ECS and also alleviate the progression of HAND due to the reciprocal inhibition of the ECS by the HPA and HPG axes. Conclusions: Taken together, targeting the ECS may be a promising strategy to alleviate the inflammation and neurodegeneration caused by HIV-1 infection. Further studies are required to clarify the role of endocannabinoid signaling in HIV neurotoxicity. Strategies promoting endocannabinoid signaling may slow down cognitive decline of HAND are proposed.
Collapse
Affiliation(s)
- Liuxi Chu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Zheng Shu
- Clinical Nutrition Department, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yan Wu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Jin Yang
- Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China.,Department of Child and Adolescent Hygienics, School of Public Health, Southeast University, Nanjing, China
| | - Huihua Deng
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Memantine in the Prevention of Radiation-Induced Brain Damage: A Narrative Review. Cancers (Basel) 2022; 14:cancers14112736. [PMID: 35681716 PMCID: PMC9179311 DOI: 10.3390/cancers14112736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Decline in cognitive function is a major problem for patients undergoing whole-brain radiotherapy (WBRT). Scientific interest has increased due to the high dropout rate of patients in the first months after WBRT and the early onset of cognitive decline. Therefore, the study of antiglutamatergic pharmacological prophylaxis and hippocampal-sparing WBRT techniques has been deepened based on the knowledge of the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal areas in cognitive decline. In order to provide a summary of the evidence in this field, and to foster future research in this setting, this literature review presents current evidence on the prevention of radiation-induced cognitive decline and particularly on the role of memantine. Abstract Preserving cognitive functions is a priority for most patients with brain metastases. Knowing the mechanisms of hyperglutamatergic neurotoxicity and the role of some hippocampal areas in cognitive decline (CD) led to testing both the antiglutamatergic pharmacological prophylaxis and hippocampal-sparing whole-brain radiotherapy (WBRT) techniques. These studies showed a relative reduction in CD four to six months after WBRT. However, the failure to achieve statistical significance in one study that tested memantine alone (RTOG 0614) led to widespread skepticism about this drug in the WBRT setting. Moreover, interest grew in the reasons for the strong patient dropout rates in the first few months after WBRT and for early CD onset. In fact, the latter can only partially be explained by subclinical tumor progression. An emerging interpretation of the (not only) cognitive impairment during and immediately after WBRT is the dysfunction of the limbic and hypothalamic system with its immune and hormonal consequences. This new understanding of WBRT-induced toxicity may represent the basis for further innovative trials. These studies should aim to: (i) evaluate in greater detail the cognitive effects and, more generally, the quality of life impairment during and immediately after WBRT; (ii) study the mechanisms producing these early effects; (iii) test in clinical studies, the modern and advanced WBRT techniques based on both hippocampal-sparing and hypothalamic-pituitary-sparing, currently evaluated only in planning studies; (iv) test new timings of antiglutamatergic drugs administration aimed at preventing not only late toxicity but also acute effects.
Collapse
|
4
|
Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, Soraya H. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol 2021; 910:174455. [PMID: 34461125 DOI: 10.1016/j.ejphar.2021.174455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that was initially indicated for the treatment of moderate to severe Alzheimer's disease. It is now also considered for a variety of other pathologies in which activation of NMDA receptors apparently contributes to the pathogenesis and progression of disease. In addition to the central nervous system (CNS), NMDA receptors can be found in non-neuronal cells and tissues that recently have become an interesting research focus. Some studies have shown that glutamate signaling plays a role in cell transformation and cancer progression. In addition, these receptors may play a role in cardiovascular disorders. In this review, we focus on the most recent findings for memantine with respect to its pharmacological effects in a range of diseases, including inflammatory disorders, cardiovascular diseases, cancer, neuropathy, as well as retinopathy.
Collapse
Affiliation(s)
- Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Hamid Soraya
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Gmiro VE, Serdyuk SE. Comparison of the Pharmacological Activity and Safety of 1-Adamantylguanidine and 3,5-Dimethyl-1-Adamantylguanidine to those of Memantine. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Jha NK, Sharma A, Jha SK, Ojha S, Chellappan DK, Gupta G, Kesari KK, Bhardwaj S, Shukla SD, Tambuwala MM, Ruokolainen J, Dua K, Singh SK. Alzheimer's disease-like perturbations in HIV-mediated neuronal dysfunctions: understanding mechanisms and developing therapeutic strategies. Open Biol 2020; 10:200286. [PMID: 33352062 PMCID: PMC7776571 DOI: 10.1098/rsob.200286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Excessive exposure to toxic substances or chemicals in the environment and various pathogens, including viruses and bacteria, is associated with the onset of numerous brain abnormalities. Among them, pathogens, specifically viruses, elicit persistent inflammation that plays a major role in Alzheimer's disease (AD) as well as dementia. AD is the most common brain disorder that affects thought, speech, memory and ability to execute daily routines. It is also manifested by progressive synaptic impairment and neurodegeneration, which eventually leads to dementia following the accumulation of Aβ and hyperphosphorylated Tau. Numerous factors contribute to the pathogenesis of AD, including neuroinflammation associated with pathogens, and specifically viruses. The human immunodeficiency virus (HIV) is often linked with HIV-associated neurocognitive disorders (HAND) following permeation through the blood-brain barrier (BBB) and induction of persistent neuroinflammation. Further, HIV infections also exhibited the ability to modulate numerous AD-associated factors such as BBB regulators, members of stress-related pathways as well as the amyloid and Tau pathways that lead to the formation of amyloid plaques or neurofibrillary tangles accumulation. Studies regarding the role of HIV in HAND and AD are still in infancy, and potential link or mechanism between both is not yet established. Thus, in the present article, we attempt to discuss various molecular mechanisms that contribute to the basic understanding of the role of HIV-associated neuroinflammation in AD and HAND. Further, using numerous growth factors and drugs, we also present possible therapeutic strategies to curb the neuroinflammatory changes and its associated sequels.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research (SBSR), Sharda University, Greater Noida, UP 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, Greater Noida, CCS University, UP, India
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Sandeep Kumar Singh
- Department of Biomedical Research, Centre of Biomedical Research, SGPGI Campus, Lucknow 226014, UP, India
- Biological Science, Indian Scientific Education and Technology Foundation, Lucknow 226002, UP, India
| |
Collapse
|
7
|
Pharmacological profile of natural and synthetic compounds with rigid adamantane-based scaffolds as potential agents for the treatment of neurodegenerative diseases. Biochem Biophys Res Commun 2020; 529:1225-1241. [PMID: 32819589 DOI: 10.1016/j.bbrc.2020.06.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
This review is dedicated to the comparative analysis of structure-activity relationships for more than 75 natural and synthetic derivatives of adamantane. Some of these compounds, such as amantadine and memantine, are currently used to treat dementia, Alzheimer's and Parkinson's diseases and other neurodegenerative diseases. The data presented show that the pharmacological potential of 1-fluoro- and 1-phosphonic acid adamantane derivatives against Alzheimer's and Parkinson's diseases and other neurodegenerative diseases exceeds those of well-known amantadine and memantine. The information presented in this review highlights the promising directions of studies for biochemists, pharmacologists, medicinal chemists, physiologists, and neurologists, as well as to the pharmaceutical industry.
Collapse
|
8
|
Dembitsky VM, Dzhemileva L, Gloriozova T, D'yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun 2020; 524:772-783. [PMID: 32037088 DOI: 10.1016/j.bbrc.2020.01.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
This review is devoted to comparative pharmacological analysis of synthetic drugs such as memantine and its isomers, as well as tacrine, velnacrine, rivastigmine, and donepezil, with natural alkaloids, terpenoids, and triterpenoid peroxides, which are used to treat dementia, Alzheimer's and Parkinson's diseases, myasthenia gravis and other neurodegenerative diseases. Recently discovered by French scientists from Marseille triterpenoid hydroperoxides demonstrate high activity as potential therapeutic agents for the treatment of dementia. The information presented in this review is of great interest to pharmacologists, medical chemists, physiologists, neurologists and doctors, as well as for the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| | - Lilya Dzhemileva
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075, Russia.
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia.
| | - Vladimir D'yakonov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075, Russia.
| |
Collapse
|
9
|
Gmiro VE, Serdyuk SE, Veselkina OS. Synthesis and Pharmacological Properties of 1-(6-Aminohexylamino)-1-Phenylcyclohexyl Dihydrochloride (IEM-2062) as Compared with Memantine. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01950-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Gmiro VE, Serdyuk SE, Veselkina OS. Synthesis and Pharmacological Properties of Adamantane-Containing Bis-Cationic Compounds. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-1909-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Lamas JA, Fernández-Fernández D. Tandem pore TWIK-related potassium channels and neuroprotection. Neural Regen Res 2019; 14:1293-1308. [PMID: 30964046 PMCID: PMC6524494 DOI: 10.4103/1673-5374.253506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notwithstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| | - Diego Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
12
|
Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J Neurol Sci 2016; 375:430-441. [PMID: 28320183 DOI: 10.1016/j.jns.2016.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression.
Collapse
|
13
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
14
|
|
15
|
Łączkowski KZ, Misiura K, Biernasiuk A, Malm A, Paneth A, Plech T. Synthesis, Antimicrobial Activity and Molecular Docking Studies of 1,3-Thiazole Derivatives Incorporating Adamantanyl Moiety. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- K. Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals; Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University; Jurasza 2 85-089 Bydgoszcz Poland
| | - K. Misiura
- Department of Chemical Technology and Pharmaceuticals; Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University; Jurasza 2 85-089 Bydgoszcz Poland
| | - A. Biernasiuk
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy, Medical University; Chodźki 1 20-093 Lublin Poland
| | - A. Malm
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy, Medical University; Chodźki 1 20-093 Lublin Poland
| | - A. Paneth
- Department of Organic Chemistry; Faculty of Pharmacy, Medical University; Chodźki 4a 20-093 Lublin Poland
| | - T. Plech
- Department of Organic Chemistry; Faculty of Pharmacy, Medical University; Chodźki 4a 20-093 Lublin Poland
| |
Collapse
|
16
|
Chang YH, Chen SL, Lee SY, Chen PS, Wang TY, Lee IH, Chen KC, Yang YK, Hong JS, Lu RB. Low-dose add-on memantine treatment may improve cognitive performance and self-reported health conditions in opioid-dependent patients undergoing methadone-maintenance-therapy. Sci Rep 2015; 5:9708. [PMID: 25989606 PMCID: PMC4437025 DOI: 10.1038/srep09708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/03/2015] [Indexed: 01/19/2023] Open
Abstract
An important interaction between opioid and dopamine systems has been indicated, and using opioids may negatively affect cognitive functioning. Memantine, a medication for Alzheimer's disease, increasingly is being used for several disorders and maybe important for cognitive improvement. Opioid-dependent patients undergoing methadone-maintenance-therapy (MMT) and healthy controls (HCs) were recruited. Patients randomly assigned to the experimental (5 mg/day memantine (MMT+M) or placebo (MMT+P) group: 57 in MMT+M, 77 in MMT+P. Those completed the cognitive tasks at the baseline and after the 12-week treatment were analyzed. Thirty-seven age- and gender-matched HCs, and 42 MMT+P and 39 MMT+M patients were compared. The dropout rates were 49.4% in the MMT+P and 26.3% in the MMT+M. Both patient groups' cognitive performances were significantly worse than that of the HCs. After the treatment, both patient groups showed improved cognitive performance. We also found an interaction between the patient groups and time which indicated that the MMT+M group's post-treatment improvement was better than that of the MMT+P group. Memantine, previously reported as neuroprotective may attenuate chronic opioid-dependence-induced cognitive decline. Using such low dose of memantine as adjuvant treatment for improving cognitive performance in opioid dependents; the dose of memantine might be a worthy topic in future studies.
Collapse
Affiliation(s)
- Yun-Hsuan Chang
- Department of Psychology, Asia University, Taichung, Taiwan
- Division of Clinical Psychology, Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiou-Lan Chen
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Psychiatry, Kaohsiung Veteran's General Hospital, Kaohsiung, Taiwan
| | - Po See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Addiction Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - I. Hui Lee
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Addiction Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Neurobiology, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, USA
| | - Ru-Band Lu
- Division of Clinical Psychology, Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
17
|
Fereshtehnejad SM, Johnell K, Eriksdotter M. Anti-dementia drugs and co-medication among patients with Alzheimer's disease : investigating real-world drug use in clinical practice using the Swedish Dementia Quality Registry (SveDem). Drugs Aging 2014; 31:215-24. [PMID: 24497071 DOI: 10.1007/s40266-014-0154-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND There is a substantial risk of drug-interactions, adverse events, and inappropriate drug use (IDU) among frail Alzheimer's disease (AD) patients; however, there are few studies about co-medication and IDU in clinical settings. OBJECTIVES To investigate anti-dementia drugs, associated characteristics of cholinesterase inhibitors (ChEIs) and NMDA antagonists, co-medication, and IDU in a large population of outpatients with mild AD. METHODS In this cross-sectional analysis of medication characteristics, we analyzed data from the Swedish Dementia Quality Registry (SveDem) on 5,907 newly diagnosed AD patients who were registered in memory clinics. SveDem is a national quality registry in Sweden, which was established in 2007 to evaluate and improve dementia healthcare. Comparisons were performed concerning co-medications, use of ≥3 psychotropic drugs (IDU) and polypharmacy (≥5 drugs) based on anti-dementia treatment (ChEIs or NMDA antagonists). Information on baseline characteristics such as age, sex, living conditions, cognitive evaluation based on the Mini-Mental State Examination (MMSE) score, and diagnostic work-up was also evaluated. RESULTS The majority of the AD patients were in the mild stage of the disease. Overall, 4,342 (75.4 %) patients received any ChEI, 438 (7.6 %) used an NMDA antagonist and 74 (1.3 %) patients were treated with both. However, 907 (15.7 %) patients were not treated with any anti-dementia drug. While polypharmacy was seen in 33.5 % of patients, only 2.6 % concurrently used ≥3 psychotropic medications. Patients on ChEIs were significantly younger, had a higher MMSE score and were treated with a smaller number of medications (a proxy for overall co-morbidity). Co-medication with antipsychotics [3.3 vs. 7.6 %; adjusted odds ratio (OR) 0.55 (95 % CI 0.38-0.79)] and anxiolytics [5.8 vs. 10.9 %; adjusted OR 0.62 (95 % CI 0.46-0.84)] was significantly lower in the ChEI+ group than in those with no anti-dementia treatment. CONCLUSION Patients taking ChEIs were treated with less antipsychotics and anxiolytics than those not taking ChEIs. More research is warranted to elucidate whether use of ChEIs in clinical practice can reduce the need for psychotropic drugs in AD patients.
Collapse
Affiliation(s)
- Seyed-Mohammad Fereshtehnejad
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Karolinska Institutet, Novum 5th floor, 14186, Stockholm, Sweden,
| | | | | |
Collapse
|
18
|
Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2014; 24:1974-9. [DOI: 10.1016/j.bmcl.2014.02.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/22/2022]
|
19
|
Yohay K, Tyler B, Weaver KD, Pardo AC, Gincel D, Blakeley J, Brem H, Rothstein JD. Efficacy of local polymer-based and systemic delivery of the anti-glutamatergic agents riluzole and memantine in rat glioma models. J Neurosurg 2014; 120:854-63. [PMID: 24484234 DOI: 10.3171/2013.12.jns13641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECT The poor outcome of malignant gliomas is largely due to local invasiveness. Previous studies suggest that gliomas secrete excess glutamate and destroy surrounding normal peritumoral brain by means of excitotoxic mechanisms. In this study the authors assessed the effect on survival of 2 glutamate modulators (riluzole and memantine) in rodent glioma models. METHODS In an in vitro growth inhibition assay, F98 and 9L cells were exposed to riluzole and memantine. Mouse cerebellar organotypic cultures were implanted with F98 glioma cells and treated with radiation, radiation + riluzole, or vehicle and assessed for tumor growth. Safety and tolerability of intracranially implanted riluzole and memantine CPP:SA polymers were tested in F344 rats. The efficacy of these drugs was tested against the 9L model and riluzole was further tested with and without radiation therapy (RT). RESULTS In vitro assays showed effective growth inhibition of both drugs on F98 and 9L cell lines. F98 organotypic cultures showed reduced growth of tumors treated with radiation and riluzole in comparison with untreated cultures or cultures treated with radiation or riluzole alone. Three separate efficacy experiments all showed that localized delivery of riluzole or memantine is efficacious against the 9L gliosarcoma tumor in vivo. Systemic riluzole monotherapy was ineffective; however, riluzole given with RT resulted in improved survival. CONCLUSIONS Riluzole and memantine can be safely and effectively delivered intracranially via polymer in rat glioma models. Both drugs demonstrate efficacy against the 9L gliosarcoma and F98 glioma in vitro and in vivo. Although systemic riluzole proved ineffective in increasing survival, riluzole acted synergistically with radiation and increased survival compared with RT or riluzole alone.
Collapse
Affiliation(s)
- Kaleb Yohay
- Department of Pediatrics, Weill Cornell Medical College
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Muayqil T, Camicioli R. Systematic review and meta-analysis of combination therapy with cholinesterase inhibitors and memantine in Alzheimer's disease and other dementias. Dement Geriatr Cogn Dis Extra 2012; 2:546-72. [PMID: 23277787 PMCID: PMC3522458 DOI: 10.1159/000343479] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background N-methyl-D-aspartic acid antagonists (memantine) and cholinesterase inhibitors (ChEIs) are the only two approved classes of drugs to treat dementia; this paper explores the evidence for using these two treatments in combination. Objective To determine the efficacy and safety of using combination therapy with memantine and a ChEI to treat dementia in comparison to monotherapy with either memantine or a ChEI. Methods In March 2012, we systematically searched MEDLINE/PubMed, EMBASE, Cochrane library, and grey literature databases. All study types were included, except for case series or reports, which looked at combination therapy versus monotherapy in various dementing disorders. Data was pooled for blinded randomized controlled trials (RCTs) only; mean differences and standardized mean differences were used to determine effect sizes. Results Thirteen studies were included in this review; 3 were blinded RCTs, with a total of 971 Alzheimer's disease (AD) patients, which were included into the meta-analysis. No papers were found that primarily addressed combination therapy in other dementias. In the meta-analysis, small but statistically significant effect sizes were seen in favor of combination therapy among patients with moderate to severe AD on the scales of cognition (0.45–0.52; p < 0.0001), scales of functional outcomes (0.23–0.3; p < 0.01), and the neuropsychiatric inventory (3.7–4.4; p < 0.0001). Among the open-label studies, 3 out of 6 suggested benefits, as did the 4 included cohort studies. However, the high risk of bias encountered in the latter two study designs limits deducing any conclusions about benefit. Conclusion Although there were statistically significant changes in favor of combination therapy in moderate to severe AD, heterogeneity in scales and patient characteristics exists. However, it is unclear if clinically significant outcomes can be achieved using the combination therapy. More studies are required before a recommendation for combination therapy can be made.
Collapse
Affiliation(s)
- Taim Muayqil
- Division of Neurology, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
21
|
Aldemir M, Heinemann FW, Kisch H. Photochemical synthesis of N-adamantylhomoallylamines through addition of cyclic olefins to imines catalyzed by alumina grafted cadmium sulfide. Photochem Photobiol Sci 2012; 11:908-13. [DOI: 10.1039/c1pp05298e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Brittain JM, Chen L, Wilson SM, Brustovetsky T, Gao X, Ashpole NM, Molosh AI, You H, Hudmon A, Shekhar A, White FA, Zamponi GW, Brustovetsky N, Chen J, Khanna R. Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). J Biol Chem 2011; 286:37778-92. [PMID: 21832084 PMCID: PMC3199520 DOI: 10.1074/jbc.m111.255455] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/05/2011] [Indexed: 11/06/2022] Open
Abstract
Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.
Collapse
Affiliation(s)
- Joel M. Brittain
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
| | | | - Sarah M. Wilson
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
| | | | - Xiang Gao
- the Departments of Neurological Surgery
| | - Nicole M. Ashpole
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
- Biochemistry and Molecular Biology
| | | | - Haitao You
- the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Andy Hudmon
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
- Pharmacology and Toxicology
- Biochemistry and Molecular Biology
| | - Anantha Shekhar
- Psychiatry, and
- the Indiana Clinical and Translational Sciences Institute, and
| | - Fletcher A. White
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
- Anesthesia
- the Indiana Spinal Cord and Brain Injury Group, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Gerald W. Zamponi
- the Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nickolay Brustovetsky
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
- Pharmacology and Toxicology
| | - Jinhui Chen
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
- the Departments of Neurological Surgery
- the Indiana Spinal Cord and Brain Injury Group, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | - Rajesh Khanna
- From the Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute and
- Pharmacology and Toxicology
- the Indiana Spinal Cord and Brain Injury Group, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| |
Collapse
|
23
|
The emergence of designed multiple ligands for neurodegenerative disorders. Prog Neurobiol 2011; 94:347-59. [PMID: 21536094 DOI: 10.1016/j.pneurobio.2011.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
The incidence of neurodegenerative diseases has seen a constant increase in the global population, and is likely to be the result of extended life expectancy brought about by better health care. Despite this increase in the incidence of neurodegenerative diseases, there has been a dearth in the introduction of new disease-modifying therapies that are approved to prevent or delay the onset of these diseases, or reverse the degenerative processes in brain. Mounting evidence in the peer-reviewed literature shows that the etiopathology of these diseases is extremely complex and heterogeneous, resulting in significant comorbidity and therefore unlikely to be mitigated by any drug acting on a single pathway or target. A recent trend in drug design and discovery is the rational design or serendipitous discovery of novel drug entities with the ability to address multiple drug targets that form part of the complex pathophysiology of a particular disease state. In this review we discuss the rationale for developing such multifunctional drugs (also called designed multiple ligands or DMLs), and why these drug candidates seem to offer better outcomes in many cases compared to single-targeted drugs in pre-clinical studies for neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Examples are drawn from the literature of drug candidates that have already reached the market, some unsuccessful attempts, and others that are still in the drug development pipeline.
Collapse
|
24
|
|
25
|
Abstract
Individuals suffering from human immunodeficiency virus type 1 (HIV-1) infection suffer from a wide range of neurological deficits. The most pronounced are the motor and cognitive deficits observed in many patients in the latter stages of HIV infection. Gross postmortem inspection shows cortical atrophy and widespread
neuronal loss. One of the more debilitating of the HIV-related syndromes is AIDS-related dementia, or HAD. Complete understanding of HIV neurotoxicity has been elusive. Both direct and indirect toxic mechanisms have been implicated in the neurotoxicity of the
HIV proteins, Tat and gp120. The glutamatergic system, nitric oxide, calcium, oxidative stress, apoptosis, and microglia have all been implicated in the pathogenesis of HIV-related neuronal degeneration. The aim of this review is to summarize the most
recent work and provide an overview to the current theories of HIV-related neurotoxicity and potential avenues of therapeutic interventions to prevent the neuronal loss and motor/cognitive deficits previously described.
Collapse
Affiliation(s)
- David R. Wallace
- Department of Pharmacology and Physiology and Department of Forensic Sciences, Center for Health Sciences, Oklahoma State University, Tulsa, OK 74107-1898, USA
- *David R. Wallace:
| |
Collapse
|
26
|
Leigh PN, Swash M, Iwasaki Y, Ludolph A, Meininger V, Miller RG, Mitsumoto H, Shaw P, Tashiro K, Van Den Berg L. Amyotrophic lateral sclerosis: a consensus viewpoint on designing and implementing a clinical trial. ACTA ACUST UNITED AC 2009; 5:84-98. [PMID: 15204010 DOI: 10.1080/14660820410020187] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In November 2002, an advisory board meeting was convened by Novartis Pharma to provide recommendations and rationale for clinical trials designed to evaluate new treatments, such as TCH346, for amyotrophic lateral sclerosis (ALS). In terms of selecting appropriate outcome measures, the panel recommended the use of the ALS Functional Rating Scale (ALSFRS-R) to measure primary endpoints. A review of other key issues in this area including regional variations in the epidemiology, diagnosis and management of ALS, defining patient populations and doses of trial medication, and accommodating the likelihood of co-medication with pre-existing treatment in trial design, are discussed.
Collapse
Affiliation(s)
- P Nigel Leigh
- Department of Neurology, Institute of Psychiatry, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Osborne NN. Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol 2009; 87:450-4. [PMID: 19141144 DOI: 10.1111/j.1755-3768.2008.01459.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Loss of vision in primary open-angle glaucoma (glaucoma) is caused by retinal ganglion cells dying at a seemingly steady and variable rate in different patients. Present treatments for all glaucoma patients are inadequate and a goal to rectify this is to discover appropriate drugs or chemicals (neuroprotectants) that can be taken orally to slow down retinal ganglion cell death and have negligible side-effects. It was therefore of great disappointment to learn earlier this year that the one clinical trial conducted to test the efficacy of memantine as a neuroprotectant for glaucoma was unsuccessful. In this article, I consider the mechanisms by which retinal ganglion cells may die in glaucoma and suggest that memantine may have benefited patients taking it but to a level that was difficult to detect with present methodologies. Ganglion cells are induced to die by different triggers in glaucoma, suggesting that neuroprotectants with multiple modes of actions are likely to reveal clearer results than was found for memantine. Therefore, the idea of neuroprotection in glaucoma must not be abandoned.
Collapse
Affiliation(s)
- Neville N Osborne
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford University, Headley Way, Oxford, UK.
| |
Collapse
|
28
|
Muñoz-Moreno JA, Blanch Andreu J. [Neurocognitive disorders related to human immunodeficiency virus infection]. Med Clin (Barc) 2009; 132:787-91. [PMID: 19361818 DOI: 10.1016/j.medcli.2008.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/16/2008] [Indexed: 11/30/2022]
Abstract
Disruption of neurocognitive functioning is one of most frequent complications in patients with HIV infection nowadays. The Highly Active Antiretroviral Therapy (HAART) has demonstrated an improvement associated with its use, although there are different works that show this improvement is achieved in a low proportion of individuals who initiate therapy. The most known characterization of neurocognitive dysfunction is the HIV-associated Dementia (HAD), yet there may also exist the asymptomatic neurocognitive impairment (ANI) or the Minor Cognitive-Motor Disorder (MCMD). This review describes the disorders related to HIV infection, and comments on possible interventions focused on the protection of neurocognitive functioning in HIV-infected people.
Collapse
Affiliation(s)
- José A Muñoz-Moreno
- Fundació Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, España.
| | | |
Collapse
|
29
|
Wojda U, Salinska E, Kuznicki J. Calcium ions in neuronal degeneration. IUBMB Life 2008; 60:575-90. [PMID: 18478527 DOI: 10.1002/iub.91] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal Ca(2+) homeostasis and Ca(2+) signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca(2+) homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca(2+) homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca(2+) homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca(2+) dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca(2+) dyshomeostasis escalates with time eventually leading to neuronal loss. Ca(2+) dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca(2+) buffering impairment, glutamate excitotoxicity and alterations in Ca(2+) entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca(2+) homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca(2+) dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca(2+) homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca(2+) homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here.
Collapse
Affiliation(s)
- Urszula Wojda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland.
| | | | | |
Collapse
|
30
|
Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 2007; 15:873-86. [PMID: 16859391 DOI: 10.1517/13543784.15.8.873] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A new paradigm is emerging in the targeting of multiple disease aetiologies that collectively lead to neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, post-stroke neurodegeneration and others. This paradigm challenges the widely held assumption that 'silver bullet' agents are superior to 'dirty drugs' when it comes to drug therapy. Accumulating evidence in the literature suggests that many neurodegenerative diseases have multiple mechanisms in their aetiologies, thus suggesting that a drug with at least two mechanisms of action targeted at multiple aetiologies of the same disease may offer more therapeutic benefit in certain disorders compared with a drug that only targets one disease aetiology. This review offers a synopsis of therapeutic strategies and novel investigative drugs developed in the authors' own and other laboratories that modulate multiple disease targets associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Texas Tech University Health Sciences Center, Department of Pharmaceutical Sciences, School of Pharmacy, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
31
|
Schmitt F, Ryan M, Cooper G. A brief review of the pharmacologic and therapeutic aspects of memantine in Alzheimer's disease. Expert Opin Drug Metab Toxicol 2007; 3:135-41. [PMID: 17269900 DOI: 10.1517/17425255.3.1.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The past decade has seen an increase in therapeutic options for Alzheimer's disease (AD) that target neurotransmitters, such as acetylcholine, and research continues to target abnormal proteins in the AD brain. Recently, glutamate excitotoxicity has also become a target for AD treatment with the advent of memantine. Clinical trial data reviewed for memantine show good tolerability, low side-effect profiles and a positive therapeutic impact in moderate-to-severe AD, both as monotherapy and in conjunction with donepezil. However, additional data suggest variable benefits in the mild stages of AD. Furthermore, published reports support reduced dosing in patients with significant renal disease. However, the opportunity to target a second mechanism in the treatment of AD, thereby providing added symptomatic benefit, appears to be a useful consideration for clinicians who treat this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Frederick Schmitt
- University of Kentucky, Sanders-Brown Center on Aging, Department of Neurology, 800 S. Limestone Street, Lexington, KY 40536-0230, USA.
| | | | | |
Collapse
|
32
|
Woodruff-Pak DS, Tobia MJ, Jiao X, Beck KD, Servatius RJ. Preclinical investigation of the functional effects of memantine and memantine combined with galantamine or donepezil. Neuropsychopharmacology 2007; 32:1284-94. [PMID: 17119537 DOI: 10.1038/sj.npp.1301259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Combinations of drugs approved to treat Alzheimer's disease (AD) were tested in older rabbits with delay eyeblink classical conditioning, a form of associative learning severely impaired in AD. In Experiment 1 (n=49 rabbits), low doses (0.1, 0.5, 1.0, and 0.0 (vehicle) mg/kg) of memantine (Namenda) were tested. These three doses neither improved nor impaired acquisition at a statistically significant level. The 0.5 mg/kg dose had the greatest effect numerically and did not cause sensitization or habituation in explicitly unpaired controls. In Experiment 2 (n=56), doses of galantamine (Razadyne; 3.0 mg/kg) and donepezil (Aricept; 0.75 mg/kg) that had comparable magnitudes of cholinesterase inhibition were tested alone and in combination with 0.5 mg/kg memantine. Older rabbits treated with galantamine and with galantamine+memantine learned significantly better than vehicle-treated rabbits, but adding memantine did not improve learning over galantamine alone. Older rabbits treated with donepezil or a combination of memantine and donepezil did not learn significantly better than rabbits treated with vehicle. Galantamine has two mechanisms of action: mild cholinesterase inhibition and allosteric modulation of nicotinic acetylcholine receptors (nAChRs). When equated for cholinesterase inhibition, galantamine had significant efficacy in the eyeblink conditioning model system, but donepezil did not, indicating that modulation of nAChRs may be the mechanism that significantly ameliorates learning deficits in this model. In the absence of AD neuropathology in older rabbits, memantine had no efficacy alone or in combination with the other drugs.
Collapse
|
33
|
Sinis N, Birbaumer N, Gustin S, Schwarz A, Bredanger S, Becker ST, Unertl K, Schaller HE, Haerle M. Memantine treatment of complex regional pain syndrome: a preliminary report of six cases. Clin J Pain 2007; 23:237-43. [PMID: 17314583 DOI: 10.1097/ajp.0b013e31802f67a7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Recent studies have confirmed the contribution of the central nervous system (CNS) to the pathogenesis of Complex Regional Pain Syndrome (CRPS), because animal models of neuropathic pain syndromes demonstrate an overexpression of N-methyl-D-aspartate-receptors in the CNS. The aim of this work was to study the influence of a central acting drug-the N-methyl-D-aspartate receptor antagonist Memantine-in patients with CRPS of one upper extremity. Here we present the results of 6 patients treated with Memantine for 8 weeks. METHODS All patients developed CRPS after traumatic injury to one upper extremity. To document changes during the study, levels of pain were measured after clenching the hand using a numeric pain intensity scale ranging from 0 (no pain) to 10 (maximum pain). Motor symptoms were documented for the fingers (fingertips to palm and fingernails to table) and the wrist (flexion/extension). Furthermore, the force was analyzed using a JAMAR-Dynamometer and a Pinchmeter. For assessment of central changes, functional magnetic resonance imaging and magnetoencephalography were used to further document the results of other experiments in 1 patient. Autonomic changes were photographed and pictures were compared before and after treatment with Memantine. RESULTS Six months after treatment with Memantine, all patients showed a significant decrease in their levels of pain which coincided with an improvement in motor symptoms and autonomic changes. The functional magnetic resonance imaging and magnetoencephalography results provided evidence of cortical reorganization [changes in somatotopic maps in the primary somatosensory cortex (S1)]. These changes returned to a cortical pattern comparable to the unaffected side after treatment with Memantine. DISCUSSION Based on these first results, the use of Memantine for treatment of CRPS seems promising and supports the hypothesis of a CNS contribution to the pathogenesis and maintenance of neuropathic pain syndromes.
Collapse
Affiliation(s)
- Nektarios Sinis
- Klinik für Hand, Plastische, Rekonstruktive und Verbrennungschirurgie, BG-Unfallklinik, Eberhard-Karls Universität Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Heinen-Kammerer T, Rulhoff H, Nelles S, Rychlik R. Added therapeutic value of memantine in the treatment of moderate to severe Alzheimer's disease. Clin Drug Investig 2007; 26:303-14. [PMID: 17163264 DOI: 10.2165/00044011-200626060-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
When evaluating the added therapeutic value of a drug, evidence of greater overall benefit or at least an add-on benefit is increasingly being required. Therefore, cost-effectiveness in addition to clinical efficacy is an important consideration. The efficacy of a drug must be examined on the basis of clinical trials by measuring specific parameters that are affected by the drug (for example blood pressure with antihypertensive treatment). Today not only efficacy but also patient-relevant changes (patient benefits) must be demonstrated for a drug, often by measuring quality of life. In order to evaluate the benefit of monotherapy with the N-methyl-D-aspartate antagonist memantine in the management of moderate to severe Alzheimer's disease, a systematic literature review was conducted. The results showed a benefit for memantine in comparison with placebo in terms of a decrease in nursing care, a delay in care dependency and a delay in admission to nursing homes. In addition, an increase in quality of life has been observed.
Collapse
|
35
|
|
36
|
Van der Schyf CJ, Geldenhuys WJ, Youdim MBH. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 2006; 99:1033-48. [PMID: 17054441 DOI: 10.1111/j.1471-4159.2006.04141.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The multiple disease etiologies that lead to neuropsychiatric disorders, such as Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis, Huntington disease, schizophrenia, depressive illness and stroke, offer significant challenges to drug discovery efforts aimed at preventing or even reversing the progression of these disorders. Transcriptomic tools and proteomic profiling have clearly indicated that such diseases are multifactorial in origin. Further, they are thought to be initiated by a cascade of molecular events that involve several neurotransmitter systems. In response to this complexity, a new paradigm has recently emerged that challenges the widely held assumption that 'silver bullet' agents are superior to 'dirty drugs' in therapeutic approaches aimed at the prevention or treatment of neuropsychiatric diseases. A similar pattern of drug development has occurred in strategies for the treatment of cancer, AIDS and cardiovascular diseases. In this review, we offer an overview of therapeutic strategies and novel investigative drugs discovered or developed in our own and other laboratories, that address multiple CNS etiological targets associated with an array of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities College of Pharmacy, Rootstow, Ohio, USA
| | | | | |
Collapse
|
37
|
Kiewert C, Hartmann J, Stoll J, Thekkumkara TJ, Van der Schyf CJ, Klein J. NGP1-01 is a brain-permeable dual blocker of neuronal voltage- and ligand-operated calcium channels. Neurochem Res 2006; 31:395-9. [PMID: 16733815 DOI: 10.1007/s11064-005-9036-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Calcium overload of neurons leads to cell death and is a key feature in neurodegenerative diseases. The polycyclic amine NGP1-01 blocks L-type voltage operated calcium channels in cardiomyocytes. Here, we tested whether NGP1-01 blocks neuronal calcium channels. NGP1-01 (1 microM) inhibited depolarization-induced calcium influx by 78% in cortical neurons preloaded with fura-2 AM, with a potency similar to nimodipine. NGP1-01 (1 microM) also inhibited N-methyl-D: -aspartate (NMDA)-induced (1 mM) calcium influx by 52%, only slightly less potent than memantine. Using in vivo-microdialysis, we monitored choline release during NMDA infusion as a measure of excitotoxic membrane breakdown. Intraperitoneal injection of NGP1-01 (40 mg/kg) reduced NMDA-induced membrane breakdown by 31% (P < 0.01) while memantine (10 mg/kg) reduced choline release by 40%. Our results demonstrate that NGP1-01 simultaneously blocks both major neuronal calcium channels and is sufficiently brain-permeable. We conclude that NGP1-01 is a promising lead structure for a new class of dual-mechanism neuroprotective agents.
Collapse
Affiliation(s)
- Cornelia Kiewert
- Department of Pharmaceutical Sciences, Texas Tech School of Pharmacy, Amarillo, TX 79106, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Many patients infected with human immunodeficiency virus type-1 (HIV-1) suffer cognitive impairment ranging from mild to severe (HIV dementia), which may result from neuronal death in the basal ganglia, cerebral cortex and hippocampus. HIV-1 does not kill neurons by infecting them. Instead, viral proteins released from infected glial cells, macrophages and/or stem cells may directly kill neurons or may increase their vulnerability to other cell death stimuli. By binding to and/or indirectly activating cell surface receptors such as CXCR4 and the N-methyl-D-aspartate receptor, the HIV-1 proteins gp120 and Tat may trigger neuronal apoptosis and excitotoxicity as a result of oxidative stress, perturbed cellular calcium homeostasis and mitochondrial alterations. Membrane lipid metabolism and inflammation may also play important roles in determining whether neurons live or die in HIV-1-infected patients. Drugs and diets that target oxidative stress, excitotoxicity, inflammation and lipid metabolism are in development for the treatment of HIV-1 patients.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
39
|
Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 2006; 25:2566-75. [PMID: 15758166 PMCID: PMC6725188 DOI: 10.1523/jneurosci.4998-04.2005] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although abundant reactive microglia are found associated with beta-amyloid (Abeta) plaques in Alzheimer's disease (AD) brains, their contribution to cell loss remains speculative. A variety of studies have documented the ability of Abeta fibrils to directly stimulate microglia in vitro to assume a neurotoxic phenotype characterized by secretion of a plethora of proinflammatory molecules. Collectively, these data suggest that activated microglia play a direct role in contributing to neuron death in AD rather than simply a role in clearance after plaque deposition. Although it is clear the Abeta-stimulated microglia acutely secrete toxic oxidizing species, the identity of longer-lived neurotoxic agents remains less defined. We used Abeta-stimulated conditioned media from primary mouse microglia to identify more stable neurotoxic secretions. The NMDA receptor antagonists memantine and 2-amino-5-phosphopetanoic acid as well as soluble tumor necrosis factor alpha (TNFalpha) receptor protect neurons from microglial-conditioned media-dependent death, implicating the excitatory neurotransmitter glutamate and the proinflammatory cytokine TNFalpha as effectors of microglial-stimulated death. Neuron death occurs in an oxidative damage-dependent manner, requiring activity of inducible nitric oxide synthase. Toxicity results from coincident stimulation of the TNFalpha and NMDA receptors, because stimulations of either alone are insufficient to initiate cell death. These findings suggest the hypothesis that AD brains provide the appropriate microglial-mediated inflammatory environment for TNFalpha and glutamate to synergistically stimulate toxic activation of their respective signaling pathways in neurons as a contributing mechanism of cell death.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
40
|
Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP. Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 2006; 8:25-50. [PMID: 16260384 DOI: 10.1007/bf03033818] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain mononuclear phagocytes (MP, bone marrow monocyte-derived macrophages, perivascular macrophages, and microglia) function to protect the nervous system by acting as debris scavengers, killers of microbial pathogens, and regulators of immune responses. MP are activated by a variety of environmental cues and such inflammatory responses elicit cell injury and death in the nervous system. MP immunoregulatory responses include secretion of neurotoxic factors, mobilization of adaptive immunity, and cell chemotaxis. This incites tissue remodelling and blood-brain barrier dysfunction. As disease progresses, MP secretions engage neighboring cells in a vicious cycle of autocrine and paracrine amplification of inflammation leading to tissue injury and ultimately destruction. Such pathogenic processes tilt the balance between the relative production of neurotrophic and neurotoxic factors and to disease progression. The ultimate effects that brain MP play in disease revolves "principally" around their roles in neurodegeneration. Importantly, common functions of brain MP in neuroimmunity link highly divergent diseases (for example, human immunodeficiency virus type-one associated dementia, Alzheimer's disease and Parkinson's disease). Research into this process from our own laboratories and those of others seek to harness MP inflammatory processes with the intent of developing therapeutic interventions that block neurodegenerative processes and improve the quality of life in affected people.
Collapse
Affiliation(s)
- I Kadiu
- Laboratory of Neuroregeneration, Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
41
|
Motornaya AE, Alimbarova LM, Shokova ÉA, Kovalev VV. Synthesis and antiherpetic activity of N-(3-amino-1-adamantyl)calix[4]arenes. Pharm Chem J 2006. [DOI: 10.1007/s11094-006-0060-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
|
43
|
Abstract
Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological impairment, and neuropathological changes are found in 90% of autopsied cases. Approximately 30% of untreated HIV-infected persons may develop dementia. The mechanisms behind these pathological changes are still not understood. Mounting data obtained by in vivo and in vitro experiments suggest that neuronal apoptosis is a major feature of HIV associated dementia (HAD), which can occur in the absence of direct infection of neurons. The major pathway of neuronal apoptosis occurs indirectly through release of neurotoxins by activated cells in the central nervous system (CNS) involving the induction of excitotoxicity and oxidative stress. In addition a direct mechanism induced by viral proteins in the pathogenesis of HAD may also play a role. This review focuses on the molecular mechanisms of HIV-associated dementia and possible therapeutic strategies.
Collapse
Affiliation(s)
- Hakan Ozdener
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Kaul M, Lipton SA. Experimental and potential future therapeutic approaches for HIV-1 associated dementia targeting receptors for chemokines, glutamate and erythropoietin. Neurotox Res 2005; 8:167-86. [PMID: 16260394 DOI: 10.1007/bf03033828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction and frank dementia can occur after infection with the human immunodeficiency virus-1 (HIV-1). Infected peripheral immune-competent cells, in particular macrophages, infiltrate the central nervous system (CNS) and provoke a neuropathological response involving all cell types in the brain. HIV-1 infection results in activation of chemokine receptors, inflammatory mediators, extracellular matrix-degrading enzymes and glutamate receptor-mediated excitotoxicity, all of which can trigger numerous downstream signaling pathways that result in disruption of neuronal and glial function. Despite many major improvements in the control of viral infection in the periphery, a truly effective therapy for HIV-1 associated dementia is currently not available. This review will discuss experimental and potentially future therapeutic strategies based on recently uncovered pathologic mechanisms contributing to neuronal damage induced by HIV-1.
Collapse
Affiliation(s)
- M Kaul
- Center for Neuroscience and Aging Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
45
|
Jönsson L. Cost-effectiveness of memantine for moderate to severe Alzheimer's disease in Sweden. ACTA ACUST UNITED AC 2005; 3:77-86. [PMID: 16129384 DOI: 10.1016/j.amjopharm.2005.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alzheimer's disease entails enormous costs for society and impairs quality of life for patients and caregivers. OBJECTIVE This study estimated the cost-effectiveness of memantine in the treatment of patients with moderately severe to severe cognitive impairment from Alzheimer's disease in Sweden. METHODS The study was based on published data from several sources, including a randomized controlled trial of memantine versus placebo and a longitudinal observational study of Alzheimer's disease patients in Sweden. Costs were estimated from the public payer's perspective, including direct costs but excluding costs of informal care, and resource utilization data were taken from the observational study. Cost-effectiveness was quantified as quality-adjusted life-years (QALYs) gained from treatment with the use of previously published utility weights. A Markov simulation model was constructed, incorporating the effect of treatment on cognitive function, physical dependence related to activities of daily living, and institutionalization. Costs and effects for treated and untreated patients were estimated for 5 years (10 cycles). In the base-case analysis, treatment costs were added for 2 years, but the effect on transition probabilities was applied only for the first year of treatment. RESULTS Compared with no treatment, memantine treatment was predicted to be associated with lower costs of care, longer time to dependence and institutionalization, and gains in QALYs. Treatment was estimated to decrease formal care costs by 123,600 Swedish kronor (SEK) and, after taking into account the cost of memantine, to lead to net cost savings of 100,528 SEK per patient. Treated patients gained 0.148 QALY over the 5-year simulation. CONCLUSIONS From a public payer's perspective, the observed effect of memantine on cognitive and physical function is predicted to translate into economic benefits that offset the added treatment cost. Treatment is also predicted to delay institutionalization, improve independence, and increase QALYs.
Collapse
|
46
|
Geldenhuys WJ, Malan SF, Bloomquist JR, Marchand AP, Van der Schyf CJ. Pharmacology and structure-activity relationships of bioactive polycyclic cage compounds: a focus on pentacycloundecane derivatives. Med Res Rev 2005; 25:21-48. [PMID: 15389731 DOI: 10.1002/med.20013] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chemistry of organic polycyclic cage compounds has intrigued medicinal chemists for over 50 years, yet little is published about their pharmacological profiles. Polycyclic cage compounds have important pharmaceutical applications, ranging from the symptomatic and proposed curative treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's disease (e.g., amantadine and memantine), to use as anti-viral agents against influenza and the immunodeficiency virus (HIV). The polycyclic cage appears to be a useful scaffold to yield drugs with a wide scope of applications, and can be used also to modify and improve the pharmacokinetic and pharmacodynamic properties of drugs in current use. This review attempts to summarize the pharmacological profiles of polycyclic cage compounds with an emphasis on the lesser known pentacycloundecanes, homocubanes, and trishomocubanes.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas 79106, USA
| | | | | | | | | |
Collapse
|
47
|
Sonkusare SK, Kaul CL, Ramarao P. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope. Pharmacol Res 2005; 51:1-17. [PMID: 15519530 DOI: 10.1016/j.phrs.2004.05.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2004] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease is the fourth largest cause of death for people over 65 years of age. Dementia of Alzheimer's type is the commonest form of dementia, the other two forms being vascular dementia and mixed dementia. At present, the therapy of Alzheimer's disease is aimed at improving both, cognitive and behavioural symptoms and thereby, quality of life for the patients. Since the discovery of Alzheimer's disease by Alois Alzheimer, many pathological mechanisms have been proposed which led to the testing of various new treatments. Until recently the available drugs for the treatment of Alzheimer's disease are cholinesterase inhibitors, which have limited success because these drugs improve cognitive functions only in mild dementia and cannot stop the process of neurodegeneration. Moreover, drugs of this category show gastrointestinal side effects. As the cells of central and peripheral nervous system cannot regenerate, newer strategies are aimed at preserving the surviving neurons by preventing their degeneration. NMDA-receptor-mediated glutamate excitotoxicity plays a major role in Abeta-induced neuronal death. Hence, it was thought that NMDA receptors could be a promising target for preventing the progression of Alzheimer's disease. All the compounds synthesized initially in this category showed toxicity mainly because of their high affinity for NMDA receptors. Memantine (1-amino adamantane derivative), NMDA-receptor antagonist was reported to be effective therapeutically in Alzheimer's disease. It was available in Germany as well as European Union and has been approved for moderate to severe dementia in United States of America recently. It is an uncompetitive, moderate affinity antagonist of NMDA receptors that inhibits the pathological functions of NMDA receptors while physiological processes in learning and memory are unaffected. Memantine is also reported to have beneficial effects in other CNS disorders viz., Parkinson's disease (PD), stroke, epilepsy, CNS trauma, amyotrophic lateral sclerosis (ALS), drug dependence and chronic pain. Mechanisms of neuroprotection, preclinical and clinical evidence for effectiveness of memantine have been provided. Pharmacology and pharmacokinetics of memantine and other NMDA-receptor antagonists in comparison with currently approved drugs for dementia treatment have been discussed. The focus is on 'glutamate excitotoxicity' and glutamate receptors as drug target. Various other novel strategies for the treatment of dementia of neurodegenerative disorders have also been discussed.
Collapse
Affiliation(s)
- S K Sonkusare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160 062, India
| | | | | |
Collapse
|
48
|
Abstract
Increasing evidence suggests that disturbances in glutamatergic activity play an important role in Alzheimer's disease (AD). Excessive glutamate-mediated activation of NMDA receptors, for example, may contribute to the neuronal death that characterises AD. On the other hand, physiological activation of the NMDA receptor appears necessary for normal cognitive function. Therefore, compounds that finely modulate NMDA receptor activity hold promise as treatments for AD. Memantine (Namenda, Axura, Ebixa; Forest Laboratories, Inc., Merz Pharmaceuticals GmbH, H. Lundbeck A/S) is a low-moderate affinity, uncompetitive NMDA-receptor antagonist that appears to block pathological, but not physiological, activation of the NMDA receptor. Consequently, therapeutic doses of the drug are well-tolerated and do not seem to interfere with the acquisition or processing of cognitive information. Memantine has been shown to improve symptoms and reduce the rate of clinical deterioration among patients with moderate-to-severe AD and was approved in the US for this indication in October 2003. This review provides a brief rationale for the development of memantine as a therapy for AD, as well as an overview of the pharmacology, clinical efficacy, safety and tolerability of this novel therapeutic agent.
Collapse
Affiliation(s)
- Steven H Ferris
- Alzheimer's Disease Center, Silberstein Institute for Ageing and Dementia, New York University School of Medicine, 550 First Avenue, Room MHL 310, New York, NY 10016, USA.
| |
Collapse
|
49
|
Molinuevo JL, Lladó A, Rami L. Memantine: targeting glutamate excitotoxicity in Alzheimer's disease and other dementias. Am J Alzheimers Dis Other Demen 2005; 20:77-85. [PMID: 15844753 PMCID: PMC10833270 DOI: 10.1177/153331750502000206] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The management of dementia has changed since the development of new antidementia drugs. The benefits observed in Alzheimer's disease (AD) with selective cholinergic transmission treatments are mainly symptomatic, without clear evidence of neuroprotection. The hypothesis that glutamate-mediated neurotoxicity is involved in the pathogenesis of AD is finding increasingly more acceptance in the scientific community. Glutamate receptors are overactive, and N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential for the treatment of AD and other neurological disorders. Memantine is a noncompetitive NMDA antagonist that is considered a neuroprotective drug. Memantine's capacity has been demonstrated in preclinical studies, and it is considered a useful symptomatic treatment for AD. Memantine has been shown to benefit cognition, function, and global outcome in patients with moderate to severe AD, and it is currently approved by the US Food and Drug Administration (FDA) for the treatment of moderate to severe AD. Recently, memantine has also demonstrated efficacy in the initial stages of AD, although FDA authorization is pending. This review highlights the important pharmacological and clinical aspects of memantine, as well as some basic mechanisms mediating glutamatergic neurodegeneration.
Collapse
Affiliation(s)
- José L Molinuevo
- Unitat Memoria-Alzheimer, Institut Clinic Malalties del Sistema Nerviós, Hospital Clinic i Universitari, Barcelona, Spain
| | | | | |
Collapse
|
50
|
Anderson ER, Gendelman HE, Xiong H. Memantine protects hippocampal neuronal function in murine human immunodeficiency virus type 1 encephalitis. J Neurosci 2005; 24:7194-8. [PMID: 15306653 PMCID: PMC6729180 DOI: 10.1523/jneurosci.1933-04.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memantine, a low-to-moderate-affinity NMDA receptor antagonist, can be used to treat cognitive impairment associated with Alzheimer's disease. However, its potential neuroprotective effects for human immunodeficiency virus type 1-associated (HIV-1-associated) dementia are less well appreciated. To this end we studied hippocampal synaptic function in a severe combined immunodeficient (SCID) mouse model of HIV-1 encephalitis (HIVE). Human monocyte-derived macrophages (MDMs) infected with HIV-1(ADA) were injected stereotactically into the caudate and putamen of SCID mice, generating HIVE. These brain subregions are among those most affected in humans. Impaired synaptic transmission and long-term potentiation (LTP) were detected in the CA1 region of hippocampal brain slices of HIVE mice. Memantine-treated HIVE mice showed significant improvements in synaptic function during frequency facilitation tests and LTP induced by high-frequency stimulation when compared with untreated animals. Immunocytochemical measures of neuronal antigens mirrored the neuronal physiological tests. These results demonstrate that memantine attenuates hippocampal synaptic impairment in murine HIVE and provide a rationale for its use in infected humans who experience cognitive decline.
Collapse
Affiliation(s)
- Eric R Anderson
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA
| | | | | |
Collapse
|