1
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Hahn KR, Kwon HJ, Kim DW, Hwang IK, Yoon YS. Therapeutic Options of Crystallin Mu and Protein Disulfide Isomerase A3 for Cuprizone-Induced Demyelination in Mouse Hippocampus. Neurochem Res 2024; 49:3078-3093. [PMID: 39164609 PMCID: PMC11449959 DOI: 10.1007/s11064-024-04227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
This study investigates the changes in hippocampal proteomic profiles during demyelination and remyelination using the cuprizone model. Employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry for protein profiling, we observed significant alterations in the expression of ketimine reductase mu-crystallin (CRYM) and protein disulfide isomerase A3 precursor (PDIA3) following exposure to and subsequent withdrawal from cuprizone. Immunohistochemical staining validated these protein expression patterns in the hippocampus, revealing that both PDIA3 and CRYM were downregulated in the hippocampal CA1 region during demyelination and upregulated during remyelination. Additionally, we explored the potential protective effects of CRYM and PDIA3 against cuprizone-induced demyelination by synthesizing cell-permeable Tat peptide-fusion proteins (Tat-CRYM and Tat-PDIA3) to facilitate their crossing through the blood-brain barrier. Our results indicated that administering Tat-CRYM and Tat-PDIA3 mitigated the reduction in proliferating cell and differentiated neuroblast counts compared to the group receiving cuprizone alone. Notably, Tat-PDIA3 demonstrated significant effects in enhancing myelin basic protein expression alongside phosphorylation of CREB in the hippocampus, suggesting its potential therapeutic role in the prevention or treatment of demyelination, and by extension, in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Ham H, Kim KS, Lee JH, Kim DN, Choi HJ, Yoh JJ. Acoustic deep brain modulation: Enhancing neuronal activation and neurogenesis. Brain Stimul 2024; 17:1060-1075. [PMID: 39218349 DOI: 10.1016/j.brs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-invasive deep brain modulation (DBM) stands as a promising therapeutic avenue to treat brain diseases. Acoustic DBM represents an innovative and targeted approach to modulate the deep brain, employing techniques such as focused ultrasound and shock waves. Despite its potential, the optimal mechanistic parameters, the effect in the brain and behavioral outcomes of acoustic DBM remains poorly understood. OBJECTIVE To establish a robust protocol for the shock wave DBM by optimizing its mechanistic profile of external stimulation, and to assess its efficacy in preclinical settings. METHODS We used shockwaves due to their capacity to leverage a broader spectrum of peak intensity (10-127 W/mm2) in contrast to ultrasound (0.1-5.0 W/mm2), thereby enabling a more extensive range of neuromodulation effects. We established various types of shockwave pressure profiles of DBM and compared neural and behavioral responses. To ascertain the anticipated cause of the heightened neural activity response, numerical analysis was employed to examine the mechanical dynamics within the brain. RESULTS An optimized profile led to an enhancement in neuronal activity within the hypothalamus of mouse models. The optimized profile in the hippocampus elicited a marked increase in neurogenesis without neuronal damage. Behavioral analyses uncovered a noteworthy reduction in locomotion without significant effects on spatial memory function. CONCLUSIONS The present study provides an optimized shock wave stimulation protocol for non-invasive DBM. Our optimized stimulation profile selectively triggers neural functions in the deep brain. Our protocol paves the way for new non-invasive DBM devices to treat brain diseases.
Collapse
Affiliation(s)
- Hwichan Ham
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jee-Hwan Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyung-Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, 101 Dabyeonbat-gil, Hwachon-myeon, Gangwon-do, 25159, South Korea.
| | - Jack J Yoh
- Department of Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Park HR, Lee H, Cho WK, Ma JY. Pro-neurogenic effects of Lilii Bulbus on hippocampal neurogenesis and memory. Biomed Pharmacother 2023; 164:114951. [PMID: 37267636 DOI: 10.1016/j.biopha.2023.114951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Lilii Bulbus, the bulb of tiger lily, has anti-oxidant and anti-tumorigenic properties. However, the effects of Lilii Bulbus on learning, memory, and hippocampal neurogenesis remain unknown. This study investigated whether water extract of Lilii Bulbus (WELB) affects memory ability and hippocampal neurogenesis. Behavioral analyses (Morris water maze and passive avoidance test), immunohistochemistry, cell proliferation assay, and immunoblot analysis were performed. WELB (50 and 100 mg/kg; for 14 days) enhanced memory retention and spatial memory in normal mice as well as in scopolamine-treated mice with memory deficits. Furthermore, the administration of WELB significantly increased the number of proliferating cells and surviving newborn cells in the dentate gyrus of the hippocampus in normal mice. We found that WELB has a pro-neurogenic effect by increasing the activation of brain-derived neurotrophic factor (BDNF)/cAMP response element-binding protein (CREB) and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) in the hippocampus. Moreover, we confirmed that WELB (100 and 200 μg/ml) significantly increased NE-4 C and primary embryonic NSCs proliferation. Inhibition/knockdown of MEK/ERK blocked WELB-induced MEK/ERK phosphorylation and NSCs proliferation. Hence, MEK/ERK activation was required in WELB-induced NSCs proliferation. Our study demonstrates the first evidence for WELB promoting hippocampal neurogenesis and memory; pro-neurogenic activity may enhance brain plasticity, with implications for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hee Ra Park
- Department of KM Medicine Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Heeeun Lee
- Kine Sciences Inc., 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea
| | - Won-Kyung Cho
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
5
|
Valeri A, Chiricosta L, D’Angiolini S, Pollastro F, Salamone S, Mazzon E. Cannabichromene Induces Neuronal Differentiation in NSC-34 Cells: Insights from Transcriptomic Analysis. Life (Basel) 2023; 13:life13030742. [PMID: 36983897 PMCID: PMC10051538 DOI: 10.3390/life13030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Phytocannabinoids, with their variety of beneficial effects, represent a valid group of substances that could be employed as neurogenesis-enhancers or neuronal differentiation inducers. We focused our attention on the neuronal-related potential of cannabichromene (CBC) when administered to undifferentiated NSC-34 for 24 h. Transcriptomic analysis showed an upregulation of several neuronal markers, such as Neurod1 and Tubb3, as well as indicators of neuronal differentiation process progression, such as Pax6. An in-depth investigation of the processes involved in neuronal differentiation indicates positive cytoskeleton remodeling by upregulation of Cfl2 and Tubg1, and active differentiation-targeted transcriptional program, suggested by Phox2b and Hes1. After 48 h of treatment, the markers previously examined in the transcriptomic analysis are still overexpressed, like Ache and Hes1, indicating that the differentiation process is still in progress. The lack of GFAP protein suggests that no astroglial differentiation is taking place, and it is reasonable to indicate the neuronal one as the ongoing one. These results indicate CBC as a potential neuronal differentiation inducer for NSC-34 cells.
Collapse
Affiliation(s)
- Andrea Valeri
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Simone D’Angiolini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- Plantachem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
- Correspondence:
| |
Collapse
|
6
|
Maruszak A, Silajdžić E, Lee H, Murphy T, Liu B, Shi L, de Lucia C, Douiri A, Salta E, Nevado AJ, Teunissen CE, Visser PJ, Price J, Zetterberg H, Lovestone S, Thuret S. Predicting progression to Alzheimer's disease with human hippocampal progenitors exposed to serum. Brain 2023; 146:2045-2058. [PMID: 36703180 PMCID: PMC10151193 DOI: 10.1093/brain/awac472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 01/28/2023] Open
Abstract
Adult hippocampal neurogenesis is important for learning and memory and is altered early in Alzheimer's disease. As hippocampal neurogenesis is modulated by the circulatory systemic environment, evaluating a proxy of how hippocampal neurogenesis is affected by the systemic milieu could serve as an early biomarker for Alzheimer's disease progression. Here, we used an in vitro assay to model the impact of systemic environment on hippocampal neurogenesis. A human hippocampal progenitor cell line was treated with longitudinal serum samples from individuals with mild cognitive impairment, who either progressed to Alzheimer's disease or remained cognitively stable. Mild cognitive impairment to Alzheimer's disease progression was characterized most prominently with decreased proliferation, increased cell death and increased neurogenesis. A subset of 'baseline' cellular readouts together with education level were able to predict Alzheimer's disease progression. The assay could provide a powerful platform for early prognosis, monitoring disease progression and further mechanistic studies.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Tytus Murphy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Benjamine Liu
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Abdel Douiri
- Department of Population Health Sciences, King's College London, London, SE1 1UL, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands.,Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Alejo J Nevado
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Pieter J Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.,Department of Neurology, Alzheimer Center, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,Janssen Medical UK, B-2340 Beerse, Belgium
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| |
Collapse
|
7
|
Shen W, Jiang N, Zhou W. What can traditional Chinese medicine do for adult neurogenesis? Front Neurosci 2023; 17:1158228. [PMID: 37123359 PMCID: PMC10130459 DOI: 10.3389/fnins.2023.1158228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Adult neurogenesis plays a crucial role in cognitive function and mood regulation, while aberrant adult neurogenesis contributes to various neurological and psychiatric diseases. With a better understanding of the significance of adult neurogenesis, the demand for improving adult neurogenesis is increasing. More and more research has shown that traditional Chinese medicine (TCM), including TCM prescriptions (TCMPs), Chinese herbal medicine, and bioactive components, has unique advantages in treating neurological and psychiatric diseases by regulating adult neurogenesis at various stages, including proliferation, differentiation, and maturation. In this review, we summarize the progress of TCM in improving adult neurogenesis and the key possible mechanisms by which TCM may benefit it. Finally, we suggest the possible strategies of TCM to improve adult neurogenesis in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| | - Wenxia Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
- *Correspondence: Ning Jiang, ; Wenxia Zhou,
| |
Collapse
|
8
|
Neutral and charged forms of inubosin B in aqueous solutions at different pH and on the surface of Ag nanoparticles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Hamissa MF, Niederhafner P, Šafařík M, Telus M, Kolářová L, Koutná L, Šestáková H, Souček R, Šebestík J. Total synthesis of inubosin B. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Tian J, Wang T, Wang Q, Guo L, Du H. MK0677, a Ghrelin Mimetic, Improves Neurogenesis but Fails to Prevent Hippocampal Lesions in a Mouse Model of Alzheimer's Disease Pathology. J Alzheimers Dis 2020; 72:467-478. [PMID: 31594237 DOI: 10.3233/jad-190779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hippocampal lesions including synaptic injury, neuroinflammation, and impaired neurogenesis are featured pathology closely associated with neuronal stress and cognitive impairment in Alzheimer's disease (AD). Previous studies suggest that ghrelin and its receptor, growth hormone secretagogue receptor 1α (GHSR1α), promote hippocampal synaptic function and neurogenesis. GHSR1α activation thus holds the potential to be a therapeutic avenue for the treatment of hippocampal pathology in AD; however, a comprehensive study on the preventive effect of MK0677 on hippocampal lesions in AD-related conditions is still lacking. In this study, we treated a transgenic mouse model of AD-like amyloidosis (5xFAD mice) at the asymptomatic stage with MK0677, a potent ghrelin mimetic. We found that MK0677 fostered hippocampal neurogenesis in 5xFAD mice but observed little preventive function with regards to the development of hippocampal amyloid-β (Aβ) deposition, synaptic loss, microglial activation, or cognitive impairment. Furthermore, MK0677 at a dose of 3 mg/kg significantly increased 5xFAD mouse mortality. Despite enhanced hippocampal neurogenesis, MK0677 treatment has little beneficial effect to prevent hippocampal lesions or cognitive deficits against Aβ toxicity. This study, together with a failed large-scale clinical trial, suggests the ineffectiveness of MK0677 alone for AD prevention and treatment.
Collapse
Affiliation(s)
- Jing Tian
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Tienju Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.,Department of Neurology, Qianfoshan Hospital, Shandong First Medical University, Jinan, China
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
11
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 PMCID: PMC11448899 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
12
|
Balasubramanian V, Domanskyi A, Renko JM, Sarparanta M, Wang CF, Correia A, Mäkilä E, Alanen OS, Salonen J, Airaksinen AJ, Tuominen R, Hirvonen J, Airavaara M, Santos HA. Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials 2019; 227:119556. [PMID: 31670035 DOI: 10.1016/j.biomaterials.2019.119556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023]
Abstract
Generation of new neurons by utilizing the regenerative potential of adult neural stem cells (NSCs) and neuroblasts is an emerging therapeutic strategy to treat various neurodegenerative diseases, including neuronal loss after stroke. Committed to neuronal lineages, neuroblasts are differentiated from NSCs and have a lower proliferation rate. In stroke the proliferation of the neuroblasts in the neurogenic areas is increased, but the limiting factor for regeneration is the poor survival of migrating neuroblasts. Survival of neuroblasts can be promoted by small molecules; however, new drug delivery methods are needed to specifically target these cells. Herein, to achieve specific targeting, we have engineered biofunctionalized porous silicon nanoparticles (PSi NPs) conjugated with a specific antibody against polysialylated neural cell adhesion molecule (PSA-NCAM). The PSi NPs loaded with a small molecule drug, SC-79, were able to increase the activity of the Akt signaling pathway in doublecortin positive neuroblasts both in cultured cells and in vivo in the rat brain. This study opens up new possibilities to target drug effects to migrating neuroblasts and facilitate differentiation, maturation and survival of developing neurons. The conjugated PSi NPs are a novel tool for future studies to develop new therapeutic strategies aiming at regenerating functional neurocircuitry after stoke.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Finland.
| | - Juho-Matti Renko
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Chang-Fang Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Department of Physics and Astronomy, Laboratory of Industrial Physics, University of Turku, FI-20520, Finland
| | - Osku S Alanen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Jarno Salonen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014, Finland
| | - Raimo Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00014, Finland.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland; Helsinki Institute of Life Sciences, HiLIFE, University of Helsinki, FI-00014 Finland.
| |
Collapse
|
13
|
Park JH, Shin BN, Ahn JH, Cho JH, Lee TK, Lee JC, Jeon YH, Kang IJ, Yoo KY, Hwang IK, Lee CH, Noh YH, Kim SS, Won MH, Kim JD. Glehnia littoralis Extract Promotes Neurogenesis in the Hippocampal Dentate Gyrus of the Adult Mouse through Increasing Expressions of Brain-Derived Neurotrophic Factor and Tropomyosin-Related Kinase B. Chin Med J (Engl) 2018. [PMID: 29521292 PMCID: PMC5865315 DOI: 10.4103/0366-6999.226894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Glehnia littoralis has been used for traditional Asian medicine, which has diverse therapeutic activities. However, studies regarding neurogenic effects of G. littoralis have not yet been considered. Therefore, in this study, we examined effects of G. littoralis extract on cell proliferation, neuroblast differentiation, and the maturation of newborn neurons in the hippocampus of adult mice. Methods: A total of 39 male ICR mice (12 weeks old) were randomly assigned to vehicle-treated and 100 and 200 mg/kg G. littoralis extract-treated groups (n = 13 in each group). Vehicle and G. littoralis extract were orally administrated for 28 days. To examine neurogenic effects of G. littoralis extract, we performed immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU, an indicator for cell proliferation) and doublecortin (DCX, an immature neuronal marker) and double immunofluorescence staining for BrdU and neuronal nuclear antigen (NeuN, a mature neuronal marker). In addition, we examined expressional changes of brain-derived neurotrophic factor (BDNF) and its major receptor tropomyosin-related kinase B (TrkB) using Western blotting analysis. Results: Treatment with 200 mg/kg, not 100 mg/kg, significantly increased number of BrdU-immunoreactive (+) and DCX+ cells (48.0 ± 3.1 and 72.0 ± 3.8 cells/section, respectively) in the subgranular zone (SGZ) of the dentate gyrus (DG) and BrdU+/NeuN+ cells (17.0 ± 1.5 cells/section) in the granule cell layer as well as in the SGZ. In addition, protein levels of BDNF and TrkB (about 232% and 244% of the vehicle-treated group, respectively) were significantly increased in the DG of the mice treated with 200 mg/kg of G. littoralis extract. Conclusion: G. littoralis extract promots cell proliferation, neuroblast differentiation, and neuronal maturation in the hippocampal DG, and neurogenic effects might be closely related to increases of BDNF and TrkB proteins by G. littoralis extract treatment.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Bich Na Shin
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry and Research Institute of Oral Biology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yoo Hun Noh
- Famenity Biomedical Research Center, Famenity, Inc., Gyeonggi 13837, Korea
| | - Sung-Su Kim
- Famenity Biomedical Research Center, Famenity, Inc., Gyeonggi 13837, Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
14
|
A natural diarylheptanoid promotes neuronal differentiation via activating ERK and PI3K-Akt dependent pathways. Neuroscience 2015; 303:389-401. [DOI: 10.1016/j.neuroscience.2015.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/02/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022]
|
15
|
Lee H, Kang JE, Lee JK, Bae JS, Jin HK. Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum Gene Ther 2013; 24:655-69. [PMID: 23659480 DOI: 10.1089/hum.2013.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a neurodegenerative disorder characterized neuropathologically by ballooned neurons distended with lipid storage and widespread neuronal loss. Neural stem cells (NSC) derived from NP-C disease models have decreased ability for self-renewal and neuronal differentiation. Investigation of neurogenesis in the adult brain has suggested that NP-C disease can be overcome, or at least ameliorated, by the generation of new neurons. Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are regarded as potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. The underlying mechanisms of BM-MSC-induced promotion of neurogenesis, however, have not been resolved. The aim of the present study was to examine the mechanism of neurogenesis by BM-MSCs in NP-C disease. Coculture of embryonic NSCs from NP-C mice that exhibit impaired ability for self-renewal and decreased rates of neuronal differentiation with BM-MSCs resulted in an enhanced capacity for self-renewal and an increased ability for differentiation into neurons or oligodendrocytes. In addition, results of in vivo studies have demonstrated that transplantation of intracerebral BM-MSCs resulted in stimulated proliferation and neuronal differentiation of NSCs within the subventricular zone. Of particular interest, enhanced proliferation and neuronal differentiation of endogenous NP-C mouse NSCs showed an association with elevated release of the chemokine (C-C motif) ligand 2 (CCL2) from BM-MSCs. These effects suggest that soluble CCL2 derived from BM-MSCs can modulate endogenous NP-C NSCs, resulting in their improved proliferation and neuronal differentiation in mice.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701, South Korea
| | | | | | | | | |
Collapse
|
16
|
Gao WL, Zhang SQ, Zhang H, Wan B, Yin ZS. Chordin-like protein 1 promotes neuronal differentiation by inhibiting bone morphogenetic protein-4 in neural stem cells. Mol Med Rep 2013; 7:1143-8. [PMID: 23404565 DOI: 10.3892/mmr.2013.1310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/01/2013] [Indexed: 11/06/2022] Open
Abstract
In the present study, the effects of chordin‑like protein 1 (CHRDL1) overexpression, together with bone morphogenetic protein‑4 (BMP‑4) treatment, on the differentiation of rat spinal cord‑derived neural stem cells (NSCs) was investigated. Adult rat spinal cord‑derived NSCs were cultured in serum‑free medium. The recombined eukaryotic expression vector pSecTag2/Hygro B‑CHRDL1 was transfected into adult rat spinal cord‑derived NSCs using a lipid‑based transfection reagent and protein expression was assessed by western blot analysis. Differentiation of transfected NSCs following BMP‑4 treatment was determined by immunocytochemistry. The percentage of microtubule‑associated protein‑2 (MAP‑2)‑positive cells in the BMP‑4‑treated (B) group was found to be significantly lower compared with that in the non‑transfected control (N) group. The percentage of MAP‑2‑positive cells in the pSecTag2/Hygro B‑CHRDL1‑transfected, BMP‑4‑treated group was identified to be significantly higher compared with that in group B, however, no significant difference was observed between group N and the transfected, non‑BMP‑4‑treated control group. The current study indicates that CHRDL1 protein antagonizes BMP‑4 activity and induces spinal cord‑derived NSCs to differentiate into neurons.
Collapse
Affiliation(s)
- Wei-Lu Gao
- Department of Orthopaedics, The Geriatric Institution, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | | | | | | | | |
Collapse
|
17
|
Cockayne syndrome b maintains neural precursor function. DNA Repair (Amst) 2012; 12:110-20. [PMID: 23245699 DOI: 10.1016/j.dnarep.2012.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/17/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
Neurodevelopmental defects are observed in the hereditary disorder Cockayne syndrome (CS). The gene most frequently mutated in CS, Cockayne Syndrome B (CSB), is required for the repair of bulky DNA adducts in transcribed genes during transcription-coupled nucleotide excision repair. CSB also plays a role in chromatin remodeling and mitochondrial function. The role of CSB in neural development is poorly understood. Here we report that the abundance of neural progenitors is normal in Csb(-/-) mice and the frequency of apoptotic cells in the neurogenic niche of the adult subependymal zone is similar in Csb(-/-) and wild type mice. Both embryonic and adult Csb(-/-) neural precursors exhibited defective self-renewal in the neurosphere assay. In Csb(-/-) neural precursors, self-renewal progressively decreased in serially passaged neurospheres. The data also indicate that Csb and the nucleotide excision repair protein Xpa preserve embryonic neural stem cell self-renewal after UV DNA damage. Although Csb(-/-) neural precursors do not exhibit altered neuronal lineage commitment after low-dose UV (1J/m(2)) in vitro, neurons differentiated in vitro from Csb(-/-) neural precursors that had been irradiated with 1J/m(2) UV exhibited defective neurite outgrowth. These findings identify a function for Csb in neural precursors.
Collapse
|
18
|
Abstract
Schizophrenia is a common mental illness resulting from a complex interplay of genetic and environmental risk factors. Establishing its primary molecular and cellular aetiopathologies has proved difficult. However, this is a vital step towards the rational development of useful disease biomarkers and new therapeutic strategies. The advent and large-scale application of genomic, transcriptomic, proteomic and metabolomic technologies are generating data sets required to achieve this goal. This discovery phase, typified by its objective and hypothesis-free approach, is described in the first part of the review. The accumulating biological information, when viewed as a whole, reveals a number of biological process and subcellular locations that contribute to schizophrenia causation. The data also show that each technique targets different aspects of central nervous system function in the disease state. In the second part of the review, key schizophrenia candidate genes are discussed more fully. Two higher-order processes - adult neurogenesis and inflammation - that appear to have pathological relevance are also described in detail. Finally, three areas where progress would have a large impact on schizophrenia biology are discussed: deducing the causes of schizophrenia in the individual, explaining the phenomenon of cross-disorder risk factors, and distinguishing causative disease factors from those that are reactive or compensatory.
Collapse
|
19
|
Hung AC, Porter AG. p53 mediates nitric oxide-induced apoptosis in murine neural progenitor cells. Neurosci Lett 2009; 467:241-6. [DOI: 10.1016/j.neulet.2009.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/25/2009] [Accepted: 10/15/2009] [Indexed: 11/30/2022]
|
20
|
Zupanc GK. Towards brain repair: Insights from teleost fish. Semin Cell Dev Biol 2009; 20:683-90. [DOI: 10.1016/j.semcdb.2008.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 01/19/2023]
|
21
|
Muja N, Bulte JW. Magnetic resonance imaging of cells in experimental disease models. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:61-77. [PMID: 21552511 PMCID: PMC3087183 DOI: 10.1016/j.pnmrs.2008.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Naser Muja
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor, 720 Rutland Ave., Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, 217 Traylor, 720 Rutland Ave., Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
22
|
Ransome MI, Turnley AM. Growth hormone signaling and hippocampal neurogenesis: insights from genetic models. Hippocampus 2008; 18:1034-50. [PMID: 18566962 DOI: 10.1002/hipo.20463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adult hippocampal neurogenesis (AHN) is modulated by a variety of factors through effects on the proliferation-differentiation-survival regulatory axis. We have employed growth hormone receptor knockout (GH-R-/-) and suppressor of cytokine signaling-2 transgenic (SOCS-2 Tg) mice as models of altered GH-signaling to assess their affects on basal and exercised-induced hippocampal neurogenesis. Assessment of proliferation 24-h after 7-days of bromodeoxyuridine (BrdU) labeling with or without voluntary running showed that the density of BrdU(+) cells in the subgranular zone remained unchanged between genotypes in control housing, while running induced significant increases in BrdU-labeled cells in WT, GH-R-/-, and SOCS-2 Tg mice. The proportion of BrdU/doublecortin and BrdU/S100beta cells did not vary between genotype or running conditions at this time-point. Assessment of cell survival 28-days after BrdU labeling showed that SOCS-2 Tg animals had significantly higher BrdU(+) cell densities in the granule cell layer compared to WT and GH-R-/- animals in control housing and after voluntary running. There were no differences in cell survival between WT and GH-R-/- mice with or without running. Mature phenotype analysis showed similar proportions of BrdU/NeuN and BrdU/S100beta in all groups. While SOCS-2 Tg mice had similar social interaction behaviors and sensorimotor gating, they appeared to be less anxious with heightened basal locomotor activity and showed enhanced performance in the Morris watermaze test. Overall, our data indicated that mice over-expressing SOCS-2 showed increased survival of neurons generated during AHN, which correlated with improved performance in a hippocampal-dependent cognitive task. Furthermore, voluntary running increased AHN in WT, SOCS-2 Tg, and serum-IGF-1-deficient GH-R-/- mice.
Collapse
Affiliation(s)
- Mark I Ransome
- Neural Regeneration Laboratory, Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
23
|
Abstract
Este artigo analisa o movimento da neurodiversidade organizado basicamente por autistas chamados de alto funcionamento que consideram que o autismo não é uma doença a ser tratada, mas uma diferença humana, a qual deve ser respeitada como outras diferenças. O movimento da "neurodiversidade" deve ser inserido em um marco sociocultural e histórico mais amplo que incorpore o impacto crescente no imaginário cultural dos saberes e das práticas neurocientíficas com o paradigma do sujeito cerebral e a expansão da neurocultura. No contexto do sujeito cerebral, o cérebro responde por tudo o que outrora costumávamos atribuir à pessoa e vem se tornando um critério biossocial de agrupamento fundamental. O artigo mostra como uma ideologia solipsista, reducionista e cientificista - o sujeito cerebral - pode servir de base para a formação de identidade e de redes de sociabilidade e comunidade.
Collapse
|
24
|
Abstract
Stem cells have been the focus of numerous investigations to treat diseases as far ranging as diabetes, chronic heart failure and multiple sclerosis over the past decade. The process of stem-cell-based repair of acute injury involves homing and engrafting of the stem cell of interest to the site of injury followed by either differentiation of the stem cell to indigenous end-organ cells or liberation of paracrine factors that lead to preservation and/or optimization of organ function. Recognition of the ability of stem cells to home to sites of acute injury suggests that, if appropriately defined and harnessed, stem cell homing could serve as a means of local drug delivery through the infusion of genetically engineering stem cells that secrete gene products of interest. The authors have recently demonstrated the use of this approach in preclinical studies of acute myocardial function. In addition, the use of engineered cells that home to appropriate niches have been used to correct genetic deficiency states (i.e., severe combined immunodeficiency, diabetes mellitus) in patients with otherwise chronic debilitating diseases. This review focuses on exploiting stem cell homing for gene transfer and on the state of the art and the challenges that face the field.
Collapse
Affiliation(s)
- Marc S Penn
- Skirball Laboratory for Cardiovascular Cellular Therapeutics, Department of Cardiovascular Medicine, NE3, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
25
|
Luo W, Wang Y, Reiser G. Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. ACTA ACUST UNITED AC 2007; 56:331-45. [PMID: 17915333 DOI: 10.1016/j.brainresrev.2007.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/15/2007] [Accepted: 08/18/2007] [Indexed: 11/15/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that regulate the cellular response to extracellular serine proteases, like thrombin, trypsin, and tryptase. The PAR family consists of four members: PAR-1, -3, and -4 as thrombin receptors and PAR-2 as the trypsin/tryptase receptor, which are abundantly expressed in the brain throughout development. Recent evidence has supported the direct involvement of PARs in brain development and function. The expression of PARs in the brain is differentially upregulated or downregulated under pathological conditions in neurodegenerative disorders, like Parkinson's disease, Alzheimer's disease, multiple sclerosis, stroke, and human immunodeficiency virus-associated dementia. Activation of PARs mediates cell death or cell survival in the brain, depending on the amplitude and the duration of agonist stimulation. Interference or potentiation of PAR activation is beneficial in animal models of neurodegenerative diseases. Therefore, PARs mediate either neurodegeneration or neuroprotection in neurodegenerative diseases and represent attractive therapeutic targets for treatment of brain injuries. Here, we review the abnormal expression of PARs in the brain under pathological conditions, the functions of PARs in neurodegenerative disorders, and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Weibo Luo
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
26
|
Ransome MI, Turnley AM. Systemically delivered Erythropoietin transiently enhances adult hippocampal neurogenesis. J Neurochem 2007; 102:1953-1965. [PMID: 17555554 DOI: 10.1111/j.1471-4159.2007.04684.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythropoietin is a primary regulator of erythropoiesis in the hematopoietic system. More recently erythropoietin has been shown to play a role in neurogenesis and provide neurotrophic support to injured CNS tissue. Here the effects of large systemic doses of erythropoietin on basal levels of adult hippocampal neurogenesis in mice were examined. A 7-day period of recombinant human erythropoietin (rhEPO) administration increased the number of bromodeoxyuridine [BrdU(+)] cells in the sub-granular zone (SGZ) by 30%. Analysis of cell phenotype revealed an increase in mitotically active doublecortin(+) neuronal progenitor cells and glial fibrillary acidic protein(+) SGZ radial astrocytes/stem cells but not mature S100beta(+) astrocytes. These effects appeared to be mediated, in part, by mitogen-activated protein kinase signaling and potentially regulated by suppressor of cytokine signaling-3. Hippocampal levels of phosphorylated extracellular signal-related kinase 42/44 and suppressor of cytokine signaling-3 were increased 2-6 h after a single systemic rhEPO injection. However, rhEPO had no observed effect on the long-term survival of new born cells in the SGZ, with similar numbers of BrdU(+) cells and BrdU(+)/NeuN(+) co-labeled cells after 4 weeks. Therefore, systemically delivered rhEPO transiently increased adult hippocampal neurogenesis without any apparent long-term effects.
Collapse
Affiliation(s)
- Mark I Ransome
- Neural Regeneration Laboratory, Centre for Neuroscience, University of Melbourne, Melbourne, Vic., Australia
| | - Ann M Turnley
- Neural Regeneration Laboratory, Centre for Neuroscience, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
27
|
Kazantsev AG. Developing a neuroprotective therapy for Parkinson’s and Huntington’s diseases. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Stein DG. Sex differences in brain damage and recovery of function: experimental and clinical findings. PROGRESS IN BRAIN RESEARCH 2007; 161:339-51. [PMID: 17618989 DOI: 10.1016/s0079-6123(06)61024-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until the last decade or so, there was very little systematic examination of sex differences in recovery from brain injury--most of the work was anecdotal or based on very small studies comparing males to females. This chapter reviews some of the physiological, morphological, and functional evidence for sex differences in response to brain injury across the spectrum of development. It also examines more recent data showing that fluctuations in hormonal status during the menstrual and estrous cycle can play a determining role in functional outcome in both normal and brain-injured females, and that these hormonal influences can be measured at both the cellular and behavioral levels.
Collapse
Affiliation(s)
- Donald G Stein
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
29
|
Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 2006; 16:857-71. [PMID: 17088897 DOI: 10.1038/sj.cr.7310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|