1
|
Karcz T, Szczepańska K, Mogilski S, Moroz A, Olejarz-Maciej A, Humphrys LJ, Pockes S, Siwek A, Dubiel K, Staszewski M, Calmels T, Waczyński K, Kieć-Kononowicz K. Guanidine Derivative ADS1017, a Potent Histamine H 3 Receptor Antagonist with Promising Analgesic Activity and Satisfactory Safety Profile. ACS Chem Neurosci 2024; 15:4441-4457. [PMID: 39652796 DOI: 10.1021/acschemneuro.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
In this study, we selected 12 guanidine derivatives from the previously described ligand library and determined their affinity at histamine H3 and H4 receptors (H3R and H4R, respectively). Moreover, we also checked their intrinsic activity toward H3R and muscarinic M1, M2, and M4 receptors (M1R, M2R, and M4R, respectively). Since ADS1017 has been proved to be the most selective and highly potent H3 antagonist in our series, we chose it as the lead structure for further biological evaluation. To extend the study of its in vivo efficacy, we proposed an alternative synthetic route that resulted in an increased yield. Interestingly, ADS1017 showed a broad spectrum of analgesic activity in both nociceptive and neuropathic pain models. Finally, as a result of comprehensive analysis of its off-target activity and ADMETox parameters, we confirmed the moderate selectivity of ADS1017 and its promising drug-like properties.
Collapse
Affiliation(s)
- Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Moroz
- R&D Centre, Celon Pharma S.A., Marymoncka 15, Kazuń Nowy 05-152, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Steffen Pockes
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Krzysztof Dubiel
- R&D Centre, Celon Pharma S.A., Marymoncka 15, Kazuń Nowy 05-152, Poland
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, Łódź 90-151, Poland
| | - Thierry Calmels
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, Saint-Gregoire Cedex 35762, France
| | - Krzysztof Waczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, Łódź 90-151, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| |
Collapse
|
2
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Li L, Li ZE, Mo YL, Li WY, Li HJ, Yan GH, Qin XZ, Piao LH. Molecular and cellular pruritus mechanisms in the host skin. Exp Mol Pathol 2024; 136:104889. [PMID: 38316203 DOI: 10.1016/j.yexmp.2024.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/28/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.
Collapse
Affiliation(s)
- Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Zhi-En Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Yun-Li Mo
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Wan-Yao Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Hui-Jing Li
- Clinical Medicine, Yanbian University Medical College, Yanji 133002, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China
| | - Xiang-Zheng Qin
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| | - Li-Hua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; Department of Anatomy, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|
4
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Sjöqvist PO, Wiklund L, Sharma HS. Nanodelivery of histamine H3 receptor inverse agonist BF-2649 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:37-77. [PMID: 37833018 DOI: 10.1016/bs.irn.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Per-Ove Sjöqvist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
5
|
Zhang S, Liu Y, Javeed A, Jian C, Sun J, Wu S, Han B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur J Med Chem 2023; 249:115151. [PMID: 36731273 DOI: 10.1016/j.ejmech.2023.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.
Collapse
Affiliation(s)
- Shanshan Zhang
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Ansar Javeed
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuiqin Jian
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinlyu Sun
- Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Bingnan Han
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Neuroprotective effect of histamine H3 receptor blockade on methamphetamine-induced cognitive impairment in mice. Pharmacol Biochem Behav 2023; 222:173512. [PMID: 36572112 DOI: 10.1016/j.pbb.2022.173512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Methamphetamine (METH) exposure is commonly believed to result in cognitive impairment. Histamine H3 receptor (H3R) antagonists reportedly have potential applications for treating cognitive impairment accompanied by various neuropsychiatric disorders. The present study aimed to investigate the effect of H3R blockade by Thioperamide (THIO) on METH-induced cognitive impairment and the underlying mechanism. METHODS In Experiment 1, C57BL/6 mice received daily injections of saline or 5 mg/kg METH for 5 consecutive days. The Novel Object Recognition (NOR) and Morris water maze (MWM) tasks were used to assess cognitive functions of mice. H3R protein expression and apoptosis were subsequently measured in the hippocampus. In Experiment 2, HT22 cells were first treated with ddH2O or 3 mM METH. The cell survival rate and H3R protein level were subsequently assessed. In Experiment 3, the animals were first treated with saline or 20 mg/kg THIO for 7 days, followed by co-administration of either saline or 5 mg/kg METH for an additional 5 days. The remaining experiments were carried out in the same manner as Experiment 1. In Experiment 4, HT22 cells were pretreated with either ddH2O or 5 mM THIO for 2 h, followed by ddH2O or 3 mM METH treatment for an additional 12 h. The remaining experiments were carried out in the same manner as Experiment 2. In Experiment 5, the changes in MEK1/2, p-MEK1/2, ERK1/2 and p-ERK1/2 protein levels were examined in the hippocampus of all mice from Experiment 3 and HT22 cells from Experiment 4. RESULTS METH-treated mice showed significantly worsened NOR and MWM performance, along with markably hippocampal apoptosis. A significantly lower cell survival rate was observed in METH-treated HT22 cells. Increased levels of H3R protein were found in both METH-treated mice and HT22 cells. THIO significantly improved METH-induced cognitive impairment in mice and toxicity in HT22 cells. METH significantly increased the level of p-MEK1/2 and p-ERK1/2 proteins in the hippocampus of mice and HT22 cells, which was reversed by THIO pretreatment. CONCLUSION Our findings reveal that H3R blockade by THIO yields a neuroprotective effect against METH-induced cognitive impairment in mice and toxicity in HT22 cells via the raf-MEK-ERK signaling pathway.
Collapse
|
8
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
9
|
Kraus FBT, Topalov NE, Deuster E, Hysenaj I, Mayr D, Chelariu-Raicu A, Beyer S, Kolben T, Burges A, Mahner S, Trillsch F, Jeschke U, Czogalla B. Expression pattern and prognostic potential of histamine receptors in epithelial ovarian cancer. J Cancer Res Clin Oncol 2022; 149:2501-2511. [PMID: 35751684 PMCID: PMC10129941 DOI: 10.1007/s00432-022-04114-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Despite recent advances in the treatment of ovarian cancer (OC), long-term remissions remain scarce. For a targeted approach, prognostic markers are indispensable for predicting survival and treatment response. Given their association with multiple hallmarks of cancer, histamine receptors (HR) are emerging as promising candidates. Here, we investigate their expression pattern and prognostic value in OC. METHODS Specimens of 156 epithelial OC patients were collected during cytoreductive surgery at the Department of Obstetrics and Gynecology, LMU, between 1990 and 2002 and combined in a tissue microarray. Immunohistochemical staining of the HR H1, H2, H3 and H4 was quantified by an immunoreactive score and linked with clinico-pathological data by Spearman's correlation. Via ROC curve analysis, optimal cut-off values for potential prognostic markers were defined. Overall survival (OS) was visualized in Kaplan-Maier curves and significances determined by log-rank testing. A Cox regression model was applied for multivariate analysis. RESULTS HR H3 and H4 expression was restricted to the cytosol of OC cells, while H1 was also present in the nucleus. A significant association between HR H1, H3 and H4 expression with several clinico-pathological parameters was revealed. In addition, HR H1 and H3 expression correlated positively, HR H4 expression negatively with OS. In addition, HR H3 was identified as independent prognostic marker for OS. HR H2 expression had no prognostic value. CONCLUSIONS HR H1, H3 and H4 could serve as potential predictors for OS of OC patients. Further research is warranted to elucidate their pathophysiologic role and their predictive and therapeutic potential in OC.
Collapse
Affiliation(s)
- Fabian B T Kraus
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.
| | - Nicole E Topalov
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - E Deuster
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - I Hysenaj
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - D Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - A Chelariu-Raicu
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - S Beyer
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - T Kolben
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - A Burges
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - S Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - F Trillsch
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - U Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - B Czogalla
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Li L, Liu R, Peng C, Chen X, Li J. Pharmacogenomics for the efficacy and side effects of antihistamines. Exp Dermatol 2022; 31:993-1004. [PMID: 35538735 DOI: 10.1111/exd.14602] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
Antihistamines, especially H1 antihistamines, are widely used in the treatment of allergic diseases such as urticaria and allergic rhinitis, mainly for reversing elevated histamine and anti-allergic effects. Antihistamines are generally safe, but some patients experience adverse reactions, such as cardiotoxicity, central inhibition, and anticholinergic effects. There are also individual differences in antihistamine efficacy in clinical practice. The concept of individualized medicine has been deeply rooted in people's minds since it was put forward. Pharmacogenomics is the study of the role of inheritance in individual variations in drug response. In recent decades, pharmacogenomics has been developing rapidly, which provides new ideas for individualized medicine. Polymorphisms in the genes encoding metabolic enzymes, transporters, and target receptors have been shown to affect the efficacy of antihistamines. In addition, recent evidence suggests that gene polymorphisms influence urticaria susceptibility and antihistamine therapy. Here, we summarize current reports in this area, aiming to contribute to future research in antihistamines and clinical guidance for antihistamines use in individualized medicine.
Collapse
Affiliation(s)
- Liqiao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Substituted Purines as High-Affinity Histamine H 3 Receptor Ligands. Pharmaceuticals (Basel) 2022; 15:ph15050573. [PMID: 35631399 PMCID: PMC9145483 DOI: 10.3390/ph15050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
Continuing with our program to obtain new histamine H3 receptor (H3R) ligands, in this work we present the synthesis, H3R affinity and in silico studies of a series of eight new synthetically accessible purine derivatives. These compounds are designed from the isosteric replacement of the scaffold presented in our previous ligand, pyrrolo[2,3-d]pyrimidine ring, by a purine core. This design also considers maintaining the fragment of bipiperidine at C-4 and aromatic rings with electron-withdrawing groups at N-9, as these fragments are part of the proposed pharmacophore. The in vitro screening results show that two purine derivatives, 3d and 3h, elicit high affinities to the H3R (Ki values of 2.91 and 5.51 nM, respectively). Both compounds are more potent than the reference drug pitolisant (Ki 6.09 nM) and show low toxicity with in vitro models (IC50 > 30 µM on HEK-293, SH-SY5Y and HepG2 cell lines). Subsequently, binding modes of these ligands are obtained using a model of H3R by docking and molecular dynamics studies, thus determining the importance of the purine ring in enhancing affinity due to the hydrogen bonding of Tyr374 to the N-7 of this heterocycle. Finally, in silico ADME properties are predicted, which indicate a promising future for these molecules in terms of their physical−chemical properties, absorption, oral bioavailability and penetration in the CNS.
Collapse
|
12
|
Falkenstein M, Elek M, Stark H. Chemical Probes for Histamine Receptor Subtypes. Curr Top Behav Neurosci 2021; 59:29-76. [PMID: 34595743 DOI: 10.1007/7854_2021_254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ligands with different properties and different selectivity are highly needed for in vitro and in vivo studies on the (patho)physiological influence of the chemical mediator histamine and its receptor subtypes. A selection of well-described ligands for the different receptor subtypes and different studies is shown with a particular focus on affinity and selectivity. In addition, compounds with radioactive or fluorescence elements will be presented with their beneficial use for other species or different investigations.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| |
Collapse
|
13
|
Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021; 11:biom11081232. [PMID: 34439898 PMCID: PMC8392479 DOI: 10.3390/biom11081232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
High levels of histamine and histamine receptors (HRs), including H1R~H4R, are found in many different types of tumor cells and cells in the tumor microenvironment, suggesting their involvement in tumor progression. This review summarizes the latest evidence demonstrating the pathophysiological roles of histamine and its cognate receptors in cancer biology. We also discuss the novel therapeutic approaches of selective HR ligands and their potential prognostic values in cancer treatment. Briefly, histamine is highly implicated in cancer development, growth, and metastasis through interactions with distinct HRs. It also regulates the infiltration of immune cells into the tumor sites, exerting an immunomodulatory function. Moreover, the effects of various HR ligands, including H1R antagonists, H2R antagonists, and H4R agonists, on tumor progression in many different cancer types are described. Interestingly, the expression levels of HR subtypes may serve as prognostic biomarkers in several cancers. Taken together, HRs are promising targets for cancer treatment, and HR ligands may offer novel therapeutic potential, alone or in combination with conventional therapy. However, due to the complexity of the pathophysiological roles of histamine and HRs in cancer biology, further studies are warranted before HR ligands can be introduced into clinical settings.
Collapse
|
14
|
Le TM, Huynh T, Bamou FZ, Szekeres A, Fülöp F, Szakonyi Z. Novel (+)-Neoisopulegol-Based O-Benzyl Derivatives as Antimicrobial Agents. Int J Mol Sci 2021; 22:5626. [PMID: 34073167 PMCID: PMC8198684 DOI: 10.3390/ijms22115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Discovery of novel antibacterial agents with new structures, which combat pathogens is an urgent task. In this study, a new library of (+)-neoisopulegol-based O-benzyl derivatives of aminodiols and aminotriols was designed and synthesized, and their antimicrobial activity against different bacterial and fungal strains were evaluated. The results showed that this new series of synthetic O-benzyl compounds exhibit potent antimicrobial activity. Di-O-benzyl derivatives showed high activity against Gram-positive bacteria and fungi, but moderate activity against Gram-negative bacteria. Therefore, these compounds may serve a good basis for antibacterial and antifungal drug discovery. Structure-activity relationships were also studied from the aspects of stereochemistry of the O-benzyl group on cyclohexane ring and the substituent effects on the ring system.
Collapse
Affiliation(s)
- Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Thu Huynh
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Department of Biotecnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Fatima Zahra Bamou
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
| | - András Szekeres
- Department of Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (T.H.); (A.S.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, Interdisciplinary Excellent Center, Eötvös utca 6, H-6720 Szeged, Hungary; (T.M.L.); (F.Z.B.); (F.F.)
- Interdisciplinary Centre of Natural Products, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| |
Collapse
|
15
|
Discovery of Potential, Dual-Active Histamine H 3 Receptor Ligands with Combined Antioxidant Properties. Molecules 2021; 26:molecules26082300. [PMID: 33921144 PMCID: PMC8071534 DOI: 10.3390/molecules26082300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/13/2023] Open
Abstract
In an attempt to find new dual acting histamine H3 receptor (H3R) ligands, we designed a series of compounds, structurally based on previously described in our group, a highly active and selective human histamine H3 receptor (hH3R) ligand KSK63. As a result, 15 obtained compounds show moderate hH3R affinity, the best being the compound 17 (hH3R Ki = 518 nM). Docking to the histamine H3R homology model revealed two possible binding modes, with key interactions retained in both cases. In an attempt to find possible dual acting ligands, selected compounds were tested for antioxidant properties. Compound 16 (hH3R Ki = 592 nM) showed the strongest antioxidant properties at the concentration of 10−4 mol/L. It significantly reduced the amount of free radicals presenting 50–60% of ascorbic acid activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, as well as showed antioxidative properties in the ferric reducing antioxidant power (FRAP) assay. Despite the yet unknown antioxidation mechanism and moderate hH3R affinity, 16 (QD13) constitutes a starting point for the search of potential dual acting H3R ligands-promising tools for the treatment of neurological disorders associated with increased neuronal oxidative stress.
Collapse
|
16
|
Szczepańska K, Pockes S, Podlewska S, Höring C, Mika K, Latacz G, Bednarski M, Siwek A, Karcz T, Nagl M, Bresinsky M, Mönnich D, Seibel U, Kuder KJ, Kotańska M, Stark H, Elz S, Kieć-Kononowicz K. Structural modifications in the distal, regulatory region of histamine H 3 receptor antagonists leading to the identification of a potent anti-obesity agent. Eur J Med Chem 2021; 213:113041. [PMID: 33261900 DOI: 10.1016/j.ejmech.2020.113041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
A series of 4-pyridylpiperazine derivatives with varying regulatory region substituents proved to be potent histamine H3 receptor (H3R) ligands in the nanomolar concentration range. The most influential modification that affected the affinity toward the H3R appeared by introducing electron-withdrawing moieties into the distal aromatic ring. In order to finally discuss the influence of the characteristic 4-pyridylpiperazine moiety on H3R affinity, two Ciproxifan analogues 2 and 3 with a slight modification in their basic part were obtained. The replacement of piperazine in 3 with piperidine in compound 2, led to slightly reduced affinity towards the H3R (Ki = 3.17 and 7.70 nM, respectively). In fact, 3 showed the highest antagonistic properties among all compounds in this series, hence affirming our previous assumptions, that the 4-pyridylpiperazine moiety is the key element for suitable interaction with the human histamine H3 receptor. While its structural replacement to piperidine is also tolerated for H3R binding, the heteroaromatic 4-pyridyl moiety seems to be essential for proper ligand-receptor interaction. The putative protein-ligand interactions responsible for their high affinity were demonstrated using molecular modeling techniques. Furthermore, selectivity, intrinsic activity at the H3R, as well as drug-like properties of ligands were evaluated using in vitro methods. Moreover, pharmacological in vivo test results of compound 9 (structural analogue of Abbott's A-331440) clearly indicate that it may affect the amount of calories consumed, thus act as an anorectic compound.
Collapse
Affiliation(s)
- Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Steffen Pockes
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany.
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Kamil Mika
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Marek Bednarski
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Martin Nagl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Merlin Bresinsky
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ulla Seibel
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Magdalena Kotańska
- Department of Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków, 30-688, Poland.
| |
Collapse
|
17
|
Novel potent (dihydro)benzofuranyl piperazines as human histamine receptor ligands - Functional characterization and modeling studies on H 3 and H 4 receptors. Bioorg Med Chem 2020; 30:115924. [PMID: 33333448 DOI: 10.1016/j.bmc.2020.115924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
Histamine acts through four different receptors (H1R-H4R), the H3R and H4R being the most explored in the last years as drug targets. The H3R is a potential target to treat narcolepsy, Parkinson's disease, epilepsy, schizophrenia and several other CNS-related conditions, while H4R blockade leads to anti-inflammatory and immunomodulatory effects. Our group has been exploring the dihydrobenzofuranyl-piperazines (LINS01 series) as human H3R/H4R ligands as potential drug candidates. In the present study, a set of 12 compounds were synthesized from adequate (dihydro)benzofuran synthons through simple reactions with corresponding piperazines, giving moderate to high yields. Four compounds (1b, 1f, 1g and 1h) showed high hH3R affinity (pKi > 7), compound 1h being the most potent (pKi 8.4), and compound 1f showed the best efficiency (pKi 8.2, LE 0.53, LLE 5.85). BRET-based assays monitoring Gαi activity indicated that the compounds are potent antagonists. Only one compound (2c, pKi 7.1) presented high affinity for hH4R. In contrast to what was observed for hH3R, it showed partial agonist activity. Docking experiments indicated that bulky substituents occupy a hydrophobic pocket in hH3R, while the N-allyl group forms favorable interactions with hydrophobic residues in the TM2, 3 and 7, increasing the selectivity towards hH3R. Additionally, the importance of the indole NH in the interaction with Glu5.46 from hH4R was confirmed by the modeling results, explaining the affinity and agonistic activity of compound 2c. The data reported in this work represent important findings for the rational design of future compounds for hH3R and hH4R.
Collapse
|
18
|
Gao F, Zhang S. Loratadine Alleviates Advanced Glycation End Product-Induced Activation of NLRP3 Inflammasome in Human Chondrocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2899-2908. [PMID: 32801633 PMCID: PMC7382759 DOI: 10.2147/dddt.s243512] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Background Chondrocytes in joint tissue are responsible for the synthesis and degradation of the cartilage matrix. Chondrocytes have been closely linked to the pathogenesis of osteoarthritis and cartilage damage. Targeted drug intervention directed at chondrocyte function is a promising strategy for the treatment of osteoarthritis. The effects of histamine receptor H1 (H1R) and its antagonist loratadine in osteoarthritic chondrocytes are less known. Materials and Methods The inhibitory effects of loratadine on NLRP3 inflammasome and the NADPH oxidase subunit NOX4 were assessed in advanced glycation end products (AGEs)-treated SW1353 chondrocytes by real-time PCR, ELISA, and Western blot experiments. The mitochondrial ROS level was measured using the specific probe MitoSOX Red. The dependent effect of loratadine on the transcriptional factor nuclear factor erythroid 2-related factor 2 (NRF2) was evaluated through an oligo-based siRNA knockdown approach and Western blot analysis. Results The expression of H1R was dose-responsively induced by AGEs in chondrocytes. Treatment with loratadine mitigated AGEs-induced oxidative stress, as revealed by suppressed production of mitochondrial ROS and the NADPH oxidase subunit NOX4. Loratadine treatment inhibited the expression of TxNIP and several components of the NLRP3 inflammasome complex, including NLRP3, ASC, and cleaved caspase 1 (P10). Moreover, loratadine suppressed the expression of NRF2, and the silencing of NRF2 abolished the suppressive effect of loratadine on NLRP3 inflammasome activation. Conclusion Our study demonstrates that loratadine protects chondrocytes from AGEs-induced TxNIP/NLRP3 inflammasome activation by modulating the expression of the transcriptional factor NRF2. This finding implies that loratadine has therapeutic potential in the treatment of osteoarthritis and cartilage injury.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun City, Jilin Province 130041, People's Republic of China
| | - Shanyong Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun City, Jilin Province 130041, People's Republic of China
| |
Collapse
|
19
|
Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2020; 20:522-539. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including "off-target" effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| |
Collapse
|
20
|
Paudel S, Mehtani D, Puri N. Mast Cells May Differentially Regulate Growth of Lymphoid Neoplasms by Opposite Modulation of Histamine Receptors. Front Oncol 2019; 9:1280. [PMID: 31824856 PMCID: PMC6881378 DOI: 10.3389/fonc.2019.01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer microenvironment is complex and consists of various immune cells. There is evidence for mast cell (MC) infiltration of tumors, but their role thereof is poorly understood. In this study, we explored the effects of mast cell and their mediators on the growth of hematological cancer cells. The affect is demonstrated using RBL-2H3 MCs, and YAC-1, EL4 and L1210 as hematological cancer cell lines. Direct contact with MCs or stimulation by their mediators caused growth inhibition of YAC-1 cells, growth enhancement of EL4 cells and no change in growth of L1210 cells. This effect was confirmed by cancer cell recovery, cell viability, mitochondrial health, and cell cycle analysis. MCs showed mediator release in direct contact with tumor cells. MC mediators' treatment to YAC-1 and EL4 yielded exactly opposite modulations of survival markers, Survivin and COX-2 and apoptosis markers, Caspase-3, Bcl-2, in the two cell lines. Histamine being an important MC mediator, effect of histamine on cell recovery, survival markers and expression of various histamine receptors and their modulation in cancer cells was studied. Again, YAC-1 and EL4 cells showed contrary histamine receptor expression modulation in response to MC mediators. Histamine receptor antagonist co-treatment with MC mediators to the cancer cells suggested a major involvement of H2 and H4 receptor in growth inhibition in YAC-1 cells, and contribution of H1, H2, and H4 receptors in cell growth enhancement in EL4 cells. L1210 showed changes in the histamine receptors' expression but no effect on treatment with receptor antagonists. It can be concluded that anti-cancerous action of MCs or their mediators may include direct growth inhibition, but their role may differ depending on the tumor.
Collapse
Affiliation(s)
- Sandeep Paudel
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deeksha Mehtani
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Niti Puri
- Cellular and Molecular Immunology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
21
|
Moreau D, Vacca F, Vossio S, Scott C, Colaco A, Paz Montoya J, Ferguson C, Damme M, Moniatte M, Parton RG, Platt FM, Gruenberg J. Drug-induced increase in lysobisphosphatidic acid reduces the cholesterol overload in Niemann-Pick type C cells and mice. EMBO Rep 2019; 20:e47055. [PMID: 31267706 PMCID: PMC6607015 DOI: 10.15252/embr.201847055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022] Open
Abstract
Most cells acquire cholesterol by endocytosis of circulating low-density lipoproteins (LDLs). After cholesteryl ester de-esterification in endosomes, free cholesterol is redistributed to intracellular membranes via unclear mechanisms. Our previous work suggested that the unconventional phospholipid lysobisphosphatidic acid (LBPA) may play a role in modulating the cholesterol flux through endosomes. In this study, we used the Prestwick library of FDA-approved compounds in a high-content, image-based screen of the endosomal lipids, lysobisphosphatidic acid and LDL-derived cholesterol. We report that thioperamide maleate, an inverse agonist of the histamine H3 receptor HRH3, increases highly selectively the levels of lysobisphosphatidic acid, without affecting any endosomal protein or function that we tested. Our data also show that thioperamide significantly reduces the endosome cholesterol overload in fibroblasts from patients with the cholesterol storage disorder Niemann-Pick type C (NPC), as well as in liver of Npc1-/- mice. We conclude that LBPA controls endosomal cholesterol mobilization and export to cellular destinations, perhaps by fluidifying or buffering cholesterol in endosomal membranes, and that thioperamide has repurposing potential for the treatment of NPC.
Collapse
Affiliation(s)
- Dimitri Moreau
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | - Fabrizio Vacca
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | - Stefania Vossio
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | - Cameron Scott
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| | | | | | - Charles Ferguson
- Institute for Molecular Bioscience and Center for Microscopy and MicroanalysisUniversity of QueenslandBrisbaneQldAustralia
| | - Markus Damme
- Biochemisches InstitutChristian‐Albrechts‐UniversitätKielGermany
| | - Marc Moniatte
- Mass Spectrometry Core FacilityEPFLLausanneSwitzerland
| | - Robert G Parton
- Institute for Molecular Bioscience and Center for Microscopy and MicroanalysisUniversity of QueenslandBrisbaneQldAustralia
| | | | - Jean Gruenberg
- Department of BiochemistryUniversity of GenevaGeneva 4Switzerland
| |
Collapse
|
22
|
Ghamari N, Zarei O, Arias-Montaño JA, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M. Histamine H 3 receptor antagonists/inverse agonists: Where do they go? Pharmacol Ther 2019; 200:69-84. [PMID: 31028835 DOI: 10.1016/j.pharmthera.2019.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Since the discovery of the histamine H3 receptor in 1983, tremendous advances in the pharmacological aspects of H3 receptor antagonists/inverse agonists have been accomplished in preclinical studies. At present, there are several drug candidates that reached clinical trial studies for various indications. However, entrance of these candidates to the pharmaceutical market is not free from challenges, and a variety of difficulties is engaged with their developmental process. In this review, the potential role of H3 receptors in the pathophysiology of various central nervous system, metabolic and allergic diseases is discussed. Thereafter, the current status for H3 receptor antagonists/inverse agonists in ongoing clinical trial studies is reviewed and obstacles in developing these agents are emphasized.
Collapse
Affiliation(s)
- Nakisa Ghamari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 Ciudad de México, México
| | - David Reiner
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Tatarkiewicz J, Rzodkiewicz P, Żochowska M, Staniszewska A, Bujalska-Zadrożny M. New antihistamines - perspectives in the treatment of some allergic and inflammatory disorders. Arch Med Sci 2019; 15:537-553. [PMID: 30899308 PMCID: PMC6425212 DOI: 10.5114/aoms.2017.68534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Tatarkiewicz
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Rzodkiewicz
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of General and Experimental Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Żochowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Staniszewska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Ghamari N, Zarei O, Reiner D, Dastmalchi S, Stark H, Hamzeh-Mivehroud M. Histamine H 3 receptor ligands by hybrid virtual screening, docking, molecular dynamics simulations, and investigation of their biological effects. Chem Biol Drug Des 2019; 93:832-843. [PMID: 30586225 DOI: 10.1111/cbdd.13471] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Histamine H3 receptors (H3 R), belonging to G-protein coupled receptors (GPCR) class A superfamily, are responsible for modulating the release of histamine as well as of other neurotransmitters by a negative feedback mechanism mainly in the central nervous system (CNS). These receptors have gained increased attention as therapeutic target for several CNS related neurological diseases. In the current study, we aimed to identify novel H3 R ligands using in silico virtual screening methods. To this end, a combination of ligand- and structure-based approaches was utilized for screening of ZINC database on the homology model of human H3 R. Structural similarity- and pharmacophore-based approaches were employed to generate compound libraries. Various molecular modeling methodologies such as molecular docking and dynamics simulation along with different drug likeness filtering criteria were applied to select anti-H3 R ligands as promising candidate molecules based on different known parent lead compounds. In vitro binding assays of the selected molecules demonstrated three of them being active within the micromolar and submicromolar Ki range. The current integrated computational and experimental methods used in this work can provide new general insights for systematic hit identification for novel anti-H3 R agents from large compound libraries.
Collapse
Affiliation(s)
- Nakisa Ghamari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Tiligada E, Ennis M. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br J Pharmacol 2018; 177:469-489. [PMID: 30341770 DOI: 10.1111/bph.14524] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Histamine has been one of the most studied substances in medicine, playing a major role in diverse (patho)physiological processes. It elicits its multifaceted modulatory functions by activating four types of GPCRs, designated as H1-4 . Despite the heterogeneity and the complexity of histamine receptor pharmacology, many discoveries over the past 100 years resulted in the development of H1 antihistamines and H2 -targeting 'blockbuster' therapeutics for the management of allergies and gastrointestinal disorders respectively. Recently, a first-in-class H3 inverse agonist was approved for the treatment of narcolepsy, whereas H4 antagonists are under clinical evaluation for their potential therapeutic exploitation in immune-related diseases. This review critically presents the past successes and drawbacks in histamine research, complemented by the modern conceptual innovations in molecular and receptor pharmacology. It targets both young and experienced researchers in an ongoing effort to stimulate novel insights for the dissection of the translational potential of histamine pharmacology. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
26
|
Correa MF, Dos Santos Fernandes JP. QSAR Modeling of Histamine H3R Antagonists/inverse Agonists as Future Drugs for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:749-757. [PMID: 28820054 PMCID: PMC6080103 DOI: 10.2174/1570159x15666170818100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 11/22/2022] Open
Abstract
Background Histamine H3 receptor (H3R) is associated with several neuropsychological diseases, and thus it is an important target involved in several CNS disorders, such as narcolepsy, attention deficit hyperactivity disorder and schizophrenia. Since QSAR modeling is a feasible approach to explain the role of the molecular substituents in the biological activity, it can help in improving the design of better H3R ligands for these conditions. Methods This article reviews papers previously published in literature to show the current status of the contribution from QSAR modeling to reach H3R antagonists/inverse agonists. Results Classical and 3D-QSAR models were retrieved, showing that the steric and hydrophobic properties of the H3R ligands are most important to reach good affinity. Conclusion Although QSAR methods are valuable to design better H3R antagonists/inverse agonists, pharmacokinetics should also be considered in future models to ensure good CNS penetration.
Collapse
Affiliation(s)
- Michelle Fidelis Correa
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Rua Sao Nicolau 210, Centro 09913- 030, Diadema-SP, Brazil
| | - Joao Paulo Dos Santos Fernandes
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Rua Sao Nicolau 210, Centro 09913- 030, Diadema-SP, Brazil
| |
Collapse
|
27
|
Tomasiak-Łozowska MM, Klimek M, Lis A, Moniuszko M, Bodzenta-Łukaszyk A. Markers of anaphylaxis - a systematic review. Adv Med Sci 2018; 63:265-277. [PMID: 29486376 DOI: 10.1016/j.advms.2017.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 12/11/2022]
Abstract
Anaphylaxis is defined as severe, life-threatening, systemic or general, immediate reaction of hypersensitivity, with repeatable symptoms caused by the dose of stimulus which is well tolerated by healthy persons. The proper diagnosis, immediate treatment and differential diagnosis are crucial for saving patient's life. However, anaphylaxis is relatively frequently misdiagnosed or confused with other clinical entities. Thus, there is a continuous need for identifying detectable markers improving the proper diagnosis of anaphylaxis. Here we presented currently known markers of anaphylaxis and discussed in more detail the most clinically valuable ones: tryptase, platelet activacting factor (PAF), PAF-acethylhydrolase, histamine and its metabolites.
Collapse
|
28
|
Espinosa-Bustos C, Frank A, Arancibia-Opazo S, Salas CO, Fierro A, Stark H. New lead elements for histamine H3 receptor ligands in the pyrrolo[2,3-d]pyrimidine class. Bioorg Med Chem Lett 2018; 28:2890-2893. [DOI: 10.1016/j.bmcl.2018.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 11/29/2022]
|
29
|
The Paradox of Antihistamine Hypersensitivity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:258-259. [PMID: 29310760 DOI: 10.1016/j.jaip.2017.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
30
|
Corrêa MF, Barbosa ÁJR, Teixeira LB, Duarte DA, Simões SC, Parreiras-E-Silva LT, Balbino AM, Landgraf RG, Bouvier M, Costa-Neto CM, Fernandes JPS. Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H 3 and H 4 Receptors with Anti-inflammatory Potential. Front Pharmacol 2017; 8:825. [PMID: 29184503 PMCID: PMC5694482 DOI: 10.3389/fphar.2017.00825] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The histamine receptors (HRs) are traditional G protein-coupled receptors of extensive therapeutic interest. Recently, H3R and H4R subtypes have been targeted in drug discovery projects for inflammation, asthma, pain, cancer, Parkinson’s, and Alzheimer’s diseases, which includes searches for dual acting H3R/H4R ligands. In the present work, nine 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01 series) molecules were synthesized and evaluated as H3R and H4R ligands. Our data show that the N-allyl-substituted compound LINS01004 bears the highest affinity for H3R (pKi 6.40), while the chlorinated compound LINS01007 has moderate affinity for H4R (pKi 6.06). In addition, BRET assays to assess the functional activity of Gi1 coupling indicate that all compounds have no intrinsic activity and act as antagonists of these receptors. Drug-likeness assessment indicated these molecules are promising leads for further improvements. In vivo evaluation of compounds LINS01005 and LINS01007 in a mouse model of asthma showed a better anti-inflammatory activity of LINS01007 (3 g/kg) than the previously tested compound LINS01005. This is the first report with functional data of these compounds in HRs, and our results also show the potential of their applications as anti-inflammatory.
Collapse
Affiliation(s)
- Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Álefe J R Barbosa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Larissa B Teixeira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego A Duarte
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sarah C Simões
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas T Parreiras-E-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aleksandro M Balbino
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Richardt G Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
31
|
Discovery of novel steroidal histamine H 3 receptor antagonists/inverse agonists. Bioorg Med Chem Lett 2017; 27:4525-4530. [PMID: 28888822 DOI: 10.1016/j.bmcl.2017.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
Emerging from an HTS campaign, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Structural moieties of the hit compounds were combined to improve binding affinities which resulted in compound 4 as lead molecule. During the lead optimization due to the versatile modifications of diamino steroid derivatives, several in vitro potent compounds with subnanomolar binding affinities to histamine H3 receptors were found. The unfavorable binding to rat muscarinic receptors was successfully reduced by tuning the basicity. Compound 20 showed significant in vivo activity in the rat dipsogenia model and could serve as a pharmacological tool in the future.
Collapse
|
32
|
Batista DC, Silva DPB, Florentino IF, Cardoso CS, Gonçalves MP, Valadares MC, Lião LM, Sanz G, Vaz BG, Costa EA, Menegatti R. Anti-inflammatory effect of a new piperazine derivative: (4-methylpiperazin-1-yl)(1-phenyl-1H-pyrazol-4-yl)methanone. Inflammopharmacology 2017; 26:217-226. [PMID: 28825161 DOI: 10.1007/s10787-017-0390-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/12/2017] [Indexed: 12/22/2022]
Abstract
AIMS This study investigates the anti-nociceptive and anti-inflammatory effects of new piperazine compound (LQFM182) as well as the toxicity acute in vitro. MAIN METHODS To evaluate the anti-nociceptive activity, the acetic acid-induced abdominal writhing test, tail flick test and formalin-induced pain test were used. The anti-inflammatory activity was evaluated using the models of paw oedema and pleurisy induced by carrageenan and some inflammatory parameters were evaluated, including cell migration, myeloperoxidase enzyme activity and the levels of TNF-α and IL-1β cytokines in pleural exudate. The acute oral systemic toxicity of LQFM182 in mice was evaluated through the neutral red uptake (nru) assay. KEY FINDINGS LQFM182 (50, 100 or 200 mg/kg, p.o.) decreased the number of writhings induced by acetic acid in a dose-dependent manner, and an intermediate dose (100 mg/kg, p.o.) reduced the paw licking time of animals in the second phase of the formalin test. Furthermore, LQFM182 (100 mg/kg, p.o.) reduced oedema formation at all hours of the paw oedema induced by carrageenan test and in pleurisy test reduced cell migration from the reduction of polymorphonuclear cells, myeloperoxidase enzyme activity and the levels of pro-inflammatory cytokines IL-1β and TNF-α. Therefore, it was classified in GHS category 300 < LD50 < 2000 mg/kg. SIGNIFICANCE Reduction of the TNF-α and IL-1β levels.
Collapse
Affiliation(s)
- Daniel C Batista
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Daiany P B Silva
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 314, Goiânia, GO, 74001-970, Brazil
| | - Iziara F Florentino
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 314, Goiânia, GO, 74001-970, Brazil
| | - Carina S Cardoso
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 314, Goiânia, GO, 74001-970, Brazil
| | - Merita P Gonçalves
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 314, Goiânia, GO, 74001-970, Brazil
| | - Marize C Valadares
- Laboratory of Pharmacology and Cell Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Germán Sanz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry-LaCEM, Federal University of Goiás, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry-LaCEM, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Department of Pharmacology, ICB, Federal University of Goiás, Campus Samambaia, 314, Goiânia, GO, 74001-970, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
33
|
Salem A, Almahmoudi R, Listyarifah D, Siponen M, Maaninka K, Al-Samadi A, Salo T, Eklund KK. Histamine H 4 receptor signalling in tongue cancer and its potential role in oral carcinogenesis - a short report. Cell Oncol (Dordr) 2017; 40:621-630. [PMID: 28653289 DOI: 10.1007/s13402-017-0336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Recent reports indicate that histamine and its novel, high-affinity histamine H4 receptor (H4R) play a role in carcinogenesis, and thus H4R signalling has become a focus of increasing interest in the pathogenesis of many cancers. The roles of H4R in oral epithelial dysplasia (OED) and oral tongue squamous cell carcinoma (OTSCC) are unknown. The purpose of this study was to assess H4R expression in OTSCC patients and in OTSCC-derived cell lines. METHODS Biopsies taken from OED, OTSCC and healthy oral mucosa were studied by immunostaining. Primary human oral keratinocytes (HOKs) and two OTSCC-derived cell lines (HSC-3 and SCC-25) were used for the in vitro studies. Quantitative real-time PCR was used to measure oncogene expression in the stimulated HOKs. RESULTS We found that H4R-immunoreactivity was significantly reduced in the OED and OTSCC samples, especially in the samples with higher histopathological grades and noticeably increased mast cell counts. The presence of H4R in HSC-3 cells had clearly waned, in contrast to the HOKs. Gene expression data indicated that histamine-relevant inflammatory and environmental elements may participate in the regulation of oncogenes. CONCLUSIONS Our results suggest an association between H4R and oral carcinogenesis. Furthermore, our findings raise a potential implication of histamine-mediated factors in the regulation of oncogenes, possibly via mast cells, as crucial components of the tumor microenvironment. The identification of new elements that govern oral cancer development is highly relevant for the development of novel therapeutic approaches in OTSCC.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Clinical Medicine, Clinicum, University of Helsinki, Helsinki, Finland. .,Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Haartmaninkatu 8, Biomedicum Helsinki 1, PO Box 63, FI-00029 HUS, Helsinki, Finland.
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Haartmaninkatu 8, Biomedicum Helsinki 1, PO Box 63, FI-00029 HUS, Helsinki, Finland
| | - Dyah Listyarifah
- Department of Clinical Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Haartmaninkatu 8, Biomedicum Helsinki 1, PO Box 63, FI-00029 HUS, Helsinki, Finland.,Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maria Siponen
- Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland.,Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Joensuu, Finland
| | | | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Haartmaninkatu 8, Biomedicum Helsinki 1, PO Box 63, FI-00029 HUS, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Haartmaninkatu 8, Biomedicum Helsinki 1, PO Box 63, FI-00029 HUS, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari K Eklund
- Department of Clinical Medicine, Clinicum, University of Helsinki, Helsinki, Finland.,Department of Rheumatology, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Kuder KJ, Łażewska D, Kaleta M, Latacz G, Kottke T, Olejarz A, Karcz T, Fruziński A, Szczepańska K, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. Synthesis and biological activity of novel tert-amylphenoxyalkyl (homo)piperidine derivatives as histamine H 3R ligands. Bioorg Med Chem 2017; 25:2701-2712. [PMID: 28372935 DOI: 10.1016/j.bmc.2017.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/25/2022]
Abstract
As a continuation of our search for novel histamine H3 receptor ligands a series of twenty new tert-amyl phenoxyalkylamine derivatives (2-21) was synthesized. Compounds of four to eight carbon atoms spacer alkyl chain were evaluated on their binding properties at human histamine H3 receptor (hH3R). The highest affinities were observed for pentyl derivatives 6-8 (Ki=8.8-23.4nM range) and among them piperidine derivative 6 with Ki=8.8nM. Structures 6, 7 were also classified as antagonists in cAMP accumulation assay (with EC50=157 and 164nM, respectively). Moreover, new compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Seven compounds (2-4, 9, 11, 12 and 20) showed anticonvulsant activity at maximal electroshock (MES) test in the dose of 30mg/kg at 0.5h. In the subcutaneous pentetrazole (scMET) test compound 4 showed protection at 100 and 300mg/kg dose at mice, however compounds showed high neurotoxicity in rotarod test at used doses. Also, molecular modeling studies were undertaken, to explain affinity of compounds at hH3R (taking into the consideration X-ray analysis of compound 18). In order to estimate "drug-likeness" of selected compounds in silico and experimental evaluation of lipophilicity, metabolic stability and cytotoxicity was performed.
Collapse
Affiliation(s)
- Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tim Kottke
- Institute of Pharmaceutical Chemistry, Biozentrun, ZAFES, Frankfurt/Main 60438, Germany
| | - Agnieszka Olejarz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Andrzej Fruziński
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116 str., Łódź 90-924, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Janina Karolak-Wojciechowska
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116 str., Łódź 90-924, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Universitaetsstr. 1, Düsseldorf 40225, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
35
|
Corrêa MF, Varela MT, Balbino AM, Torrecilhas AC, Landgraf RG, Troncone LRP, Fernandes JPDS. 1-[(2,3-Dihydro-1-benzofuran-2-yl) methyl]piperazines as novel anti-inflammatory compounds: Synthesis and evaluation on H 3 R/H 4 R. Chem Biol Drug Des 2017; 90:317-322. [PMID: 28109127 DOI: 10.1111/cbdd.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 11/26/2022]
Abstract
The histamine receptors (HRs) are members of G-protein-coupled receptor superfamily and traditional targets of huge therapeutic interests. Recently, H3 R and H4 R have been explored as targets for drug discovery, including in the search for dual-acting H3 R/H4 R ligands. The H4 R, the most recent histamine receptor, is a promising target for novel anti-inflammatory agents in several conditions such as asthma and other chronic inflammatory diseases. Due to similarity with previously reported ligands of HRs, a set of 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines were synthesized and evaluated in competitive binding assays as H3 R/H4 R ligands herein. The results showed the compounds presented affinity (Ki ) for H3 R/H4 R in micromolar range, and they are more selective to H3 R. All the compounds showed no important cytotoxicity to mammalian cells. The phenyl-substituted compound LINS01005 has shown the higher affinity of the set for H4 R, but no considerable selectivity toward this receptor over H3 R. LINS01005 showed interesting anti-inflammatory activity in murine asthma model, reducing the eosinophil counts in bronchoalveolar lavage fluid, as well as the COX-2 expression. The presented compounds are valuable prototypes for further improvements to achieve better anti-inflammatory agents.
Collapse
Affiliation(s)
- Michelle Fidelis Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Marina Themoteo Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Richardt Gama Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | | |
Collapse
|
36
|
Riddy DM, Cook AE, Diepenhorst NA, Bosnyak S, Brady R, Mannoury la Cour C, Mocaer E, Summers RJ, Charman WN, Sexton PM, Christopoulos A, Langmead CJ. Isoform-Specific Biased Agonism of Histamine H3 Receptor Agonists. Mol Pharmacol 2017; 91:87-99. [PMID: 27864425 DOI: 10.1124/mol.116.106153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
The human histamine H3 receptor (hH3R) is subject to extensive gene splicing that gives rise to a large number of functional and nonfunctional isoforms. Despite the general acceptance that G protein-coupled receptors can adopt different ligand-induced conformations that give rise to biased signaling, this has not been studied for the H3R; further, it is unknown whether splice variants of the same receptor engender the same or differential biased signaling. Herein, we profiled the pharmacology of histamine receptor agonists at the two most abundant hH3R splice variants (hH3R445 and hH3R365) across seven signaling endpoints. Both isoforms engender biased signaling, notably for 4-[3-(benzyloxy)propyl]-1H-imidazole (proxyfan) [e.g., strong bias toward phosphorylation of glycogen synthase kinase 3β (GSK3β) via the full-length receptor] and its congener 3-(1H-imidazol-4-yl)propyl-(4-iodophenyl)-methyl ether (iodoproxyfan), which are strongly consistent with the former's designation as a "protean" agonist. The 80 amino acid IL3 deleted isoform hH3R365 is more permissive in its signaling than hH3R445: 2-(1H-imidazol-5-yl)ethyl imidothiocarbamate (imetit), proxyfan, and iodoproxyfan were all markedly biased away from calcium signaling, and principal component analysis of the full data set revealed divergent profiles for all five agonists. However, most interesting was the identification of differential biased signaling between the two isoforms. Strikingly, hH3R365 was completely unable to stimulate GSK3β phosphorylation, an endpoint robustly activated by the full-length receptor. To the best of our knowledge, this is the first quantitative example of differential biased signaling via isoforms of the same G protein-coupled receptor that are simultaneously expressed in vivo and gives rise to the possibility of selective pharmacological targeting of individual receptor splice variants.
Collapse
Affiliation(s)
- Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Anna E Cook
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Natalie A Diepenhorst
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Sanja Bosnyak
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Ryan Brady
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Clotilde Mannoury la Cour
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Elisabeth Mocaer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - William N Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| |
Collapse
|
37
|
Mast cell activation disease and the modern epidemic of chronic inflammatory disease. Transl Res 2016; 174:33-59. [PMID: 26850903 DOI: 10.1016/j.trsl.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
A large and growing portion of the human population, especially in developed countries, suffers 1 or more chronic, often quite burdensome ailments which either are overtly inflammatory in nature or are suspected to be of inflammatory origin, but for which investigations to date have failed to identify specific causes, let alone unifying mechanisms underlying the multiple such ailments that often afflict such patients. Relatively recently described as a non-neoplastic cousin of the rare hematologic disease mastocytosis, mast cell (MC) activation syndrome-suspected to be of greatly heterogeneous, complex acquired clonality in many cases-is a potential underlying/unifying explanation for a diverse assortment of inflammatory ailments. A brief review of MC biology and how aberrant primary MC activation might lead to such a vast range of illness is presented.
Collapse
|
38
|
Histamine and Immune Biomarkers in CNS Disorders. Mediators Inflamm 2016; 2016:1924603. [PMID: 27190492 PMCID: PMC4846752 DOI: 10.1155/2016/1924603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death.
Collapse
|
39
|
Kyriakidis K, Zampeli E, Palaiologou M, Tiniakos D, Tiligada E. Histamine H3 and H4 receptor ligands modify vascular histamine levels in normal and arthritic large blood vessels in vivo. Inflammation 2016; 38:949-58. [PMID: 25359709 DOI: 10.1007/s10753-014-0057-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growing evidence associates histamine with arthritis, but its implication in shaping vascular function in chronic inflammation remains largely elusive. This study explored the involvement of vascular histamine in the extra-articular responses in peripheral large blood vessels using a rat model of adjuvant-induced arthritis. Histamine levels were increased in the abdominal aorta and the inferior vena cava of arthritic animals. Contrary to the H1 receptor antagonist dimetindene, histamine induction was observed following administration of the H3 and H4 receptor ligands GSK334429 and JNJ7777120, respectively. In arthritis, prophylactic treatment with GSK334429 partially attenuated the clinical signs and restored basal histamine levels only in the abdominal aorta. This study is the first to implicate the H3 and H4 receptors in a concerted constitutive regulation of basal vascular histamine in the rat large blood vessels and to identify the H3 receptor as a component that may influence arterial histamine during the onset of arthritis.
Collapse
Affiliation(s)
- Konstantinos Kyriakidis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | | | | | | |
Collapse
|
40
|
Hattori Y, Hattori K, Matsuda N. Regulation of the Cardiovascular System by Histamine. Handb Exp Pharmacol 2016; 241:239-258. [PMID: 27838850 DOI: 10.1007/164_2016_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histamine mediates a wide range of cellular responses, including allergic and inflammatory reactions, gastric acid secretion, and neurotransmission in the central nervous system. Histamine also exerts a series of actions upon the cardiovascular system but may not normally play a significant role in regulating cardiovascular function. During tissue injury, inflammation, and allergic responses, mast cells (or non-mast cells) within the tissues can release large amounts of histamine that leads to noticeable cardiovascular effects. Owing to intensive research during several decades, the distribution, function, and pathophysiological role of cardiovascular H1- and H2-receptors has become recognized adequately. Besides the recognized H1- and H2-receptor-mediated cardiovascular responses, novel roles of H3- and H4-receptors in cardiovascular physiology and pathophysiology have been identified over the last decade. In this review, we describe recent advances in our understanding of cardiovascular function and dysfunction mediated by histamine receptors, including H3- and H4-receptors, their potential mechanisms of action, and their pathological significance.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
41
|
Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1495-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Kuder K, Łażewska D, Latacz G, Schwed JS, Karcz T, Stark H, Karolak-Wojciechowska J, Kieć-Kononowicz K. Chlorophenoxy aminoalkyl derivatives as histamine H(3)R ligands and antiseizure agents. Bioorg Med Chem 2015; 24:53-72. [PMID: 26690914 DOI: 10.1016/j.bmc.2015.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022]
Abstract
A series of twenty new chlorophenoxyalkylamine derivatives (9-28) was synthesized and evaluated on their binding properties at the human histamine H3 receptor (hH3R). The spacer alkyl chain contained five to seven carbon atoms. The highest affinities have shown the 4-chloro substituted derivatives 10 and 25 (Ki=133 and 128 nM, respectively) classified as antagonists in cAMP accumulation assay (EC50=72 and 75 nM, respectively). Synthesized compounds were also evaluated for anticonvulsant activity in Antiepileptic Screening Program (ASP) at National Institute of Neurological Disorders and Stroke (USA). Two compounds (4-chloro substituted derivatives: 20 and 26) were the most promising and showed in the MES seizure model in rats (after ip administration) ED50 values of 14 mg/kg and 13.18 mg/kg, respectively. Protective indexes (PI=TD50/ED50) were 3.2 for 20 and 3.8 for 26. Moreover, molecular modeling and docking studies were undertaken to explain affinity at hH3R of target compounds, and the experimentally and in silico estimation of properties like lipophilicity and metabolism was performed. Antiproliferative effects have been also investigated in vitro for selected compounds (10 and 25). These compounds neither possessed significant antiproliferative and antitumor activity, nor modulated CYP3A4 activity up to concentration of 10 μM.
Collapse
Affiliation(s)
- Kamil Kuder
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Johannes Stephan Schwed
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Tadeusz Karcz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Janina Karolak-Wojciechowska
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116 Str., 90-924 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
43
|
Sadek B, Stark H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology 2015; 106:56-73. [PMID: 26581501 DOI: 10.1016/j.neuropharm.2015.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Histamine, a biogenic amine, is considered as a principle mediator of multiple physiological effects through binding to its H1, H2, H3, and H4 receptors (H1-H4Rs). Currently, the HRs have gained attention as important targets for the treatment of several diseases and disorders ranging from allergy to Alzheimer's disease and immune deficiency. Accordingly, medicinal chemistry studies exploring histamine-like molecules and their physicochemical properties by binding and interacting with the four HRs has led to the development of a diversity of agonists and antagonists that display selectivity for each HR subtype. An overview on H1-R4Rs and developed ligands representing some key steps in development is provided here combined with a short description of structure-activity relationships for each class. Main chemical diversities, pharmacophores, and pharmacological profiles of most innovative H1-H4R agonists and antagonists are highlighted. Therefore, this overview should support the rational choice for the optimal ligand selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates.
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Kamińska K, Ziemba J, Ner J, Schwed JS, Łażewska D, Więcek M, Karcz T, Olejarz A, Latacz G, Kuder K, Kottke T, Zygmunt M, Sapa J, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. (2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands. Eur J Med Chem 2015; 103:238-51. [DOI: 10.1016/j.ejmech.2015.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 01/29/2023]
|
45
|
Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Landys Chovel Cuervo M, Holgate ST, Levi-Schaffer F. The expanding role of immunopharmacology: IUPHAR Review 16. Br J Pharmacol 2015; 172:4217-27. [PMID: 26173913 PMCID: PMC4556463 DOI: 10.1111/bph.13219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Drugs targeting the immune system such as corticosteroids, antihistamines and immunosuppressants have been widely exploited in the treatment of inflammatory, allergic and autoimmune disorders during the second half of the 20th century. The recent advances in immunopharmacological research have made available new classes of clinically relevant drugs. These comprise protein kinase inhibitors and biologics, such as monoclonal antibodies, that selectively modulate the immune response not only in cancer and autoimmunity but also in a number of other human pathologies. Likewise, more effective vaccines utilizing novel antigens and adjuvants are valuable tools for the prevention of transmissible infectious diseases and for allergen-specific immunotherapy. Consequently, immunopharmacology is presently considered as one of the expanding fields of pharmacology. Immunopharmacology addresses the selective regulation of immune responses and aims to uncover and exploit beneficial therapeutic options for typical and non-typical immune system-driven unmet clinical needs. While in the near future a number of new agents will be introduced, improving the effectiveness and safety of those currently in use is imperative for all researchers and clinicians working in the fields of immunology, pharmacology and drug discovery. The newly formed ImmuPhar (http://iuphar.us/index.php/sections-subcoms/immunopharmacology) is the Immunopharmacology Section of the International Union of Basic and Clinical Pharmacology (IUPHAR, http://iuphar.us/). ImmuPhar provides a unique international expert-lead platform that aims to dissect and promote the growing understanding of immune (patho)physiology. Moreover, it challenges the identification and validation of drug targets and lead candidates for the treatment of many forms of debilitating disorders, including, among others, cancer, allergies, autoimmune and metabolic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, University of AthensAthens, Greece
- Allergy Unit ‘D. Kalogeromitros’, 2nd Department of Dermatology and Venereology, ‘Attikon’ General University Hospital, Medical School, University of AthensAthens, Greece
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka UniversityOsaka, Japan
| | - Carlo Riccardi
- Department of Medicine, University of PerugiaPerugia, Italy
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of BernBern, Switzerland
| | | | | | | | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, School of Pharmacy Institute for Drug Research, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
46
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2015; 67:601-55. [PMID: 26084539 PMCID: PMC4485016 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
48
|
Savall BM, Meduna SP, Venable J, Wei J, Smith RC, Hack MD, Thurmond RL, McGovern P, Edwards JP. The effect of pKa on pyrimidine/pyridine-derived histamine H4 ligands. Bioorg Med Chem Lett 2014; 24:5489-92. [DOI: 10.1016/j.bmcl.2014.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
|
49
|
Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells. Apoptosis 2014; 19:1702-11. [DOI: 10.1007/s10495-014-1036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Sadek B, Schreeb A, Schwed JS, Weizel L, Stark H. Drug-likeness approach of 2-aminopyrimidines as histamine H3 receptor ligands. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1499-513. [PMID: 25278747 PMCID: PMC4179762 DOI: 10.2147/dddt.s66179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A small series of compounds containing derivatives of 2,4-diamino- and 2,4,6-triaminopyrimidine (compounds 2–7) was synthesized and tested for binding affinity to human histamine H3 receptors (hH3Rs) stably expressed in HEK-293 cells and human H4Rs (hH4Rs) co-expressed with Gαi2 and Gβ1γ2 subunits in Sf9 cells. Working in part from the lead compound 6-(4-methylpiperazin-1-yl)-N4-(3-(piperidin-1-yl)propyl)pyrimidine-2,4-diamine (compound 1) with unsatisfactory affinity and selectivity to hH3Rs, our structure-activity relationship studies revealed that replacement of 4-methylpiperazino by N-benzylamine and substitution of an amine group at the 2-position of the 2-aminopyrimidine core structure with 3-piperidinopropoxyphenyl moiety as an hH3R pharmacophore resulted in N4-benzyl-N2-(4-(3-(piperidin-1-yl)propoxy)phenyl)pyrimidine-2,4-diamine (compound 5) with high hH3R affinity (ki =4.49±1.25 nM) and H3R receptor subtype selectivity of more than 6,500×. Moreover, initial metric analyses were conducted based on their target-oriented drug-likeness for predictively quantifying lipophilicity, ligand efficiency, lipophilicity-dependent ligand efficiency, molecular size-independent efficiency, and topological molecular polar surface. As to the development of potential H3R ligands, results showed that integration of the hH3R pharmacophore in hH4R-affine structural scaffolds resulted in compounds with high hH3R affinity (4.5–650 nM), moderate to low hH4R affinity (4,500–30,000 nM), receptor subtype selectivity (ratio hH4R/hH3R; 8–6,500), and promising calculated drug-likeness properties.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annemarie Schreeb
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Johannes Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany ; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|