1
|
Herreros P, López-Hernández A, Holgado M, Heras MFL. Melanoma-on-a-chip model for anticancer drug injecting delivery method. SLAS Technol 2024; 29:100219. [PMID: 39536902 DOI: 10.1016/j.slast.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The pharmaceutical and cosmetic industries are encountering a challenge in adopting new study models for product development. there has been a growing interest in organ-on-a-chip systems, and particularly for generating skin models. While numerous alternatives replicating high-fidelity skin models exist, there is a notable absence of melanoma study's methodology specifically on these microfluidic chips. This work introduces a novel skin-on-a-chip device featuring two microfluidic chambers, facilitating a 3D cell co-culture involving fibroblasts, keratinocytes, and melanoma cells. The design of this organ-on-a-chip has enabled the administration of the anticancer treatment Gemcitabine using an injection system within the chip. The results of this work have shown a significant impact on the co-culture distribution of cells, decreasing the population of cancerous cells after the administration of Gemcitabine. The work presented in this article demonstrates the effectiveness of the chip and the administration method for testing anti-melanoma therapies and position this technology as an enhanced fidelity model for studying melanoma while providing an alternative for real-time monitoring of drug testing.
Collapse
Affiliation(s)
- Pedro Herreros
- Group of Optics, Photonics and Biophotonics (GOFB), Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain; Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Ana López-Hernández
- Group of Optics, Photonics and Biophotonics (GOFB), Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain; Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Miguel Holgado
- Group of Optics, Photonics and Biophotonics (GOFB), Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain; Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain; Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Fe Laguna Heras
- Group of Optics, Photonics and Biophotonics (GOFB), Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain; Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain; Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
3
|
Kim S, Lam PY, Jayaraman A, Han A. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review. Biomed Microdevices 2024; 26:26. [PMID: 38806765 PMCID: PMC11241584 DOI: 10.1007/s10544-024-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Three-dimensional (3D) cell culture models have been extensively utilized in various mechanistic studies as well as for drug development studies as superior in vitro platforms than conventional two-dimensional (2D) cell culture models. This is especially the case in cancer biology, where 3D cancer models, such as spheroids or organoids, have been utilized extensively to understand the mechanisms of cancer development. Recently, many sophisticated 3D models such as organ-on-a-chip models are emerging as advanced in vitro models that can more accurately mimic the in vivo tissue functions. Despite such advancements, spheroids are still considered as a powerful 3D cancer model due to the relatively simple structure and compatibility with existing laboratory instruments, and also can provide orders of magnitude higher throughput than complex in vitro models, an extremely important aspects for drug development. However, creating well-defined spheroids remain challenging, both in terms of throughputs in generation as well as reproducibility in size and shape that can make it challenging for drug testing applications. In the past decades, droplet microfluidics utilizing hydrogels have been highlighted due to their potentials. Importantly, core-shell structured gel droplets can avoid spheroid-to-spheroid adhesion that can cause large variations in assays while also enabling long-term cultivation of spheroids with higher uniformity by protecting the core organoid area from external environment while the outer porous gel layer still allows nutrient exchange. Hence, core-shell gel droplet-based spheroid formation can improve the predictivity and reproducibility of drug screening assays. This review paper will focus on droplet microfluidics-based technologies for cancer spheroid production using various gel materials and structures. In addition, we will discuss emerging technologies that have the potential to advance the production of spheroids, prospects of such technologies, and remaining challenges.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Kaur T, Sharma D. Self-propelling bacteria-based magnetic nanoparticles (BacMags) for targeted magnetic hyperthermia therapy against hypoxic tumors. NANOSCALE 2024; 16:7892-7907. [PMID: 38568096 DOI: 10.1039/d3nr05082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) holds great promise as a non-invasive approach utilizing heat generated by an alternating magnetic field for effective cancer treatment. For an efficacious therapeutic response, it is crucial to deliver therapeutic agents selectively at the depth of tumors. In this study, we present a new strategy using the naturally occurring tumor-colonizing bacteria Escherichia coli (E. coli) as a carrier to deliver magnetic nanoparticles to hypoxic tumor cores for effective MHCT. Self-propelling delivery agents, "nano-bacteriomagnets" (BacMags), were developed by incorporating anisotropic magnetic nanocubes into E. coli which demonstrated significantly improved hyperthermic performance, leading to an impressive 85% cell death in pancreatic cancer. The in vivo anti-cancer response was validated in a syngeneic xenograft model with a 50% tumor inhibition rate within 20 days and a complete tumor regression within 30 days. This proof-of-concept study demonstrates the potential of utilizing anaerobic bacteria for the delivery of magnetic nanocarriers as a smart therapeutic approach for enhanced MHCT.
Collapse
Affiliation(s)
- Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| |
Collapse
|
5
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Spoerri L, Beaumont KA, Anfosso A, Murphy RJ, Browning AP, Gunasingh G, Haass NK. Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma, Quantitative Analysis, Optical Clearing, and Mathematical Modeling. Methods Mol Biol 2024; 2764:291-310. [PMID: 38393602 DOI: 10.1007/978-1-0716-3674-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Aberrant cell cycle progression is a hallmark of solid tumors. Therefore, cell cycle analysis is an invaluable technique to study cancer cell biology. However, cell cycle progression has been most commonly assessed by methods that are limited to temporal snapshots or that lack spatial information. In this chapter, we describe a technique that allows spatiotemporal real-time tracking of cell cycle progression of individual cells in a multicellular context. The power of this system lies in the use of 3D melanoma spheroids generated from melanoma cells engineered with the fluorescent ubiquitination-based cell cycle indicator (FUCCI). This technique, combined with mathematical modeling, allows us to gain further and more detailed insight into several relevant aspects of solid cancer cell biology, such as tumor growth, proliferation, invasion, and drug sensitivity.
Collapse
Affiliation(s)
- Loredana Spoerri
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, Sydney, NSW, Australia
- Uniquest, The University of Queensland, Brisbane, QLD, Australia
| | | | - Ryan J Murphy
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alexander P Browning
- Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gency Gunasingh
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia.
- The Centenary Institute, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Akshay A, Katoch M, Abedi M, Besic M, Shekarchizadeh N, Burkhard FC, Bigger-Allen A, Adam RM, Monastyrskaya K, Gheinani AH. SpheroScan: A User-Friendly Deep Learning Tool for Spheroid Image Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.533479. [PMID: 37425923 PMCID: PMC10327116 DOI: 10.1101/2023.06.28.533479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background In recent years, three-dimensional (3D) spheroid models have become increasingly popular in scientific research as they provide a more physiologically relevant microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has proven to be advantageous as it offers a better understanding of the cellular behavior, drug efficacy, and toxicity as compared to traditional two-dimensional cell culture methods. However, the use of 3D spheroid assays is impeded by the absence of automated and user-friendly tools for spheroid image analysis, which adversely affects the reproducibility and throughput of these assays. Results To address these issues, we have developed a fully automated, web-based tool called SpheroScan, which uses the deep learning framework called Mask Regions with Convolutional Neural Networks (R-CNN) for image detection and segmentation. To develop a deep learning model that could be applied to spheroid images from a range of experimental conditions, we trained the model using spheroid images captured using IncuCyte Live-Cell Analysis System and a conventional microscope. Performance evaluation of the trained model using validation and test datasets shows promising results. Conclusion SpheroScan allows for easy analysis of large numbers of images and provides interactive visualization features for a more in-depth understanding of the data. Our tool represents a significant advancement in the analysis of spheroid images and will facilitate the widespread adoption of 3D spheroid models in scientific research. The source code and a detailed tutorial for SpheroScan are available at https://github.com/FunctionalUrology/SpheroScan.
Collapse
Affiliation(s)
- Akshay Akshay
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Mitali Katoch
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Masoud Abedi
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
| | - Mustafa Besic
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Navid Shekarchizadeh
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, 04105 Leipzig, Germany
| | - Fiona C. Burkhard
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Alex Bigger-Allen
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA
- Urological Diseases Research Center, Boston Children’s Hospital, MA, USA
- Harvard Medical School, Boston, Department of Surgery MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, MA, USA
- Harvard Medical School, Boston, Department of Surgery MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katia Monastyrskaya
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Urological Diseases Research Center, Boston Children’s Hospital, MA, USA
- Harvard Medical School, Boston, Department of Surgery MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
8
|
Nascentes Melo LM, Kumar S, Riess V, Szylo KJ, Eisenburger R, Schadendorf D, Ubellacker JM, Tasdogan A. Advancements in melanoma cancer metastasis models. Pigment Cell Melanoma Res 2023; 36:206-223. [PMID: 36478190 DOI: 10.1111/pcmr.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Valeria Riess
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Krystina J Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Robin Eisenburger
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| |
Collapse
|
9
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
10
|
Akshay A, Katoch M, Abedi M, Shekarchizadeh N, Besic M, Burkhard FC, Bigger-Allen A, Adam RM, Monastyrskaya K, Gheinani AH. SpheroScan: a user-friendly deep learning tool for spheroid image analysis. Gigascience 2022; 12:giad082. [PMID: 37889008 PMCID: PMC10603766 DOI: 10.1093/gigascience/giad082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND In recent years, 3-dimensional (3D) spheroid models have become increasingly popular in scientific research as they provide a more physiologically relevant microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has proven to be advantageous as it offers a better understanding of the cellular behavior, drug efficacy, and toxicity as compared to traditional 2-dimensional cell culture methods. However, the use of 3D spheroid assays is impeded by the absence of automated and user-friendly tools for spheroid image analysis, which adversely affects the reproducibility and throughput of these assays. RESULTS To address these issues, we have developed a fully automated, web-based tool called SpheroScan, which uses the deep learning framework called Mask Regions with Convolutional Neural Networks (R-CNN) for image detection and segmentation. To develop a deep learning model that could be applied to spheroid images from a range of experimental conditions, we trained the model using spheroid images captured using IncuCyte Live-Cell Analysis System and a conventional microscope. Performance evaluation of the trained model using validation and test datasets shows promising results. CONCLUSION SpheroScan allows for easy analysis of large numbers of images and provides interactive visualization features for a more in-depth understanding of the data. Our tool represents a significant advancement in the analysis of spheroid images and will facilitate the widespread adoption of 3D spheroid models in scientific research. The source code and a detailed tutorial for SpheroScan are available at https://github.com/FunctionalUrology/SpheroScan.
Collapse
Affiliation(s)
- Akshay Akshay
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mitali Katoch
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Masoud Abedi
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
| | - Navid Shekarchizadeh
- Department of Medical Data Science, Leipzig University Medical Centre, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, 04105 Leipzig, Germany
| | - Mustafa Besic
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Fiona C Burkhard
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Alex Bigger-Allen
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, 02115 Boston, MA, USA
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Katia Monastyrskaya
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Ali Hashemi Gheinani
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010 Bern, Switzerland
- Urological Diseases Research Center, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
11
|
Evaluation of X-ray and carbon-ion beam irradiation with chemotherapy for the treatment of cervical adenocarcinoma cells in 2D and 3D cultures. Cancer Cell Int 2022; 22:391. [PMID: 36494817 PMCID: PMC9733259 DOI: 10.1186/s12935-022-02810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cervical cancer is the second most common cancer in women and causes more than 250,000 deaths worldwide. Among these, the incidence of cervical adenocarcinomas is increasing. Cervical adenocarcinoma is not only difficult to detect and prevent in the early stages with screening, but it is also resistant to chemotherapy and radiotherapy, and its prognosis worsens significantly as the disease progresses. Furthermore, when recurrence or metastasis is observed, treatment options are limited and there is no curative treatment. Recently, heavy-particle radiotherapy has attracted attention owing to its high tumor control and minimal damage to normal tissues. In addition, heavy particle irradiation is effective for cancer stem cells and hypoxic regions, which are difficult to treat. METHODS In this study, we cultured cervical adenocarcinoma cell lines (HeLa and HCA-1) in two-dimensional (2D) or three-dimensional (3D) spheroid cultures and evaluated the effects of X-ray and carbon-ion (C-ion) beams. RESULTS X-ray irradiation decreased the cell viability in a dose-dependent manner in 2D cultures, whereas this effect was attenuated in 3D spheroid cultures. In contrast, C-ion irradiation demonstrated the same antitumor effect in 3D spheroid cultures as in 2D cultures. In 3D spheroid cultures, X-rays and anticancer drugs are attenuated because of hypoxia inside the spheroids. However, the impact of the C-ion beam was almost the same as that of the 2D culture, because heavy-particle irradiation was not affected by hypoxia. CONCLUSION These results suggest that heavy-particle radiotherapy may be a new therapeutic strategy for overcoming the resistance of cervical adenocarcinoma to treatment.
Collapse
|
12
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
13
|
In Model, In Vitro and In Vivo Killing Efficacy of Antitumor Peptide RDP22 on MUG-Mel2, a Patient Derived Cell Line of an Aggressive Melanoma Metastasis. Biomedicines 2022; 10:biomedicines10112961. [PMID: 36428530 PMCID: PMC9687695 DOI: 10.3390/biomedicines10112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The host defense derived peptide was assessed in different model systems with increasing complexity employing the highly aggressive NRAS mutated melanoma metastases cell line MUG-Mel2. Amongst others, fluorescence microscopy and spectroscopy, as well as cell death studies were applied for liposomal, 2D and 3D in vitro models including tumor spheroids without or within skin models and in vivo mouse xenografts. Summarized, MUG-Mel2 cells were shown to significantly expose the negatively charged lipid phosphatidylserine on their plasma membranes, showing they are successfully targeted by RDP22. The peptide was able to induce cell death in MUG-Mel2 2D and 3D cultures, where it was able to kill tumor cells even inside the core of tumor spheroids or inside a melanoma organotypic model. In vitro studies indicated cell death by apoptosis upon peptide treatment with an LC50 of 8.5 µM and seven-fold specificity for the melanoma cell line MUG-Mel2 over normal dermal fibroblasts. In vivo studies in mice xenografts revealed effective tumor regression upon intratumoral peptide injection, indicated by the strong clearance of pigmented tumor cells and tremendous reduction in tumor size and proliferation, which was determined histologically. The peptide RDP22 has clearly shown high potential against the melanoma cell line MUG-Mel2 in vitro and in vivo.
Collapse
|
14
|
A preclinical model of cutaneous melanoma based on reconstructed human epidermis. Sci Rep 2022; 12:16269. [PMID: 36175453 PMCID: PMC9522649 DOI: 10.1038/s41598-022-19307-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Malignant melanoma is among the tumor entities with the highest increase of incidence worldwide. To elucidate melanoma progression and develop new effective therapies, rodent models are commonly used. While these do not adequately reflect human physiology, two-dimensional cell cultures lack crucial elements of the tumor microenvironment. To address this shortcoming, we have developed a melanoma skin equivalent based on an open-source epidermal model. Melanoma cell lines with different driver mutations were incorporated into these models forming distinguishable tumor aggregates within a stratified epidermis. Although barrier properties of the skin equivalents were not affected by incorporation of melanoma cells, their presence resulted in a higher metabolic activity indicated by an increased glucose consumption. Furthermore, we re-isolated single cells from the models to characterize the proliferation state within the respective model. The applicability of our model for tumor therapeutics was demonstrated by treatment with a commonly used v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitor vemurafenib. This selective BRAF inhibitor successfully reduced tumor growth in the models harboring BRAF-mutated melanoma cells. Hence, our model is a promising tool to investigate melanoma development and as a preclinical model for drug discovery.
Collapse
|
15
|
Rawal P, Tripathi D, Nain V, Kaur S. VEGF‑mediated tumour growth and EMT in 2D and 3D cell culture models of hepatocellular carcinoma. Oncol Lett 2022; 24:315. [PMID: 35949600 PMCID: PMC9353766 DOI: 10.3892/ol.2022.13435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to evaluate the effects of vascular endothelial growth factor (VEGF) on tumorigenic properties in two-dimensional (2D) and three-dimensional (3D) cultures of hepatoma cells. The proliferation and invasion of hepatoma cells was assessed using wound healing, chemotaxis Transwell, invasion, tube-forming and hanging drop assays in both 2D and 3D cultures. The expression levels of epithelial-mesenchymal transition (EMT) and stemness markers were analysed using reverse transcription-quantitative PCR (RT-qPCR) for mRNA expression and immunofluorescence assay for protein expression. To validate the role of VEGF in tumour growth, a VEGF receptor (VEGFR) inhibitor (sorafenib) was used. The results demonstrated that the hepatoma cells formed 3D spheroids that differed in size and density in the absence and presence of the growth factor, VEGF. In all spheroids, invasion and angiogenesis were more aggressive in 3D cultures in comparison to 2D conditions following treatment with VEGF. Mechanistically, the VEGF-mediated increase in the levels of EMT markers, including Vimentin, N-cadherin 2 (Cadherin 2) and Thy-1 Cell Surface Antigen was observed in the 2D and 3D cultures. Sorafenib treatment for 24 h culminated in a marked reduction in cell migration, cell-cell adhesion, spheroid compaction and EMT gene expression in 3D models as compared to the 2D models. On the whole, the findings of the present study suggested that as compared to the 2D cell cultures, 3D cell cultures model may be used as a more realistic model for the study of tumour growth and invasion in the presence of angiogenic factors, as well as for tumour inhibitor screening.
Collapse
Affiliation(s)
- Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Dinesh Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| |
Collapse
|
16
|
Chauvistré H, Shannan B, Daignault-Mill SM, Ju RJ, Picard D, Egetemaier S, Váraljai R, Gibhardt CS, Sechi A, Kaschani F, Keminer O, Stehbens SJ, Liu Q, Yin X, Jeyakumar K, Vogel FCE, Krepler C, Rebecca VW, Kubat L, Lueong SS, Forster J, Horn S, Remke M, Ehrmann M, Paschen A, Becker JC, Helfrich I, Rauh D, Kaiser M, Gul S, Herlyn M, Bogeski I, Rodríguez-López JN, Haass NK, Schadendorf D, Roesch A. Persister state-directed transitioning and vulnerability in melanoma. Nat Commun 2022; 13:3055. [PMID: 35650266 PMCID: PMC9160289 DOI: 10.1038/s41467-022-30641-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/10/2022] [Indexed: 12/30/2022] Open
Abstract
Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.
Collapse
Affiliation(s)
- Heike Chauvistré
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Batool Shannan
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Sheena M Daignault-Mill
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Ju
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Picard
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Egetemaier
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Renáta Váraljai
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Samantha J Stehbens
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Kirujan Jeyakumar
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Felix C E Vogel
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | - Linda Kubat
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, 45141, Essen, Germany
| | - Smiths S Lueong
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, 45122, Essen, Germany
| | - Jan Forster
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Department of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Marc Remke
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Ehrmann
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
- Department of Microbiology, University of Duisburg-Essen, Universitätsstraße 2, 45117, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Jürgen C Becker
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Translational Skin Cancer Research (TSCR), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, 45141, Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Markus Kaiser
- Department of Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | | | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - José Neptuno Rodríguez-López
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany.
- Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
17
|
Rezania MA, Eghtedari A, Taha MF, Ardekani AM, Javeri A. A novel role for aspirin in enhancing the reprogramming function of miR-302/367 cluster and breast tumor suppression. J Cell Biochem 2022; 123:1077-1090. [PMID: 35535453 DOI: 10.1002/jcb.30264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies have provided evidence for tumor suppressive function of the embryonic stem cell-specific miR-302/367 cluster through induction of a reprogramming process. Aspirin has been found to induce reprogramming factors of mesenchymal-to-epithelial transition in breast cancer cells. Therefore, we aimed to investigate whether overexpression of miR-302/367 cluster and aspirin treatment cooperate in the induction of reprogramming and tumor suppression in breast cancer cells. MDA-MB-231 and SK-BR-3 human breast cancer cell lines were transfected with a miR-302/367 expressing vector and treated with aspirin. The cells were evaluated for indices of apoptosis, proliferation, migration, and invasion. In both cell lines, treatment of miR-302/367-transfected cells with aspirin upregulated expression of some main pluripotency factors such as OCT4, SOX2, NANOG, and KLF4, and downregulated expression of some invasion and angiogenesis markers at gene and protein levels. Aspirin increased the apoptotic rate in both cell lines transfected with miR-302/367. Both miR-302/367 and aspirin upregulated the expression of FOXD3 protein which is a known inducer of OCT4 and NANOG. Our results demonstrate that aspirin can enhance miR-302/367-induced reprogramming of breast cancer cells possibly through upregulation of FOXD3 expression. This can further augment the reversal of epithelial-mesenchymal transition and inhibits migration, invasion, and angiogenic signaling in breast cancer cells reprogrammed by miR-302/367. Therefore, aspirin may serve as a useful adjuvant for reprogramming of cancer cells.
Collapse
Affiliation(s)
- Mohammad A Rezania
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Azadeh Eghtedari
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
18
|
Abstract
AbstractTumour spheroid experiments are routinely used to study cancer progression and treatment. Various and inconsistent experimental designs are used, leading to challenges in interpretation and reproducibility. Using multiple experimental designs, live-dead cell staining, and real-time cell cycle imaging, we measure necrotic and proliferation-inhibited regions in over 1000 4D tumour spheroids (3D space plus cell cycle status). By intentionally varying the initial spheroid size and temporal sampling frequencies across multiple cell lines, we collect an abundance of measurements of internal spheroid structure. These data are difficult to compare and interpret. However, using an objective mathematical modelling framework and statistical identifiability analysis we quantitatively compare experimental designs and identify design choices that produce reliable biological insight. Measurements of internal spheroid structure provide the most insight, whereas varying initial spheroid size and temporal measurement frequency is less important. Our general framework applies to spheroids grown in different conditions and with different cell types.
Collapse
|
19
|
Browning AP, Sharp JA, Murphy RJ, Gunasingh G, Lawson B, Burrage K, Haass NK, Simpson M. Quantitative analysis of tumour spheroid structure. eLife 2021; 10:e73020. [PMID: 34842141 PMCID: PMC8741212 DOI: 10.7554/elife.73020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.
Collapse
Affiliation(s)
- Alexander P Browning
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Jesse A Sharp
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Ryan J Murphy
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
| | - Gency Gunasingh
- The University of Queensland Diamantina Institute, The University of QueenslandBrisbaneAustralia
| | - Brodie Lawson
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of TechnologyMelbourneAustralia
- Department of Computer Science, University of OxfordOxfordUnited Kingdom
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of QueenslandBrisbaneAustralia
| | - Matthew Simpson
- School of Mathematical Sciences, Queensland University of TechnologyBrisbaneAustralia
| |
Collapse
|
20
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
21
|
Cappello S, Sung HM, Ickes C, Gibhardt CS, Vultur A, Bhat H, Hu Z, Brafford P, Denger A, Stejerean-Todoran I, Köhn RM, Lorenz V, Künzel N, Salinas G, Stanisz H, Legler T, Rehling P, Schön MP, Lang KS, Helms V, Herlyn M, Hoth M, Kummerow C, Bogeski I. Protein Signatures of NK Cell-Mediated Melanoma Killing Predict Response to Immunotherapies. Cancer Res 2021; 81:5540-5554. [PMID: 34518212 DOI: 10.1158/0008-5472.can-21-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Despite impressive advances in melanoma-directed immunotherapies, resistance is common and many patients still succumb to metastatic disease. In this context, harnessing natural killer (NK) cells, which have thus far been sidelined in the development of melanoma immunotherapy, could provide therapeutic benefits for cancer treatment. To identify molecular determinants of NK cell-mediated melanoma killing (NKmK), we quantified NK-cell cytotoxicity against a panel of genetically diverse melanoma cell lines and observed highly heterogeneous susceptibility. Melanoma protein microarrays revealed a correlation between NKmK and the abundance and activity of a subset of proteins, including several metabolic factors. Oxidative phoshorylation, measured by oxygen consumption rate, negatively correlated with melanoma cell sensitivity toward NKmK, and proteins involved in mitochondrial metabolism and epithelial-mesenchymal transition were confirmed to regulate NKmK. Two- and three-dimensional killing assays and melanoma xenografts established that the PI3K/AKT/mTOR signaling axis controls NKmK via regulation of NK cell-relevant surface proteins. A "protein-killing-signature" based on the protein analysis predicted NKmK of additional melanoma cell lines and the response of patients with melanoma to anti-PD-1 checkpoint therapy. Collectively, these findings identify novel NK cell-related prognostic biomarkers and may contribute to improved and personalized melanoma-directed immunotherapies. SIGNIFICANCE: NK-cell cytotoxicity assays and protein microarrays reveal novel biomarkers of NK cell-mediated melanoma killing and enable development of signatures to predict melanoma patient responsiveness to immunotherapies.
Collapse
Affiliation(s)
- Sabrina Cappello
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany.,Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Hsu-Min Sung
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Christian Ickes
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Adina Vultur
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany.,The Wistar Institute, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Hilal Bhat
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Zhongwen Hu
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Patricia Brafford
- The Wistar Institute, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Andreas Denger
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Rixa-Mareike Köhn
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Verena Lorenz
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Nicolas Künzel
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Gabriela Salinas
- NGS- Core Unit for Integrative Genomics, Institute for Human Genetics, University Medical Center, Göttingen, Germany
| | - Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Tobias Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center, Georg-August-University, Göttingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Georg August University, Göttingen, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, Pennsylvania
| | - Markus Hoth
- Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Carsten Kummerow
- Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany. .,Biophysics, Centre for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
22
|
Spoerri L, Gunasingh G, Haass NK. Fluorescence-Based Quantitative and Spatial Analysis of Tumour Spheroids: A Proposed Tool to Predict Patient-Specific Therapy Response. Front Digit Health 2021; 3:668390. [PMID: 34713141 PMCID: PMC8521823 DOI: 10.3389/fdgth.2021.668390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Tumour spheroids are widely used to pre-clinically assess anti-cancer treatments. They are an excellent compromise between the lack of microenvironment encountered in adherent cell culture conditions and the great complexity of in vivo animal models. Spheroids recapitulate intra-tumour microenvironment-driven heterogeneity, a pivotal aspect for therapy outcome that is, however, often overlooked. Likely due to their ease, most assays measure overall spheroid size and/or cell death as a readout. However, as different tumour cell subpopulations may show a different biology and therapy response, it is paramount to obtain information from these distinct regions within the spheroid. We describe here a methodology to quantitatively and spatially assess fluorescence-based microscopy spheroid images by semi-automated software-based analysis. This provides a fast assay that accounts for spatial biological differences that are driven by the tumour microenvironment. We outline the methodology using detection of hypoxia, cell death and PBMC infiltration as examples, and we propose this procedure as an exploratory approach to assist therapy response prediction for personalised medicine.
Collapse
Affiliation(s)
- Loredana Spoerri
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gency Gunasingh
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, Mohana-Kumaran N. Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114391. [PMID: 34224811 DOI: 10.1016/j.jep.2021.114391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mitragyna speciosa (Korth.) or kratom is a medicinal plant indigenous to Southeast Asia. The leaf of M. speciosa is used as a remedy in pain management including cancer related pain, in a similar way as opioids and cannabis. Despite its well-known analgesic effect, there is a scarce of information on the cancer-suppressing potential of M. speciosa and its active constituents. AIM OF THE STUDY To assess the potential applicability of M. speciosa alkaloids (mitragynine, speciociliatine or paynantheine) as chemosensitizers for cisplatin in Nasopharyngeal carcinoma (NPC) cell lines. MATERIALS AND METHODS The cytotoxic effects of the extracts, fractions and compounds were determined by conducting in vitro cytotoxicity assays. Based on the cytotoxic screening, the alkaloid extract of M. speciosa exhibited potent inhibitory effect on the NPC cell line NPC/HK1, and therefore, was chosen for further fractionation and purification. NPC cell lines NPC/HK1 and C666-1 were treated with combinations of cisplatin and M. speciosa alkaloids combinations in 2D monolayer culture. The effect of cisplatin and mitragynine as a combination on cell migration was tested using in vitro wound healing and spheroid invasion assays. RESULTS In our bioassay guided isolation, both methanolic and alkaloid extracts showed mild to moderate cytotoxic effect against the NPC/HK1 cell line. Both NPC cell lines (NPC/HK1 and C666-1) were insensitive to single agent and combination treatments of the M. speciosa alkaloids. However, mitragynine and speciociliatine sensitized the NPC/HK1 and C666-1 cells to cisplatin at ~4- and >5-fold, respectively in 2D monolayer culture. The combination of mitragynine and cisplatin also significantly inhibited cell migration of the NPC cell lines. Similarly, the combination also of mitragynine and cisplatin inhibited growth and invasion of NPC/HK1 spheroids in a dose-dependent manner. In addition, the spheroids did not rapidly develop resistance to the drug combinations at higher concentrations over 10 days. CONCLUSION Our data indicate that both mitragynine and speciociliatine could be potential chemosensitizers for cisplatin. Further elucidation focusing on the drug mechanistic studies and in vivo studies are necessary to support delineate the therapeutic applicability of M. speciosa alkaloids for NPC treatment.
Collapse
Affiliation(s)
- Gregory Domnic
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | | | | | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | | |
Collapse
|
24
|
Buhrmann C, Kunnumakkara AB, Kumar A, Samec M, Kubatka P, Aggarwal BB, Shakibaei M. Multitargeting Effects of Calebin A on Malignancy of CRC Cells in Multicellular Tumor Microenvironment. Front Oncol 2021; 11:650603. [PMID: 34660256 PMCID: PMC8511772 DOI: 10.3389/fonc.2021.650603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Tumor microenvironment (TME) provides the essential prerequisite niche for promoting cancer progression and metastasis. Calebin A, a component of Curcuma longa, has long been investigated as a safe multitargeted agent with antitumor and anti-inflammatory properties. However, the multicellular-TME-induced malignancy and the antitumorigenic potential of Calebin A on colorectal cancer (CRC) cells in 3D-alginate cultures are not yet understood, and more in-depth research is needed. Methods 3D-alginate tumor cultures (HCT116 cells) in the multicellular proinflammatory TME (fibroblast cells/T lymphocytes), tumor necrosis factor beta (TNF-β)-TME (fibroblast cells/TNF-β) were treated with/without Calebin A to address the pleiotropic actions of Calebin A in the CRC. Results We found that Calebin A downmodulated proliferation, vitality, and migration of HCT116 cells in 3D-alginate cultures in multicellular proinflammatory TME or TNF-β-TME. In addition, Calebin A suppressed TNF-β-, similar to multicellular-TME-induced phosphorylation of nuclear factor kappa B (NF-κB) in a concentration-dependent manner. NF-κB-promoting proinflammatory mediators, associated with tumor growth and antiapoptotic molecules (i.e.,MMP-9, CXCR4, Ki-67, β1-integrin, and Caspase-3) and its translocation to the nucleus in HCT116 cells, were increased in both TME cultures. The multicellular-TME cultures further induced the survival of cancer stem cells (CSCs) (upregulation of CD133, CD44, and ALDH1). Last but not the least, Calebin A suppressed multicellular-, similar to TNF-β-TME-induced rigorous upregulation of NF-κB phosphorylation, various NF-κB-regulated gene products, CSCs activation, and survival in 3D-alginate tumor cultures. Conclusions The downmodulation of multicellular proinflammatory-, similar to TNF-β-TME-induced CRC proliferation, survival, and migration by the multitargeting agent Calebin A could be a new therapeutic strategy to suppress inflammation and CRC tumorigenesis.
Collapse
Affiliation(s)
- Constanze Buhrmann
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany.,Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory & Department of Biotechnology-National institute of Advanced Industrial Science and Technology (DBT-AIST) International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory & Department of Biotechnology-National institute of Advanced Industrial Science and Technology (DBT-AIST) International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
25
|
Teh JL, Abdul Rahman SF, Domnic G, Satiyasilan L, Chear NJY, Singh D, Mohana-Kumaran N. Rapid spheroid assays in a 3-dimensional cell culture chip. BMC Res Notes 2021; 14:310. [PMID: 34389056 PMCID: PMC8361632 DOI: 10.1186/s13104-021-05727-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Objective The spheroid model provides a physiological platform to study cancer cell biology and drug sensitivity. Usage of bovine collagen I for spheroid assays is costly especially when experiments are conducted in 24-well plates, as high volume of bovine collagen I is needed. The aim of the study was to downsize spheroid assays to a microfluidic 3D cell culture chip and compare the growth, invasion and response to drug/compound of spheroids embedded in the 3D chip to spheroids embedded in 24-well plates. Results Spheroids generated from nasopharyngeal carcinoma cell line HK-1 continuously grew and invaded into collagen matrix in a 24-well plate. Similar observations were noticed with spheroids embedded in the 3D chip. Large spheroids in both 24-well plate and the 3D chip disintegrated and invaded into the collagen matrix. Preliminary drug sensitivity assays showed that the growth and invasion of spheroids were inhibited when spheroids were treated with combination of cisplatin and paynantheine at high concentrations, in a 24-well plate. Comparable findings were obtained when spheroids were treated with the same drug combination in the 3D chip. Moving forward, spheroid assays could be performed in the 3D chip in a more high-throughput manner with minimal time and cost. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05727-0.
Collapse
Affiliation(s)
- Jia Lin Teh
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Gregory Domnic
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | |
Collapse
|
26
|
(Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment. Colloids Surf B Biointerfaces 2021; 205:111870. [PMID: 34034224 DOI: 10.1016/j.colsurfb.2021.111870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The use of different types of biomaterials as surfactant moities has a defined role in magnetic hyperthermia-mediated cancer therapy (MHCT). In this work, we present carboxymethyl-stevioside (CMS)-modified magnetic dots (MDs) as efficient magnetic hyperthermia agents for glioma therapy. The synthesized MDs with CMS biosurfactant coating exhibited significant water stability that resulted in a remarkable specific absorption rate of 209.25 W/g on application of alternating magnetic field of strength 359 kHz and 188 Oe. The MDs further demonstrated significant anti-migratory and anti-invasive effect on glioma C6 cells by inhibiting the gene expression of matrix metalloproteinases-2 and -9. The effect of immediate and long term hyperthermia treatment was then evaluated after repetitive exposure to hyperthermia, in terms of glioma cell viability, the effect of treatment on cell morphology, the cell cycle distribution and oxidative stress generation. The results obtained suggest the promising potential of CMS-modified nano-heaters for excellent magnetic hyperthermia-mediated glioma therapy.
Collapse
|
27
|
Jin W, Spoerri L, Haass NK, Simpson MJ. Mathematical Model of Tumour Spheroid Experiments with Real-Time Cell Cycle Imaging. Bull Math Biol 2021; 83:44. [PMID: 33743088 DOI: 10.1007/s11538-021-00878-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) in vitro tumour spheroid experiments are an important tool for studying cancer progression and potential cancer drug therapies. Standard experiments involve growing and imaging spheroids to explore how different conditions lead to different rates of spheroid growth. These kinds of experiments, however, do not reveal any information about the spatial distribution of the cell cycle within the expanding spheroid. Since 2008, a new experimental technology called fluorescent ubiquitination-based cell cycle indicator (FUCCI) has enabled real-time in situ visualisation of the cell cycle progression. Observations of 3D tumour spheroids with FUCCI labelling reveal significant intratumoural structure, as the cell cycle status can vary with location. Although many mathematical models of tumour spheroid growth have been developed, none of the existing mathematical models are designed to interpret experimental observations with FUCCI labelling. In this work, we adapt the mathematical framework originally proposed by Ward and King (Math Med Biol 14:39-69, 1997. https://doi.org/10.1093/imammb/14.1.39 ) to produce a new mathematical model of FUCCI-labelled tumour spheroid growth. The mathematical model treats the spheroid as being composed of three subpopulations: (i) living cells in G1 phase that fluoresce red; (ii) living cells in S/G2/M phase that fluoresce green; and (iii) dead cells that are not fluorescent. We assume that the rates at which cells pass through different phases of the cell cycle, and the rate of cell death, depend upon the local oxygen concentration. Parameterising the new mathematical model using experimental measurements of cell cycle transition times, we show that the model can qualitatively capture important experimental observations that cannot be addressed using previous mathematical models. Further, we show that the mathematical model can be used to qualitatively mimic the action of anti-mitotic drugs applied to the spheroid. All software programs required to solve the nonlinear moving boundary problem associated with the new mathematical model are available on GitHub. at https://github.com/wang-jin-mathbio/Jin2021.
Collapse
Affiliation(s)
- Wang Jin
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
28
|
Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 2021; 21:152. [PMID: 33663530 PMCID: PMC7934264 DOI: 10.1186/s12935-021-01853-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional (3D) multicellular tumor spheroids (MCTs) model is becoming an essential tool in cancer research as it expresses an intermediate complexity between 2D monolayer models and in vivo solid tumors. MCTs closely resemble in vivo solid tumors in many aspects, such as the heterogeneous architecture, internal gradients of signaling factors, nutrients, and oxygenation. MCTs have growth kinetics similar to those of in vivo tumors, and the cells in spheroid mimic the physical interaction of the tumors, such as cell-to-cell and cell-to-extracellular matrix interactions. These similarities provide great potential for studying the biological properties of tumors and a promising platform for drug screening and therapeutic efficacy evaluation. However, MCTs are not well adopted as preclinical tools for studying tumor behavior and therapeutic efficacy up to now. In this review, we addressed the challenges with MCTs application and discussed various efforts to overcome the challenges.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, 02447, Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
29
|
Abstract
Since the first resection of melanoma by Hunter in 1787, efforts to treat patients with this deadly malignancy have been ongoing. Initial work to understand melanoma biology for therapeutics development began with the employment of isolated cancer cells grown in cell cultures. However, these models lack in vivo interactions with the tumor microenvironment. Melanoma cell line transplantation into suitable animals such as mice has been informative and useful for testing therapeutics as a preclinical model. Injection of freshly isolated patient melanomas into immunodeficient animals has shown the capacity to retain the genetic heterogeneity of the tumors, which is lost during the long-term culture of melanoma cells. Upon advancement of technology, genetically engineered animals have been generated to study the spontaneous development of melanomas in light of newly discovered genetic aberrations associated with melanoma formation. Culturing melanoma cells in a matrix generate tumor spheroids, providing an in vitro environment that promotes the heterogeneity commonplace with human melanoma and displaces the need for animal care facilities. Advanced 3D cultures have been created simulating the structure and cellularity of human skin to permit in vitro testing of therapeutics on melanomas expressing the same phenotype as demonstrated in vivo. This review will discuss these models and their relevance to the study of melanomagenesis, growth, metastasis, and therapy.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
30
|
Basurto‐Lozada P, Molina‐Aguilar C, Castaneda‐Garcia C, Vázquez‐Cruz ME, Garcia‐Salinas OI, Álvarez‐Cano A, Martínez‐Said H, Roldán‐Marín R, Adams DJ, Possik PA, Robles‐Espinoza CD. Acral lentiginous melanoma: Basic facts, biological characteristics and research perspectives of an understudied disease. Pigment Cell Melanoma Res 2021; 34:59-71. [PMID: 32330367 PMCID: PMC7818404 DOI: 10.1111/pcmr.12885] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Acral lentiginous melanoma is a histological subtype of cutaneous melanoma that occurs in the glabrous skin of the palms, soles and the nail unit. Although in some countries, particularly in Latin America, Africa and Asia, it represents the most frequently diagnosed subtype of the disease, it only represents a small proportion of melanoma cases in European-descent populations, which is partially why it has not been studied to the same extent as other forms of melanoma. As a result, its unique genomic drivers remain comparatively poorly explored, as well as its causes, with current evidence supporting a UV-independent path to tumorigenesis. In this review, we discuss current knowledge of the aetiology and diagnostic criteria of acral lentiginous melanoma, as well as its epidemiological and histopathological characteristics. We also describe what is known about the genomic landscape of this disease and review the available biological models to explore potential therapeutic targets.
Collapse
Affiliation(s)
- Patricia Basurto‐Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - Christian Molina‐Aguilar
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
- Tecnologico de MonterreySchool of Engineering and SciencesCentre of BioengineeringQuerétaroMexico
| | - Carolina Castaneda‐Garcia
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - Martha Estefania Vázquez‐Cruz
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
| | - Omar Isaac Garcia‐Salinas
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
- Wellcome Sanger InstituteHinxtonCambridgeshireCB101SAUK
| | | | | | - Rodrigo Roldán‐Marín
- Dermato‐Oncology ClinicUnidad de Medicina ExperimentalFacultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | | | - Patricia A. Possik
- Program of Immunology and Tumor BiologyBrazilian National Cancer Institute (INCA)Rio de JaneiroBrazil
| | - Carla Daniela Robles‐Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoSantiago de QuerétaroMexico
- Wellcome Sanger InstituteHinxtonCambridgeshireCB101SAUK
| |
Collapse
|
31
|
Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci Rep 2020; 10:19617. [PMID: 33184378 PMCID: PMC7665072 DOI: 10.1038/s41598-020-76824-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most aggressive and fatal type of skin cancer due to being highly proliferative. Acetylsalicylic acid (ASA; Aspirin) and salicylic acid (SA) are ancient drugs with multiple applications in medicine. Here, we showed that ASA and SA present anticancer effects against a murine model of implanted melanoma. These effects were also validated in 3D- and 2D-cultured melanoma B16F10 cells, where the drugs promoted pro-apoptotic effects. In both in vivo and in vitro models, SA and ASA triggered endoplasmic reticulum (ER) stress, which culminates with the upregulation of the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). These effects are initiated by ASA/SA-triggered Akt/mTOR/AMPK-dependent activation of nitric oxide synthase 3 (eNOS), which increases nitric oxide and reactive oxygen species production inducing ER stress response. In the end, we propose that ASA and SA instigate anticancer effects by a novel mechanism, the activation of ER stress.
Collapse
|
32
|
Xiang BLS, Kwok-Wai L, Soo-Beng AK, Mohana-Kumaran N. Single Agent and Synergistic Activity of Maritoclax with ABT-263 in Nasopharyngeal Carcinoma (NPC) Cell Lines. Trop Life Sci Res 2020; 31:1-13. [PMID: 33214852 PMCID: PMC7652248 DOI: 10.21315/tlsr2020.31.3.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The BCL-2 anti-apoptotic proteins are over-expressed in many cancers and hence are attractive therapeutic targets. In this study, we tested the sensitivity of two Nasopharyngeal Carcinoma (NPC) cell lines HK1 and C666-1 to Maritoclax, which is reported to repress anti-apoptotic protein MCL-1 and BH3 mimetic ABT-263, which selectively inhibits anti-apoptotic proteins BCL-2, BCL-XL and BCL-w. We investigated the sensitisation of the NPC cell lines to these drugs using the SYBR Green I assay and 3D NPC spheroids. We report that Maritoclax repressed anti-apoptotic proteins MCL-1, BCL-2, and BCL-XL in a dose- and time-dependent manner and displayed a single agent activity in inhibiting cell proliferation of the NPC cell lines. Moreover, combination of Maritoclax and ABT-263 exhibited synergistic antiproliferative effect in the HK1 cells. Similar results were obtained in the 3D spheroids generated from the HK1 cells. More notably, 3D HK1 spheroids either treated with single agent Maritoclax or combination with ABT-263, over 10 days, did not develop resistance to the treatment rapidly. Collectively, the findings illustrate that Maritoclax as a single agent or combination with BH3 mimetics could be potentially useful as treatment strategies for the management of NPC.
Collapse
Affiliation(s)
| | - Lo Kwok-Wai
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Central Ave, Hong Kong
| | - Alan Khoo Soo-Beng
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Nethia Mohana-Kumaran
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
33
|
Rizvi SAA, Shahzad Y, Saleh AM, Muhammad N. Dose Issues in Cancer Chemotherapy. Oncology 2020; 98:520-527. [PMID: 32369814 DOI: 10.1159/000506705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 11/19/2022]
Abstract
In this review, human methotrexate dosing regimens, as well as their relationship to data from in vitro cell culture and in vivo animal and human studies, are discussed. Low-dose, intermediate-dose, and high-dose therapies are covered. Since in vitro and in vivo screenings of potential cancer drugs are commonplace in the development of cancer chemotherapy, comparisons of the three criteria for effectiveness are important.
Collapse
Affiliation(s)
- Syed A A Rizvi
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, Virginia, USA,
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ayman M Saleh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
34
|
Abdul Rahman SF, Muniandy K, Soo YK, Tiew EYH, Tan KX, Bates TE, Mohana-Kumaran N. Co-inhibition of BCL-XL and MCL-1 with selective BCL-2 family inhibitors enhances cytotoxicity of cervical cancer cell lines. Biochem Biophys Rep 2020; 22:100756. [PMID: 32346617 PMCID: PMC7183162 DOI: 10.1016/j.bbrep.2020.100756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022] Open
Abstract
Development of resistance to chemo- and radiotherapy in patients suffering from advanced cervical cancer narrows the therapeutic window for conventional therapies. Previously we reported that a combination of the selective BCL-2 family inhibitors ABT-263 and A-1210477 decreased cell proliferation in C33A, SiHa and CaSki human cervical cancer cell lines. As ABT-263 binds to both BCL-2 and BCL-XL with high affinity, it was unclear whether the synergism of the drug combination was driven either by singly inhibiting BCL-2 or BCL-XL, or inhibition of both. In this present study, we used the BCL-2 selective inhibitor ABT-199 and the BCL-XL selective inhibitor A1331852 to resolve the individual antitumor activities of ABT-263 into BCL-2 and BCL-XL dependent mechanisms. A-1210477 was substituted for the orally bioavailable S63845. Four cervical cancer cell lines were treated with the selective BCL-2 family inhibitors ABT-199, A1331852 and S63845 alone and in combination using 2-dimensional (2D) and 3-dimensional (3D) cell culture models. The SiHa, C33A and CaSki cell lines were resistant to single agent treatment of all three drugs, suggesting that none of the BCL-2 family of proteins mediate survival of the cells in isolation. HeLa cells were resistant to single agent treatment of ABT-199 and A1331852 but were sensitive to S63845 indicating that they depend on MCL-1 for survival. Co-inhibition of BCL-2 and MCL-1 with ABT-199 and S63845, inhibited cell proliferation of all cancer cell lines, except SiHa. However, the effect of the combination was not as pronounced as combination of A1331852 and S63845. Co-inhibition of BCL-XL and MCL-1 with A1331852 and S63845 significantly inhibited cell proliferation of all four cell lines. Similar data were obtained with 3-dimensional spheroid cell culture models generated from two cervical cancer cell lines in vitro. Treatment with a combination of A1331852 and S63845 resulted in inhibition of growth and invasion of the 3D spheroids. Collectively, our data demonstrate that the combination of MCL-1-selective inhibitors with either selective inhibitors of either BCL-XL or BCL-2 may be potentially useful as treatment strategies for the management of cervical cancer. Co-inhibition of BCL-XL and MCL-1 inhibited cervical cancer cell proliferation. Co-inhibition of BCL-XL and MCL-1 inhibited growth and invasion of 3D spheroids. MCL-1-BCL-XL selective inhibitors are potential treatment strategies.
Collapse
Affiliation(s)
| | - Kalaivani Muniandy
- Institute for Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yong Kit Soo
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Elvin Yu Huai Tiew
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Ke Xin Tan
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Timothy E Bates
- Drugs with A Difference Limited, 6 Science and Technology Park, University Boulevard, Nottingham, NG6 2RF, United Kingdom
| | | |
Collapse
|
35
|
Hoseinbeyki M, Taha MF, Javeri A. miR-16 enhances miR-302/367-induced reprogramming and tumor suppression in breast cancer cells. IUBMB Life 2020; 72:1075-1086. [PMID: 32057163 DOI: 10.1002/iub.2249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Overexpression of either miR-302 or miR-302/367 cluster induces reprogramming of cancer cells and exerts tumor-suppressive effects by induction of mesenchymal-to-epithelial transition, apoptosis and a less proliferative capacity. Several reports have described miR-16 as a tumor suppressor microRNA (miRNA). Here, we studied the impact of exogenous induction of miR-16 in MDA-MB-231 and SK-BR-3 breast cancer cells following overexpression of miR-302/367 cluster and investigated whether transfection of these cells by a mature miR-16 mimic could affect the reprogramming state of the cells and their tumorigenicity. miR-16 enhanced the expression levels of OCT4A, SOX2, and NANOG, generally known as transcription or pluripotency factors, and suppressed proliferation and invasiveness of these cells. Meanwhile, inhibition of miR-16 counteracted both the reprogramming effect and the antitumor function of miR-302/367 in the breast cancer cells. Current results indicate that miR-16 can work as an adjuvant to improve both cancer cell reprogramming and tumor-suppressive function of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 cells, while its inhibition counteracts all of these effects. Combined application of miRNAs that share some common targets in cancer cell signaling pathways may provide new approaches for repression of multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Moslem Hoseinbeyki
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
36
|
Gonçalves J, Emmons MF, Faião-Flores F, Aplin AE, Harbour JW, Licht JD, Wink MR, Smalley KSM. Decitabine limits escape from MEK inhibition in uveal melanoma. Pigment Cell Melanoma Res 2019; 33:507-514. [PMID: 31758842 DOI: 10.1111/pcmr.12849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/08/2023]
Abstract
MEK inhibitors (MEKi) demonstrate anti-proliferative activity in patients with metastatic uveal melanoma, but responses are short-lived. In the present study, we evaluated the MEKi trametinib alone and in combination with drugs targeting epigenetic regulators, including DOT1L, EZH2, LSD1, DNA methyltransferases, and histone acetyltransferases. The DNA methyltransferase inhibitor (DNMTi) decitabine effectively enhanced the anti-proliferative activity of trametinib in cell viability, colony formation, and 3D organoid assays. RNA-Seq analysis showed the MEKi-DNMTi combination primarily affected the expression of genes involved in G1 and G2/2M checkpoints, cell survival, chromosome segregation and mitotic spindle. The DNMTi-MEKi combination did not appear to induce a DNA damage response (as measured by γH2AX foci) or senescence (as measured by β-galactosidase staining) compared to either MEKi or DNMTi alone. Instead, the combination increased expression of the CDK inhibitor p21 and the pro-apoptotic protein BIM. In vivo, the DNMTi-MEKi combination was more effective at suppressing growth of MP41 uveal melanoma xenografts than either drug alone. Our studies indicate that DNMTi may enhance the activity of MEKi in uveal melanoma.
Collapse
Affiliation(s)
- Jessica Gonçalves
- The Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA.,Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Michael F Emmons
- The Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J William Harbour
- Bascom Palmer Eye Institute, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan D Licht
- Division of Hematology & Oncology, Department of Medicine, University of Florida Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | |
Collapse
|
37
|
Wragg NM, Mosqueira D, Blokpeol-Ferreras L, Capel A, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of a 3D Tissue-Engineered Skeletal Muscle and Bone Co-culture System. Biotechnol J 2019; 15:e1900106. [PMID: 31468704 DOI: 10.1002/biot.201900106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/05/2019] [Indexed: 12/26/2022]
Abstract
In vitro 3D tissue-engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co-culture of TE skeletal muscle and bone are investigated. High-glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 20% fetal bovine serum followed by HG-DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co-cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen-based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co-culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.
Collapse
Affiliation(s)
- Nicholas M Wragg
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Diogo Mosqueira
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lia Blokpeol-Ferreras
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Andrew Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH University College London, Stanmore, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
38
|
Osrodek M, Hartman ML, Czyz M. Physiologically Relevant Oxygen Concentration (6% O 2) as an Important Component of the Microenvironment Impacting Melanoma Phenotype and Melanoma Response to Targeted Therapeutics In Vitro. Int J Mol Sci 2019; 20:ijms20174203. [PMID: 31461993 PMCID: PMC6747123 DOI: 10.3390/ijms20174203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer cell phenotype largely depends on oxygen availability. The atmospheric oxygen concentration (21%) used in in vitro studies is much higher than in any human tissue. Using well-characterized patient-derived melanoma cell lines, we compared: (i) activities of several signaling pathways, and (ii) the effects of vemurafenib and trametinib in hyperoxia (21% O2), normoxia (6% O2) and hypoxia (1% O2). A high plasticity of melanoma cells in response to changes in oxygen supplementation and drug treatment was observed, and the transcriptional reprograming and phenotypic changes varied between cell lines. Normoxia enhanced the expression of vascular endothelial growth factor (VEGF), glucose metabolism/transport-related genes, and changed percentages of NGFR- and MITF-positive cells in cell line-dependent manner. Increased protein stability might be responsible for high PGC1α level in MITFlow melanoma cells. Vemurafenib and trametinib while targeting the activity of MAPK/ERK pathway irrespective of oxygen concentration, were less effective in normoxia than hyperoxia in reducing levels of VEGF, PGC1α, SLC7A11 and Ki-67-positive cells in cell line-dependent manner. In conclusion, in vitro studies performed in atmospheric oxygen concentration provide different information on melanoma cell phenotype and response to drugs than performed in normoxia, which might partially explain the discrepancies between results obtained in vitro and in clinical settings.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
39
|
Klicks J, Maßlo C, Kluth A, Rudolf R, Hafner M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer 2019; 19:402. [PMID: 31035967 PMCID: PMC6489189 DOI: 10.1186/s12885-019-5606-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Background Different 3D-cell culture approaches with varying degrees of complexity have been developed to serve as melanoma models for drug testing or mechanistic studies. While these 3D-culture initiatives are already often superior to classical 2D approaches, they are either composed of only melanoma cells or they are so complex that the behavior of individual cell types is hard to understand, and often they are difficult to establish and expensive. Methods This study used low-attachment based generation of spheroids composed of up to three cell types. Characterization of cells and spheroids involved cryosectioning, immunofluorescence, FACS, and quantitative analyses. Statistical evaluation used one-way ANOVA with post-hoc Tukey test or Student’s t-test. Results The tri-culture model allowed to track cellular behavior in a cell-type specific manner and recapitulated different characteristics of early melanoma stages. Cells arranged into a collagen-IV rich fibroblast core, a ring of keratinocytes, and groups of highly proliferating melanoma cells on the outside. Regularly, some melanoma cells were also found to invade the fibroblast core. In the absence of melanoma cells, the keratinocyte ring stratified into central basal-like and peripheral, more differentiated cells. Conversely, keratinocyte differentiation was clearly reduced upon addition of melanoma cells. Treatment with the cytostatic drug, docetaxel, restored keratinocyte differentiation and induced apoptosis of external melanoma cells. Remaining intact external melanoma cells showed a significantly increased amount of ABCB5-immunoreactivity. Conclusions In the present work, a novel, simple spheroid-based melanoma tri-culture model composed of fibroblasts, keratinocytes, and melanoma cells was described. This model mimicked features observed in early melanoma stages, including loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced increase of ABCB5 expression in external melanoma cells. Electronic supplementary material The online version of this article (10.1186/s12885-019-5606-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Klicks
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany.,Institute of Medical Technology, Mannheim University of Applied Sciences and Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Maßlo
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Andreas Kluth
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany. .,Institute of Medical Technology, Mannheim University of Applied Sciences and Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany.,Institute of Medical Technology, Mannheim University of Applied Sciences and Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
40
|
Lee EF, Harris TJ, Tran S, Evangelista M, Arulananda S, John T, Ramnac C, Hobbs C, Zhu H, Gunasingh G, Segal D, Behren A, Cebon J, Dobrovic A, Mariadason JM, Strasser A, Rohrbeck L, Haass NK, Herold MJ, Fairlie WD. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis 2019; 10:342. [PMID: 31019203 PMCID: PMC6482196 DOI: 10.1038/s41419-019-1568-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Malignant melanoma is one of the most difficult cancers to treat due to its resistance to chemotherapy. Despite recent successes with BRAF inhibitors and immune checkpoint inhibitors, many patients do not respond or become resistant to these drugs. Hence, alternative treatments are still required. Due to the importance of the BCL-2-regulated apoptosis pathway in cancer development and drug resistance, it is of interest to establish which proteins are most important for melanoma cell survival, though the outcomes of previous studies have been conflicting. To conclusively address this question, we tested a panel of established and early passage patient-derived cell lines against several BH3-mimetic drugs designed to target individual or subsets of pro-survival BCL-2 proteins, alone and in combination, in both 2D and 3D cell cultures. None of the drugs demonstrated significant activity as single agents, though combinations targeting MCL-1 plus BCL-XL, and to a lesser extent BCL-2, showed considerable synergistic killing activity that was elicited via both BAX and BAK. Genetic deletion of BFL-1 in cell lines that express it at relatively high levels only had minor impact on BH3-mimetic drug sensitivity, suggesting it is not a critical pro-survival protein in melanoma. Combinations of MCL-1 inhibitors with BRAF inhibitors also caused only minimal additional melanoma cell killing over each drug alone, whilst combinations with the proteasome inhibitor bortezomib was more effective in multiple cell lines. Our data show for the first time that therapies targeting specific combinations of BCL-2 pro-survival proteins, namely MCL-1 plus BCL-XL and MCL-1 plus BCL-2, could have significant benefit for the treatment of melanoma.
Collapse
Affiliation(s)
- Erinna F Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia. .,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marco Evangelista
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Surein Arulananda
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thomas John
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Celeste Ramnac
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Chloe Hobbs
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Haoran Zhu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Gency Gunasingh
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alexander Dobrovic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Leona Rohrbeck
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Karolinska Institute, Stockholm, Sweden
| | - Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - W Douglas Fairlie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia. .,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
41
|
Echevarría-Vargas IM, Reyes-Uribe PI, Guterres AN, Yin X, Kossenkov AV, Liu Q, Zhang G, Krepler C, Cheng C, Wei Z, Somasundaram R, Karakousis G, Xu W, Morrissette JJ, Lu Y, Mills GB, Sullivan RJ, Benchun M, Frederick DT, Boland G, Flaherty KT, Weeraratna AT, Herlyn M, Amaravadi R, Schuchter LM, Burd CE, Aplin AE, Xu X, Villanueva J. Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 2019; 10:emmm.201708446. [PMID: 29650805 PMCID: PMC5938620 DOI: 10.15252/emmm.201708446] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite novel therapies for melanoma, drug resistance remains a significant hurdle to achieving optimal responses. NRAS‐mutant melanoma is an archetype of therapeutic challenges in the field, which we used to test drug combinations to avert drug resistance. We show that BET proteins are overexpressed in NRAS‐mutant melanoma and that high levels of the BET family member BRD4 are associated with poor patient survival. Combining BET and MEK inhibitors synergistically curbed the growth of NRAS‐mutant melanoma and prolonged the survival of mice bearing tumors refractory to MAPK inhibitors and immunotherapy. Transcriptomic and proteomic analysis revealed that combining BET and MEK inhibitors mitigates a MAPK and checkpoint inhibitor resistance transcriptional signature, downregulates the transcription factor TCF19, and induces apoptosis. Our studies demonstrate that co‐targeting MEK and BET can offset therapy resistance, offering a salvage strategy for melanomas with no other therapeutic options, and possibly other treatment‐resistant tumor types.
Collapse
Affiliation(s)
| | | | - Adam N Guterres
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Xiangfan Yin
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Qin Liu
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Gao Zhang
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Chaoran Cheng
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- College of Computing Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | | | - Giorgos Karakousis
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Xu
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Jd Morrissette
- Center for Personalized Diagnostics, Hospital of the University of Pennsylvania University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Miao Benchun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Dennie T Frederick
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve Boland
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ashani T Weeraratna
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.,Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Ravi Amaravadi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Christin E Burd
- Departments of Molecular Genetics and Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Andrew E Aplin
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessie Villanueva
- Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA .,Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
42
|
Haghi M, Taha MF, Javeri A. Suppressive effect of exogenous miR-16 and miR-34a on tumorigenesis of breast cancer cells. J Cell Biochem 2019; 120:13342-13353. [PMID: 30916815 DOI: 10.1002/jcb.28608] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
Recent investigations have shown tumor-suppressive roles for miR-16 and miR-34a. They also share some features in regard to targeting cancer cell signaling pathways which they control. Therefore, in this study, we aimed to further scrutinize whether exogenous induction of mature miR-34a and miR-16 can collaborate in breast tumor suppression. MDA-MB-231 and SK-BR-3 human breast cancer cell lines were cultured and transfected twice with hsa-miR-16-5p and hsa-miR-34a-5p mimics individually or in combination. The cells were analyzed for apoptosis rate and cell cycle indices by flow cytometry. Also, the expression of several invasion and the epithelial-mesenchymal transition markers was evaluated at gene and protein levels by quantitative real-time polymerase chain reaction and western blot analysis, respectively. Assessment of invasiveness and migratory potential of the transfected cells was performed using three-dimensional spheroid formation and wound-healing assay, respectively. In both cell lines, miR-16 and miR-34a induced apoptosis and cell-cycle arrest and also suppressed invasion and migration. Some of these effects, like cell-cycle arrest and induction of apoptosis, were significantly higher when using both microRNAs than when using them individually for transfection of the cells. Our results are indicating that miR-16 and miR-34a can collaborate in breast tumor suppression.
Collapse
Affiliation(s)
- Mehdi Haghi
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Biology, Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
43
|
Guo D, Lui GYL, Lai SL, Wilmott JS, Tikoo S, Jackett LA, Quek C, Brown DL, Sharp DM, Kwan RYQ, Chacon D, Wong JH, Beck D, van Geldermalsen M, Holst J, Thompson JF, Mann GJ, Scolyer RA, Stow JL, Weninger W, Haass NK, Beaumont KA. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes. Int J Cancer 2019; 144:3070-3085. [PMID: 30556600 DOI: 10.1002/ijc.32064] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023]
Abstract
Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Dajiang Guo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Goldie Y L Lui
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Siew Li Lai
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia
| | - James S Wilmott
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Shweta Tikoo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Louise A Jackett
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Darren L Brown
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Danae M Sharp
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Rain Y Q Kwan
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jason H Wong
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - John F Thompson
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Richard A Scolyer
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jennifer L Stow
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Weninger
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
44
|
Surface-enhanced Raman spectroscopy based 3D spheroid culture for drug discovery studies. Talanta 2019; 191:390-399. [DOI: 10.1016/j.talanta.2018.08.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022]
|
45
|
Ju RJ, Stehbens SJ, Haass NK. The Role of Melanoma Cell-Stroma Interaction in Cell Motility, Invasion, and Metastasis. Front Med (Lausanne) 2018; 5:307. [PMID: 30460237 PMCID: PMC6232165 DOI: 10.3389/fmed.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
The importance of studying cancer cell invasion is highlighted by the fact that 90% of all cancer-related mortalities are due to metastatic disease. Melanoma metastasis is driven fundamentally by aberrant cell motility within three-dimensional or confined environments. Within this realm of cell motility, cytokines, growth factors, and their receptors are crucial for engaging signaling pathways, which both mediate crosstalk between cancer, stromal, and immune cells in addition to interactions with the surrounding microenvironment. Recently, the study of the mechanical biology of tumor cells, stromal cells and the mechanics of the microenvironment have emerged as important themes in driving invasion and metastasis. While current anti-melanoma therapies target either the MAPK signaling pathway or immune checkpoints, there are no drugs available that specifically inhibit motility and thus invasion and dissemination of melanoma cells during metastasis. One of the reasons for the lack of so-called "migrastatics" is that, despite decades of research, the precise biology of metastatic disease is still not fully understood. Metastatic disease has been traditionally lumped into a single classification, however what is now emergent is that the biology of melanoma metastasis is highly diverse, heterogeneous and exceedingly dynamic-suggesting that not all cases are created equal. The following mini-review discusses melanoma heterogeneity in the context of the emergent theme of mechanobiology and how it influences the tumor-stroma crosstalk during metastasis. Thus, highlighting future therapeutic options for migrastatics and mechanomedicines in the prevention and treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Robert J. Ju
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Samantha J. Stehbens
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Nikolas K. Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
- Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Ramezankhani B, Taha MF, Javeri A. Vitamin C counteracts miR-302/367-induced reprogramming of human breast cancer cells and restores their invasive and proliferative capacity. J Cell Physiol 2018; 234:2672-2682. [PMID: 30191953 DOI: 10.1002/jcp.27081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.
Collapse
Affiliation(s)
- Bahareh Ramezankhani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
47
|
Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018; 73:e479s. [PMID: 30208166 PMCID: PMC6113850 DOI: 10.6061/clinics/2018/e479s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
Collapse
Affiliation(s)
- Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: /
| | - Gissele Rolemberg Oliveira Silva
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor de Luna Vieira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Otto Luiz Dutra Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Roberto Del Valle
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ruan Felipe Vieira Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Samir Andrade Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
48
|
Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device. Biomed Microdevices 2018; 20:80. [PMID: 30191323 DOI: 10.1007/s10544-018-0322-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3D models of tumours have emerged as an advanced technique in pharmacology and tumour cell biology, in particular for studying malignant tumours such as glioblastoma multiforme (GBM). Herein, we developed a 3D GBM model on a detachably assembled microfluidic device, which could be used to study GBM aggressiveness and for anti-GBM drug testing. Fundamental characteristics of the GBM microenvironment in terms of 3D tissue organisation, extracellular matrices and blood flow were reproduced in vitro by serial manipulations in the integrated microfluidic device, including GBM spheroid self-assembly, embedding in a collagen matrix, and continuous perfusion culture, respectively. We could realize multiple spheroids parallel manipulation, whilst, compartmentalized culture, in a highly flexible manner. This method facilitated investigations into the viability, proliferation, invasiveness and phenotype transition of GBM in a 3D microenvironment and under continuous stimulation by drugs. Anti-invasion effect of resveratrol, a naturally isolated polyphenol, was innovatively evaluated using this in vitro 3D GBM model. Temozolomide and the combination of resveratrol and temozolomide were also evaluated as control. This scalable model enables research into GBM in a more physiologically relevant microenvironment, which renders it promising for use in translational or personalised medicine to examine the impact of, or identify combinations of, therapeutic agents.
Collapse
|
49
|
Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702858. [PMID: 29450963 DOI: 10.1002/smll.201702858] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/13/2017] [Indexed: 05/23/2023]
Abstract
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano-biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles-from self-assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
50
|
Petrachi T, Romagnani A, Albini A, Longo C, Argenziano G, Grisendi G, Dominici M, Ciarrocchi A, Dallaglio K. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget 2018; 8:6914-6928. [PMID: 28036292 PMCID: PMC5351679 DOI: 10.18632/oncotarget.14321] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023] Open
Abstract
Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.
Collapse
Affiliation(s)
- Tiziana Petrachi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alessandra Romagnani
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Adriana Albini
- Scientific and Technologic Park, IRCCS MultiMedica, Milan, Italy
| | - Caterina Longo
- Skin Cancer Unit, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Giuseppe Argenziano
- Skin Cancer Unit, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.,Dermatology Unit, Second University of Naples, Naples, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Katiuscia Dallaglio
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| |
Collapse
|