1
|
McCullough HC, Song HS, Auchtung JM. Diversity in chemical subunits and linkages: a key molecular determinant of microbial richness, microbiota interactions, and substrate utilization. Microbiol Spectr 2025; 13:e0261824. [PMID: 40047463 PMCID: PMC11970232 DOI: 10.1128/spectrum.02618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 04/03/2025] Open
Abstract
Dietary fibers play a significant role in shaping the composition and function of microbial communities in the human colon. Our understanding of the specific chemical traits of dietary fibers that influence microbial diversity, interactions, and function remains limited. Toward filling this knowledge gap, we developed a novel measure, termed Chemical Subunits and Linkages (CheSL) Shannon diversity, to characterize the effects of carbohydrate complexity on human fecal bacteria cultured in vitro under controlled, continuous flow conditions using media that systematically varied in carbohydrate composition. Our analysis revealed that CheSL Shannon diversity demonstrated a strong Pearson correlation with microbial richness across multiple fecal samples and study designs. Additionally, we observed that microbial communities in media with higher CheSL Shannon diversity scores exhibited greater peptide utilization and more connected, reproducible structures in computationally inferred microbial interaction networks. Taken together, these findings demonstrate that CheSL Shannon diversity can be a useful tool to quantify the effects of carbohydrate complexity on microbial diversity, metabolic potential, and interactions. Furthermore, our work highlights how robust and stable community data can be generated by engineering media composition and structure. These studies provide a valuable framework for future research on microbial community interactions and their potential impacts on host health.IMPORTANCEFor the human adult gut microbiota, higher microbial diversity strongly correlates with positive health outcomes. This correlation is likely due to increased community resilience that results from functional redundancy that can occur within diverse communities. While previous studies have shown that dietary fibers influence microbiota composition and function, we lack a complete mechanistic understanding of how differences in the composition of fibers are likely to functionally impact microbiota diversity. To address this need, we developed Chemical Subunits and Linkages Shannon diversity, a novel measure that describes carbohydrate complexity. Using this measure, we were able to correlate changes in carbohydrate complexity with alterations in microbial diversity and interspecies interactions. Overall, these analyses provide new perspectives on dietary optimization strategies to improve human health.
Collapse
Affiliation(s)
- Hugh C. McCullough
- Department of Food
Science and Technology, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
- Nebraska Food for
Health Center, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
| | - Hyun-Seob Song
- Department of Food
Science and Technology, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
- Nebraska Food for
Health Center, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
- Department of
Biological Systems Engineering, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
| | - Jennifer M. Auchtung
- Department of Food
Science and Technology, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
- Nebraska Food for
Health Center, University of
Nebraska-Lincoln, Lincoln,
Nebraska, USA
| |
Collapse
|
2
|
Ashiqueali SA, Hayslip N, Chaudhari DS, Schneider A, Zhu X, Rubis B, Seavey CE, Alam MT, Hussein R, Noureddine SA, Golusinska-Kardach E, Pazdrowski P, Yadav H, Masternak MM. Fecal microbiota transplant from long-living Ames dwarf mice alters the microbial composition and biomarkers of liver health in normal mice. GeroScience 2025:10.1007/s11357-025-01539-3. [PMID: 39904968 DOI: 10.1007/s11357-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Aging is associated with intestinal dysbiosis, a condition characterized by diminished microbial biodiversity and inflammation. This leads to increased vulnerability to extraintestinal manifestations such as autoimmune, metabolic, and neurodegenerative conditions thereby accelerating mortality. As such, modulation of the gut microbiome is a promising way to extend healthspan. In this study, we explore the effects of fecal microbiota transplant (FMT) from long-living Ames dwarf donors to their normal littermates, and vice versa, on the recipient gut microbiota and liver transcriptome. Importantly, our previous studies highlight differences between the microbiome of Ames dwarf mice relative to their normal siblings, potentially contributing to their extended lifespan and remarkable healthspan. Our findings demonstrate that FMT from Ames dwarf mice to normal mice significantly alters the recipient's gut microbiota, potentially reprogramming bacterial functions related to healthy aging, and changes the liver transcriptome, indicating improved metabolic health. Particularly, the microbiome of Ames dwarf mice, characterized by a higher abundance of beneficial bacterial families such as Peptococcaceae, Oscillospiraceae, and Lachnospiraceae, appears to play a crucial role in modulating these effects. Alongside, our mRNA sequencing and RT-PCR validation reveals that FMT may contribute to the significant downregulation of p21, Elovl3, and Insig2, genes involved with cellular senescence and liver metabolic pathways. Our data suggest a regulatory axis exists between the gut and liver, highlighting the potential of microbiome-targeted therapies in promoting healthy aging. Future research should focus on functional validation of altered microbial communities and explore the underlying biomolecular pathways that confer geroprotection.
Collapse
Affiliation(s)
- Sarah A Ashiqueali
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Natalie Hayslip
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- University of South Florida (USF) Morsani College of Medicine, Tampa, FL, USA
| | - Diptaraj S Chaudhari
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
| | - Corey E Seavey
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Md Tanjim Alam
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ridwan Hussein
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Sarah A Noureddine
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ewelina Golusinska-Kardach
- Department of Dental Surgery, Periodontology and Oral Mucosa Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Pawel Pazdrowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Poznan University of Medical Sciences, Student Scientific Association, Poznan, Poland
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
3
|
Horrocks V, King OG, Yip AYG, Marques IM, McDonald JAK. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001377. [PMID: 37540126 PMCID: PMC10482380 DOI: 10.1099/mic.0.001377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
The human gut microbiota can restrict the growth of pathogens to prevent them from colonizing the intestine ('colonization resistance'). However, antibiotic treatment can kill members of the gut microbiota ('gut commensals') and reduce competition for nutrients, making these nutrients available to support the growth of pathogens. This disturbance can lead to the growth and expansion of pathogens within the intestine (including antibiotic-resistant pathogens), where these pathogens can exploit the absence of competitors and the nutrient-enriched gut environment. In this review, we discuss nutrient competition between the gut microbiota and pathogens. We also provide an overview of how nutrient competition can be harnessed to support the design of next-generation microbiome therapeutics to restrict the growth of pathogens and prevent the development of invasive infections.
Collapse
Affiliation(s)
- Victoria Horrocks
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Olivia G. King
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Alexander Y. G. Yip
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Inês Melo Marques
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Julie A. K. McDonald
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Zhang M, Li RW, Yang H, Tan Z, Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr 2022; 64:4410-4431. [PMID: 36330804 DOI: 10.1080/10408398.2022.2142194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the major short-chain fatty acids produced via microbial fermentation, butyrate serves as not only a preferred energy substrate but also an important signaling molecule. Butyrate concentrations in circulation, tissues, and gut luminal contents have important pathophysiological implications. The genetic capacity of butyrate biosynthesis by the gut microbiota is frequently compromised during aging and various disorders, such as inflammatory bowel disease, metabolic disorders and colorectal cancer. Substantial efforts have been made to identify potent butyrogenic substrates and butyrate-hyperproducing bacteria to compensate for butyrate deficiency. Interindividual butyrogenic responses exist, which are more strongly predicted by heterogeneity in the gut microbiota composition than by ingested prebiotic substrates. In this review, we catalog major food types rich in butyrogenic substrates. We also discuss the potential of butyrogenic foods with proven properties for promoting gut health and disease management using findings from clinical trials. Potential limitations and constraints in the current research are highlighted. We advocate a precise nutrition approach in designing future clinical trials by prescreening individuals for key gut microbial signatures when recruiting study volunteers. The information provided in this review will be conducive to the development of microbiota engineering approaches for enhancing the sustained production of butyrate.
Collapse
Affiliation(s)
- Miao Zhang
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
An Overview of the Potential of Medicinal Plants Used in the Development of Nutraceuticals for the Management of Diabetes Mellitus: Proposed Biological Mechanisms. Processes (Basel) 2022. [DOI: 10.3390/pr10102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder in which the pancreas does not produce enough insulin or the body cannot effectively use it. The prevalence of diabetes is increasing steadily, making it a global public health problem. Several serious complications are associated with this disease. There are a number of different classes of antidiabetic medications. Interestingly, traditional medicine can also be used for the development of novel classes of hypoglycemic therapeutics. This article summarizes an update of the potential of various important medicinal plants used in the development of nutraceuticals for the management of diabetes mellitus, and a proposal of their biological mechanisms.
Collapse
|
6
|
The Therapeutic Role of Short-Chain Fatty Acids Mediated Very Low-Calorie Ketogenic Diet-Gut Microbiota Relationships in Paediatric Inflammatory Bowel Diseases. Nutrients 2022; 14:nu14194113. [PMID: 36235765 PMCID: PMC9572225 DOI: 10.3390/nu14194113] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
The very low-calorie ketogenic diet (VLCKD) has been recognized as a promising dietary regimen for the treatment of several diseases. Short-chain fatty acids (SCFAs) produced by anaerobic bacterial fermentation of indigestible dietary fibre in the gut have potential value for their underlying epigenetic role in the treatment of obesity and asthma-related inflammation through mediating the relationships between VLCKD and the infant gut microbiota. However, it is still unclear how VLCKD might influence gut microbiota composition in children, and how SCFAs could play a role in the treatment of inflammatory bowel disease (IBD). To overcome this knowledge gap, this review aims to investigate the role of SCFAs as key epigenetic metabolites that mediate VLCKD-gut microbiota relationships in children, and their therapeutic potential in IBD.
Collapse
|
7
|
Álvarez-Mercado AI, Plaza-Diaz J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022; 14:4116. [PMID: 36235768 PMCID: PMC9573424 DOI: 10.3390/nu14194116] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022] Open
Abstract
A polysaccharide is a macromolecule composed of more than ten monosaccharides with a wide distribution and high structural diversity and complexity in nature. Certain polysaccharides are immunomodulators and play key roles in the regulation of immune responses during the progression of some diseases. In addition to stimulating the growth of certain intestinal bacteria, polysaccharides may also promote health benefits by modulating the gut microbiota. In the last years, studies about the triad gut microbiota-polysaccharides-health have increased exponentially. In consequence, in the present review, we aim to summarize recent knowledge about the function of dietary polysaccharides on gut microbiota composition and how these effects affect host health.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
8
|
Zhang L, Wang X, Zhang X. Modulation of Intestinal Flora by Dietary Polysaccharides: A Novel Approach for the Treatment and Prevention of Metabolic Disorders. Foods 2022; 11:2961. [PMID: 36230037 PMCID: PMC9562892 DOI: 10.3390/foods11192961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal flora is numerous and diverse, and play a key role in maintaining human health. Dietary polysaccharides are widely present in the daily diet and have a moderating effect on the intestinal flora. Past studies have confirmed that intestinal flora is involved in the metabolic process in the human body, and the change in intestinal flora structure is closely related to the metabolic disorders in the human body. Therefore, regulating intestinal flora through dietary polysaccharides is an effective way to treat and prevent common metabolic diseases and has great research value. However, this area has not received enough attention. In this review, we provide an overview of the modulatory effects of dietary polysaccharides on intestinal flora and the key role of intestinal flora in improving metabolic disorders in humans. In addition, we highlight the therapeutic and preventive effects of intestinal flora modulation through dietary polysaccharides on metabolic disorders, aiming to find new ways to treat metabolic disorders and facilitate future exploration in this field.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Wang X, Dong J, Liang W, Fang Y, Liang M, Xu L, Sun W, Li X. Porphyran From Porphyra haitanensis Alleviates Obesity by Reducing Lipid Accumulation and Modulating gut Microbiota Homeostasis. Front Pharmacol 2022; 13:942143. [PMID: 35959436 PMCID: PMC9358004 DOI: 10.3389/fphar.2022.942143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyran possesses various activities, while the effects of the porphyran from Porphyra haitanensis (PPH) on obesity are rarely reported. In this study, C57BL/6J male mice were fed with HFD combined with PPH gavage (50 mg/kg/d) for 16 weeks, and body weight was measured once a week. After that, serum, adipose, and liver tissues were collected for physiological and biochemical analyses. Our research indicated that PPH treatment alleviated obesity in HFD-fed mice. PPH alleviated fat accumulation in serum, liver, and adipose tissues. In addition, PPH activated the AMPK-HSL/ACC pathway in epididymal adipose tissue to reduce lipid accumulation. Moreover, PPH turned white adipose into brown and activated the PGC 1α-UCP 1-mitochondrial pathway in scapular adipose tissue to generate more heat. Interestingly, PPH regulated colonic microbiota homeostasis in obese mice, including significant elevation of Roseburia and Eubacterium and marked reduction of Helicobacter. Moreover, Spearman’s correlation analysis demonstrated that regulation of gut microbiota can decrease lipid accumulation. In summary, our study illustrated that PPH possesses the potential to be developed as an anti-obesity agent.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juqin Dong
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meinong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuyang Sun
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Wuyang Sun, ; Xiaoxing Li,
| | - Xiaoxing Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Wuyang Sun, ; Xiaoxing Li,
| |
Collapse
|
10
|
Wang Y, Chen R, Yang Z, Wen Q, Cao X, Zhao N, Yan J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:917629. [PMID: 35860666 PMCID: PMC9289469 DOI: 10.3389/fnagi.2022.917629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration and necrosis of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and others. There are no existing therapies that correct the progression of these diseases, and current therapies provide merely symptomatic relief. The use of polysaccharides has received significant attention due to extensive biological activities and application prospects. Previous studies suggest that the polysaccharides as a candidate participate in neuronal protection and protect against NDs. In this review, we demonstrate that various polysaccharides mediate NDs, and share several common mechanisms characterized by autophagy, apoptosis, neuroinflammation, oxidative stress, mitochondrial dysfunction in PD and AD. Furthermore, this review reveals potential role of polysaccharides in vitro and in vivo models of NDs, and highlights the contributions of polysaccharides and prospects of their mechanism studies for the treatment of NDs. Finally, we suggest some remaining questions for the field and areas for new development.
Collapse
Affiliation(s)
- Yinying Wang
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Wen
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xia Cao
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinyuan Yan
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Uppin V, Dharmesh SM, R S. Polysaccharide from Spirulina platensis Evokes Antitumor Activity in Gastric Cancer Cells via Modulation of Galectin-3 and Exhibited Cyto/DNA Protection: Structure-Function Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7058-7069. [PMID: 35670428 DOI: 10.1021/acs.jafc.2c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides play significant role in the management of different cancer types including gastric cancer. Here, we report the effect of spirulina polysaccharide (Sp) on galectin-3 modulatory activity in gastric cancer cells (AGS). The isolated Sp possessed an average molecular weight of 1457 kDa and galactose (42%) as a major sugar consisting of (β1-4d) units with a galactoarabinorhamnoglycan backbone. The Sp inhibited the proliferation of AGS cells by 48% without affecting normal NIH/3T3 cells as compared to doxorubicin, a known anticancer drug. Also, Sp exhibited significant (p < 0.05) galectin-3 mediated hemeagglutination inhibition with MIC of 9.37 μg/mL compared to galactose (6.25 μg/mL), a sugar specific to galectin-3. Galactose showed the highest molecular interaction with galectin-3 in the in silico study. In addition, Sp exhibited the cytoprotection in RBCs, buccal cells, and DNA exposed to oxidants. These findings suggest that Sp offers a promising therapeutic tool in the management of gastric cancer.
Collapse
Affiliation(s)
- Vinayak Uppin
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shylaja M Dharmesh
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sarada R
- Dept. of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
12
|
Wang X, Cheng L, Liu Y, Zhang R, Wu Z, Weng P, Zhang P, Zhang X. Polysaccharide Regulation of Intestinal Flora: A Viable Approach to Maintaining Normal Cognitive Performance and Treating Depression. Front Microbiol 2022; 13:807076. [PMID: 35369451 PMCID: PMC8966502 DOI: 10.3389/fmicb.2022.807076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
The intestinal tract of a healthy body is home to a large variety and number of microorganisms that will affect every aspect of the host’s life. In recent years, polysaccharides have been found to be an important factor affecting intestinal flora. Polysaccharides are widely found in nature and play a key role in the life activities of living organisms. In the intestinal tract of living organisms, polysaccharides have many important functions, such as preventing the imbalance of intestinal flora and maintaining the integrity of the intestinal barrier. Moreover, recent studies suggest that gut microbes can influence brain health through the brain-gut axis. Therefore, maintaining brain health through polysaccharide modulation of gut flora deserves further study. In this review, we outline the mechanisms by which polysaccharides maintain normal intestinal flora structure, as well as improving cognitive function in the brain via the brain-gut axis by virtue of the intestinal flora. We also highlight the important role that gut microbes play in the pathogenesis of depression and the potential for treating depression through the use of polysaccharides to modulate the intestinal flora.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Lu Cheng,
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
- Peng Zhang,
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- Xin Zhang,
| |
Collapse
|
13
|
Liu SH, Ku CY, Chiang MT. Polysaccharide-Rich Red Algae ( Gelidium amansii) Hot-Water Extracts Alleviate Abnormal Hepatic Lipid Metabolism without Suppression of Glucose Intolerance in a Streptozotocin/Nicotinamide-Induced Diabetic Rat Model. Molecules 2022; 27:1447. [PMID: 35209236 PMCID: PMC8875162 DOI: 10.3390/molecules27041447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
This study was designed to investigate the effects of polysaccharide-rich red algae (Gelidium amansii) hot-water extracts (GHE) on lipid and glucose metabolism in rats with streptozotocin (STZ)/nicotinamide (NA)-induced diabetes. Rats were divided into three groups: NC-normal control group), DM-diabetic group, and DG-diabetic group supplemented with GHE (5%). The experimental diet and drinking water were available ad libitum for 10 weeks. After the 10-week feeding duration, the body weight, liver weight, total adipose tissue weight, and hepatic TBARS and cholesterol levels were significantly increased, and hepatic glycogen content and adipose lipolysis rate were significantly decreased in the DM group, which could be effectively reversed by supplementation of GHE. However, GHE supplementation could not improve the glucose intolerance in DM rats. It was interesting to note that GHE supplementation could decrease the liver glucose-6-phosphotase activity, which was increased in DM rats. Taken together, these results suggested that GHE feeding may ameliorate abnormal hepatic lipid metabolism, but not glucose intolerance, in diabetic rats induced by STZ/NA.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Chia-Yu Ku
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| |
Collapse
|
14
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
15
|
The Extraction, Functionalities and Applications of Plant Polysaccharides in Fermented Foods: A Review. Foods 2021; 10:foods10123004. [PMID: 34945554 PMCID: PMC8701727 DOI: 10.3390/foods10123004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polysaccharides, as prebiotics, fat substitutes, stabilizers, thickeners, gelling agents, thickeners and emulsifiers, have been immensely studied for improving the texture, taste and stability of fermented foods. However, their biological activities in fermented foods are not yet properly addressed in the literature. This review summarizes the classification, chemical structure, extraction and purification methods of plant polysaccharides, investigates their functionalities in fermented foods, especially the biological activities and health benefits. This review may provide references for the development of innovative fermented foods containing plant polysaccharides that are beneficial to health.
Collapse
|
16
|
Alsharairi NA. The Role of Short-Chain Fatty Acids in Mediating Very Low-Calorie Ketogenic Diet-Infant Gut Microbiota Relationships and Its Therapeutic Potential in Obesity. Nutrients 2021; 13:3702. [PMID: 34835958 PMCID: PMC8624546 DOI: 10.3390/nu13113702] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
As the very low-calorie ketogenic diet (VLCKD) gains increased interest as a therapeutic approach for many diseases, little is known about its therapeutic use in childhood obesity. Indeed, the role of VLCKD during pregnancy and lactation in influencing short chain fatty acid (SCFA)-producing bacteria and the potential mechanisms involved in the protective effects on obesity are still unclear. Infants are characterized by a diverse gut microbiota composition with higher abundance of SCFA-producing bacteria. Maternal VLCKD during pregnancy and lactation stimulates the growth of diverse species of SCFA-producing bacteria, which may induce epigenetic changes in infant obese gene expression and modulate adipose tissue inflammation in obesity. Therefore, this review aims to determine the mechanistic role of SCFAs in mediating VLCKD-infant gut microbiota relationships and its protective effects on obesity.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind & Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
17
|
Yang Q, Ouyang J, Sun F, Yang J. Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes. Front Immunol 2020; 11:590685. [PMID: 33363537 PMCID: PMC7752775 DOI: 10.3389/fimmu.2020.590685] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Converging evidences showed that people with diabetes mellitus (DM) have significantly higher risk for different cancers, of which the exact mechanism underlying the association has not been fully realized. Short-chain fatty acids (SCFAs), the fermentation products of the intestinal microbiota, are an essential source for energy supply in gut epithelial cells. They have been reported to improve intestinal barrier integrity, prevent microbial translocation, and further dampen inflammation. Gut dysbiosis and reduction in SCFA-producing bacteria as well as SCFAs production in the intestine are commonly seen in metabolic disorders including DM and obesity. Moreover, inflammation can contribute to tumor initiation and progression through multiple pathways, such as enhancing DNA damage, accumulating mutations in tumor suppressor genes Tp53, and activating nuclear factor-kappa B (NF-κB) signaling pathways. Based on these facts, we hypothesize that lower levels of microbial SCFAs resulted from gut dysbiosis in diabetic individuals, enhance microbial translocation, and increase the inflammatory responses, inducing tumorigenesis ulteriorly. To this end, we will discuss protective properties of microbial SCFAs and explore the pivotal roles SCFAs played in the link of DM with cancer, so as to take early precautions to reduce the risk of cancer in patients with DM.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Prabhakar O, Bhuvaneswari M. Role of diet and lifestyle modification in the management of nonalcoholic fatty liver disease and type 2 diabetes. Tzu Chi Med J 2020; 33:135-145. [PMID: 33912410 PMCID: PMC8059462 DOI: 10.4103/tcmj.tcmj_86_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered as the hepatic evidence of insulin resistance which is the hallmark of type 2 diabetes. NAFLD is considered as the risk factor for developing type 2 diabetes and has a high frequency of occurrence in those with existing type 2 diabetes. Compared with patients with only NAFLD or type 2 diabetes, these patients show a poor metabolic profile and increase mortality. Hence, effective treatment strategies are necessary. Here, we review the role of diet and lifestyle modification in the management of NAFLD and type 2 diabetes. Based on the available studies, it has been shown that the addition of any kind of physical activity or exercise is beneficial for patients with both NAFLD and type 2 diabetes. Proper dietary management leads to weight loss are also effective in improving metabolic parameters in patients with both NAFLD and type 2 diabetes. In conclusion, it is clear that increasing physical activity or exercise is effective in improving metabolic parameters in patients who are suffering with both NAFLD and type 2 diabetes.
Collapse
Affiliation(s)
- Orsu Prabhakar
- Department of Pharmacology, GITAM Institute of Pharmacy, Visakhapatnam, Andhra Pradesh, India
| | - Mylipilli Bhuvaneswari
- Department of Pharmacology, GITAM Institute of Pharmacy, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
19
|
Association between adiposity levels and cognitive impairment in the Chilean older adult population. J Nutr Sci 2019; 8:e33. [PMID: 31656624 PMCID: PMC6794473 DOI: 10.1017/jns.2019.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 01/30/2023] Open
Abstract
Although both obesity and ageing are risk factors for cognitive impairment, there is no evidence in Chile on how obesity levels are associated with cognitive function. Therefore, the aim of the present study was to investigate the association between adiposity levels and cognitive impairment in older Chilean adults. This cross-sectional study includes 1384 participants, over 60 years of age, from the Chilean National Health Survey 2009-2010. Cognitive impairment was evaluated using the Mini-Mental State Examination. BMI and waist circumference (WC) were used as measures of adiposity. Compared with people with a normal BMI, the odds of cognitive impairment were higher in participants who were underweight (OR 4·44; 95 % CI 2·43, 6·45; P < 0·0001), overweight (OR 1·86; 95 % CI 1·06, 2·66; P = 0·031) and obese (OR 2·26; 95 % CI 1·31, 3·21; P = 0·003). The associations were robust after adjustment for confounding variables. Similar results were observed for WC. Low and high levels of adiposity are associated with an increased likelihood of cognitive impairment in older adults in Chile.
Collapse
|
20
|
Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019; 11:nu11081956. [PMID: 31434293 PMCID: PMC6722643 DOI: 10.3390/nu11081956] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Cristoforo Silvestri
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada.
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
21
|
Ahmadi S, Wang S, Nagpal R, Mainali R, Soleimanian-Zad S, Kitzman D, Yadav H. An In Vitro Batch-culture Model to Estimate the Effects of Interventional Regimens on Human Fecal Microbiota. J Vis Exp 2019. [PMID: 31424444 DOI: 10.3791/59524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The emerging role of the gut microbiome in several human diseases demands a breakthrough of new tools, techniques and technologies. Such improvements are needed to decipher the utilization of microbiome modulators for human health benefits. However, the large-scale screening and optimization of modulators to validate microbiome modulation and predict related health benefits may be practically difficult due to the need for large number of animals and/or human subjects. To this end, in vitro or ex vivo models can facilitate preliminary screening of microbiome modulators. Herein, it is optimized and demonstrated an ex vivo fecal microbiota culture system that can be used for examining the effects of various interventions of gut microbiome modulators including probiotics, prebiotics and other food ingredients, aside from nutraceuticals and drugs, on the diversity and composition of the human gut microbiota. Inulin, one of the most widely studied prebiotic compounds and microbiome modulators, is used as an example here to examine its effect on the healthy fecal microbiota composition and its metabolic activities, such as fecal pH and the fecal levels of organic acids including lactate and short-chain fatty acids (SCFAs). The protocol may be useful for studies aimed at estimating the effects of different interventions of modulators on fecal microbiota profiles and at predicting their health impacts.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine; Department of Food Science and Technology, Isfahan University of Technology
| | - Shaohua Wang
- Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine
| | - Ravinder Nagpal
- Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine
| | - Rabina Mainali
- Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, Isfahan University of Technology; Research Institute for Biotechnology and Bioengineering, College of Agriculture, Isfahan University of Technology
| | - Dalane Kitzman
- Department of Geriatrics and Gerontology, Wake Forest School of Medicine
| | - Hariom Yadav
- Department of Internal Medicine- Molecular Medicine, Wake Forest School of Medicine; Department of Microbiology and Immunology, Wake Forest School of Medicine;
| |
Collapse
|
22
|
Noce A, Marrone G, Di Daniele F, Ottaviani E, Wilson Jones G, Bernini R, Romani A, Rovella V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients 2019; 11:nu11051073. [PMID: 31091761 PMCID: PMC6567014 DOI: 10.3390/nu11051073] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, mounting scientific evidence has emerged regarding the evaluation of the putative correlation between the gut microbiota composition and the presence of chronic non-communicable diseases (NCDs), such as diabetes mellitus, chronic kidney disease, and arterial hypertension. The aim of this narrative review is to examine the current literature with respect to the relationship between intestinal dysbiosis and the insurgence/progression of chronic NCDs, analyzing the physiopathological mechanisms that can induce microbiota modification in the course of these pathologies, and the possible effect induced by microbiota alteration upon disease onset. Therapy based on probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplant can represent a useful therapeutic tool, as has been highlighted on animal studies. To this moment, clinical studies that intended to demonstrate the beneficial effect induced by this kind of oral supplementation on the gut microbiota composition, and subsequent amelioration of signs and symptoms of chronic NCDs have been conducted on limited sample populations for a limited follow-up period. Therefore, to fully evaluate the therapeutic value of this kind of intervention, it would be ideal to design ample population; randomized clinical trials with a lengthy follow up period.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
- PhD School of Applied Medical- Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Eleonora Ottaviani
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Georgia Wilson Jones
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy.
| | - Annalisa Romani
- PHYTOLAB-DISIA-Department of Informatics, Statistics and Applications G. Parenti, University of Florence, Viale Morgagni, 59-50134 Florence, Italy and QuMAP-PIN-Piazza Giovanni Ciardi, 25, 59100 Prato (PO), Italy.
| | - Valentina Rovella
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
23
|
Ahmadi S, Nagpal R, Wang S, Gagliano J, Kitzman DW, Soleimanian-Zad S, Sheikh-Zeinoddin M, Read R, Yadav H. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem 2019; 67:1-13. [PMID: 30831458 PMCID: PMC6520164 DOI: 10.1016/j.jnutbio.2019.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/30/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023]
Abstract
Role of gut microbiome in obesity and type 2 diabetes (T2D) became apparent from several independent studies indicating that gut microbiome modulators like prebiotics may improve microbiome perturbations (dysbiosis) to ameliorate metabolic derangements. We herein isolate water soluble, nondigestible polysaccharides from five plant-based foods (acorn, quinoa, sunflower, pumpkin seeds and sago) and assess their impact on human fecal microbiome and amelioration of high-fat-diet (HFD)-induced obesity/T2D in mice. During polysaccharide isolation, purification, biochemical and digestion resistance characterization, and fermentation pattern by human fecal microbiome, we select acorn- and sago-derived prebiotics (on the basis of relatively higher purity and yield and lower protein contamination) and examine their effects in comparison to inulin. Prebiotics treatments in human fecal microbiome culture system not only preserve microbial diversity but also appear to foster beneficial bacteria and short-chain fatty acids (SCFAs). Feeding of acorn- and sago-derived prebiotics ameliorates HFD-induced glucose intolerance and insulin resistance in mice, with effects comparatively superior to those seen in inulin-fed mice. Feeding of both of novel prebiotics as well as inulin increases SCFAs levels in the mouse gut. Interestingly, gut hyperpermeability and mucosal inflammatory markers were significantly reduced upon prebiotics feeding in HFD-fed mice. Hypothalamic energy signaling in terms of increased expression of pro-opiomelanocortin was also modulated by prebiotics administration. Results demonstrate that these (and/or such) novel prebiotics can ameliorate HFD-induced defects in glucose metabolism via positive modulation of gut-microbiome-brain axis and hence could be useful in preventing/treating diet-induced obesity/T2D.
Collapse
Affiliation(s)
- Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jason Gagliano
- National Center for the Biotechnology Workforce, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahmoud Sheikh-Zeinoddin
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Russel Read
- National Center for the Biotechnology Workforce, Forsyth Technical Community College, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
24
|
Ma Q, Santhanam RK, Xue Z, Guo Q, Gao X, Chen H. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int J Biol Macromol 2018; 119:1137-1143. [PMID: 30098363 DOI: 10.1016/j.ijbiomac.2018.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
Abstract
This study aimed to optimize the suitable drying method to obtain high yield of polysaccharides from mulberry leaves and to determine their structural characterization and antioxidant activities. The effects of three different drying methods such as air dried, hot air dried (55 °C, 65 °C & 75 °C) and freeze dried on the physicochemical and antioxidant properties of mulberry leaves polysaccharides were studied using gas chromatography, high performance gel permeation chromatography, Fourier transform infrared spectroscopy, scanning electron micrography and antioxidant assays. Results revealed that pre-treatment remarkably influenced the changes in their physicochemical and antioxidant properties. In comparison with the other drying techniques, freeze dried polysaccharides showed more rough morphologies and significant antioxidant property. The yield of polysaccharides from the freeze dried sample was about 28.88% higher than the yield of hot air dried sample. The MDA activity of freeze dried sample was about 95.45%. Overall, the results suggested that the freeze drying technique was the appropriate method to extract polysaccharides from mulberry leaves that offered significant biological properties.
Collapse
Affiliation(s)
- Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ramesh Kumar Santhanam
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qingwen Guo
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|