1
|
Mueller M, Drumm BT, Hannan JL, Ruetten H. Advancing our Understanding of the Urothelium and Lamina Propria, Hormone Receptors, Vascular Supply, and Sensory Aspects of the Female Human Urethra. Neurourol Urodyn 2025; 44:935-943. [PMID: 40103421 PMCID: PMC12018138 DOI: 10.1002/nau.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE Urinary continence is important for women's health and wellbeing. The female urethra has been understudied and mechanisms of continence remain poorly understood. Our objective is to provide a summary of current knowledge of the epithelium and lamina propria, hormone receptors, vascular supply, and sensory aspects of the female urethra and highlight continued gaps in knowledge. METHODS In October of 2020, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) sponsored a virtual seminar series entitled "Female Urethral Function and Failure: Advancing Basic and Translational Research for Genitourinary Conditions". We summarize the information presented during session 3 presentations, provide additional information from recent studies, and highlight continued gaps in knowledge. RESULTS A sensory role for urethral mucosa seems apparent based on the dense innervation of sensory afferent neurons but how the sensory afferents contribute to continence remains poorly understood. There is a complex relationship with behavior that comes into play when evaluating the contribution of sex hormones to urinary physiology. We need to update our understanding of where hormone receptors are located in the female urinary tract. Many causes of impaired urethral blood flow are also common risk factors for urinary dysfunction but we don't know how vasculature contributes to continence. Altered afferent urethral function has been implicated in several disease states, but is largely understudied. CONCLUSION There is much that remains to be learned about the urothelium and lamina propria, expression and influence of sex hormones and hormone receptors, vascular supply, and sensory aspects of the female urethra. TRIAL REGISTRATION No new data was generated for this manuscript, no clinical trial was conducted, and therefore clinical trial registration was not necessary.
Collapse
Affiliation(s)
- Margaret Mueller
- University of Chicago, Section of Urogynecology and Reconstructive Pelvic Surgery, Chicago, Illinois, USA
| | - Bernard T. Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Johanna L. Hannan
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hannah Ruetten
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Ni Bhraonain EP, Turner JA, Hannigan KI, Sanders KM, Cobine CA. Immunohistochemical characterization of interstitial cells and their spatial relationship to motor neurons within the mouse esophagus. Cell Tissue Res 2025; 399:61-84. [PMID: 39607495 DOI: 10.1007/s00441-024-03929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Interstitial cells of Cajal (ICC) and PDGFRα+ cells regulate smooth muscle motility in the gastrointestinal (GI) tract, yet their function in the esophagus remains unknown. The mouse esophagus has been described as primarily skeletal muscle; however, ICC have been identified in this region. This study characterizes the distribution of skeletal and smooth muscle cells (SMCs) and their spatial relationship to ICC, PDGFRα+ cells, and intramuscular motor neurons in the mouse esophagus. SMCs occupied approximately 30% of the distal esophagus, but their density declined in more proximal regions. Similarly, ANO1+ intramuscular ICC (ICC-IM) were distributed along the esophagus, with density decreasing proximally. While ICC-IM were closely associated with SMCs, they were also present in regions of skeletal muscle. Intramuscular, submucosal, and myenteric PDGFRα+ cells were densely distributed throughout the esophagus, yet only intramuscular PDGFRα+ cells in the lower esophageal sphincter (LES) and distal esophagus expressed SK3. ICC-IM and PDGFRα+ cells were closely associated with intramuscular nNOS+, VIP+, VAChT+, and TH+ neurons and GFAP+ cells resembling intramuscular enteric glia. These findings suggest that ICC-IM and PDGFRα+ cells may have roles in regulating esophageal motility due to their close proximity to each other and to skeletal muscle and SMCs, although further functional studies are needed to explore their role in this region. The mixed muscular composition and presence of interstitial cells in the mouse distal esophagus is anatomically similar to the transitional zone found in the human esophagus, and therefore, motility studies in the mouse may be translatable to humans.
Collapse
Affiliation(s)
- Emer P Ni Bhraonain
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Jack A Turner
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., MS 352, Reno, NV, 89557, USA.
| |
Collapse
|
3
|
Kamran SA, Moghnieh H, Hossain KF, Bartlett A, Tavakkoli A, Drumm BT, Sanders KM, Baker SA. Automated denoising software for calcium imaging signals using deep learning. Heliyon 2024; 10:e39574. [PMID: 39524741 PMCID: PMC11546308 DOI: 10.1016/j.heliyon.2024.e39574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Dynamic Ca2+ signaling is crucial for cell survival and death, and Ca2+ imaging approaches are commonly used to study and measure cellular Ca2+ patterns within cells. However, the presence of image noise from instrumentation and experimentation protocols can impede the accurate extraction of Ca2+ signals. Removing noise from Ca2+ Spatio-Temporal Maps (STMaps) is essential for precisely analyzing Ca2+ datasets. Current methods for denoising STMaps can be time-consuming and subjective and rely mainly on image processing protocols. To address this, we developed CalDenoise, an automated software that employs robust image processing and deep learning models to remove noise and enhance Ca2+ signals in STMaps effectively. CalDenoise integrates four pipelines capable of efficiently removing salt-and-pepper, impulsive, and periodic noise and detecting and removing background noise. Comprising both an image-processing-based pipeline and three generative-adversarial-network-based (GAN) deep learning models, CalDenoise proficiently removes complex noise patterns. The software features adjustable parameters to enhance accuracy and is integrated into a user-friendly graphical interface for easy access and streamlined usage. CalDenoise can serve as a robust platform for denoising complex dynamic fluorescence signal images across diverse cell types, including Ca2+, voltage, ions, and pH signals.
Collapse
Affiliation(s)
- Sharif Amit Kamran
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Hussein Moghnieh
- Department of Electrical and Computer Engineering], McGill University, Montréal, Québec, H3A 0E9, Canada
| | | | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Alireza Tavakkoli
- Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA
| | - Bernard T. Drumm
- Department of Life & Health Science, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Salah A. Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
4
|
Gupta N, Baker SA, Sanders KM, Griffin CS, Sergeant GP, Hollywood MA, Thornbury KD, Drumm BT. Interstitial cell of Cajal-like cells (ICC-LC) exhibit dynamic spontaneous activity but are not functionally innervated in mouse urethra. Cell Calcium 2024; 123:102931. [PMID: 39068674 DOI: 10.1016/j.ceca.2024.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Urethral smooth muscle cells (USMC) contract to occlude the internal urethral sphincter during bladder filling. Interstitial cells also exist in urethral smooth muscles and are hypothesized to influence USMC behaviours and neural responses. These cells are similar to Kit+ interstitial cells of Cajal (ICC), which are gastrointestinal pacemakers and neuroeffectors. Isolated urethral ICC-like cells (ICC-LC) exhibit spontaneous intracellular Ca2+ signalling behaviours that suggest these cells may serve as pacemakers or neuromodulators similar to ICC in the gut, although observation and direct stimulation of ICC-LC within intact urethral tissues is lacking. We used mice with cell-specific expression of the Ca2+ indicator, GCaMP6f, driven off the endogenous promoter for Kit (Kit-GCaMP6f mice) to identify ICC-LC in situ within urethra muscles and to characterize spontaneous and nerve-evoked Ca2+ signalling. ICC-LC generated Ca2+ waves spontaneously that propagated on average 40.1 ± 0.7 μm, with varying amplitudes, durations, and spatial spread. These events originated from multiple firing sites in cells and the activity between sites was not coordinated. ICC-LC in urethra formed clusters but not interconnected networks. No evidence for entrainment of Ca2+ signalling between ICC-LC was obtained. Ca2+ events in ICC-LC were unaffected by nifedipine but were abolished by cyclopiazonic acid and decreased by an antagonist of Orai Ca2+ channels (GSK-7975A). Phenylephrine increased Ca2+ event frequency but a nitric oxide donor (DEA-NONOate) had no effect. Electrical field stimulation (EFS, 10 Hz) of intrinsic nerves, which evoked contractions of urethral rings and increased Ca2+ event firing in USMC, failed to evoke responses in ICC-LC. Our data suggest that urethral ICC-LC are spontaneously active but are not regulated by autonomic neurons.
Collapse
Affiliation(s)
- Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland; Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
5
|
Hwang SJ, Kim M, Jones A, Basma N, Baker SA, Sanders KM, Ward SM. Interstitial cells of the sip syncytium regulate basal membrane potential in murine gastric corpus. FASEB J 2024; 38:e23863. [PMID: 39143726 PMCID: PMC11587931 DOI: 10.1096/fj.202400982r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Smooth muscle cells (SMCs), Interstitial cells of Cajal (ICC) and Platelet-derived growth factor receptor α positive (PDGFRα+) cells form an integrated, electrical syncytium within the gastrointestinal (GI) muscular tissues known as the SIP syncytium. Immunohistochemical analysis of gastric corpus muscles showed that c-KIT+/ANO1+ ICC-IM and PDGFRα+ cells were closely apposed to one another in the same anatomical niches. We used intracellular microelectrode recording from corpus muscle bundles to characterize the roles of intramuscular ICC and PDGFRα+ cells in conditioning membrane potentials of gastric muscles. In muscle bundles, that have a relatively higher input impedance than larger muscle strips or sheets, we recorded an ongoing discharge of stochastic fluctuations in membrane potential, previously called unitary potentials or spontaneous transient depolarizations (STDs) and spontaneous transient hyperpolarizations (STHs). We reasoned that STDs should be blocked by antagonists of ANO1, the signature conductance of ICC. Activation of ANO1 has been shown to generate spontaneous transient inward currents (STICs), which are the basis for STDs. Ani9 reduced membrane noise and caused hyperpolarization, but this agent did not block the fluctuations in membrane potential quantitatively. Apamin, an antagonist of small conductance Ca2+-activated K+ channels (SK3), the signature conductance in PDGFRα+ cells, further reduced membrane noise and caused depolarization. Reversing the order of channel antagonists reversed the sequence of depolarization and hyperpolarization. These experiments show that the ongoing discharge of STDs and STHs by ICC and PDGFRα+ cells, respectively, exerts conditioning effects on membrane potentials in the SIP syncytium that would effectively regulate the excitability of SMCs.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - MinKyung Kim
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Amanda Jones
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Naseer Basma
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
6
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
7
|
Edwards BS, Stiglitz ES, Davis BM, Smith-Edwards KM. Abnormal enteric nervous system and motor activity in the ganglionic proximal bowel of Hirschsprung's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531750. [PMID: 36945585 PMCID: PMC10028932 DOI: 10.1101/2023.03.08.531750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Hirschsprung's disease (HSCR) is a congenital defect in which the enteric nervous system (ENS) does not develop in the distal bowel, requiring surgical removal of the portions of bowel without ENS ganglia ('aganglionic') and reattachment of the 'normal' proximal bowel with ENS ganglia. Unfortunately, many HSCR patients have persistent dysmotility (e.g., constipation, incontinence) and enterocolitis after surgery, suggesting that the remaining bowel is not normal despite having ENS ganglia. Anatomical and neurochemical alterations have been observed in the ENS-innervated proximal bowel from HSCR patients and mice, but no studies have recorded ENS activity to define the circuit mechanisms underlying post-surgical HSCR dysfunction. Here, we generated a HSCR mouse model with a genetically-encoded calcium indicator to map the ENS connectome in the proximal colon. We identified abnormal spontaneous and synaptic ENS activity in proximal colons from GCaMP-Ednrb -/- mice with HSCR that corresponded to motor dysfunction. Many HSCR-associated defects were also observed in GCaMP-Ednrb +/- mice, despite complete ENS innervation. Results suggest that functional abnormalities in the ENS-innervated bowel contribute to post-surgical bowel complications in HSCR patients, and HSCR-related mutations that do not cause aganglionosis may cause chronic colon dysfunction in patients without a HSCR diagnosis.
Collapse
|
8
|
Sun BF, Zhang F, Chen QP, Wei Q, Zhu WT, Ji HB, Zhang XY. Improvement of inflammatory response and gastrointestinal function in perioperative of cholelithiasis by Modified Xiao-Cheng-Qi decoction. World J Clin Cases 2023; 11:830-843. [PMID: 36818637 PMCID: PMC9928702 DOI: 10.12998/wjcc.v11.i4.830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In the perioperative period of biliary surgery, various factors can induce the release of a large number of inflammatory factors, leading to an imbalance in pro-inflammatory and anti-inflammatory responses and resulting in gastrointestinal (GI) dysfunction. Enhanced Recovery After Surgery protocols in biliary surgery have been shown to reduce the stress response and accelerate postoperative recovery. It is crucial to reduce the inflammatory response and promote the recovery of GI function after biliary surgery, both of which are the basis and key for perioperative care and postoperative recovery.
AIM To better understand the effects of Modified Xiao-Cheng-Qi decoction (MXD) on inflammatory response and GI function in the perioperative management of cholelithiasis and their correlation.
METHODS This was a prospective randomized placebo-controlled trial, in which 162 patients who received biliary tract surgery were randomly assigned to three groups: MXD group, XD group, and placebo-control group. The observed parameters included frequency of bowel sounds, time of first flatus and defecation, time of diet, and amount of activity after surgery. The serum levels of C-reactive protein (CRP), interleukin (IL)-6, IL-10, serum amyloid A protein (SAA), and substance P were measured by the enzyme-linked immunosorbent assay. Then, the spearman correlation coefficient was used to analyze the relationship between the indicators of GI function and inflammation.
RESULTS Compared to the placebo-control, improvements in GI function were observed in the MXD groups including reduced incidence of nausea, vomiting, and bloating; and earlier first exhaust time, first defecation time, and feeding time after surgery (P < 0.05). On the 1st and 2nd d after surgery, IL-6, CRP and SAA levels in MXD group were lower than that in placebo control, but substance P level was higher, compared to the control (P < 0.05). Functional diarrhea occurred in both MXD and XD groups without any other adverse effects, toxic reactions, and allergic reactions. Diarrhea was relieved after the discontinuation of the investigational remedies. Bowel sounds at 12 h after surgery, the occurring time of the first flatus, first defecation, postoperative liquid diet and semi-liquid diet were significantly correlated with levels of IL-6, CRP, SAA and substance P on second day after surgery (P < 0.05).
CONCLUSION Treatment with MXD can relieve inflammatory response and improve GI function after surgery. Moreover, there are significant correlations between them. Furthermore, it does not cause serious adverse reactions.
Collapse
Affiliation(s)
- Bao-Fang Sun
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Fan Zhang
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Qiang-Pu Chen
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Qiang Wei
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Wen-Tao Zhu
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Hai-Bin Ji
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| | - Xing-Yuan Zhang
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou 256603, Shandong Province, China
| |
Collapse
|
9
|
Athavale ON, Cheng LK, Clark AR, Avci R, Du P. Mathematical Modeling of Gastric Slow Waves During Electrical Field Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2266-2269. [PMID: 36086185 DOI: 10.1109/embc48229.2022.9871307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While neural modulation has been trialed as a therapy for functional gastric motility disorders, a computational model that guides stimulation protocol does not exist. In this work, a mathematical model of gastric slow wave activity, which incorporates the effects of neurotransmitter release during electrical field stimulation (EFS), was developed. Slow wave frequency responses due to the release of acetylcholine and slow wave amplitude responses due to the release of nitric oxide were modeled. The model was calibrated using experimental data from literature. A sensitivity analysis was conducted, which showed that the model yielded stable, periodic solutions for EFS frequencies in the range 0-20 Hz. A 25% increase in the input parameter (EFS frequency) from 5 Hz to 6.25 Hz resulted in a 5.2% increase in slow wave frequency and a 3.2 % decrease in slow wave amplitude. Simulated EFS showed that, for stimulation at 15 Hz, with blocking of the nitrergic neurotransmitter pathway the slow wave increased from the no stimulation scenario in frequency by only 2.4x compared to 2.7x when the nitrergic pathway was not blocked. A 21 % reduction in slow wave amplitude occurred when the cholinergic pathway was blocked, compared to a 46% reduction when no neurotransmitter pathways were blocked. Clinical relevance - This mathematical model is a step towards successful computational modeling of the effects ther-apeutic neural stimulation on the stomach. The model is also a tool for understanding of the physiology of neural stimulation.
Collapse
|
10
|
Integrating Network Pharmacology and In Vivo Model to Investigate the Mechanism of Biheimaer in the Treatment of Functional Dyspepsia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8773527. [PMID: 35668782 PMCID: PMC9166952 DOI: 10.1155/2022/8773527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
Objective. Biheimaer (BHM) is a hospital formulation for clinical treatment of dyspepsia and acid reflux, based on Compatibility Theory of Traditional Chinese Medicine. This study anticipated to elucidate the molecular mechanism of BHM against Functional dyspepsia via combined network pharmacology prediction with experimental verification. Methods. Based on network pharmacology, the potential active components and targets of BHM in the treatment of functional dyspepsia were explored by prediction and molecular docking technology. The results of protein–protein interaction analysis, functional annotation, and pathway enrichment analysis further refined the main targets and pathways. The molecular mechanism of BHM improving functional dyspepsia mice induced by L-arginine + atropine was verified on the basis of network pharmacology. Results. In this study, 183 effective compounds were screened from BHM; moreover, 1007 compound-related predicted targets and 156 functional dyspepsia-related targets were found. The results of enrichment analysis and in vivo experiments showed that BHM could regulate intestinal smooth muscle contraction to play a therapeutic role in functional dyspepsia by reducing the expression of NOS3, SERT, TRPV1, and inhibiting the inflammatory cytokine (IL-1β, TNF-α) to intervene the inflammatory response in mice. Conclusions. This study revealed the molecular biological mechanisms of the Traditional Chinese Medicine formulation of BHM in functional dyspepsia by network pharmacology and experimental verification, meanwhile provided scientific support for subsequent clinical medication.
Collapse
|
11
|
Drumm BT, Cobine CA, Baker SA. Insights on gastrointestinal motility through the use of optogenetic sensors and actuators. J Physiol 2022; 600:3031-3052. [PMID: 35596741 DOI: 10.1113/jp281930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022] Open
Abstract
The muscularis of the gastrointestinal (GI) tract consists of smooth muscle cells (SMCs) and various populations of interstitial cells of Cajal (ICC), platelet-derived growth factor receptor α+ (PDGFRα+ ) cells, as well as excitatory and inhibitory enteric motor nerves. SMCs, ICC and PDGFRα+ cells form an electrically coupled syncytium, which together with inputs from the enteric nervous system (ENS) regulate GI motility. Early studies evaluating Ca2+ signalling behaviours in the GI tract relied upon indiscriminate loading of tissues with Ca2+ dyes. These methods lacked the means to study activity in specific cells of interest without encountering contamination from other cells within the preparation. Development of mice expressing optogenetic sensors (GCaMP, RCaMP) has allowed visualization of Ca2+ signalling behaviours in a cell specific manner. Additionally, availability of mice expressing optogenetic modulators (channelrhodopsins or halorhodospins) has allowed manipulation of specific signalling pathways using light. GCaMP expressing animals have been used to characterize Ca2+ signalling behaviours of distinct classes of ICC and SMCs throughout the GI musculature. These findings illustrate how Ca2+ signalling in ICC is fundamental in GI muscles, contributing to tone in sphincters, pacemaker activity in rhythmic muscles and relaying enteric signals to SMCs. Animals that express channelrhodopsin in specific neuronal populations have been used to map neural circuitry and to examine post junctional neural effects on GI motility. Thus, optogenetic approaches provide a novel means to examine the contribution of specific cell types to the regulation of motility patterns within complex multi-cellular systems. Abstract Figure Legends Optogenetic activators and sensors can be used to investigate the complex multi-cellular nature of the gastrointestinal (GI tract). Optogenetic activators that are activated by light such as channelrhodopsins (ChR2), OptoXR and halorhodopsinss (HR) proteins can be genetically encoded into specific cell types. This can be used to directly activate or silence specific GI cells such as various classes of enteric neurons, smooth muscle cells (SMC) or interstitial cells, such as interstitial cells of Cajal (ICC). Optogenetic sensors that are activated by different wavelengths of light such as green calmodulin fusion protein (GCaMP) and red CaMP (RCaMP) make high resolution of sub-cellular Ca2+ signalling possible within intact tissues of specific cell types. These tools can provide unparalleled insight into mechanisms underlying GI motility and innervation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caroline A Cobine
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
12
|
Sanders KM, Baker SA, Drumm BT, Kurahashi M. Ca 2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:229-241. [PMID: 36587162 DOI: 10.1007/978-3-031-05843-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly "fibroblast-like" cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl- channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA.
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Iowa, Iowa City, USA
| |
Collapse
|
13
|
Baker SA, Hwang SJ, Blair PJ, Sireika C, Wei L, Ro S, Ward SM, Sanders KM. Ca 2+ transients in ICC-MY define the basis for the dominance of the corpus in gastric pacemaking. Cell Calcium 2021; 99:102472. [PMID: 34537580 PMCID: PMC8592010 DOI: 10.1016/j.ceca.2021.102472] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022]
Abstract
Myenteric interstitial cells of Cajal (ICC-MY) generate and actively propagate electrical slow waves in the stomach. Slow wave generation and propagation are altered in gastric motor disorders, such as gastroparesis, and the mechanism for the gradient in slow wave frequency that facilitates proximal to distal propagation of slow waves and normal gastric peristalsis is poorly understood. Slow waves depend upon Ca2+-activated Cl- channels (encoded by Ano1). We characterized Ca2+ signaling in ICC-MY in situ using mice engineered to have cell-specific expression of GCaMP6f in ICC. Ca2+ signaling differed in ICC-MY in corpus and antrum. Localized Ca2+ transients were generated from multiple firing sites and were organized into Ca2+ transient clusters (CTCs). Ca2+ transient refractory periods occurred upon cessation of CTCs, but a relatively higher frequency of Ca2+ transients persisted during the inter-CTC interval in corpus than in antrum ICC-MY. The onset of Ca2+ transients after the refractory period was associated with initiation of the next CTC. Thus, CTCs were initiated at higher frequencies in corpus than in antrum ICC-MY. Initiation and propagation of CTCs (and electrical slow waves) depends upon T-type Ca2+ channels, and durations of CTCs relied upon L-type Ca2+ channels. The durations of CTCs mirrored the durations of slow waves. CTCs and Ca2+ transients between CTCs resulted from release of Ca2+ from intracellular stores and were maintained, in part, by store-operated Ca2+ entry. Our data suggest that Ca2+ release and activation of Ano1 channels both initiate and contribute to the plateau phase of slow waves.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA.
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Peter J Blair
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Carlee Sireika
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557, USA.
| |
Collapse
|
14
|
Smith-Edwards KM, Edwards BS, Wright CM, Schneider S, Meerschaert KA, Ejoh LL, Najjar SA, Howard MJ, Albers KM, Heuckeroth RO, Davis BM. Sympathetic Input to Multiple Cell Types in Mouse and Human Colon Produces Region-Specific Responses. Gastroenterology 2021; 160:1208-1223.e4. [PMID: 32980343 PMCID: PMC7956113 DOI: 10.1053/j.gastro.2020.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/18/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS The colon is innervated by intrinsic and extrinsic neurons that coordinate functions necessary for digestive health. Sympathetic input suppresses colon motility by acting on intrinsic myenteric neurons, but the extent of sympathetic-induced changes on large-scale network activity in myenteric circuits has not been determined. Compounding the complexity of sympathetic function, there is evidence that sympathetic transmitters can regulate activity in non-neuronal cells (such as enteric glia and innate immune cells). METHODS We performed anatomical tracing, immunohistochemistry, optogenetic (GCaMP calcium imaging, channelrhodopsin), and colon motility studies in mice and single-cell RNA sequencing in human colon to investigate how sympathetic postganglionic neurons modulate colon function. RESULTS Individual neurons in each sympathetic prevertebral ganglion innervated the proximal or distal colon, with processes closely opposed to multiple cell types. Calcium imaging in semi-intact mouse colon preparations revealed changes in spontaneous and evoked neural activity, as well as activation of non-neuronal cells, induced by sympathetic nerve stimulation. The overall pattern of response to sympathetic stimulation was unique to the proximal or distal colon. Region-specific changes in cellular activity correlated with motility patterns produced by electrical and optogenetic stimulation of sympathetic pathways. Pharmacology experiments (mouse) and RNA sequencing (human) indicated that appropriate receptors were expressed on different cell types to account for the responses to sympathetic stimulation. Regional differences in expression of α-1 adrenoceptors in human colon emphasize the translational relevance of our mouse findings. CONCLUSIONS Sympathetic neurons differentially regulate activity of neurons and non-neuronal cells in proximal and distal colon to promote distinct changes in motility patterns, likely reflecting the distinct roles played by these 2 regions.
Collapse
Affiliation(s)
- Kristen M. Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania,For correspondence: Kristen M. Smith-Edwards, University of Pittsburgh, Department of Neurobiology, 200 Lothrop Street, Pittsburgh, PA 15216, , Ph: 412-648-9745
| | - Brian S. Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christina M. Wright
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Sabine Schneider
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Kimberly A. Meerschaert
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lindsay L. Ejoh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sarah A. Najjar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathryn M. Albers
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Brian M. Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Pittsburgh Center for Pain Research, University of Pittsburgh, Pennsylvania,Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Drumm BT, Thornbury KD, Hollywood MA, Sergeant GP. Role of Ano1 Ca 2+-activated Cl - channels in generating urethral tone. Am J Physiol Renal Physiol 2021; 320:F525-F536. [PMID: 33554780 DOI: 10.1152/ajprenal.00520.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Urinary continence is maintained in the lower urinary tract by the contracture of urethral sphincters, including smooth muscle of the internal urethral sphincter. These contractions occlude the urethral lumen, preventing urine leakage from the bladder to the exterior. Over the past 20 years, research on the ionic conductances that contribute to urethral smooth muscle contractility has greatly accelerated. A debate has emerged over the role of interstitial cell of Cajal (ICC)-like cells in the urethra and their expression of Ca2+-activated Cl- channels encoded by anoctamin-1 [Ano1; transmembrane member 16 A (Tmem16a) gene]. It has been proposed that Ano1 channels expressed in urethral ICC serve as a source of depolarization for smooth muscle cells, increasing their excitability and contributing to tone. Although a clear role for Ano1 channels expressed in ICC is evident in other smooth muscle organs, such as the gastrointestinal tract, the role of these channels in the urethra is unclear, owing to differences in the species (rabbit, rat, guinea pig, sheep, and mouse) examined and experimental approaches by different groups. The importance of clarifying this situation is evident as effective targeting of Ano1 channels may lead to new treatments for urinary incontinence. In this review, we summarize the key findings from different species on the role of ICC and Ano1 channels in urethral contractility. Finally, we outline proposals for clarifying this controversial and important topic by addressing how cell-specific optogenetic and inducible cell-specific genetic deletion strategies coupled with advances in Ano1 channel pharmacology may clarify this area in future studies.NEW & NOTEWORTHY Studies from the rabbit have shown that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICC) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
16
|
Tanahashi Y, Komori S, Matsuyama H, Kitazawa T, Unno T. Functions of Muscarinic Receptor Subtypes in Gastrointestinal Smooth Muscle: A Review of Studies with Receptor-Knockout Mice. Int J Mol Sci 2021; 22:E926. [PMID: 33477687 PMCID: PMC7831928 DOI: 10.3390/ijms22020926] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.
Collapse
Affiliation(s)
- Yasuyuki Tanahashi
- Department of Advanced Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Seiichi Komori
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Hayato Matsuyama
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| | - Takio Kitazawa
- Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | - Toshihiro Unno
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; (S.K.); (H.M.)
| |
Collapse
|
17
|
Leigh WA, Del Valle G, Kamran SA, Drumm BT, Tavakkoli A, Sanders KM, Baker SA. A high throughput machine-learning driven analysis of Ca 2+ spatio-temporal maps. Cell Calcium 2020; 91:102260. [PMID: 32795721 PMCID: PMC7530121 DOI: 10.1016/j.ceca.2020.102260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
High-resolution Ca2+ imaging to study cellular Ca2+ behaviors has led to the creation of large datasets with a profound need for standardized and accurate analysis. To analyze these datasets, spatio-temporal maps (STMaps) that allow for 2D visualization of Ca2+ signals as a function of time and space are often used. Methods of STMap analysis rely on a highly arduous process of user defined segmentation and event-based data retrieval. These methods are often time consuming, lack accuracy, and are extremely variable between users. We designed a novel automated machine-learning based plugin for the analysis of Ca2+ STMaps (STMapAuto). The plugin includes optimized tools for Ca2+ signal preprocessing, automated segmentation, and automated extraction of key Ca2+ event information such as duration, spatial spread, frequency, propagation angle, and intensity in a variety of cell types including the Interstitial cells of Cajal (ICC). The plugin is fully implemented in Fiji and able to accurately detect and expeditiously quantify Ca2+ transient parameters from ICC. The plugin's speed of analysis of large-datasets was 197-fold faster than the commonly used single pixel-line method of analysis. The automated machine-learning based plugin described dramatically reduces opportunities for user error and provides a consistent method to allow high-throughput analysis of STMap datasets.
Collapse
Affiliation(s)
- Wesley A Leigh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Guillermo Del Valle
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Sharif Amit Kamran
- Department of Computer Science and Engineering, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Life & Health Science, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Alireza Tavakkoli
- Department of Computer Science and Engineering, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
18
|
Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020; 319:G391-G399. [PMID: 32755304 PMCID: PMC7717115 DOI: 10.1152/ajpgi.00384.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology. We discuss how these technologies and tools are currently being used to explore the brain-gut axis and debate the future research potential and limitations of these techniques. Taken together, we consider that the use of these technologies will enable researchers to answer important questions in neurogastroenterology through fundamental research. The answers to those questions will shorten the path from basic discovery to new treatments for patient populations with disorders of the brain-gut axis affecting the GI tract such as irritable bowel syndrome (IBS), functional dyspepsia, achalasia, and delayed gastric emptying.
Collapse
Affiliation(s)
- Anthony C. Johnson
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,3Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tijs Louwies
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Casey O. Ligon
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,4Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM. Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca 2+ release via M 3 receptor activation. FASEB J 2020; 34:10073-10095. [PMID: 32539213 DOI: 10.1096/fj.202000672r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Colonic intramuscular interstitial cells of Cajal (ICC-IM) are associated with cholinergic varicosities, suggesting a role in mediating excitatory neurotransmission. Ca2+ release in ICC-IM activates Ano1, a Ca2+ -activated Cl- conductance, causing tissue depolarization and increased smooth muscle excitability. We employed Ca2+ imaging of colonic ICC-IM in situ, using mice expressing GCaMP6f in ICC to evaluate ICC-IM responses to excitatory neurotransmission. Expression of muscarinic type 2, 3 (M2 , M3 ), and NK1 receptors were enriched in ICC-IM. NK1 receptor agonists had minimal effects on ICC-IM, whereas neostigmine and carbachol increased Ca2+ transients. These effects were reversed by DAU 5884 (M3 receptor antagonist) but not AF-DX 116 (M2 receptor antagonist). Electrical field stimulation (EFS) in the presence of L-NNA and MRS 2500 enhanced ICC-IM Ca2+ transients. Responses were blocked by atropine or DAU 5884, but not AF-DX 116. ICC-IM responses to EFS were ablated by inhibiting Ca2+ stores with cyclopiazonic acid and reduced by inhibiting Ca2+ influx via Orai channels. Contractions induced by EFS were reduced by an Ano1 channel antagonist, abolished by DAU 5884, and unaffected by AF-DX 116. Colonic ICC-IM receive excitatory inputs from cholinergic neurons via M3 receptor activation. Enhancing ICC-IM Ca2+ release and Ano1 activation contributes to excitatory responses of colonic muscles.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA.,Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Kaitlin Huynh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Aqeel Nizar
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
20
|
Grainger N, Freeman RS, Shonnard CC, Drumm BT, Koh SD, Ward SM, Sanders KM. Identification and classification of interstitial cells in the mouse renal pelvis. J Physiol 2020; 598:3283-3307. [PMID: 32415739 DOI: 10.1113/jp278888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Platelet-derived growth factor receptor-α (PDGFRα) is a novel biomarker along with smooth myosin heavy chain for the pacemaker cells (previously termed 'atypical' smooth muscle cells) in the murine and cynomolgus monkey pelvis-kidney junction. PDGFRα+ cells present in adventitial and urothelial layers of murine renal pelvis do not express smooth muscle myosin heavy chain (smMHC) but are in close apposition to nerve fibres. Most c-Kit+ cells in the renal pelvis are mast cells. Mast cells (CD117+ /CD45+ ) are more abundant in the proximal renal pelvis and pelvis-kidney junction regions whereas c-Kit+ interstitial cells (CD117+ /CD45- ) are found predominantly in the distal renal pelvis and ureteropelvic junction. PDGFRα+ cells are distinct from c-Kit+ interstitial cells. A subset of PDGFRα+ cells express the Ca2+ -activated Cl- channel, anoctamin-1, across the entire renal pelvis. Spontaneous Ca2+ transients were observed in c-Kit+ interstitial cells, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using mice expressing genetically encoded Ca2+ sensors. ABSTRACT Rhythmic contractions of the renal pelvis transport urine from the kidneys into the ureter. Specialized pacemaker cells, termed atypical smooth muscle cells (ASMCs), are thought to drive the peristaltic contractions of typical smooth muscle cells (TSMCs) in the renal pelvis. Interstitial cells (ICs) in close proximity to ASMCs and TSMCs have been described, but the role of these cells is poorly understood. The presence and distributions of platelet-derived growth factor receptor-α+ (PDGFRα+ ) ICs in the pelvis-kidney junction (PKJ) and distal renal pelvis were evaluated. We found PDGFRα+ ICs in the adventitial layers of the pelvis, the muscle layer of the PKJ and the adventitia of the distal pelvis. PDGFRα+ ICs were distinct from c-Kit+ ICs in the renal pelvis. c-Kit+ ICs are a minor population of ICs in murine renal pelvis. The majority of c-Kit+ cells were mast cells. PDGFRα+ cells in the PKJ co-expressed smooth muscle myosin heavy chain (smMHC) and several other smooth muscle gene transcripts, indicating these cells are ASMCs, and PDGFRα is a novel biomarker for ASMCs. PDGFRα+ cells also express Ano1, which encodes a Ca2+ -activated Cl- conductance that serves as a primary pacemaker conductance in ICs of the GI tract. Spontaneous Ca2+ transients were observed in c-Kit+ ICs, smMHC+ PDGFRα cells and smMHC- PDGFRα cells using genetically encoded Ca2+ sensors. A reporter strain of mice with enhanced green fluorescent protein driven by the endogenous promotor for Pdgfra was shown to be a powerful new tool for isolating and characterizing the phenotype and functions of these cells in the renal pelvis.
Collapse
Affiliation(s)
- Nathan Grainger
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ryan S Freeman
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cameron C Shonnard
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
21
|
Kurahashi M, Kito Y, Baker SA, Jennings LK, Dowers JGR, Koh SD, Sanders KM. A novel postsynaptic signal pathway of sympathetic neural regulation of murine colonic motility. FASEB J 2020; 34:5563-5577. [PMID: 32086857 DOI: 10.1096/fj.201903134r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023]
Abstract
Transcriptome data revealed α1 adrenoceptors (ARs) expression in platelet-derived growth factor receptor α+ cells (PDGFRα+ cells) in murine colonic musculature. The role of PDGFRα+ cells in sympathetic neural regulation of murine colonic motility was investigated. Norepinephrine (NE), via α1A ARs, activated a small conductance Ca2+ -activated K+ (SK) conductance, evoked outward currents and hyperpolarized PDGFRα+ cells (the α1A AR-SK channel signal pathway). α1 AR agonists increased intracellular Ca2+ transients in PDGFRα+ cells and inhibited spontaneous phasic contractions (SPCs) of colonic muscle through activation of a SK conductance. Sympathetic nerve stimulation inhibited both contractions of distal colon and propulsive contractions represented by the colonic migrating motor complexes (CMMCs) via the α1A AR-SK channel signal pathway. Postsynaptic signaling through α1A ARs in PDGFRα+ cells is a novel mechanism that conveys part of stress responses in the colon. PDGFRα+ cells appear to be a primary effector of sympathetic neural regulation of murine colonic motility.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Yoshihiko Kito
- Department of Pharmacology, Saga University, Saga, Japan
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Libby K Jennings
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - James G R Dowers
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
22
|
Drumm BT, Rembetski BE, Messersmith K, Manierka MS, Baker SA, Sanders KM. Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. J Physiol 2020; 598:651-681. [PMID: 31811726 DOI: 10.1113/jp279102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Rhythmic action potentials and intercellular Ca2+ waves are generated in smooth muscle cells of colonic longitudinal muscles (LSMC). Longitudinal muscle excitability is tuned by input from subserosal ICC (ICC-SS), a population of ICC with previously unknown function. ICC-SS express Ano1 channels and generate spontaneous Ca2+ transients in a stochastic manner. Release of Ca2+ and activation of Ano1 channels causes depolarization of ICC-SS and LSMC, leading to activation of L-type Ca2+ channels, action potentials, intercellular Ca2+ waves and contractions in LSMC. Nitrergic neural inputs regulate the Ca2+ events in ICC-SS. Pacemaker activity in longitudinal muscle is an emergent property as a result of integrated processes in ICC-SS and LSMC. ABSTRACT Much is known about myogenic mechanisms in circular muscle (CM) in the gastrointestinal tract, although less is known about longitudinal muscle (LM). Two Ca2+ signalling behaviours occur in LM: localized intracellular waves not causing contractions and intercellular waves leading to excitation-contraction coupling. An Ano1 channel antagonist inhibited intercellular Ca2+ waves and LM contractions. Ano1 channels are expressed by interstitial cells of Cajal (ICC) but not by smooth muscle cells (SMCs). We investigated Ca2+ signalling in a novel population of ICC that lies along the subserosal surface of LM (ICC-SS) in mice expressing GCaMP6f in ICC. ICC-SS fired stochastic localized Ca2+ transients. Such events have been linked to activation of Ano1 channels in ICC. Ca2+ transients in ICC-SS occurred by release from stores most probably via inositol trisphosphate receptors. This activity relied on influx via store-operated Ca2+ entry and Orai channels. No voltage-dependent mechanism that synchronized Ca2+ transients in a single cell or between cells was found. Nitrergic agonists inhibited Ca2+ transients in ICC-SS, and stimulation of intrinsic nerves activated nitrergic responses in ICC-SS. Cessation of stimulation resulted in significant enhancement of Ca2+ transients compared to the pre-stimulus activity. No evidence of innervation by excitatory, cholinergic motor neurons was found. Our data suggest that ICC-SS contribute to regulation of LM motor activity. Spontaneous Ca2+ transients activate Ano1 channels in ICC-SS. Resulting depolarization conducts to SMCs, depolarizing membrane potential, activating L-type Ca2+ channels and initiating contraction. Rhythmic electrical and mechanical behaviours of LM are an emergent property of SMCs and ICC-SS.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Katelyn Messersmith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Marena S Manierka
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
23
|
Rembetski BE, Sanders KM, Drumm BT. Contribution of Ca v1.2 Ca 2+ channels and store-operated Ca 2+ entry to pig urethral smooth muscle contraction. Am J Physiol Renal Physiol 2020; 318:F496-F505. [PMID: 31904286 DOI: 10.1152/ajprenal.00514.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Urethral smooth muscle (USM) generates tone to prevent urine leakage from the bladder during filling. USM tone has been thought to be a voltage-dependent process, relying on Ca2+ influx via voltage-dependent Ca2+ channels in USM cells, modulated by the activation of Ca2+-activated Cl- channels encoded by Ano1. However, recent findings in the mouse have suggested that USM tone is voltage independent, relying on Ca2+ influx through Orai channels via store-operated Ca2+ entry (SOCE). We explored if this pathway also occurred in the pig using isometric tension recordings of USM tone. Pig USM strips generated myogenic tone, which was nearly abolished by the Cav1.2 channel antagonist nifedipine and the ATP-dependent K+ channel agonist pinacidil. Pig USM tone was reduced by the Orai channel blocker GSK-7975A. Electrical field stimulation (EFS) led to phentolamine-sensitive contractions of USM strips. Contractions of pig USM were also induced by phenylephrine. Phenylephrine-evoked and EFS-evoked contractions of pig USM were reduced by ~50-75% by nifedipine and ~30% by GSK-7975A. Inhibition of Ano1 channels had no effect on tone or EFS-evoked contractions of pig USM. In conclusion, unlike the mouse, pig USM exhibited voltage-dependent tone and agonist/EFS-evoked contractions. Whereas SOCE plays a role in generating tone and agonist/neural-evoked contractions in both species, this dominates in the mouse. Tone and agonist/EFS-evoked contractions of pig USM are the result of Ca2+ influx primarily through Cav1.2 channels, and no evidence was found supporting a role of Ano1 channels in modulating these mechanisms.
Collapse
Affiliation(s)
- Benjamin E Rembetski
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno Nevada
| |
Collapse
|
24
|
Drumm BT, Hwang SJ, Baker SA, Ward SM, Sanders KM. Ca 2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 2019; 597:3587-3617. [PMID: 31124144 DOI: 10.1113/jp278036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Colonic intramuscular interstitial cells of Cajal (ICC-IM) exhibit spontaneous Ca2+ transients manifesting as stochastic events from multiple firing sites with propagating Ca2+ waves occasionally observed. Firing of Ca2+ transients in ICC-IM is not coordinated with adjacent ICC-IM in a field of view or even with events from other firing sites within a single cell. Ca2+ transients, through activation of Ano1 channels and generation of inward current, cause net depolarization of colonic muscles. Ca2+ transients in ICC-IM rely on Ca2+ release from the endoplasmic reticulum via IP3 receptors, spatial amplification from RyRs and ongoing refilling of ER via the sarcoplasmic/endoplasmic-reticulum-Ca2+ -ATPase. ICC-IM are sustained by voltage-independent Ca2+ influx via store-operated Ca2+ entry. Some of the properties of Ca2+ in ICC-IM in the colon are similar to the behaviour of ICC located in the deep muscular plexus region of the small intestine, suggesting there are functional similarities between these classes of ICC. ABSTRACT A component of the SIP syncytium that regulates smooth muscle excitability in the colon is the intramuscular class of interstitial cells of Cajal (ICC-IM). All classes of ICC (including ICC-IM) express Ca2+ -activated Cl- channels, encoded by Ano1, and rely upon this conductance for physiological functions. Thus, Ca2+ handling in ICC is fundamental to colonic motility. We examined Ca2+ handling mechanisms in ICC-IM of murine proximal colon expressing GCaMP6f in ICC. Several Ca2+ firing sites were detected in each cell. While individual sites displayed rhythmic Ca2+ events, the overall pattern of Ca2+ transients was stochastic. No correlation was found between discrete Ca2+ firing sites in the same cell or in adjacent cells. Ca2+ transients in some cells initiated Ca2+ waves that spread along the cell at ∼100 µm s-1 . Ca2+ transients were caused by release from intracellular stores, but depended strongly on store-operated Ca2+ entry mechanisms. ICC Ca2+ transient firing regulated the resting membrane potential of colonic tissues as a specific Ano1 antagonist hyperpolarized colonic muscles by ∼10 mV. Ca2+ transient firing was independent of membrane potential and not affected by blockade of L- or T-type Ca2+ channels. Mechanisms regulating Ca2+ transients in the proximal colon displayed both similarities to and differences from the intramuscular type of ICC in the small intestine. Similarities and differences in Ca2+ release patterns might determine how ICC respond to neurotransmission in these two regions of the gastrointestinal tract.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sung J Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
25
|
Lin Q, Qin M, Zhao SG, Liu ZX, Dou WJ, Zhang R, Li YL, Xi XH, Xu JQ, Ma LT, Wang JJ. The roles of PDGFRα signaling in the postnatal development and functional maintenance of the SMC-ICC-PDGFRα+ cell (SIP) syncytium in the colon. Neurogastroenterol Motil 2019; 31:e13568. [PMID: 30848008 DOI: 10.1111/nmo.13568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The SIP syncytium in the gut consists of smooth muscle cells, interstitial cells of Cajal, and PDGFRα+ cells. We studied the fate of SIP cells after blocking PDGFRα receptor to explore the roles of PDGFRα signaling in the postnatal development and functional maintenance of the SIP syncytium. METHODS Crenolanib was administered to mice from P0, P10, or P50. The morphological changes in SIP cells were examined by immunofluorescence. Protein expression in SIP cells was detected by Western blotting. Moreover, colonic transit was analyzed by testing the colonic bead expulsion time. KEY RESULTS A dose of 5 mg(kg•day)-1 crenolanib administered for 10 days beginning on P0 apparently hindered the development of PDGFRα+ cells in the colonic longitudinal muscularis and myenteric plexus without influencing their proliferative activity and apoptosis, but this result was not seen in the colonic circular muscularis. SMCs were also inhibited by crenolanib. A dose of 7.5 mg(kg•day)-1 crenolanib administered for 15 days beginning on P0 caused reductions in both PDGFRα+ cells and ICC in the longitudinal muscularis, myenteric plexus, and circular muscularis. However, when crenolanib was administered at a dose of 5 mg(kg•day)-1 beginning on P10 or P50, it only noticeably decreased the number of PDGFRα+ cells in the colonic longitudinal muscularis. Crenolanib also caused PDGFRα+ cells to transdifferentiate into SMC in adult mice. Colonic transit was delayed after administration of crenolanib. CONCLUSIONS & INFERENCES Therefore, PDGFRα signaling is essential for the development and functional maintenance of the SIP cells, especially PDGFRα+ cells.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming Qin
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shu-Guang Zhao
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Xiong Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Jia Dou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rong Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Long Li
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao-Hou Xi
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-Qiao Xu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca 2+ signaling in interstitial cells of Cajal. Sci Rep 2019; 9:4402. [PMID: 30867452 PMCID: PMC6416298 DOI: 10.1038/s41598-019-39729-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Spontaneous excitability and contractions of colonic smooth muscle cells (SMCs) are normally suppressed by inputs from inhibitory motor neurons, a behavior known as tonic inhibition. The post-junctional cell(s) mediating tonic inhibition have not been elucidated. We investigated the post-junctional cells mediating tonic inhibition in the proximal colon and whether tonic inhibition results from suppression of the activity of Ano1 channels, which are expressed exclusively in interstitial cells of Cajal (ICC). We found that tetrodotoxin (TTX), an inhibitor of nitric oxide (NO) synthesis, L-NNA, and an inhibitor of soluble guanylyl cyclase, ODQ, greatly enhanced colonic contractions. Ano1 antagonists, benzbromarone and Ani9 inhibited the effects of TTX, L-NNA and ODQ. Ano1 channels are activated by Ca2+ release from the endoplasmic reticulum (ER) in ICC, and blocking Ca2+ release with a SERCA inhibitor (thapsigargin) or a store-operated Ca2+ entry blocker (GSK 7975 A) reversed the effects of TTX, L-NNA and ODQ. Ca2+ imaging revealed that TTX, L-NNA and ODQ increased Ca2+ transient firing in colonic ICC. Our results suggest that tonic inhibition in the proximal colon occurs through suppression of Ca2+ release events in ICC. Suppression of Ca2+ release in ICC limits the open probability of Ano1 channels, reducing the excitability of electrically-coupled SMCs.
Collapse
|
27
|
Schneider S, Wright CM, Heuckeroth RO. Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function. Annu Rev Physiol 2019; 81:235-259. [DOI: 10.1146/annurev-physiol-021317-121515] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.
Collapse
Affiliation(s)
- Sabine Schneider
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christina M. Wright
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert O. Heuckeroth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Research Center, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Drumm BT, Hennig GW, Baker SA, Sanders KM. Applications of Spatio-temporal Mapping and Particle Analysis Techniques to Quantify Intracellular Ca2+ Signaling In Situ. J Vis Exp 2019. [PMID: 30663707 DOI: 10.3791/58989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ca2+ imaging of isolated cells or specific types of cells within intact tissues often reveals complex patterns of Ca2+ signaling. This activity requires careful and in-depth analyses and quantification to capture as much information about the underlying events as possible. Spatial, temporal and intensity parameters intrinsic to Ca2+ signals such as frequency, duration, propagation, velocity and amplitude may provide some biological information required for intracellular signalling. High-resolution Ca2+ imaging typically results in the acquisition of large data files that are time consuming to process in terms of translating the imaging information into quantifiable data, and this process can be susceptible to human error and bias. Analysis of Ca2+ signals from cells in situ typically relies on simple intensity measurements from arbitrarily selected regions of interest (ROI) within a field of view (FOV). This approach ignores much of the important signaling information contained in the FOV. Thus, in order to maximize recovery of information from such high-resolution recordings obtained with Ca2+dyes or optogenetic Ca2+ imaging, appropriate spatial and temporal analysis of the Ca2+ signals is required. The protocols outlined in this paper will describe how a high volume of data can be obtained from Ca2+ imaging recordings to facilitate more complete analysis and quantification of Ca2+ signals recorded from cells using a combination of spatiotemporal map (STM)-based analysis and particle-based analysis. The protocols also describe how different patterns of Ca2+ signaling observed in different cell populations in situ can be analyzed appropriately. For illustration, the method will examine Ca2+ signaling in a specialized population of cells in the small intestine, interstitial cells of Cajal (ICC), using GECIs.
Collapse
Affiliation(s)
- Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine;
| | - Grant W Hennig
- Department of Pharmacology, The Robert Larner, M.D. College of Medicine, University of Vermont
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine
| |
Collapse
|
29
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
30
|
Baker SA, Drumm BT, Cobine CA, Keef KD, Sanders KM. Inhibitory Neural Regulation of the Ca 2+ Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine. Front Physiol 2018; 9:328. [PMID: 29686622 PMCID: PMC5900014 DOI: 10.3389/fphys.2018.00328] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal motility is coordinated by enteric neurons. Both inhibitory and excitatory motor neurons innervate the syncytium consisting of smooth muscle cells (SMCs) interstitial cells of Cajal (ICC) and PDGFRα+ cells (SIP syncytium). Confocal imaging of mouse small intestines from animals expressing GCaMP3 in ICC were used to investigate inhibitory neural regulation of ICC in the deep muscular plexus (ICC-DMP). We hypothesized that Ca2+ signaling in ICC-DMP can be modulated by inhibitory enteric neural input. ICC-DMP lie in close proximity to the varicosities of motor neurons and generate ongoing Ca2+ transients that underlie activation of Ca2+-dependent Cl- channels and regulate the excitability of SMCs in the SIP syncytium. Electrical field stimulation (EFS) caused inhibition of Ca2+ for the first 2-3 s of stimulation, and then Ca2+ transients escaped from inhibition. The NO donor (DEA-NONOate) inhibited Ca2+ transients and Nω-Nitro-L-arginine (L-NNA) or a guanylate cyclase inhibitor (ODQ) blocked inhibition induced by EFS. Purinergic neurotransmission did not affect Ca2+ transients in ICC-DMP. Purinergic neurotransmission elicits hyperpolarization of the SIP syncytium by activation of K+ channels in PDGFRα+ cells. Generalized hyperpolarization of SIP cells by pinacidil (KATP agonist) or MRS2365 (P2Y1 agonist) also had no effect on Ca2+ transients in ICC-DMP. Peptidergic transmitter receptors (VIP and PACAP) are expressed in ICC and can modulate ICC-DMP Ca2+ transients. In summary Ca2+ transients in ICC-DMP are blocked by enteric inhibitory neurotransmission. ICC-DMP lack a voltage-dependent mechanism for regulating Ca2+ release, and this protects Ca2+ handling in ICC-DMP from membrane potential changes in other SIP cells.
Collapse
Affiliation(s)
| | | | | | | | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, United States
| |
Collapse
|