1
|
Straume T, Mora AM, Brown JB, Bansal I, Rabin BM, Braby LA, Wyrobek AJ. Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiation. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:44-60. [PMID: 40280642 DOI: 10.1016/j.lssr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 04/29/2025]
Abstract
Predicting future CNS risks for astronauts during deep-space missions will rely substantially on ground-based rodent data with space-relevant ions and behaviors. For rats, the accumulated evidence indicates that less densely ionizing radiation, such as 4He and 12C ions, induce behavior deficits at lower doses than densely ionizing ions, such as 48Ti and 56Fe. However, this observation conflicts with standard somatic radiobiology, in which densely ionizing ions are generally more effective than less densely ionizing ions, and where the DNA/nucleus is the accepted target for radiation-induced tumorigenesis, cytogenetic aberrations, genetic mutations, and reproductive cell death. To gain deeper insight into the subcellular nature of the radiation targets for behavior risks, we compared the effects of dose, fluence, and linear energy transfer (LET) of 4He and 56Fe particles using existing datasets for four distinct behavioral outcomes in rats: elevated plus maze (EPM-anxiety), novel object recognition (NOR-memory), operant responding (OR-response to environmental stimuli), and attentional set-shifting (ATSET-cognitive flexibility). We confirmed that less densely ionizing particles (except protons) showed ∼100-fold lower threshold doses than densely ionizing particles for behavioral deficits (0.1-1 cGy for 4He vs. 15-100 cGy for 56Fe). However, when analyzed by fluence the behavioral responses converged, indicating that 4He and 56Fe were equally effective on a per-track basis. When analyzed by LET, there were ∼100-fold differences in the LET for maximum effectiveness for behavioral deficits and DNA endpoints (∼1 vs ∼100 keV/μm, respectively). These unique features of radiation-induced behavioral deficits (high sensitivity to particles in the 1-keV/μm range, insensitivity to protons in the 0.2 keV/μm range, and isofluence dependence for particles with LET>1 keV/μm) provide evidence in support of a new hypothesis of sub-micron sized radiosensitive targets for behavioral effects consistent with the thickness of plasma membranes and/or small subcellular structures, smaller than a whole synapse. Like our behavior findings, mouse immature oocyte killing which is known to have a plasma membrane target was also better explained by fluence, rather than dose. In contrast, fluence analyses for DNA/nuclear endpoints in somatic cells (e.g., tumor induction, chromosome aberrations) showed opposite results, suggesting that behavior targets are not DNA. Our findings raise questions regarding the identity of subcellular targets and the multi-cellular functional unit for behavior risks, low-dose susceptibility, and generalizability from rat to other species and astronauts.
Collapse
Affiliation(s)
- Tore Straume
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA; NASA Ames Research Center (retired affiliation), Moffett Field, CA 94035, USA.
| | - Ana M Mora
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ishan Bansal
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | - Andrew J Wyrobek
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Wuyts FL, Deblieck C, Vandevoorde C, Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat Rev Neurosci 2025:10.1038/s41583-025-00923-4. [PMID: 40247135 DOI: 10.1038/s41583-025-00923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.
Collapse
Affiliation(s)
- Floris L Wuyts
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Choi Deblieck
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
- Institute for Condensed Matter of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy.
| |
Collapse
|
3
|
Kokhan VS, Chaprov K, Abaimov DA, Nesterov MS, Pikalov VA. Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:99-107. [PMID: 39864919 DOI: 10.1016/j.lssr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 01/28/2025]
Abstract
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy 12C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia.
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia
| | | | - Maxim S Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, settlement Svetlye Gory, Russia
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
4
|
Krattli RP, Do AH, El-Khatib SM, Alikhani L, Markarian M, Vagadia AR, Usmani MT, Madan S, Baulch JE, Clark RJ, Woodruff TM, Tenner AJ, Acharya MM. C5aR1 inhibition alleviates cranial radiation-induced cognitive decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601806. [PMID: 39005286 PMCID: PMC11245020 DOI: 10.1101/2024.07.02.601806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cranial radiation therapy (RT) for brain cancers leads to an irreversible decline in cognitive function without an available remedy. Radiation-induced cognitive deficits (RICD) are a particularly pressing problem for the survivors of pediatric and low grade glioma (LGG) cancers who often live long post-RT lives. Radiation-induced elevated neuroinflammation and gliosis, triggered by the detrimental CNS complement cascade, lead to excessive synaptic and cognitive loss. Using intact and brain cancer-bearing mouse models, we now show that targeting anaphylatoxin complement C5a receptor (C5aR1) is neuroprotective against RICD. We used a genetic knockout, C5aR1 KO mouse, and a pharmacologic approach, employing the orally active, brain penetrant C5aR1 antagonist PMX205 to reverse RICD. Irradiated C5aR1 KO and WT mice receiving PMX205 showed significant neurocognitive improvements in object recognition memory and memory consolidation tasks. Inhibiting C5a/C5aR1 axis reduced microglial activation, astrogliosis, and synaptic loss in the irradiated brain. Importantly, C5aR1 blockage in two syngeneic, orthotopic glioblastoma-bearing mice protected against RICD without interfering with the therapeutic efficacy of RT to reduce tumor volume in vivo . PMX205 clinical trials with healthy individuals and amyotrophic lateral sclerosis (ALS) patients showed no toxicity, drug-related adverse events, or infections. Thus, C5aR1 inhibition is a translationally feasible approach to address RICD, an unmet medical need. SIGNIFICANCE Cranial radiotherapy for brain cancers activates CNS complement cascade, leading to cognitive decline. Ablation of the complement C5a/C5aR1 axis alleviates radiation-induced neuroinflammation, synaptic loss, and cognitive dysfunction, providing a novel tractable approach.
Collapse
|
5
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
7
|
Impey S, Raber J. Irradiation and Alterations in Hippocampal DNA Methylation. EPIGENOMES 2024; 8:27. [PMID: 39051185 PMCID: PMC11270359 DOI: 10.3390/epigenomes8030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The response of the brain to radiation is important for cancer patients receiving whole or partial brain irradiation or total body irradiation, those exposed to irradiation as part of a nuclear accident or a nuclear war or terrorism event, and for astronauts during and following space missions. The mechanisms mediating the effects of irradiation on the hippocampus might be associated with alterations in hippocampal DNA methylation. Changes in cytosine methylation involving the addition of a methyl group to cytosine (5 mC) and especially those involving the addition of a hydroxy group to 5 mC (hydroxymethylcytosine or 5 hmC) play a key role in regulating the expression of genes required for hippocampal function. In this review article, we will discuss the effects of radiation on hippocampal DNA methylation and whether these effects are associated with hippocampus-dependent cognitive measures and molecular measures in the hippocampus involved in cognitive measures. We will also discuss whether the radiation-induced changes in hippocampal DNA methylation show an overlap across different doses of heavy ion irradiation and across irradiation with different ions. We will also discuss whether the DNA methylation changes show a tissue-dependent response.
Collapse
Affiliation(s)
- Soren Impey
- Dow Neurobiology Laboratories, Legacy Research Institute Legacy Health Systems, 1225 NE 2nd Ave, Portland, OR 97232, USA
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
8
|
Ifejeokwu OV, Do A, El Khatib SM, Ho NH, Zavala A, Othy S, Acharya MM. Immune Checkpoint Inhibition-related Neuroinflammation Disrupts Cognitive Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601087. [PMID: 39005282 PMCID: PMC11244914 DOI: 10.1101/2024.07.01.601087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Combinatorial blockade of Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and Programmed Cell Death Protein 1 (PD-1) significantly improve the progression-free survival of individuals with metastatic cancers, including melanoma. In addition to unleashing anti-tumor immunity, combination immune checkpoint inhibition (ICI) disrupts immune-regulatory networks critical for maintaining homeostasis in various tissues, including the central nervous system (CNS). Although ICI- and cancer-related cognitive impairments (CRCI) in survivors are increasingly becoming evident, our understanding of ICI-induced immune-related adverse effects (IREA) in the CNS remains incomplete. Here, our murine melanoma model reveals that combination ICI impairs hippocampal-dependent learning and memory, as well as memory consolidation processes. Mechanistically, combination ICI disrupted synaptic integrity, and neuronal plasticity, reduced myelin, and further predisposed CNS for exaggerated experimental autoimmune encephalomyelitis. Combination ICI substantially altered both lymphoid and myeloid cells in the CNS. Neurogenesis was unaffected, however, microglial activation persisted for two-months post- ICI, concurrently with cognitive deficits, which parallels clinical observations in survivors. Overall, our results demonstrate that blockade of CTLA-4 and PD-1 alters neuro-immune homeostasis and activates microglia, promoting long-term neurodegeneration and driving cognitive impairments. Therefore, limiting microglial activation is a potential avenue to mitigate CNS IRAE while maintaining the therapeutic benefits of rapidly evolving ICIs and their combinations. SIGNIFICANCE Despite the superior therapeutic efficacy of immune checkpoint inhibition (ICI) for cancers, its undesired effects on brain function are not fully understood. Here, we demonstrate that combination ICI elevates neuroinflammation, activates microglia, leading to detrimental neurodegenerative and neurocognitive sequelae.
Collapse
|
9
|
Luitel K, Siteni S, Barron S, Shay JW. Simulated galactic cosmic radiation-induced cancer progression in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:43-51. [PMID: 38670651 DOI: 10.1016/j.lssr.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/28/2024] [Indexed: 04/28/2024]
Abstract
Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.
Collapse
Affiliation(s)
- Krishna Luitel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Silvia Siteni
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: implications for deep space missions, female crews, and potential antioxidant countermeasures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588768. [PMID: 38659963 PMCID: PMC11042186 DOI: 10.1101/2024.04.12.588768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment is lacking. Here we asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received the antioxidant CDDO-EA (400 µg/g of food) or a control diet (vehicle, Veh) for 5 days and either Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: 1) location discrimination reversal (which tests behavior pattern separation and cognitive flexibility, two abilities reliant on the dentate gyrus) and 2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment end (14.25-month post-IRR), neurogenesis was assessed (doublecortin-immunoreactive [DCX+] dentate gyrus neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. Notably, one radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had worse stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice show normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change in neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
|
11
|
Vozenin MC, Alaghband Y, Drayson OGG, Piaget F, Leavitt R, Allen BD, Doan NL, Rostomyan T, Stabilini A, Reggiani D, Hajdas W, Yukihara EG, Norbury JW, Bailat C, Desorgher L, Baulch JE, Limoli CL. More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiat Res 2024; 201:93-103. [PMID: 38171489 DOI: 10.1667/rade-23-00241.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.
Collapse
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Filippo Piaget
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | | | | | | | | | | | | | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| |
Collapse
|
12
|
Miranda S, Vermeesen R, Radstake WE, Parisi A, Ivanova A, Baatout S, Tabury K, Baselet B. Lost in Space? Unmasking the T Cell Reaction to Simulated Space Stressors. Int J Mol Sci 2023; 24:16943. [PMID: 38069265 PMCID: PMC10707245 DOI: 10.3390/ijms242316943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The space environment will expose astronauts to stressors like ionizing radiation, altered gravity fields and elevated cortisol levels, which pose a health risk. Understanding how the interplay between these stressors changes T cells' response is important to better characterize space-related immune dysfunction. We have exposed stimulated Jurkat cells to simulated space stressors (1 Gy, carbon ions/1 Gy photons, 1 µM hydrocortisone (HC), Mars, moon, and microgravity) in a single or combined manner. Pro-inflammatory cytokine IL-2 was measured in the supernatant of Jurkat cells and at the mRNA level. Results show that alone, HC, Mars gravity and microgravity significantly decrease IL-2 presence in the supernatant. 1 Gy carbon ion irradiation showed a smaller impact on IL-2 levels than photon irradiation. Combining exposure to different simulated space stressors seems to have less immunosuppressive effects. Gene expression was less impacted at the time-point collected. These findings showcase a complex T cell response to different conditions and suggest the importance of elevated cortisol levels in the context of space flight, also highlighting the need to use simulated partial gravity technologies to better understand the immune system's response to the space environment.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| | - Wilhelmina E. Radstake
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alessio Parisi
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Anna Ivanova
- Data Science Institute (DSI), I-BioStat University of Hasselt, 3590 Hasselt, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| |
Collapse
|
13
|
Desai RI, Kangas BD, Luc OT, Solakidou E, Smith EC, Dawes MH, Ma X, Makriyannis A, Chatterjee S, Dayeh MA, Muñoz-Jaramillo A, Desai MI, Limoli CL. Complex 33-beam simulated galactic cosmic radiation exposure impacts cognitive function and prefrontal cortex neurotransmitter networks in male mice. Nat Commun 2023; 14:7779. [PMID: 38012180 PMCID: PMC10682413 DOI: 10.1038/s41467-023-42173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023] Open
Abstract
Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA.
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA.
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Oanh T Luc
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Eleana Solakidou
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
- Medical School, University of Crete, Heraklion, Greece
| | - Evan C Smith
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Monica H Dawes
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Xiaoyu Ma
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | - Maher A Dayeh
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | | | - Mihir I Desai
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Orange, CA, 92697, USA
| |
Collapse
|
14
|
Desorgher L, Stabilini A, Rostomyan T, Reggiani D, Hajdas W, Marcinkowski RM, Vozenin MC, Limoli CL, Yukihara EG, Bailat C. Dosimetry of the PIM1 Pion Beam at the Paul Scherrer Institute for Radiobiological Studies of Mice. Radiat Res 2023; 200:357-365. [PMID: 37702413 DOI: 10.1667/rade-23-00029.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Significant past work has identified unexpected risks of central nervous system (CNS) exposure to the space radiation environment, where long-lasting functional decrements have been associated with multiple ion species delivered at low doses and dose rates. As shielding is the only established intervention capable of limiting exposure to the dangerous radiation fields in space, the recent discovery that pions, emanating from regions of enhanced shielding, can contribute significantly to the total absorbed dose on a deep space mission poses additional concerns. As a prerequisite to biological studies evaluating pion dose equivalents for various CNS exposure scenarios of mice, a careful dosimetric validation study is required. Within our ultimate goal of evaluating the functional consequences of defined pion exposures to CNS functionality, we report in this article the detailed dosimetry of the PiMI pion beam line at the Paul Scherrer Institute, which was developed in support of radiobiological experiments. Beam profiles and contamination of the beam by protons, electrons, positrons and muons were characterized prior to the mice irradiations. The dose to the back and top of the mice was measured using thermoluminescent dosimeters (TLD) and optically simulated luminescence (OSL) to cross-validate the dosimetry results. Geant4 Monte Carlo simulations of radiation exposure of a mouse phantom in water by charged pions were also performed to quantify the difference between the absorbed dose from the OSL and TLD and the absorbed dose to water, using a simple model of the mouse brain. The absorbed dose measured by the OSL dosimeters and TLDs agreed within 5-10%. A 30% difference between the measured absorbed dose and the dose calculated by Geant4 in the dosimeters was obtained, probably due to the approximated Monte Carlo configuration compared to the experiment. A difference of 15-20% between the calculated absorbed dose to water at a 5 mm depth and in the passive dosimeters was obtained, suggesting the need for a correction factor of the measured dose to obtain the absorbed dose in the mouse brain. Finally, based on the comparison of the experimental data and the Monte Carlo calculations, we consider the dose measurement to be accurate to within 15-20%.
Collapse
Affiliation(s)
- L Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Switzerland
| | - A Stabilini
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - T Rostomyan
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - D Reggiani
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - W Hajdas
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - R M Marcinkowski
- Paul Scherrer Institute (PSI), Villigen, Switzerland
- SE2S GMBH, Boppelsen ZH, Switzerland
| | - M-C Vozenin
- CHUV-Radiation-oncology Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| | - E G Yukihara
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - C Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Switzerland
| |
Collapse
|
15
|
Britten RA, Fesshaye A, Tidmore A, Liu A, Blackwell AA. Loss of Cognitive Flexibility Practice Effects in Female Rats Exposed to Simulated Space Radiation. Radiat Res 2023; 200:256-265. [PMID: 37527363 DOI: 10.1667/rade-22-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
During the planned missions to Mars, astronauts will be faced with many potential health hazards including prolonged exposure to space radiation. Ground-based studies have shown that exposure to space radiation impairs the performance of male rats in cognitive flexibility tasks which involve processes that are essential to rapidly and efficiently adapting to different situations. However, there is presently a paucity of information on the effects of space radiation on cognitive flexibility in female rodents. This study has determined the impact that exposure to a low (10 cGy) dose of ions from the simplified 5-ion galactic cosmic ray simulation [https://www.bnl.gov/nsrl/userguide/SimGCRSim.php (07/2023)] (GCRSim) beam or 250 MeV/n 4He ions has on the ability of female Wistar rats to perform in constrained [attentional set shifting (ATSET)] and unconstrained cognitive flexibility (UCFlex) tasks. Female rats exposed to GCRSim exhibited multiple decrements in ATSET performance. Firstly, GCRSim exposure impaired performance in the compound discrimination (CD) stage of the ATSET task. While the ability of rats to identify the rewarded cue was not compromised, the time the rats required to do so significantly increased. Secondly, both 4He and GCRSim exposure reduced the ability of rats to reach criterion in the compound discrimination reversal (CDR) stage. Approximately 20% of the irradiated rats were unable to complete the CDR task; furthermore, the irradiated rats that did reach criterion took more attempts to do so than did the sham-treated animals. Radiation exposure also altered the magnitude and/or nature of practice effects. A comparison of performance metrics from the pre-screen and post-exposure ATSET task revealed that while the sham-treated rats completed the post-exposure CD stage of the ATSET task in 30% less time than for completion of the pre-screen ATSET task, the irradiated rats took 30-50% longer to do so. Similarly, while sham-treated rats completed the CDR stage in ∼10% fewer attempts in the post-exposure task compared to the pre-screen task, in contrast, the 4He- and GCRSim-exposed cohorts took more (∼2-fold) attempts to reach criterion in the post-exposure task than in the pre-screen task. In conclusion, this study demonstrates that female rats are susceptible to radiation-induced loss of performance in the constrained ATSET cognitive flexibility task. Moreover, exposure to radiation leads to multiple performance decrements, including loss of practice effects, an increase in anterograde interference and reduced ability or unwillingness to switch attention. Should similar effects occur in humans, astronauts may have a compromised ability to perform complex tasks.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- EVMS Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Arriyam Fesshaye
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alyssa Tidmore
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Aiyi Liu
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Ashley A Blackwell
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
16
|
Alwood JS, Mulavara AP, Iyer J, Mhatre SD, Rosi S, Shelhamer M, Davis C, Jones CW, Mao XW, Desai RI, Whitmire AM, Williams TJ. Circuits and Biomarkers of the Central Nervous System Relating to Astronaut Performance: Summary Report for a NASA-Sponsored Technical Interchange Meeting. Life (Basel) 2023; 13:1852. [PMID: 37763256 PMCID: PMC10532466 DOI: 10.3390/life13091852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Biomarkers, ranging from molecules to behavior, can be used to identify thresholds beyond which performance of mission tasks may be compromised and could potentially trigger the activation of countermeasures. Identification of homologous brain regions and/or neural circuits related to operational performance may allow for translational studies between species. Three discussion groups were directed to use operationally relevant performance tasks as a driver when identifying biomarkers and brain regions or circuits for selected constructs. Here we summarize small-group discussions in tables of circuits and biomarkers categorized by (a) sensorimotor, (b) behavioral medicine and (c) integrated approaches (e.g., physiological responses). In total, hundreds of biomarkers have been identified and are summarized herein by the respective group leads. We hope the meeting proceedings become a rich resource for NASA's Human Research Program (HRP) and the community of researchers.
Collapse
Affiliation(s)
| | | | - Janani Iyer
- Universities Space Research Association (USRA), Moffett Field, CA 94035, USA
| | | | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, CA 94110, USA
- Department of Neurological Surgery, University of California, San Francisco, CA 94110, USA
| | - Mark Shelhamer
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Catherine Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20814, USA
| | - Christopher W. Jones
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Rajeev I. Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
17
|
Britten RA, Limoli CL. New Radiobiological Principles for the CNS Arising from Space Radiation Research. Life (Basel) 2023; 13:1293. [PMID: 37374076 DOI: 10.3390/life13061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, the brain has been regarded as a relatively insensitive late-reacting tissue, with radiologically detectable damage not being reported at doses < 60 Gy. When NASA proposed interplanetary exploration missions, it was required to conduct an intensive health and safety evaluation of cancer, cardiovascular, and cognitive risks associated with exposure to deep space radiation (SR). The SR dose that astronauts on a mission to Mars are predicted to receive is ~300 mGy. Even after correcting for the higher RBE of the SR particles, the biologically effective SR dose (<1 Gy) would still be 60-fold lower than the threshold dose for clinically detectable neurological damage. Unexpectedly, the NASA-funded research program has consistently reported that low (<250 mGy) doses of SR induce deficits in multiple cognitive functions. This review will discuss these findings and the radical paradigm shifts in radiobiological principles for the brain that were required in light of these findings. These included a shift from cell killing to loss of function models, an expansion of the critical brain regions for radiation-induced cognitive impediments, and the concept that the neuron may not be the sole critical target for neurocognitive impairment. The accrued information on how SR exposure impacts neurocognitive performance may provide new opportunities to reduce neurocognitive impairment in brain cancer patients.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Charles L Limoli
- Department Radiation Oncology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Faerman A, Clark JB, Sutton JP. Neuropsychological considerations for long-duration deep spaceflight. Front Physiol 2023; 14:1146096. [PMID: 37275233 PMCID: PMC10235498 DOI: 10.3389/fphys.2023.1146096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The deep space environment far beyond low-Earth orbit (LEO) introduces multiple and simultaneous risks for the functioning and health of the central nervous system (CNS), which may impair astronauts' performance and wellbeing. As future deep space missions to Mars, moons, or asteroids will also exceed current LEO stay durations and are estimated to require up to 3 years, we review recent evidence with contemporary and historic spaceflight case studies addressing implications for long-duration missions. To highlight the need for specific further investigations, we provide neuropsychological considerations integrating cognitive and motor functions, neuroimaging, neurological biomarkers, behavior changes, and mood and affect to construct a multifactorial profile to explain performance variability, subjective experience, and potential risks. We discuss the importance of adopting a neuropsychological approach to long-duration deep spaceflight (LDDS) missions and draw specific recommendations for future research in space neuropsychology.
Collapse
Affiliation(s)
- Afik Faerman
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jonathan B. Clark
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey P. Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
Allen BD, Alaghband Y, Kramár EA, Ru N, Petit B, Grilj V, Petronek MS, Pulliam CF, Kim RY, Doan NL, Baulch JE, Wood MA, Bailat C, Spitz DR, Vozenin MC, Limoli CL. Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy. Neuro Oncol 2023; 25:927-939. [PMID: 36334265 PMCID: PMC10158064 DOI: 10.1093/neuonc/noac248] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ultrahigh dose-rate radiotherapy (FLASH-RT) affords improvements in the therapeutic index by minimizing normal tissue toxicities without compromising antitumor efficacy compared to conventional dose-rate radiotherapy (CONV-RT). To investigate the translational potential of FLASH-RT to a human pediatric medulloblastoma brain tumor, we used a radiosensitive juvenile mouse model to assess adverse long-term neurological outcomes. METHODS Cohorts of 3-week-old male and female C57Bl/6 mice exposed to hypofractionated (2 × 10 Gy, FLASH-RT or CONV-RT) whole brain irradiation and unirradiated controls underwent behavioral testing to ascertain cognitive status four months posttreatment. Animals were sacrificed 6 months post-irradiation and tissues were analyzed for neurological and cerebrovascular decrements. RESULTS The neurological impact of FLASH-RT was analyzed over a 6-month follow-up. FLASH-RT ameliorated neurocognitive decrements induced by CONV-RT and preserved synaptic plasticity and integrity at the electrophysiological (long-term potentiation), molecular (synaptophysin), and structural (Bassoon/Homer-1 bouton) levels in multiple brain regions. The benefits of FLASH-RT were also linked to reduced neuroinflammation (activated microglia) and the preservation of the cerebrovascular structure, by maintaining aquaporin-4 levels and minimizing microglia colocalized to vessels. CONCLUSIONS Hypofractionated FLASH-RT affords significant and long-term normal tissue protection in the radiosensitive juvenile mouse brain when compared to CONV-RT. The capability of FLASH-RT to preserve critical cognitive outcomes and electrophysiological properties over 6-months is noteworthy and highlights its potential for resolving long-standing complications faced by pediatric brain tumor survivors. While care must be exercised before clinical translation is realized, present findings document the marked benefits of FLASH-RT that extend from synapse to cognition and the microvasculature.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Eniko A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Veljko Grilj
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael S Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Casey F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Rachel Y Kim
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Claude Bailat
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| |
Collapse
|
20
|
Stephenson S, Liu A, Blackwell AA, Britten RA. Multiple decrements in switch task performance in female rats exposed to space radiation. Behav Brain Res 2023; 449:114465. [PMID: 37142163 DOI: 10.1016/j.bbr.2023.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Astronauts on the Artemis missions to the Moon and Mars will be exposed to unavoidable Galactic Cosmic Radiation (GCR). Studies using male rats suggest that GCR exposure impairs several processes required for cognitive flexibility performance, including attention and task switching. Currently no comparable studies have been conducted with female rats. Given that both males and females will travel into deep space, this study determined whether simulated GCR (GCRsim) exposure impairs task switching performance in female rats. Female Wistar rats exposed to 10cGy GCRsim (n = 12) and shams (n=14) were trained to perform a touchscreen-based switch task that mimics a switch task used to evaluate pilots' response times. In comparison to sham rats, three-fold more GCRsim-exposed rats failed to complete the stimulus response stage of training, a high cognitive loading task. In the switch task, 50% of the GCRsim-exposed rats failed to consistently transition between the repeated and switch blocks of stimuli, which they completed during lower cognitive loading training stages. The GCRsim-exposed rats that completed the switch task only performed at 65% of the accuracy of shams. Female rats exposed to GCRsim thus exhibit multiple decrements in the switch task under high, but not low, cognitive loading conditions. While the operational significance of this performance decrement is unknown, if GCRSim exposure was to induce similar effects in astronauts, our data suggests there may be a reduced ability to execute task switching under high cognitive loading situations.
Collapse
Affiliation(s)
- Samuel Stephenson
- School of Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA
| | - Aiyi Liu
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA
| | - Ashley A Blackwell
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA
| | - Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA.
| |
Collapse
|
21
|
Alaghband Y, Allen BD, Kramár EA, Zhang R, Drayson OG, Ru N, Petit B, Almeida A, Doan NL, Wood MA, Baulch JE, Ballesteros-Zebadua P, Vozenin MC, Limoli CL. Uncovering the Protective Neurologic Mechanisms of Hypofractionated FLASH Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:725-737. [PMID: 37377749 PMCID: PMC10135433 DOI: 10.1158/2767-9764.crc-23-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/29/2023]
Abstract
Implementation of ultra-high dose-rate FLASH radiotherapy (FLASH-RT) is rapidly gaining traction as a unique cancer treatment modality able to dramatically minimize normal tissue toxicity while maintaining antitumor efficacy compared with standard-of-care radiotherapy at conventional dose rate (CONV-RT). The resultant improvements in the therapeutic index have sparked intense investigations in pursuit of the underlying mechanisms. As a preamble to clinical translation, we exposed non-tumor-bearing male and female mice to hypofractionated (3 × 10 Gy) whole brain FLASH- and CONV-RT to evaluate differential neurologic responses using a comprehensive panel of functional and molecular outcomes over a 6-month follow-up. In each instance, extensive and rigorous behavioral testing showed FLASH-RT to preserve cognitive indices of learning and memory that corresponded to a similar protection of synaptic plasticity as measured by long-term potentiation (LTP). These beneficial functional outcomes were not found after CONV-RT and were linked to a preservation of synaptic integrity at the molecular (synaptophysin) level and to reductions in neuroinflammation (CD68+ microglia) throughout specific brain regions known to be engaged by our selected cognitive tasks (hippocampus, medial prefrontal cortex). Ultrastructural changes in presynaptic/postsynaptic bouton (Bassoon/Homer-1 puncta) within these same regions of the brain were not found to differ in response to dose rate. With this clinically relevant dosing regimen, we provide a mechanistic blueprint from synapse to cognition detailing how FLASH-RT reduces normal tissue complications in the irradiated brain. Significance Functional preservation of cognition and LTP after hypofractionated FLASH-RT are linked to a protection of synaptic integrity and a reduction in neuroinflammation over protracted after irradiation times.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California
| | - Barrett D. Allen
- Department of Radiation Oncology, University of California, Irvine, California
| | - Eniko A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, California
| | - Olivia G.G. Drayson
- Department of Radiation Oncology, University of California, Irvine, California
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, California
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aymeric Almeida
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, California
| | - Paola Ballesteros-Zebadua
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, México City, México
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|
22
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
23
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
24
|
Peter JS, Schuemann J, Held KD, McNamara AL. Nano-scale simulation of neuronal damage by galactic cosmic rays. Phys Med Biol 2022; 67:10.1088/1361-6560/ac95f4. [PMID: 36172820 PMCID: PMC9951267 DOI: 10.1088/1361-6560/ac95f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
The effects of realistic, deep space radiation environments on neuronal function remain largely unexplored.In silicomodeling studies of radiation-induced neuronal damage provide important quantitative information about physico-chemical processes that are not directly accessible through radiobiological experiments. Here, we present the first nano-scale computational analysis of broad-spectrum galactic cosmic ray irradiation in a realistic neuron geometry. We constructed thousands ofin silicorealizations of a CA1 pyramidal neuron, each with over 3500 stochastically generated dendritic spines. We simulated the entire 33 ion-energy beam spectrum currently in use at the NASA Space Radiation Laboratory galactic cosmic ray simulator (GCRSim) using the TOol for PArticle Simulation (TOPAS) and TOPAS-nBio Monte Carlo-based track structure simulation toolkits. We then assessed the resulting nano-scale dosimetry, physics processes, and fluence patterns. Additional comparisons were made to a simplified 6 ion-energy spectrum (SimGCRSim) also used in NASA experiments. For a neuronal absorbed dose of 0.5 Gy GCRSim, we report an average of 250 ± 10 ionizations per micrometer of dendritic length, and an additional 50 ± 10, 7 ± 2, and 4 ± 2 ionizations per mushroom, thin, and stubby spine, respectively. We show that neuronal energy deposition by proton andα-particle tracks declines approximately hyperbolically with increasing primary particle energy at mission-relevant energies. We demonstrate an inverted exponential relationship between dendritic segment irradiation probability and neuronal absorbed dose for each ion-energy beam. We also find that there are no significant differences in the average physical responses between the GCRSim and SimGCRSim spectra. To our knowledge, this is the first nano-scale simulation study of a realistic neuron geometry using the GCRSim and SimGCRSim spectra. These results may be used as inputs to theoretical models, aid in the interpretation of experimental results, and help guide future study designs.
Collapse
Affiliation(s)
- Jonah S Peter
- Biophysics Program, Harvard University, Boston, MA 02115, United States of America
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
25
|
Dong TN, Kramár EA, Beardwood JH, Al-Shammari A, Wood MA, Keiser AA. Temporal endurance of exercise-induced benefits on hippocampus-dependent memory and synaptic plasticity in female mice. Neurobiol Learn Mem 2022; 194:107658. [PMID: 35811066 PMCID: PMC9901197 DOI: 10.1016/j.nlm.2022.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023]
Abstract
Exercise facilitates hippocampal neurogenesis and neuroplasticity that in turn, promotes cognitive function. Our previous studies have demonstrated that in male mice, voluntary exercise enables hippocampus-dependent learning in conditions that are normally subthreshold for long-term memory formation in sedentary animals. Such cognitive enhancement can be maintained long after exercise has ceased and can be re-engaged by a subsequent subthreshold exercise session, suggesting exercise-induced benefits are temporally dynamic. In females, the extent to which the benefits of exercise can be maintained and the mechanisms underlying this maintenance have yet to be defined. Here, we examined the exercise parameters required to initiate and maintain the benefits of exercise in female C57BL/6J mice. Using a subthreshold version of the hippocampus-dependent task called object-location memory (OLM) task, we show that 14d of voluntary exercise enables learning under subthreshold acquisition conditions in female mice. Following the initial exercise, a 7d sedentary delay results in diminished performance, which can be re-facilitated when animals receive 2d of reactivating exercise following the sedentary delay. Assessment of estrous cycle reveals enhanced wheel running activity during the estrus phase relative to the diestrus phase, whereas estrous phase on training or test had no effect on OLM performance. Utilizing the same exercise parameters, we demonstrate that 14d of exercise enhances long-term potentiation (LTP) in the CA1 region of the hippocampus, an effect that persists throughout the sedentary delay and following the reactivating exercise session. Previous studies have proposed exercise-induced BDNF upregulation as the mechanism underlying exercise-mediated benefits on synaptic plasticity and cognition. However, our assessment of hippocampal Bdnf mRNA expression following memory retrieval reveals no difference between exercise conditions and control, suggesting that persistent Bdnf upregulation may not be required for maintenance of exercise-induced benefits. Together, our data indicate that 14d of voluntary exercise can initiate long-lasting benefits on neuroplasticity and cognitive function in female mice, establishing the first evidence on the temporal endurance of exercise-induced benefits in females.
Collapse
Affiliation(s)
- T N Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - E A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - J H Beardwood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - A Al-Shammari
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - M A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - A A Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
| |
Collapse
|
26
|
Verma SD, Passerat de la Chapelle E, Malkani S, Juran CM, Boyko V, Costes SV, Cekanaviciute E. Astrocytes regulate vascular endothelial responses to simulated deep space radiation in a human organ-on-a-chip model. Front Immunol 2022; 13:864923. [PMID: 36275678 PMCID: PMC9580499 DOI: 10.3389/fimmu.2022.864923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Central nervous system (CNS) damage by galactic cosmic ray radiation is a major health risk for human deep space exploration. Simulated galactic cosmic rays or their components, especially high Z-high energy particles such as 56Fe ions, cause neurodegeneration and neuroinflammation in rodent models. CNS damage can be partially mediated by the blood-brain barrier, which regulates systemic interactions between CNS and the rest of the body. Astrocytes are major cellular regulators of blood-brain barrier permeability that also modulate neuroinflammation and neuronal health. However, astrocyte roles in regulating CNS and blood-brain barrier responses to space radiation remain little understood, especially in human tissue analogs. In this work, we used a novel high-throughput human organ-on-a-chip system to evaluate blood-brain barrier impairments and astrocyte functions 1-7 days after exposure to 600 MeV/n 56Fe particles and simplified simulated galactic cosmic rays. We show that simulated deep space radiation causes vascular permeability, oxidative stress, inflammation and delayed astrocyte activation in a pattern resembling CNS responses to brain injury. Furthermore, our results indicate that astrocytes have a dual role in regulating radiation responses: they exacerbate blood-brain barrier permeability acutely after irradiation, followed by switching to a more protective phenotype by reducing oxidative stress and pro-inflammatory cytokine and chemokine secretion during the subacute stage.
Collapse
Affiliation(s)
- Sonali D. Verma
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Estrella Passerat de la Chapelle
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Sherina Malkani
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Cassandra M. Juran
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Valery Boyko
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- Bionetics, Yorktown, VA, United States
| | - Sylvain V. Costes
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
| | - Egle Cekanaviciute
- Space Biosciences Division, National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
- *Correspondence: Egle Cekanaviciute,
| |
Collapse
|
27
|
Laiakis EC, Pinheiro M, Nguyen T, Nguyen H, Beheshti A, Dutta SM, Russell WK, Emmett MR, Britten RA. Quantitative proteomic analytic approaches to identify metabolic changes in the medial prefrontal cortex of rats exposed to space radiation. Front Physiol 2022; 13:971282. [PMID: 36091373 PMCID: PMC9459391 DOI: 10.3389/fphys.2022.971282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
NASA’s planned mission to Mars will result in astronauts being exposed to ∼350 mSv/yr of Galactic Cosmic Radiation (GCR). A growing body of data from ground-based experiments indicates that exposure to space radiation doses (approximating those that astronauts will be exposed to on a mission to Mars) impairs a variety of cognitive processes, including cognitive flexibility tasks. Some studies report that 33% of individuals may experience severe cognitive impairment. Translating the results from ground-based rodent studies into tangible risk estimates for astronauts is an enormous challenge, but it would be germane for NASA to use the vast body of data from the rodent studies to start developing appropriate countermeasures, in the expectation that some level of space radiation (SR) -induced cognitive impairment could occur in astronauts. While some targeted studies have reported radiation-induced changes in the neurotransmission properties and/or increased neuroinflammation within space radiation exposed brains, there remains little information that can be used to start the development of a mechanism-based countermeasure strategy. In this study, we have employed a robust label-free mass spectrometry (MS) -based untargeted quantitative proteomic profiling approach to characterize the composition of the medial prefrontal cortex (mPFC) proteome in rats that have been exposed to 15 cGy of 600 MeV/n28Si ions. A variety of analytical techniques were used to mine the generated expression data, which in such studies is typically hampered by low and variable sample size. We have identified several pathways and proteins whose expression alters as a result of space radiation exposure, including decreased mitochondrial function, and a further subset of proteins differs in rats that have a high level of cognitive performance after SR exposure in comparison with those that have low performance levels. While this study has provided further insight into how SR impacts upon neurophysiology, and what adaptive responses can be invoked to prevent the emergence of SR-induced cognitive impairment, the main objective of this paper is to outline strategies that can be used by others to analyze sub-optimal data sets and to identify new information.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- *Correspondence: Evagelia C. Laiakis,
| | - Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Sucharita M. Dutta
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark R. Emmett
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
28
|
Kokhan VS, Ustyugov AA, Pikalov VA. Dynamics of Dopamine and Other Monoamines Content in Rat Brain after Single Low-Dose Carbon Nuclei Irradiation. Life (Basel) 2022; 12:life12091306. [PMID: 36143343 PMCID: PMC9502711 DOI: 10.3390/life12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Space radiation, presented primarily by high-charge and -energy particles (HZEs), has a substantial impact on the central nervous system (CNS) of astronauts. This impact, surprisingly, has not only negative but also positive effects on CNS functions. Despite the fact that the mechanisms of this effect have not yet been elucidated, several studies indicate a key role for monoaminergic networks underlying these effects. Here, we investigated the effects of acute irradiation with 450 MeV/n carbon (12C) nuclei at a dose of 0.14 Gy on Wistar rats; a state of anxiety was accessed using a light–dark box, spatial memory in a Morris water maze, and the dynamics of monoamine metabolism in several brain morphological structures using HPLC. No behavioral changes were observed. Irradiation led to the immediate suppression of dopamine turnover in the prefrontal cortex, hypothalamus, and striatum, while a decrease in the level of norepinephrine was detected in the amygdala. However, these effects were transient. The deferred effect of dopamine turnover increase was found in the hippocampus. These data underscore the ability of even low-dose 12C irradiation to affect monoaminergic networks. However, this impact is transient and is not accompanied by behavioral alterations.
Collapse
Affiliation(s)
- Viktor S. Kokhan
- V.P. Serbsky Federal Medical Research Centre for Psychiatry and Narcology, 119034 Moscow, Russia
- Correspondence: ; Tel.: +7-92-5462-9948
| | - Alexey A. Ustyugov
- Institute of Physiologically Active Compounds RAS, 142432 Chernogolovka, Russia
| | - Vladimir A. Pikalov
- Institute for High Energy Physics Named by A.A. Logunov of National Research Centre “Kurchatov Institute”, 142281 Protvino, Russia
| |
Collapse
|
29
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
30
|
Space neuroscience: current understanding and future research. Neurol Sci 2022; 43:4649-4654. [DOI: 10.1007/s10072-022-06146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
31
|
Risk of Developing Non-Cancerous Central Nervous System Diseases Due to Ionizing Radiation Exposure during Adulthood: Systematic Review and Meta-Analyses. Brain Sci 2022; 12:brainsci12080984. [PMID: 35892428 PMCID: PMC9331299 DOI: 10.3390/brainsci12080984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Background: High-dose ionizing radiation (IR) (>0.5 Gy) is an established risk factor for cognitive impairments, but this cannot be concluded for low-to-moderate IR exposure (<0.5 Gy) in adulthood as study results are inconsistent. The objectives are to summarize relevant epidemiological studies of low-to-moderate IR exposure in adulthood and to assess the risk of non-cancerous CNS diseases. Methods: A systematic literature search of four electronic databases was performed to retrieve relevant epidemiological studies published from 2000 to 2022. Pooled standardized mortality ratios, relative risks, and excess relative risks (ERR) were estimated with a random effect model. Results: Forty-five publications were included in the systematic review, including thirty-three in the quantitative meta-analysis. The following sources of IR-exposure were considered: atomic bomb, occupational, environmental, and medical exposure. Increased dose-risk relationships were found for cerebrovascular diseases incidence and mortality (ERRpooled per 100 mGy = 0.04; 95% CI: 0.03−0.05; ERRpooled at 100 mGy = 0.01; 95% CI: −0.00−0.02, respectively) and for Parkinson’s disease (ERRpooled at 100 mGy = 0.11; 95% CI: 0.06−0.16); Conclusions: Our findings suggest that adult low-to-moderate IR exposure may have effects on non-cancerous CNS diseases. Further research addressing inherent variation issues is encouraged.
Collapse
|
32
|
Britten RA, Fesshaye A, Tidmore A, Blackwell AA. Similar Loss of Executive Function Performance after Exposure to Low (10 cGy) Doses of Single (4He) Ions and the Multi-Ion GCRSim Beam. Radiat Res 2022; 198:375-383. [DOI: 10.1667/rade-22-00022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
33
|
Goodwin TJ, Christofidou-Solomidou M. Editorial to the Special Issue: "Dysregulation of Human Molecular and Metabolic Mechanisms Resulting in Oxidative Stress and Damage Generation in the Space Environment". Int J Mol Sci 2022; 23:ijms23126466. [PMID: 35742909 PMCID: PMC9224197 DOI: 10.3390/ijms23126466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
Commercial space industries are emergent, bolstered by new exciting rocket systems, orbital and landing vehicles, the creation of multi-country orbital platforms, satellite technology, the renewed promise of low Earth orbit (LEO) business opportunities, as well as promised planetary exploration [...].
Collapse
Affiliation(s)
- Thomas J. Goodwin
- Goodwin BioScience Research Institute, Houston, TX 77058, USA
- Sovaris Aerospace, Research Innovation, Infectious Disease Research Center Colorado State University, Fort Collins, CO 80521, USA
- The National Aeronautics and Space Administration (NASA Retired) Johnson Space Center, Houston, TX 77058, USA
- Correspondence:
| | - Melpo Christofidou-Solomidou
- Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
34
|
Tran V, Carpo N, Shaka S, Zamudio J, Choi S, Cepeda C, Espinosa-Jeffrey A. Delayed Maturation of Oligodendrocyte Progenitors by Microgravity: Implications for Multiple Sclerosis and Space Flight. Life (Basel) 2022; 12:797. [PMID: 35743828 PMCID: PMC9224676 DOI: 10.3390/life12060797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
In previous studies, we examined the effects of space microgravity on human neural stem cells. To date, there are no studies on a different type of cell that is critical for myelination and electrical signals transmission, oligodendrocyte progenitors (OLPs). The purpose of the present study was to examine the behavior of space-flown OLPs (SPC-OLPs) as they were adapting to Earth's gravity. We found that SPC-OLPs survived, and most of them proliferated normally. Nonetheless, some of them displayed incomplete cytokinesis. Both morphological and ontogenetic analyses showed that they remained healthy and expressed the immature OLP markers Sox2, PDGFR-α, and transferrin (Tf) after space flight, which confirmed that SPC-OLPs displayed a more immature phenotype than their ground control (GC) counterparts. In contrast, GC OLPs expressed markers that usually appear later (GPDH, O4, and ferritin), indicating a delay in SPC-OLPs' development. These cells remained immature even after treatment with culture media designed to support oligodendrocyte (OL) maturation. The most remarkable and surprising finding was that the iron carrier glycoprotein Tf, previously described as an early marker for OLPs, was expressed ectopically in the nucleus of all SPC-OLPs. In contrast, their GC counterparts expressed it exclusively in the cytoplasm, as previously described. In addition, analysis of the secretome demonstrated that SPC-OLPs contained 3.5 times more Tf than that of GC cells, indicating that Tf is gravitationally regulated, opening two main fields of study to understand the upregulation of the Tf gene and secretion of the protein that keep OLPs at a progenitor stage rather than moving forward to more mature phenotypes. Alternatively, because Tf is an autocrine and paracrine factor in the central nervous system (CNS), in the absence of neurons, it accumulated in the secretome collected after space flight. We conclude that microgravity is becoming a novel platform to study why in some myelin disorders OLPs are present but do not mature.
Collapse
Affiliation(s)
- Victoria Tran
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Nicholas Carpo
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Sophia Shaka
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Joile Zamudio
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Sungshin Choi
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Carlos Cepeda
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| |
Collapse
|
35
|
Radstake WE, Baselet B, Baatout S, Verslegers M. Spaceflight Stressors and Skin Health. Biomedicines 2022; 10:364. [PMID: 35203572 PMCID: PMC8962330 DOI: 10.3390/biomedicines10020364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Traveling to space puts astronauts at risk of developing serious health problems. Of particular interest is the skin, which is vitally important in protecting the body from harmful environmental factors. Although data obtained from long-duration spaceflight studies are inconsistent, there have been indications of increased skin sensitivity and signs of dermal atrophy in astronauts. To better understand the effects of spaceflight stressors including microgravity, ionizing radiation and psychological stress on the skin, researchers have turned to in vitro and in vivo simulation models mimicking certain aspects of the spaceflight environment. In this review, we provide an overview of these simulation models and highlight studies that have improved our understanding on the effect of simulation spaceflight stressors on skin function. Data show that all aforementioned spaceflight stressors can affect skin health. Nevertheless, there remains a knowledge gap regarding how different spaceflight stressors in combination may interact and affect skin health. In future, efforts should be made to better simulate the spaceflight environment and reduce uncertainties related to long-duration spaceflight health effects.
Collapse
Affiliation(s)
- Wilhelmina E. Radstake
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| | - Sarah Baatout
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400 Mol, Belgium; (W.E.R.); (S.B.); (M.V.)
| |
Collapse
|
36
|
Jones CW, Basner M, Mollicone DJ, Mott CM, Dinges DF. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep 2022; 45:6505235. [PMID: 35023565 PMCID: PMC8919197 DOI: 10.1093/sleep/zsac006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Astronauts are required to maintain optimal neurobehavioral functioning despite chronic exposure to the stressors and challenges of spaceflight. Sleep of adequate quality and duration is fundamental to neurobehavioral functioning, however astronauts commonly experience short sleep durations in spaceflight (<6 h). As humans embark on long-duration space exploration missions, there is an outstanding need to identify the consequences of sleep deficiency in spaceflight on neurobehavioral functions. Therefore, we conducted a longitudinal study that examined the sleep-wake behaviors, neurobehavioral functions, and ratings of stress and workload of N = 24 astronauts before, during, and after 6-month missions aboard the International Space Station (ISS). The computerized, Reaction SelfTest (RST), gathered astronaut report of sleep-wake behaviors, stress, workload, and somatic behavioral states; the RST also objectively assessed vigilant attention (i.e. Psychomotor Vigilance Test-Brief). Data collection began 180 days before launch, continued every 4 days in-flight aboard the ISS, and up to 90 days post-landing, which produced N = 2,856 RSTs. Consistent with previous ISS studies, astronauts reported sleeping ~6.5 h in-flight. The adverse consequences of short sleep were observed across neurobehavioral functions, where sleep durations <6 h were associated with significant reductions in psychomotor response speed, elevated stress, and higher workload. Sleep durations <5 h were associated with elevated negative somatic behavioral states. Furthermore, longer sleep durations had beneficial effects on astronaut neurobehavioral functions. Taken together, our findings highlight the importance of sleep for the maintenance of neurobehavioral functioning and as with humans on Earth, astronauts would likely benefit from interventions that promote sleep duration and quality.
Collapse
Affiliation(s)
| | | | | | | | - David F Dinges
- Corresponding author. David F. Dinges, Unit for Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 1013 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Schaeffer EA, Blackwell AA, Oltmanns JRO, Einhaus R, Lake R, Hein CP, Baulch JE, Limoli CL, Ton ST, Kartje GL, Wallace DG. Differential organization of open field behavior in mice following acute or chronic simulated GCR exposure. Behav Brain Res 2022; 416:113577. [PMID: 34506841 DOI: 10.1016/j.bbr.2021.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 11/20/2022]
Abstract
Astronauts undertaking deep space travel will receive chronic exposure to the mixed spectrum of particles that comprise Galactic Cosmic Radiation (GCR). Exposure to the different charged particles of varied fluence and energy that characterize GCR may impact neural systems that support performance on mission critical tasks. Indeed, growing evidence derived from years of terrestrial-based simulations of the space radiation environment using rodents has indicated that a variety of exposure scenarios can result in significant and long-lasting decrements to CNS functionality. Many of the behavioral tasks used to quantify radiation effects on the CNS depend on neural systems that support maintaining spatial orientation and organization of rodent open field behavior. The current study examined the effects of acute or chronic exposure to simulated GCR on the organization of open field behavior under conditions with varied access to environmental cues in male and female C57BL/6 J mice. In general, groups exhibited similar organization of open field behavior under dark and light conditions. Two exceptions were noted: the acute exposure group exhibited significantly slower and more circuitous homeward progressions relative to the chronic group under light conditions. These results demonstrate the potential of open field behavior organization to discriminate between the effects of select GCR exposure paradigms.
Collapse
Affiliation(s)
- E A Schaeffer
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - A A Blackwell
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - R Einhaus
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - R Lake
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - C Piwowar Hein
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA
| | - J E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - C L Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - S T Ton
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - G L Kartje
- Loyola University Health Sciences Division, Maywood, IL, USA; Edward Hines Jr. Veterans Affairs Hospital, Research Service, Hines, IL, USA
| | - D G Wallace
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
38
|
Maier I, Ruegger PM, Deutschmann J, Helbich TH, Pietschmann P, Schiestl RH, Borneman J. Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-γ-Induced Osteo-Immunogenicity. Radiat Res 2021; 197:289-297. [PMID: 34905619 DOI: 10.1667/rade-21-00068.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/09/2021] [Indexed: 11/03/2022]
Abstract
Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (-15%) vs. irradiated RM mice (-9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Julia Deutschmann
- Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert H Schiestl
- Departments of Pathology and Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| |
Collapse
|
39
|
Loganovsky KM, Fedirko PA, Marazziti D, Kuts KV, Antypchuk KY, Perchuk IV, Babenko TF, Loganovska TK, Kolosynska OO, Kreinis GY, Masiuk SV, Zdorenko LL, Zdanevich NA, Garkava NA, Dorichevska RY, Vasilenko ZL, Kravchenko VI, Drosdova NV, Yefimova YV, Malinyak AV. BRAIN AND EYE AS POTENTIAL TARGETS FOR IONIZING RADIATION IMPACT: PART II - RADIATION CEREBRO/OPHTALMIC EFFECTS IN CHILDREN, PERSONS EXPOSED IN UTERO, ASTRONAUTS AND INTERVENTIONAL RADIOLOGISTS. PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:57-97. [PMID: 34965543 DOI: 10.33145/2304-8336-2021-26-57-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ionizing radiation (IR) can affect the brain and the visual organ even at low doses, while provoking cognitive, emotional, behavioral, and visual disorders. We proposed to consider the brain and the visual organ as potential targets for the influence of IR with the definition of cerebro-ophthalmic relationships as the «eye-brain axis». OBJECTIVE The present work is a narrative review of current experimental, epidemiological and clinical data on radiation cerebro-ophthalmic effects in children, individuals exposed in utero, astronauts and interventional radiologists. MATERIALS AND METHODS The review was performed according to PRISMA guidelines by searching the abstract and scientometric databases PubMed/MEDLINE, Scopus, Web of Science, Embase, PsycINFO, Google Scholar, published from 1998 to 2021, as well as the results of manual search of peer-reviewed publications. RESULTS Epidemiological data on the effects of low doses of IR on neurodevelopment are quite contradictory, while data on clinical, neuropsychological and neurophysiological on cognitive and cerebral disorders, especially in the left, dominant hemisphere of the brain, are nore consistent. Cataracts (congenital - after in utero irradiation) and retinal angiopathy are more common in prenatally-exposed people and children. Astronauts, who carry out longterm space missions outside the protection of the Earth's magnetosphere, will be exposed to galactic cosmic radiation (heavy ions, protons), which leads to cerebro-ophthalmic disorders, primarily cognitive and behavioral disorders and cataracts. Interventional radiologists are a special risk group for cerebro-ophthalmic pathology - cognitivedeficits, mainly due to dysfunction of the dominant and more radiosensitive left hemisphere of the brain, andcataracts, as well as early atherosclerosis and accelerated aging. CONCLUSIONS Results of current studies indicate the high radiosensitivity of the brain and eye in different contingents of irradiated persons. Further research is needed to clarify the nature of cerebro-ophthalmic disorders in different exposure scenarios, to determine the molecular biological mechanisms of these disorders, reliable dosimetric support and taking into account the influence of non-radiation risk factors.
Collapse
Affiliation(s)
- K M Loganovsky
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - P A Fedirko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - D Marazziti
- Dipartimento di Medicina Clinica e Sperimentale Section of Psychiatry, University of Pisa, Via Roma, 67, I 56100, Pisa, Italy
| | - K V Kuts
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - K Yu Antypchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - I V Perchuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T F Babenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - T K Loganovska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - O O Kolosynska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - G Yu Kreinis
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - S V Masiuk
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - L L Zdorenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Zdanevich
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N A Garkava
- State Institution «Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine», 9 Vernadsky Str., Dnipro, 49044, Ukraine
| | - R Yu Dorichevska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Z L Vasilenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - V I Kravchenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - N V Drosdova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - Yu V Yefimova
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| | - A V Malinyak
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine
| |
Collapse
|
40
|
Raber J, Holden S, Sudhakar R, Hall R, Glaeser B, Lenarczyk M, Rockwell K, Nawarawong N, Sterrett J, Perez R, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen CM, Willey JS, Bobe G, Baker J. Effects of 5-Ion Beam Irradiation and Hindlimb Unloading on Metabolic Pathways in Plasma and Brain of Behaviorally Tested WAG/Rij Rats. Front Physiol 2021; 12:746509. [PMID: 34646164 PMCID: PMC8503608 DOI: 10.3389/fphys.2021.746509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 01/13/2023] Open
Abstract
A limitation of simulated space radiation studies is that radiation exposure is not the only environmental challenge astronauts face during missions. Therefore, we characterized behavioral and cognitive performance of male WAG/Rij rats 3 months after sham-irradiation or total body irradiation with a simplified 5-ion mixed beam exposure in the absence or presence of simulated weightlessness using hindlimb unloading (HU) alone. Six months following behavioral and cognitive testing or 9 months following sham-irradiation or total body irradiation, plasma and brain tissues (hippocampus and cortex) were processed to determine whether the behavioral and cognitive effects were associated with long-term alterations in metabolic pathways in plasma and brain. Sham HU, but not irradiated HU, rats were impaired in spatial habituation learning. Rats irradiated with 1.5 Gy showed increased depressive-like behaviors. This was seen in the absence but not presence of HU. Thus, HU has differential effects in sham-irradiated and irradiated animals and specific behavioral measures are associated with plasma levels of distinct metabolites 6 months later. The combined effects of HU and radiation on metabolic pathways in plasma and brain illustrate the complex interaction of environmental stressors and highlights the importance of assessing these interactions.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR, United States.,College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Reetesh Sudhakar
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Breanna Glaeser
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kristen Rockwell
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Natalie Nawarawong
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Sterrett
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Scott William Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher M Olsen
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - John Baker
- Department of Pharmacology and Toxicology, Neuroscience Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
41
|
Abstract
Cosmic radiation belongs to the challenges engineers have to deal with when further developing space travel. Besides the severe risks for humans due to high-energy particles or waves, the impact of cosmic radiation on electronics and diverse materials cannot be neglected, even in microsatellites or other unmanned spacecraft. Here, we explain the different particles or waves found in cosmic radiation and their potential impact on biological and inanimate matter. We give an overview of fiber-based shielding materials, mostly applied in the form of composites, and explain why these materials can help shielding spaceships or satellites from cosmic radiation.
Collapse
|
42
|
Soler I, Yun S, Reynolds RP, Whoolery CW, Tran FH, Kumar PL, Rong Y, DeSalle MJ, Gibson AD, Stowe AM, Kiffer FC, Eisch AJ. Multi-Domain Touchscreen-Based Cognitive Assessment of C57BL/6J Female Mice Shows Whole-Body Exposure to 56Fe Particle Space Radiation in Maturity Improves Discrimination Learning Yet Impairs Stimulus-Response Rule-Based Habit Learning. Front Behav Neurosci 2021; 15:722780. [PMID: 34707486 PMCID: PMC8543003 DOI: 10.3389/fnbeh.2021.722780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.
Collapse
Affiliation(s)
- Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cody W. Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Priya L. Kumar
- University of Pennsylvania, Philadelphia, PA, United States
| | - Yuying Rong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J. DeSalle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adam D. Gibson
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurological Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Frederico C. Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
43
|
Arone A, Ivaldi T, Loganovsky K, Palermo S, Parra E, Flamini W, Marazziti D. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. CLINICAL NEUROPSYCHIATRY 2021; 18:237-246. [PMID: 34984067 PMCID: PMC8696290 DOI: 10.36131/cnfioritieditore20210502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Space travel, a topic of global interest, has always been a fascinating matter, as its potential appears to be infinite. The development of advanced technologies has made it possible to achieve objectives previously considered dreams and to widen more and more the limits that the human species can overcome. The dangers that astronauts may face are not minimal, and the impacts on physical and mental health may be significant. Specifically, symptoms of emotional dysregulation, cognitive dysfunction, disruption of sleep-wake rhythms, visual phenomena and significant changes in body weight, along with morphological brain changes, are some of the most frequently reported occurrences during space missions. Given the renewed interest and investment on space explorations, the aim of this paper was thus to summarize the evidence of the currently available literature, and to offer an overview of the factors that might impair the psychological well-being and mental health of astronauts. To achieve the goal of this paper, the authors accessed some of the main databases of scientific literature and collected evidence from articles that successfully fulfilled the purpose of this work. The results of this review demonstrated how the psychological and psychiatric problems occurring during space missions are manifold and related to a multiplicity of variables, thus requiring further attention from the scientific community as new challenges lie ahead, and prevention of mental health of space travelers should be carefully considered.
Collapse
Affiliation(s)
- Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Tea Ivaldi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Konstantin Loganovsky
- Department of Radiation Psychoneurology, Institute for Clinical Radiology, State Institution “National Research Centre for Radiation Medicine, National Academy of Medical Sciences of Ukraine”
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Walter Flamini
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
| |
Collapse
|
44
|
Klein PM, Alaghband Y, Doan NL, Ru N, Drayson OGG, Baulch JE, Kramár EA, Wood MA, Soltesz I, Limoli CL. Acute, Low-Dose Neutron Exposures Adversely Impact Central Nervous System Function. Int J Mol Sci 2021; 22:9020. [PMID: 34445726 PMCID: PMC8396607 DOI: 10.3390/ijms22169020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
A recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels. We previously observed that space-relevant neutron radiation doses, chronically delivered at dose-rates expected during planned human exploratory missions, can disrupt hippocampal neuronal excitability, perturb network long-term potentiation and negatively impact cognitive behavior. We have now determined that acute exposures to similar low doses (18 cGy) of neutron radiation can also lead to suppressed hippocampal synaptic signaling, as well as decreased learning and memory performance in male mice. Our results demonstrate that similar nervous system hazards arise from neutron irradiation regardless of the exposure time course. While not always in an identical manner, neutron irradiation disrupts many of the same central nervous system elements as acute charged particle GCR exposures. The risks arising from neutron irradiation are therefore important to consider when determining the overall hazards astronauts will face from the space radiation environment.
Collapse
Affiliation(s)
- Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Olivia G. G. Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| | - Enikö A. Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; (E.A.K.); (M.A.W.)
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; (P.M.K.); (I.S.)
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA; (Y.A.); (N.-L.D.); (N.R.); (O.G.G.D.); (J.E.B.)
| |
Collapse
|
45
|
Chmielewski-Stivers N, Petit B, Ollivier J, Monceau V, Tsoutsou P, Quintela Pousa A, Lin X, Limoli C, Vozenin MC. Sex-Specific Differences in Toxicity Following Systemic Paclitaxel Treatment and Localized Cardiac Radiotherapy. Cancers (Basel) 2021; 13:cancers13163973. [PMID: 34439129 PMCID: PMC8394799 DOI: 10.3390/cancers13163973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary The objective of the present study was to investigate the impact of sex in the development of long-term toxicities affecting quality of life in cancer survivors after systemic paclitaxel treatment and cardiac irradiation. Sex-specific differences may affect tumor biology, drug pharmacokinetics and dynamics, and response to local treatment such as radiation therapy (RT). However, sex is rarely taken into consideration when administering cancer therapies. Interestingly, female mice are protected from paclitaxel-induced neurotoxicity as well as from radiotherapy-induced cardiotoxicity, and deficiency in the small GTPase RhoB reversed the protection in females but not in males. In conclusion, our results are the first to identify sex- and organ-specific responses to systemic paclitaxel administration and localized RT. These results may have important implications for the management of cancer patients and implementation of personalized medicine in oncology. Abstract The impact of sex in the development of long-term toxicities affecting the quality of life of cancer survivors has not been investigated experimentally. To address this issue, a series of neurologic and cardiologic endpoints were used to investigate sex-based differences triggered by paclitaxel treatment and radiotherapy exposure. Male and female wild-type (WT) mice were treated with paclitaxel (150 and 300 mg/kg) administered weekly over 6 weeks or exposed to 19 Gy cardiac irradiation. Cohorts were analyzed for behavioral and neurobiologic endpoints to assess systemic toxicity of paclitaxel or cardiovascular endpoints to assess radiotherapy toxicity. Interestingly, female WT mice exhibited enhanced tolerance compared to male WT mice regardless of the treatment regimen. To provide insight into the possible sex-specific protective mechanisms, rhoB-deficient animals and elderly mice (22 months) were used with a focus on the possible contribution of sex hormones, including estrogen. In females, RhoB deficiency and advanced age had no impact on neurocognitive impairment induced by paclitaxel but enhanced cardiac sensitivity to radiotherapy. Conversely, rhoB-deficiency protected males from radiation toxicity. In sum, RhoB was identified as a molecular determinant driving estrogen-dependent cardioprotection in female mice, whereas neuroprotection was not sex hormone dependent. To our knowledge, this study revealed for the first time sex- and organ-specific responses to paclitaxel and radiotherapy.
Collapse
Affiliation(s)
- Nicole Chmielewski-Stivers
- Department of Radiation Oncology, University of California at Irvine, Irvine, CA 92697, USA; (N.C.-S.); (X.L.)
| | - Benoit Petit
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (B.P.); (J.O.); (P.T.); (A.Q.P.)
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (B.P.); (J.O.); (P.T.); (A.Q.P.)
| | - Virginie Monceau
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), 92260 Fontenay aux Roses, France;
| | - Pelagia Tsoutsou
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (B.P.); (J.O.); (P.T.); (A.Q.P.)
- Department of Radiation Oncology, Hôpitaux Universitaires Genèvehug (HUG), 1205 Geneva, Switzerland
| | - Ana Quintela Pousa
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (B.P.); (J.O.); (P.T.); (A.Q.P.)
| | - Xiaomeng Lin
- Department of Radiation Oncology, University of California at Irvine, Irvine, CA 92697, USA; (N.C.-S.); (X.L.)
| | - Charles Limoli
- Department of Radiation Oncology, University of California at Irvine, Irvine, CA 92697, USA; (N.C.-S.); (X.L.)
- Correspondence: (C.L.); (M.-C.V.)
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, CHUV, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (B.P.); (J.O.); (P.T.); (A.Q.P.)
- Correspondence: (C.L.); (M.-C.V.)
| |
Collapse
|
46
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
47
|
Desai RI, Kangas BD, Limoli CL. Nonhuman primate models in the study of spaceflight stressors: Past contributions and future directions. LIFE SCIENCES IN SPACE RESEARCH 2021; 30:9-23. [PMID: 34281669 DOI: 10.1016/j.lssr.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Studies in rodents suggest that exposure to distinct spaceflight stressors (e.g., space radiation, isolation/confinement, microgravity) may have a profound impact on an astronaut's ability to perform both simple and complex tasks related to neurocognitive performance, central nervous system (CNS) and vestibular/sensorimotor function. However, limited information is currently available on how combined exposure to the spaceflight stressors will impact CNS-related neurocognitive and neurobiological function in-flight and, as well, terrestrial risk of manifesting neurodegenerative conditions when astronauts return to earth. This information gap has significantly hindered our ability to realistically estimate spaceflight hazard risk to the CNS associated with deep space exploration. Notwithstanding a significant body of work with rodents, there have been very few direct investigations of the impact of these spaceflight stressors in combination and, to our knowledge, no such investigations using nonhuman primate (NHP) animal models. In view of the widely-recognized translational value of NHP data in advancing biomedical discoveries, this research deficiency limits our understanding regarding the impact of individual and combined spaceflight stressors on CNS-related neurobiological function. In this review, we address this knowledge gap by conducting a systematic and comprehensive evaluation of existing research on the impact of exposure to spaceflight stressors on NHP CNS-related function. This review is structured to: a) provide an overarching view of the past contributions of NHPs to spaceflight research as well as the strengths, limitations, and translational value of NHP research in its own right and within the existing context of NASA-relevant rodent research; b) highlight specific conclusions based on the published literature and areas needed for future endeavors; c) describe critical research gaps and priorities in NHP research to facilitate NASA's efforts to bridge the key knowledge gaps that currently exist in translating rodent data to humans; and d) provide a roadmap of recommendations for NASA regarding the availability, validity, strengths, and limitations of various NHP models for future targeted research.
Collapse
Affiliation(s)
- Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| |
Collapse
|
48
|
Tidmore A, Dutta SM, Fesshaye AS, Russell WK, Duncan VD, Britten RA. Space Radiation-Induced Alterations in the Hippocampal Ubiquitin-Proteome System. Int J Mol Sci 2021; 22:ijms22147713. [PMID: 34299332 PMCID: PMC8304141 DOI: 10.3390/ijms22147713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.
Collapse
Affiliation(s)
- Alyssa Tidmore
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Sucharita M. Dutta
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Arriyam S. Fesshaye
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Vania D. Duncan
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, 700 W. Olney Rd., Lewis Hall, Norfolk, VA 23507, USA; (A.T.); (A.S.F.); (V.D.D.)
- Department of Microbiology and Molecular Cell Biology; Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Correspondence:
| |
Collapse
|
49
|
Holden S, Perez R, Hall R, Fallgren CM, Ponnaiya B, Garty G, Brenner DJ, Weil MM, Raber J. Effects of Acute and Chronic Exposure to a Mixed Field of Neutrons and Photons and Single or Fractionated Simulated Galactic Cosmic Ray Exposure on Behavioral and Cognitive Performance in Mice. Radiat Res 2021; 196:31-39. [PMID: 33857301 PMCID: PMC8297553 DOI: 10.1667/rade-20-00228.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
During space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons. In C3H male mice, there were effects of acute radiation exposure on activity levels in the open field containing objects. In addition, there were radiation-aspirin interactions for effects of chronic radiation exposure on activity levels and measures of anxiety in the open field, and on activity levels in the open field containing objects. There were also detrimental effects of aspirin and chronic radiation exposure on the ability of mice to distinguish the familiar and novel object. Finally, there were effects of acute GCRsim on activity levels in the open field containing objects. Activity levels were lower in GCRsim than sham-irradiated mice. Thus, acute and chronic irradiation to a mixture of neutrons and photons and acute and fractionated GCRsim have differential effects on behavioral and cognitive performance of C3H mice. Within the limitations of our study design, aspirin does not appear to be a suitable countermeasure for effects of chronic exposure to space radiation on cognitive performance.
Collapse
Affiliation(s)
- Sarah Holden
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Ruby Perez
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Reed Hall
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| | - Christina M. Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Brian Ponnaiya
- Columbia University Center for Radiological Research, New York, New York 10032
| | - Guy Garty
- Columbia University Center for Radiological Research, New York, New York 10032
| | - David J. Brenner
- Columbia University Center for Radiological Research, New York, New York 10032
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
50
|
An easy-to-use function to assess deep space radiation in human brains. Sci Rep 2021; 11:11687. [PMID: 34083566 PMCID: PMC8175378 DOI: 10.1038/s41598-021-90695-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Health risks from radiation exposure in space are an important factor for astronauts’ safety as they venture on long-duration missions to the Moon or Mars. It is important to assess the radiation level inside the human brain to evaluate the possible hazardous effects on the central nervous system especially during solar energetic particle (SEP) events. We use a realistic model of the head/brain structure and calculate the radiation deposit therein by realistic SEP events, also under various shielding scenarios. We then determine the relation between the radiation dose deposited in different parts of the brain and the properties of the SEP events and obtain some simple and ready-to-use functions which can be used to quickly and reliably forecast the event dose in the brain. Such a novel tool can be used from fast nowcasting of the consequences of SEP events to optimization of shielding systems and other mitigation strategies of astronauts in space.
Collapse
|